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NONLINEAR STABILITY OF THE ENSEMBLE KALMAN FILTER
WITH ADAPTIVE COVARIANCE INFLATION∗

XIN T. TONG† , ANDREW J. MAJDA‡ , AND DAVID KELLY§

Abstract. The ensemble Kalman filter and ensemble square root filters are data assimilation
methods used to combine high dimensional nonlinear models with observed data. These methods have
proved to be indispensable tools in science and engineering as they allow computationally cheap, low
dimensional ensemble state approximation for extremely high dimensional turbulent forecast models.
From a theoretical perspective, these methods are poorly understood, with the exception of a recently
established but still incomplete nonlinear stability theory. Moreover, recent numerical and theoretical
studies of catastrophic filter divergence have indicated that stability is a genuine mathematical concern
and can not be taken for granted in implementation. In this article we propose a simple modification of
ensemble based methods which resolves these stability issues entirely. The method involves a new type
of adaptive covariance inflation, which comes with minimal additional cost. We develop a complete
nonlinear stability theory for the adaptive method, yielding Lyapunov functions and geometric ergodic-
ity under weak assumptions. We present numerical evidence which suggests the adaptive methods have
improved accuracy over standard methods and completely eliminate catastrophic filter divergence. This
enhanced stability allows for the use of extremely cheap, unstable forecast integrators, which would
otherwise lead to widespread filter malfunction.
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chains.
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1. Introduction
With the growing importance of accurate weather forecasting and expanding avail-

ability of geophysical measurements, data assimilation for high dimensional dynamical
system and data has never been more crucial. The ensemble Kalman filter (EnKF) [1]
and ensemble square root filters (ESRF) [2, 3] are ensemble based algorithms well de-
signed for this purpose. They quantify the uncertainty of an underlying system using

the sample information of a moderate size ensemble {V (k)
n }Kk=1, thereby significantly

reducing the computational cost. The simplicity of these algorithms and their ac-
curate performance has fueled their wide application in various fields of geophysical
science [4, 5].

Despite their success, there are many unresolved issues with ensemble based meth-
ods. First, there is very little theoretical understanding of the methods and notably the
stability framework is incomplete. Only very recently has the stability theory been par-
tially understood in the finite ensemble size scenario, with progress on well-posedness
in the fully observed case [6] and subsequently in nonlinear stability of the partially
observed case, but under the so-called observable energy criterion [7]. The shadow-
ing properties of EnKF have been analyzed in [8], under idealized assumptions on the
model.

∗Received: July 29, 2015; accepted (in revised form): September 10, 2015. Communicated by Shi
Jin.

†Centre for Atmosphere Ocean Science, New York University, New York, NY, 10012 and
Courant Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA
(tong@cims.nyu.edu).

‡Centre for Atmosphere Ocean Science, New York University, New York, NY, 10012 and Courant
Institute of Mathematical Sciences, New York University, New York, NY, 10012, USA (jon-
jon@cims.nyu.edu).

§Corresponding author, Courant Institute of Mathematical Sciences, New York University, New
York, NY, 10012, USA (dtkelly@cims.nyu.edu).

1283



1284 NONLINEAR STABILITY OF ENKF WITH ADAPTIVE INFLATION

A better understanding of filter stability is sorely lacking, with recent numerical
studies [9,10] revealing the mechanistically mysterious phenomenon known as catstrophic
filter divergence, whereby filter state estimates tend to machine infinity, whilst the
underlying signal remains in a bounded set. In [11] it has been established rigorously,
through an elementary model, that this divergence is not caused by the instability of
the numerical integrator alone, instead the update step in the filter itself plays a crucial
role in the genesis of divergence.

In this article we propose a simple modification to EnKF (and ESRF) which resolves
these issues completely. The modification is a type of covariance inflation, a widely used
strategy for stabilizing and improving the accuracy of filters. Typically the forecast
covariance Ĉn is (in the case of EnKF) additively inflated to Ĉn+λnI for some choice
of inflation constant λn. Since the forecast covariance decides how much uncertainty is
held by the forecast prediction, inflation has the affect of pulling the filter back towards
the observations, yielding improved stability. Existing methods of covariance inflation,
such as constant additive inflation (λn is constant) tend to improve accuracy, but are
still vulnerable to stability issue like catastrophic filter divergence [9].

The modification we propose selects the inflation strength λn adaptively and varies
according to the distribution of the ensemble. In particular, if the filter is deemed to
be performing well, the inflation strength is set to zero and the method is reduced to
EnKF (or ESRF, as desired). If the filter is deemed to be ‘malfunctioning’, then the
adaptive inflation is triggered. The strength of the inflation becomes larger when the
filter strays further into malfunction. To decide when and to what extent the filter is
malfunctioning, we employ two simple statistics of the ensemble, Θn and Ξn, which
are based respectively on the ensemble innovation and the cross correlation between
observed and unobserved components. The two statistics are so chosen as it is clear
from the theoretical framework that these are precisely the two variables which must be
controlled to guarantee stability. Nevertheless, there is a quite natural interpretation
as to why these two statistics are an effective gauge of filter performance. The full
derivation and explanation of the adaptively inflated methods are given in Section 3.

In sections 4 and 5, we develop a complete stability theory for the adaptively inflated
methods by extending the stability framework established in [7]. This framework is
comprised of two main results: time uniform mean-square estimates on the ensemble
via a Lyapunov argument and geometric ergodicity of the signal-ensemble process. We
prove that if the underlying model satisfies energy dissipation, then the filter inherits
this dissipation and in particular has a Lyapnuov function with compact sub-level sets.
This is a vast improvement on the results in [7] for EnKF, since firstly the observable
energy criterion is no longer required and secondly the Lyapunov function for the filter is
guaranteed to have compact sub-level sets. This latter fact leads to geometric ergodicity
of the signal-ensemble process for the adaptively inflated EnKF, which follows as an
immediate corollary of the results in [7].

In Section 7, we investigate the performance of the adaptively inflated filter numer-
ically, comparing performance with standard methods, such as non-inflated EnKF and
non-adaptively (such as constantly) inflated EnKF. The adaptive method performs at
least as well and typically better than standard methods and as expected completely
avoids the issue of catastrophic filter divergence , which is quite prevalent in all standard
methods. The additional expense in computing the inflation strength is minimal and
hence the adaptive methods run at almost identical speed to the standard methods.
Most impressively, the adaptive method allows for the use of extremely cheap but un-
stable integrators, like explicit Euler. We will see that such integrators are useless for
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standard methods due to the prevalence of catastrophic filter divergence, but are very
successful when used with adaptive methods.

Regarding existing literature, there have recently been many methods proposed
which employ a type of adaptive inflation for ensemble based methods [12–16], but
our method is truly novel. Moreover, none of the cited methods have an established
theoretical understanding, and our framework may serve as a good starting point for
developing such an understanding.

The structure of the article is as follows. In Section 2 we define the standard en-
semble based methods, EnKF and ESRFs. In Section 3 we define the adaptive inflated
modifications of EnKF and ESRFs. In Section 4 we derive time uniform mean-square
estimates for the adaptively inflated filters via a Lyapunov function argument. In Sec-
tion 5 we prove geometric ergodicity of the signal-ensemble process for the adaptively
inflated filters. In Section 7 we investigate the performance of these filters numerically.
In Section 8 we conclude with a discussion. The Appendix contains technical tools that
will be used for the main results.

2. Ensemble based methods and adaptive inflation

2.1. Model setup. In this paper, we assume the signal (truth) sequence Un∈R
d

is generated by

Un=Ψh(Un−1)+ζn, (2.1)

where Ψh :R
d→R

d is a deterministic mapping and {ζn}n≥1 is the system noise. The
noise ζn is assumed to be independent of ζ1, . . . ,ζn−1 when conditioned on the realization
of Un−1, the conditional mean is zero E(ζn|Un−1)=0 and the conditional covariance
E(ζn⊗ζn|Un−1) is denoted by Rh(Un−1). Due to the conditional independence of the
noise sequence, this gives rise to a Markov chain.

For example, the model is often generated by the solution of a stochastic differential
equation (SDE)

dut=ψ(ut)dt+ΣdWt, (2.2)

for a sufficiently regular vector field ψ :Rd→R
d, diffusion coefficient Σ∈R

d×e and e-
dimensional Wiener process W . We then take Un=unh for some fixed h>0. In the
notation above, we have Ψh(u0)=E(uh|u0) and ζn=unh−Ψh(u(n−1)h). It is easy to
see that this satisfies the above conditions. We will refer to this as the discrete time
formulation of an SDE, not to be confused with a time discretization of an SDE.

2.2. Linear observations. We assume that the truth Un is observed linearly
with a mean zero Gaussian perturbation

Zn=HUn+ξn.

where the observation matrix H is of size q×d with H=(H0,0q×(d−q)) where H0=
diag(h1, . . . ,hq), q≤d is the rank of H and h1, . . . ,hq >0 are fixed scalars. For the
observational noise, we assume that E(ξn|Un−1)=0 and E(ξn⊗ξn|Un−1)= Iq.

This seemingly restrictive setting can be assumed without loss of generality. Indeed,
any observational noise covariance can be reduced to the identity via a simple rotation
on the filtering problem. Suppose that ξn has a nonsingular covariance matrix Γ (we do
not consider the singular case in this article) and Γ−1/2H has an SVD decomposition
Γ−1/2H=ΦΛΨT , then we rotate the coordinate system and consider

Ũn=ΨTUn, ξ̃n=ΦTΓ−1/2ξn, Z̃n=ΦTΓ−1/2Zn=ΛŨn+ ξ̃n. (2.3)
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Hence this change of coordinates reduces the observation matrix and the observational
noise covariance to the desired form.

If the observation dimension q is larger than the model dimension d, the last d−q
diagonal entries of Λ are zero, so the last d−q rows of Z̃n are independent of the signal
and play no role in filtering, hence we can ignore and set d= q.

Since all the transformations above are linear and bijective, filtering Ũn with Z̃n is
equivalent to filtering Un with Zn, in the sense that the subsequent assumptions and
results hold equally for the original and transformed system. When necessary, this will
be clarified within the text.

2.3. Ensemble Kalman filter. In the standard Kalman filtering theory, the con-
ditional distribution of the signal process Un given the observation sequence Z1, . . . ,Zn

is given by a Gaussian distribution. EnKF inherits this idea by using a group of en-

sembles {V (k)
n }Kk=1 to represent this Gaussian distribution, as the mean and covariance

can be taken as the ensemble mean and covariance. The EnKF operates very much like
a Kalman filter, except its forecast step requires a Monte Carlo simulation due to the
nonlinearity of the system. In detail, the EnKF is an iteration of following two steps,

with (for instance) V̂
(k)
0 being sampled from the equilibrium measure of Un.

• Forecast step: from the posterior ensemble at time n−1, {V (k)
n−1}Kk=1, a forecast

ensemble for time n is generated by

V̂ (k)
n =Ψh(V

(k)
n−1)+ζ(k)n , (2.4)

where ζ
(k)
n are independent samples drawn from the same distribution as ζn.

• Analysis step: upon receiving the new observation Zn, random perturbations

of it are generated by adding ξ
(k)
n :

Z(k)
n =Zn+ξ(k)n ,

where ξ
(k)
n are independent samples drawn from the same distribution as ξn.

Using the Kalman update rule, each ensemble member is then updated as follow
with Ĉn being the sample covariance of the forecast ensemble:

V (k)
n = V̂ (k)

n − ĈnH
T (I+HĈnH

T )−1(HV̂ (k)
n −Z(k)

n )

=(I+ ĈnH
TH)−1V̂ (k)

n +(I+ ĈnH
TH)−1ĈnH

TZ(k)
n ,

(2.5)

where

Ĉn=
1

K−1

K∑
k=1

(V̂ (k)
n − V̂ n)⊗(V̂ (k)

n − V̂ n), V̂ n=
1

K

K∑
k=1

V̂ (k)
n . (2.6)

See [6] for a derivation of EnKF as an approximate Monte Carlo method for sampling the
true posterior distribution. In the case of linear model dynamics, it has been rigorously
shown [17,18] that EnKF is an approximate Monte Carlo method for the true posterior
distribution, with convergence in the K→∞ limit. In the nonlinear case, it has been
shown in [19] that EnKF does not recover the true posterior, but rather a specific linear
Bayes estimator of the posterior.

Based on our description above, the augmented process {Un,V
(1)
n , . . . ,V

(K)
n } is a

Markov chain. As above, we will denote the natural filtration up to time n as Fn=
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σ{Um,V
(1)
m , . . . ,V

(K)
m ,m≤n}, and denote the conditional expectation with respect to Fn

as En.
In the sequel it will be convenient to split the ensemble into observed and unobserved

components. In particular, for each ensemble member we write V
(k)
n =(X

(k)
n ,Y

(k)
n ) where

X
(k)
n ∈R

q and Y
(k)
n ∈ker(H). Similarly, we write V̂

(k)
n =(X̂

(k)
n ,Ŷ

(k)
n ) and for the forecast

ensemble covariance

Ĉn=

[
ĈX

n , B̂n

B̂T
n , Ĉ

Y
n

]
,

where

ĈX
n =

1

K−1

K∑
k=1

(X̂(k)
n −X̂n)⊗(X̂(k)

n −X̂n) X̂n=
1

K

K∑
k=1

X̂(k)
n

and so forth the other components. In this notation, the update rule (2.5) becomes

X(k)
n = X̂(k)

n −(ĈX
n )THT

0 (I+H0Ĉ
X
n HT

0 )
−1(H0X̂

(k)
n −Z(k)

n ) (2.7)

for the observed components and

Y (k)
n = Ŷ (k)

n −(Bn)
THT

0 (I+H0Ĉ
X
n HT

0 )
−1(H0X̂

(k)
n −Z(k)

n ) (2.8)

for the unobserved components.

2.4. Ensemble square root filters. One drawback of EnKF comes from its

usage of artificial noise ξ
(k)
n , as this introduces unnecessary sampling errors, particularly

when the ensemble size is small [20]. The motivation behind the artificial noise is to
make the posterior ensemble covariance

Cn :=
1

K−1

K∑
k=1

(V (k)
n −V n)⊗(V (k)

n −V n), V n :=
1

K

K∑
k=1

V (k)
n ,

satisfy the covariance update of the standard Kalman filter

Cn= Ĉn− ĈnH
T (HT ĈnH+I)−1HĈn, (2.9)

when the left-hand side is averaged over ξ
(k)
n [21–23]. ESRFs, including the ensemble

transform Kalman filter (ETKF) and the ensemble adjustment Kalman filter (EAKF),
aim to resolve this issue by manipulating the posterior spreads to ensure that (2.9) holds.
Both ETKF and EAKF algorithms are described by the following update steps, with
the only difference occurring in the assimilation step for the spread. As with EnKF, the

initial ensemble {V (k)
0 }Kk=1 is (for instance) sampled from the equilibrium distribution

of Un.

• Forecast step: identical to EnKF, the forecast ensembles at time n is generated
from posterior ensembles at time n−1:

V̂ (k)
n =Ψh(V

(k)
n−1)+ζ(k)n .

The forecast ensemble covariance Ĉn is then computed using (2.6).
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• Assimilation step for the mean: upon receiving the new observation Zn, the
posterior ensemble mean is updated through

V n= V̂n− ĈnH
T (I+HĈnH

T )−1(HV̂ n−Zn), V̂ n=
1

K

K∑
k=1

V̂ (k)
n . (2.10)

• Assimilation step for the spread: The forecast ensemble spread is given by the
d×K matrix

Ŝn=[V̂ (1)
n − V̂ n, . . . ,V̂

(K)
n − V̂ n].

To update the posterior spread, first find a matrix Tn∈R
d×d (for ETKF) or

An∈R
K×K (for EAKF) such that

1

K−1
TnŜn⊗TnŜn=

1

K−1
ŜnAn⊗ ŜnAn= Ĉn− ĈnH

T (HT ĈnH+I)−1HĈn.

(2.11)

The posterior spread is updated to Sn=TnŜn (for ETKF) or Sn= ŜnAn

(EAKF), and the ensemble members are updated to

V (k)
n =V n+S(k)

n ,

where S
(k)
n denotes the kth column of the updated spread matrix Sn. By

construction, the posterior covariance Cn=(K−1)−1ST
n Sn satisfies (2.9).

At this stage it suffices to know that such An and Tn exist, their finer properties play
no role in the discussion concerning stability, but we refer the reader to [4, 7].

Based on our description above, the augmented process {Un,V
(1)
n , . . . ,V

(K)
n } is again

a Markov chain. As in the previous section, we employ the notation En to denote
conditional expectation with respect to Fn.

3. Adaptive inflation methods
In this section we introduce the adaptive inflation modification of EnKF, as well as

the square root filters ETKF and EAKF. We start with the modification of EnKF, which
we refer to EnKF-AI with the suffix standing for ‘adaptive inflation’. The nomenclature
for the algorithms and their modifications is summarized at the end of the section, in
Table 3.1.

The adaptive inflation algorithm is precisely the EnKF algorithm with the forecast
covariance Ĉn replaced by an inflated forecast covariance C̃n= Ĉn+λnI. More precisely,

the filter ensemble {V (k)
n }k≤K is governed by

V (k)
n = V̂ (k)

n − C̃nH
T (I+HC̃nH

T )−1(HV̂ (k)
n −Z(k)

n )

V̂ (k)
n =Ψh(V

(k)
n−1)+ζ(k)n , V̂ n=

1

K

K∑
k=1

V̂ (k)
n , Z

(k)
n+1=Zn+ξ(k)n ,

C̃n= Ĉn+λnId, Ĉn=
1

K−1

K∑
k=1

(V̂ (k)
n − V̂ n)⊗(V̂ (k)

n − V̂ n).

(3.1)

The inflation parameter λn is chosen in such a way that it only plays a role when
the filter is malfunctioning. In particular, when the filter is giving accurate predictions
the inflation parameter will be zero. The inflation will be ‘triggered’ when either of two
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statistical properties of the filter, Θn or Ξn, exceeds appropriately chosen thresholds,
indicating that filter predictions have begun to stray far from the truth. Hence, we
define

λn=ϕ(Θn,Ξn), ϕ(x,y)= cϕx(1+y)1{x>M1 ory>M2} (3.2)

where ϕ plays the role of a cut-off function, cϕ is some fixed positive constant andM1,M2

are fixed positive thresholds constant used to decide whether the filter is functioning
properly or not.

The first statistical quantity Θn, measures how far predicted observations are from
actual observations:

Θn :=

√√√√ 1

K

K∑
k=1

∣∣∣HV̂
(k)
n −Z

(k)
n

∣∣∣2.
In a standard Kalman filter, the quantity HV̂n−Zn is called the innovation process and
is used for to test accuracy of the filter. Hence the quantity Θn should be thought of
as the norm of the ensemble innovation process.

The second statistical property Ξn measures the forecast ensemble covariance
between observed components and unobserved components. Using the observed–
unobserved notation from Section 2.3, we have Ξn=‖B̂n‖ where B̂n is the covariation
between observed and unobserved components

B̂n=
1

K−1

K∑
k=1

(X̂(k)
n −X̂n)⊗(Ŷ (k)

n − Ŷ n).

Intuitively, it is important to control this cross-variation, since this avoids the situation
whereby the filter magnifies a small error in the observed component and imposes it on
the unobserved component. This was a key mechanism leading to the filter instability
found in [11].

Although both statistics Θn and Ξn can be intuitively connected to the performance
of the filter, the real reason we choose to control these two statistics is a mathematical
one. If one attempts to prove boundedness results of Section 4 for the unmodified EnKF,
it becomes clear that the ensembles cannot be stabilized unless one has adequate control
on these two quantities. Hence it is a simple observation that an adaptive inflation
which guarantees control of these two statistics will therein guarantee boundedness and
stability of the corresponding adaptive filter.

3.1. Adaptive inflation for other ensemble based filters. The adaptive
inflation approach can be applied to other ensemble based filters for guaranteed stability
with minimal changes to the original filtering method.

Two popular modifications to EnKF are constant additive covariance inflation and
constant multiplicative covariance inflation. With these two modifications, the analysis
step in EnKF operates with the ensemble covariance Ĉn in (2.5) replaced by

C̃n= Ĉn+ρI, C̃n=(1+ρ)Ĉn, (3.3)

respectively, and ρ>0 here is a fixed constant. We will refer to EnKF with constant
inflation as EnKF-CI, with the suffix standing for ‘constant inflation’. Typically we will
use additive rather than multiplicative inflation, but the theoretical results will hold for
both verbatim.
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We can combine constant and adaptive inflation by simply adding both simultane-
ously

C̃n= Ĉn+ρI+λnI, C̃n=(1+ρ)Ĉn+λnI (3.4)

respectively in the analysis step (2.5). We will refer to this as EnKF-CAI, with the
suffix standing for ‘constant+adaptive inflation’.

In the case of the ESRFs introduced in Section 2.4, we follow the similar pattern
of simply replacing Ĉn with some inflated C̃n. However, this replacement only occurs
when calculating the mean and not when calculating the posterior covariance. This is
because Cn is the posterior ensemble covariance, its rank cannot exceed K−1, while
additive inflation can make the right hand side of (2.9) of rank d, and in most practical
cases the model dimension d is larger than the ensemble size K.

Hence the adaptively inflated version of ESRF is given by

V n= V̂ n− C̃nH
T (I+HC̃nH

T )−1(HV̂ n−Zn),

Cn= Ĉn− ĈnH
T (I+HĈnH

T )−1HĈn,
(3.5)

where

C̃n= Ĉn+λnI (ETKF-AI / EAKF-AI),

C̃n= Ĉn+ρI (ETKF-CI / EAKF-CI),

C̃n= Ĉn+ρI+λnI (ETKF-CAI / EAKF-CAI).

(3.6)

Notice that we use the same nomenclature from Table 3.1 as in the case of EnKF. The
adaptive inflation strength λn defined the same as EnKF, but with Θn now defined as

Θn :=
1

K

K∑
k=1

|HV̂ (k)
n −Zn|2,

since Z
(k)
n no longer plays a role in the setting of ESRF.

Acronym Algorithm Eq. ref.
EnKF Ensemble Kalman filter (2.5)

EnKF-AI Ensemble Kalman filter w/ adaptive inflation (3.1)
EnKF-CI Ensemble Kalman filter w/ constant inflation (3.3)
EnKF-CAI Ensemble Kalman filter w/ constant + adaptive inflation (3.4)

Table 3.1. Acronyms for the ensemble methods.

4. Energy principles
In this section we show that the adaptive filtering methods introduced in Section

3 inherit an energy principle from the underlying model. Using the notation for the
model introduced in Section 2, the energy principle for the model takes the following
form:

Assumption 4.1 (Energy principle). There exist constants βh∈ (0,1),Kh>0, such that

En−1|Un|2≤ (1−βh)|Un−1|2+Kh a.s.,
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recalling that En−1 denotes conditional expectation with respect to the σ-algebra Fn−1 :=
σ(U0,U1, . . . ,Un−1). Equivalently,

|Ψh(u)|2+ tr(Rh(u))≤ (1−βh)|u|2+Kh,

for all for all u∈R
d.

Remark 4.2. There is a slight abuse of notation here, since we also use En−1 to
denote expectation conditioned on the history of the signal-ensemble process. However
it is clear that in the above situation the two coincide.

When Un is given by the discrete time formulation of an SDE (as described in (2.2)
and the description below), it follows from a simple Gronwall argument that Assumption
4.1 holds as long as 〈ψ(u),u〉≤−β|u|2+k with constants β,k>0. Therefore, the discrete
time formulation of truncated Navier–Stokes equation, Lorenz 63 and 96 models (as in
(2.2)) all satisfy Assumption 4.1, explicit verifications can be found in Section 2.5 of [7].

It is natural to ask whether a filter inherits an energy principle from its underlying
model and hence inherits a type of stability. In [7] it was shown that the non-adaptive
ensemble based filters (EnKF, ESRF) inherit a stronger notion of energy principle called
the observable energy principle. In particular, if the model satisfies

|HΨh(u)|2+tr(HRh(u)H
T )≤ (1−βh)|Hu|2+Kh, (4.1)

then the filter satisfies a related energy principle, which a Lyapunov function whose
sublevel sets are only compact in the case whereH is of full rank (complete observations).
This is clearly a much weaker result than one would hope for, since one must assume (4.1)
which is not thought to be true for partially observing filters and moreover the result
is not as strong as desired since the Lyapunov function cannot be used for ergodicity
arguments.

We will now show that the adaptive inflation filters completely avoid these issues. In
particular, the adaptively inflated filters inherit the usual energy principle (Assumption
4.1) and moreover, the Lyapnuov function for the ensemble has compact sub-level sets
for any choice of observation matrix. The inflation mechanism additionally ensures that
the observed directions of the filter HV k

n never stray from the (perturbed) observations
Zk
n, this is indeed the main purpose of the inflation.

Theorem 4.3. Let {V (k)
n }Kk=1 denote the EnKF-AI ensemble described by (3.1) with

an inflation strength λn≥ϕ(Θn,Ξn), then we have the following estimates:

(i) The ensemble innovation satisfies the almost sure bound

|HV (k)
n −Z(k)

n |≤
√
Kmax{M1,ρ

−1
0 c−1

ϕ }
Here ρ0 denotes the minimum eigenvalue of H0H

T
0 .

(ii) Suppose the model Un additionally satisfies an energy principle (Assumption 4.1)
and let

En=4Kρ−1
0 β−1

h ‖H‖2|Un|2+
K∑

k=1

|V (k)
n |2.

Then there exists constant βh∈ (0,1), Dh>0 such that

En−1En≤ (1− 1
2βh)En−1+Dh.

In particular, we have the time uniform bound supn≥0EEn<∞.
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Remark 4.4. It will be clear from the proof that the above result also holds verbatim
for EnKF-CAI, introduced in (3.4).

A similar energy principle also holds for the adaptive inflation modifications of
ESRF. Note that only the second part of the result holds for the ESRF case.

Theorem 4.5. Let {V (k)
n }Kk=1 denote the ETKF-AI / EAKF-AI ensemble described

by (3.5) , (3.6) with any inflation strength λn≥ϕ(Θn,Ξn), then Theorem 4.3 (ii) holds.

Remark 4.6. As above, it will be clear from the proof that the above result also
holds verbatim for ETKF-CAI / EAKF-CAI introduced in (3.6).

We now provide the proof of Theorem 4.3, the proof Theorem 4.5 is similar and is
therefore deferred until the appendix.

Proof. (Proof of Theorem 4.3.) Before proceeding, recall the ‘observed-

unobserved’ notation from Section 2.3:

H=(H0,0), V (k)
n =(X(k)

n ,Y (k)
n ), C̃n=

[
C̃X

n , B̃n

B̃T
n , C̃

Y
n

]
,

V̂ (k)
n =(X̂(k)

n ,Ŷ (k)
n ), Ĉn=

[
ĈX

n , B̂n

B̂T
n , Ĉ

Y
n .

]

We start with part (i). From the assimilation equation (3.1), by applying H to both

sides, rearranging and applying the identity HC̃nH
T =H0C̃

X
n HT

0 we obtain

HV (k)
n −Z(k)

n =(I+H0C̃
X
n HT

0 )
−1(HV̂ (k)

n −Z(k)
n ). (4.2)

Since the minimum eigenvalue of matrix H0H
T
0 is ρ0>0 and H0Ĉ

X
n HT

0 is positive semi-
definite, we have

I+H0C̃
X
n HT

0 = I+H0Ĉ
X
n HT

0 +ϕ(Θn,Ξn)H0H
T
0 � (1+ρ0ϕ(Θn,Ξn))Id.

Therefore, when Θn≤M1, we have

|(I+H0C̃
X
n HT

0 )
−1(HV̂ (k)

n −Z(k)
n )|≤ |HV̂

(k)
n −Z

(k)
n |

1+ρ0ϕ(Θn,Ξn)
≤|HV̂ (k)

n −Z(k)
n |≤

√
KM1.

On the other hand, when Θn>M1, we have

|(I+H0C̃
X
n HT

0 )
−1(HV̂ (k)

n −Z(k)
n )|≤ |HV̂

(k)
n −Z

(k)
n |

1+ρ0ϕ(Θn,Ξn)
=

|HV̂
(k)
n −Z

(k)
n |

ρ0cϕΘn(1+Ξn)

≤ |HV̂
(k)
n −Z

(k)
n |

ρ0cϕΘn

≤
√
Kρ−1

0 c−1
ϕ .

This bound and (4.2) yield claim (i).
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We now move on to part (ii), starting by bounding the observed part. Starting from
the expression (2.7) and applying part (i), Young’s inequality and the independence of

ξ
(k)
n , we obtain

En−1|X(k)
n |2≤2En−1

(
|X(k)

n −H−1
0 Z(k)

n |2+ |H−1Z(k)
n |2

)
≤2ρ−1

0 En−1(|HV (k)
n −Z(k)

n |2+ |Z(k)
n |2)

≤2ρ−1
0 Kmax{M2

1 ,ρ
−2
0 c−2

ϕ }+2ρ−1
0 ‖H‖2En−1|Un|2+2ρ−1

0 En−1|ξ(k)n +ξn|2
=2ρ−1

0 Kmax{M2
1 ,ρ

−2
0 c−2

ϕ }+2ρ−1
0 ‖H‖2En−1|Un|2+4ρ−1

0 d. (4.3)

For the unobserved part, starting from (2.8) and applying Young’s inequality (Lemma
A.1)

|Y (k)
n |2≤ (1+

1

2
βh)|Ŷ (k)

n |2+(1+2β−1
h )|B̂T

nH
T
0 (I+H0C̃

X
n HT

0 )
−1(H0X̂

(k)
n −Z(k)

n )|2,
(4.4)

where βh∈ (0,1) is the one appearing in Assumption 4.1. For the first term on the
right hand side, using Assumption 4.1 and the elementary inequality (1+ 1

2βh)(1−βh)≤
(1− 1

2βh) we have

En−1(1+
1

2
βh)|Ŷ (j)

n |2≤ (1+
1

2
βh)En−1|V̂ (j)

n |2≤ (1− 1

2
βh)|V (j)

n−1|2+(1+
1

2
βh)Kh.

Since Ξn=‖B̂n‖, the second part of (4.4) is bounded by

|B̂T
nH

T
0 (I+H0C̃

X
n HT

0 )
−1(H0X̂

(j)
n −Z(j)

n )|2≤Ξ2
n‖H0‖2‖(I+H0C̃

X
n HT

0 )
−1‖2|H0X̂

(j)
n −Z(j)

n |2
≤KΘ2

nΞ
2
n‖H0‖2‖(I+H0C̃

X
n HT

0 )
−1‖2

where in the last inequality we used the bound |H0X̂
(j)
n −Z

(j)
n |2≤KΘ2

n. Notice that,
as in the proof of part (i)

I+H0C̃
X
n HT

0 � (1+λnρ0)Iq.

Hence, when Θn>M1 or Ξn>M2 we have

‖(I+H0C̃
X
n HT

0 )
−1‖ΘnΞn≤ ΘnΞn

1+ρ0cϕΘn(Ξn+1))
≤ρ−1

0 c−1
ϕ ,

and when Θn≤M1 and Ξn≤M2,

‖(I+H0C̃
X
n HT

0 )
−1‖ΘnΞn≤ΘnΞn≤M1M2.

In conclusion, the following holds almost surely

|B̂T
nH

T
0 (I+H0C̃

X
n HT

0 )
−1(H0X̂

(j)
n −Z(j)

n )|2≤K‖H0‖2max{M2
1M

2
2 ,ρ

−2
0 c−2

ϕ }. (4.5)

By combining the above estimates with (4.4), the sum of (4.3) and (4.4) over all k yields
the following inequality with a constant D2>0

En−1

K∑
k=1

|V (k)
n |2−2Kρ−1

0 ‖H0‖2En−1|Un|2≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+D2. (4.6)
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Then notice a multiple of Assumption 4.1 is

4Kβ−1
h ρ−1

0 ‖H‖2En−1|Un|2≤4Kβ−1
h ρ−1

0 ‖H‖2(1−βh)|Un−1|2+4Kβ−1
h ρ−1

0 ‖H‖2Kh.

The sum of the two previous two inequalities yields

En−1En=
K∑

k=1

En−1|V (k)
n |2+4Kβ−1

h ρ−1
0 (1− 1

2
βh)‖H‖2En−1|Un|2

=

K∑
k=1

En−1|V (k)
n |2−2Kρ−1

0 ‖H‖2En−1|Un|2+4Kβ−1
h ρ−1

0 ‖H‖2En−1|Un|2

≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+4Kβ−1

h ρ−1
0 ‖H‖2(1−βh)|Un−1|2+Dh

≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+4Kβ−1

h ρ−1
0 ‖H‖2(1− 1

2
βh)

2|Un−1|2+Dh

=(1− 1

2
βh)En1 +Dh,

with Dh :=4Kβ−1
h ρ−1

0 ‖H‖2Kh+D2 and using the fact that (1−βh)≤ (1− 1
2βh)

2.

5. Geometric ergodicity
A stochastic process is geometrically ergodic if it converges to a unique invariant

measure geometrically fast. In this section we will show that the signal–ensemble process
(for each filter introduced in this article) is geometrically ergodic. In particular, if P
denotes the Markov transition kernel for the signal ensemble process, then we will show
that there exists a constant γ∈ (0,1) such that

‖Pnμ−Pnν‖TV ≤Cμ,νγ
n, (5.1)

where μ,ν are two arbitrary initial probability distributions, Cμ,ν is a time uniform
constant that depends on μ,ν, and ‖·‖TV denotes the total variation norm.

Geometric ergodicity is a notion of stability for the filter. In particular it implies
that discrepancies in the initialization of the filter will dissipate exponentially quickly.
For the linear Kalman filter and optimal filters, it is known that under mild assumptions
geometric ergodicity is extended from model to filter [24, 25].

In theorems 5.5, 5.6, and 5.8 of [7], the authors proved that if the system noise ζn
is non-degenerate and the signal-ensemble process has an energy principle, then EnKF,
ETKF and a natural version of EAKF will be geometrically ergodic. In particular, non
degeneracy for the system noise ζn means the following.

Assumption 5.1 (Nondegenerate system noise). For any constants R1,R2>0, there
is a constant α>0 such that

P(ζn∈· |Un−1=u)≥αλR2
(·)

for all |u|≤R1, where λR2
(dx) is the Lebesgue measure of Rd restricted to {u : |u|≤R2}.

Assumption 5.1 holds for many practical examples. When Un is produced by time
discretization of an SDE (2.2), it suffices to require Σ being nonsingular, see Appendix
B in [7] for a detailed discussion.
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In contrast with the ergodicity results of [7], we no longer require the assumption of
a Lyapunov function with compact sub-level sets, since this is guaranteed by theorems
4.3 and 4.5. This is a vast improvement as in the non-adaptive case such Lyapunov
functions are only known to exist in the (essentially) fully observed scenario.

Before stating the result, recall that M1,M2>0 are the thresholds used to decide
when to trigger the adaptive inflation mechanism. For EnKF-AI and ETKF-AI, the
thresholds have no constraints besides being positive, but for EAKF-AI we require that
the constants are sufficiently large.

Theorem 5.2. If the system noise in the signal process is non-degenerate (Assump-

tion 5.1) then the signal-ensemble processes (Un,V
(1)
n , . . . ,V

(K)
n ) generated by EnKF-AI

(with any M1,M2>0), ETKF-AI (with any M1,M2>0) or a version of EAKF-AI (with
M1,M2 sufficiently large) are geometrically ergodic.

Remark 5.3. The same result holds verbatim for adaptive filters with additional
constant covariance inflation (EnKF-CAI,ETKF-CAI,EAKF-CAI), which are defined
in Section 3.1.

As a matter of fact, the above result is an immediate corollary of [7]. The reasoning
will become clear after we review the major steps in [7].

5.1. A controllability framework. The central piece of the arguments is a
result of Markov chain theory [26]. Here we use a simple adaptation of the form given
in [27, Theorem 2.3].

Theorem 5.4. Let Xn be a Markov chain in a space E such that

1. (Lyapunov function) There is a function E :E 
→R
+ with compact sub-level sets

and such that

En−1E(Xn)≤ (1−β)E(Xn−1)+K,

for some β∈ (0,1) and K>0.

2. (Minorization condition) Let CR={x :E(x)≤R}. For all R>0, there exists a
probability measure ν on E with ν(CR)=1 and a constant η>0 such that for
any measurable set A⊂E

P(Xn∈A|Xn−1=x)≥ην(A)

for all x∈CR.

Then there is a unique invariant measure π and constants r∈ (0,1),κ>0 such that

‖Pμ(Xn∈ ·)−π‖TV ≤κrn
(
1+

∫
E(x)μ(dx)

)
.

Theorems 4.3 and 4.5 have already provided the Lyapunov function. All that remains
is to show the minorization condition.

To obtain minorization, we will exploit the update structure of the ensemble filters,
precisely as was done in [7]. Notice that for all ensemble filters, the signal-ensemble

process Xn := (Un,V
(1)
n , . . . ,V

(K)
n ) is a Markov chain taking values in X :=R

d×R
d×K .

The evolution of Xn is described by the composition of two maps. The first is a random
map from X to a signal-forecast-observation space Y, described by a Markov kernel
Φ :X ×B(Y)→ [0,1]. The second is a deterministic map Γ :Y→X , which combines the
forecast with the observed data to produce the updated posterior ensemble. The details
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of these maps, as well as the definition of the intermediate space Y, differs between
EnKF, ETKF, EAKF, and their adaptive counterparts.

For example, in EnKF, the intermediate space is Y :=R
d×R

d×K×R
q×K and the

random mapping is

(Un−1,V
(1)
n−1, . . . ,V

(K)
n−1) 
→Yn := (Un,V̂

(1)
n , . . . ,V̂ (K)

n ,Z(1)
n , . . . ,Z(K)

n ).

The deterministic map Γ is given by the Kalman update

Γ(Un,V̂
(1)
n , . . . ,V̂ (K)

n ,Z(1)
n , . . . ,Z(K)

n )=(Un,Γ
(1), . . . ,Γ(K)),

where

Γ(k)= V̂ (k)− C̃HT (I+HĈHT )−1(HV̂ (k)−Z(k)),

C̃=
1

K−1

K∑
k=1

(V̂ (k)− V̂ )⊗(V̂ (k)− V̂ ).
(5.2)

For EnKF-AI, we have the same formulas, but with the exception

C̃=
1

K−1

K∑
k=1

(V̂ (k)− V̂ )⊗(V̂ (k)− V̂ )+cϕΘn(1+Ξn)1Θn>M1 orΞn>M2
I.

and

Θn=

√√√√ 1

K

K∑
k=1

∣∣∣HV̂
(k)
n −Z

(k)
n

∣∣∣2, Ξn=

∥∥∥∥∥ 1

K−1

K∑
k=1

(X̂(k)
n −X̂n)⊗(Ŷ (k)

n − Ŷ n)

∥∥∥∥∥ .
The corresponding formulas for ETKF, EAKF (and their adaptive counterparts) can
be similarly derived and for concreteness are given in Appendix C. Notice that for
values of Yn close to the origin, the adaptive inflation term will vanish and hence the
deterministic map Γ for EnKF-AI coincides with that of EnKF near the origin. Similar
statements hold for ETKF-AI and EAKF-AI.

Given this formulation, it suffices to show that the push-forward kernel Γ∗Φ(x, ·)=
Φ(x,Γ−1(·)) satisfies the minorization condition. It is easy to see that, given the assump-
tions on the noise, the kernel Φ(x, ·) has a density with respect to Lebesgue measure,
so we simply need to show that the pushforward inherits the density property from Φ.
This can be understood as the controllability of the map Γ. To achieve this, we use the
following simple fact, which is Lemma 5.4 in [7].

Lemma 5.5. Let Φ be a Markov transition kernel from R
n→R

n×R
m with a Lebesgue

density p(x,y)=p(x,(y1,y2)) and let Γ :Rn×R
m→R

n. Given a compact set C, suppose
that there is a point y∗=(y∗1 ,y

∗
2)∈R

n×R
m and β>0 such that

1. Reachable from all x∈C, that is the density function p(x,y)>β for y around
y∗,

2. Γ is controllable around y∗, that is Γ is C1 near y∗ and det(Dy1
Γ)|y∗ >0.

Then there is a δ>0 and a neighborhood O1 of Γ(y∗) such that for all x∈C

Γ∗Φ(x, ·)≥ δλO1(·)
where λO1

is the Lebesgue measure restricted to the set O1. In other words, the mi-
norization condition holds for the transition kernel Γ∗Φ.
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5.2. Application to ensemble filters with adaptive inflation. To apply
Lemma 5.5 to the proof of Theorem 5.2 we will use the variables

x=(Un−1,V
(1)
n−1, . . . ,V

(K)
n−1)

y1=(Un,V̂
(1)
n , . . . ,V̂ (K)

n )

y2=(Zn,Z
(1)
n , . . . ,Z(K)

n )

(5.3)

The choice of the intermediate point y∗=(y∗1 ,y
∗
2) can be quite delicate and can sim-

plify the non-degeneracy condition considerably. In particular, we prove the following
proposition in [7].

Proposition 5.6. Let Φ,Γ be the Markov kernel and deterministic map used to define
EnKF/ETKF/EAKF, given by the formulas in Appendix C. If the system noise is non-
degenerate (Assumption 5.1) then Φ,Γ satisfies both conditions of Lemma 5.5 with the
following choice of intermediate point y∗:

1. EnKF: y∗ has all its components being at the origin.

2. ETKF: y∗ has all its components being at the origin.

3. EAKF: y∗2 has all its components being at the origin, U∗ is at the origin, while

[V̂ ∗(1), . . . ,V̂ ∗(K)] is the d×K matrix given by⎧⎪⎪⎨⎪⎪⎩
[
�1 Ξ0 0

]
if d≤K−1[

�1 Ξ0

0 0

]
if d≥K−1,

where �1 is the d×1 vector of 1’s and Ξ0 is the r×r matrix with r=min{K−
1,d}:

Ξ0=

⎡⎢⎢⎢⎢⎢⎣
1 1 . . . 1 −r
...

...
... . .

.
0

1 1 −3 . . . 0
1 −2 0 . . . 0
−1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ .

Note in this case, a version of EAKF is picked so Γ is C1 near y∗.
With this proposition at hand, Theorem 5.2 becomes an immediate corollary.

Proof. (Proof of Theorem 5.2.) For each of EnKF-AI, ETKF-AI, and EAKF-AI

verification of the reachability condition in Lemma 5.5 is identical to that of EnKF,
ETKF, and EAKF which is trivial and is done in [7, Proof of theorems 5.5, 5.6, 5.8],
respectively. Hence it suffices to check the non-degeneracy of Γ in each of the three cases.
For EnKF-AI and ETKF-AI we pick y∗=(y∗1 ,y

∗
2) to be the origin. Hence for thresholds

M1,M2>0, there exist a neighborhood of the origin such that the map Γ coincides with
that of EnKF, ETKF respectively, since the inflation mechanism is not triggered within
this neighborhood. Hence the non-degeneracy follows immediately from Proposition
5.6. For EAKF-AI, as detailed above, the intermediate point y∗ is not chosen at the
origin but rather at the point specified in Proposition 5.6. Nevertheless, since this point
is fixed, one can pick thresholds M1,M2 sufficiently large so that for some neighborhod
of y∗ the inflation mechanism is not triggered and hence Γ agrees with that of EAKF.
Hence the non-degeneracy follows from Proposition 5.6.
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6. Thresholds from elementary benchmarks
Finally, we discuss the choice of the cutoff thresholds M1 and M2 in the formulation

(3.2) of ϕ. While Theorem 4.3 guarantees filter stability for any M1,M2>0, certain
values produce better filter performance. Intuitively, these thresholds should be chosen
to differentiate malfunctioning forecast ensembles from properly working ones.

Here we devise an elementary benchmark of accuracy that should be surpassed
by any properly functioning filter. At each observation step, the benchmark estimate
is given by the stationary state Un conditioned on the observation Zn. This can be
computed using Bayes’ formula and only requires access to the invariant measure π of
the model. For instance we can compute the conditional expectation via

E(Un|Zn)=

∫
xπ(x)exp(− 1

2 |Zn−Hx|2)dx∫
π(x)exp(− 1

2 |Zn−Hx|2)dx . (6.1)

The benchmark for accuracy is given by the mean-square error of the above estimator:

ErrorA :=E|Un−E(Un|Zn)|2=E|Un|2−E|E(Un|Zn)|2.
A properly functioning forecast ensemble should be expected to perform better than
this estimator. For instance, one should expect a properly functioning filter to satisfy

1

K

K∑
k=1

E

∣∣∣V̂ (k)
n −Un

∣∣∣2≤ErrorA.

Consequently, one should expect that

EΘ2
n=

1

K

K∑
k=1

E|H(V̂ (k)
n −Un)+ξn+ξ(k)n |2≤σ2

Θ :=‖H‖2ErrorA+2d.

Moreover using the inequalities ‖a⊗b‖≤ |a||b|, |x||y|≤ 1
2 (x

2+y2) and Lemma A.2 we
expect

EΞn≤ 1

K−1

K∑
k=1

E

∣∣∣X̂(k)
n −X̂n

∣∣∣∣∣∣Ŷ (k)
n − Ŷ n

∣∣∣≤ 1

2K−2

K∑
k=1

E|V̂ (k)
n − V̂ n|2

≤ 1

2K−2

K∑
k=1

E|V̂ (k)
n −Un|2≤MΞ :=

K

2K−2
ErrorA.

In summary, we expect that a properly functioning filter should satisfy

EΘ2
n≤σ2

Θ :=‖H‖2ErrorA+2d, EΞn≤MΞ :=
K

2K−2
ErrorA. (6.2)

Since the integrals appearing in the Bayesian formula (6.1) are often difficult to compute,
it is more useful to have an estimator that only relies on low order statistics of π. For
this purpose it is natural to introduce a Gaussian approximation of π, replacing π with
π̃=N (EUn,cov(Un)) where the mean and covariance are the true statistics computed
from π. The conditional distribution of π̃ given the observation Zn is now a Gaussian
measure and can be computed exactly. In particular we have that

Ẽ(Un|Zn)=EUn−cov(Un)H
T (I+HT cov(Un)H)−1(HEUn−Zn).
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The covariance of the error rK =Un− Ẽ(Un|Zn) is given by the Kalman prior–posterior
covariance relation

cov(rK)=cov(Un)−cov(Un)H
T (I+Hcov(Un)H

T )−1Hcov(Un), (6.3)

which can be explicit computed. The mean square error is given by

ErrorA=E|rK |2=tr(cov(rK)).

In the case of a linear model, this Gaussian approximation is of course exact.
Given the above discussion, an obvious option for the thresholds is

M1=σΘ, M2=MΞ. (6.4)

we call this aggressive thresholding. In this situation the adaptive inflation is triggered
as soon as the filter statistics Θn,Ξn exceed the mean values computed from the crude
estimators. A less aggressive strategy is to obtain M1,M2 by hypothesis testing, which
we do not pursue here.

Remark 6.1. To avoid wasting resources on computing these benchmarks, one could
instead use the trivial estimator Un=0. In this case, one can compute

E|Un−0|2=E|Un|2≤β−1
h Kh.

A properly functioning EnKF should have a smaller mean square error in its forecast.
And as a consequence, we can replace term ErrorA in the bounds above with β−1

h Kh,
which leads to

EΘ2
n≤‖H‖2β−1

h Kh+2d, EΞn≤ K

2K−2
β−1
h Kh.

7. Numerical results
In this section, we will numerically validate our results through the following five

mode Lorenz 96 model:

d

dt
xi=xi−1(xi+1−xi−2)−xi+F, i=1, . . . ,5. (7.1)

Here the indices are interpreted in modulo 5 sense. The truth will be given by Un=x(nh)
for some observation time step h. Previous studies in [4,10,28] have shown that different
choice of forcing F produces very different strength of turbulence. Here we will pick
forcing F =4,8,16, and see that these choices create very different filtering results.
In [29], careful numerical studies have suggested that (7.1) does indeed exhibit good
mixing properties. However, it is important to note that it is deterministic and therefore
does not satisfy the ergodicity assumptions of Theorem 5.2. The justification for using
this model for numerical experimentation is twofold: First, it is a realistic prototype for
geophysical turbulence. And second, it exhibits that the theoretical results are robust
and should hold for much more general assumptions on the mixing properties of the
model.

Throughout the section we assume that only one component x1 is observed, hence
we have the observation matrix H=[1,0,0,0,0]. The observational noise is chosen to
be distributed as N (0,0.01). We apply a selection of ensemble assimilation methods
to this signal-observation system with 6 ensemble members, where the initial positions
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are drawn from a Gaussian approximation of the equilibrium measure. For the sake of
simplicity, we integrate (7.1) using an explicit Euler scheme with time step Δ=10−4.
For most ensemble based filtering methods, the explicit Euler scheme is a bad choice
of integrator for (7.1), since the stiffness of the equation will lead to numerical blow-
up for sufficiently large initial conditions. Moreover, the explicit method breaks the
dissipative structure of (7.1), hence we are once again stepping outside of the theory
developed in the preceding pages. As we shall see, an explicit method leads to a preva-
lence of catastrophic filter divergence in most ensemble based filtering methods. The
adaptive inflation method on the other hand avoids this issue and exhibits high filter-
ing skill. By employing an explicit method, we demonstrate the power of our adaptive
inflation method, in that it allows one to use cheap integration schemes without risk-
ing catastrophic filter divergence and without sacrificing filtering skill. In Section 7.3,
we perform experiments with different choices of integrator (including implicit integra-
tors) and find no improvement in filtering skill over an explicit method with adaptive
inflation, despite the vast increase in computational cost.

Here we compare the performance of four ensemble based filters: EnKF, EnKF-AI,
EnKF-CI, and EnKF-CAI, which have been defined in sections 2 and 3. The constant
inflation is always taken to be additive.

Following the methodology introduced in Section 6, we construct the equilibrium
measure of the Lorenz ’96 system using data from a long time (T =104) simulation,
which leads to the performance benchmarks computed by (6.3) and (6.2). The thresh-
olds M1 and M2 are obtained through the aggressive strategy (6.4), using the Gaussian
approximation of the stationary measure π. In order for the comparison to be unbiased,

we use the same realizations of observation noise ξn and perturbations ξ
(k)
n in all four

filters. The statistics are collected for N =100 independent trials, where each runs a
total time length of T =100. To eliminate transients, we will only record data from the
period 50≤T ≤100.

The performances of the four filters are measured and compared from three per-
spectives:

• The most important question here is how often does catastrophic filter diver-
gence appear in standard (non-adaptive) filters, like EnKF and EnKF-CI, and
does the adaptive inflation in EnKF-AI and EnKF-CAI prevent it. Catas-
trophic filter divergence can be identified by checking whether the ensemble at
the final time T =100 takes value “NaN”, representing machine infinity, in any
of its components.

• The overall accuracy of the filters is compared using the average of the root
mean square error (RMSE) over N =100 trials among the second half of the
time interval, where

RMSE=

√√√√√ 2

T

T/h∑
n=T/2h

|V n−Un|2.

Another statistics that is useful in judging the accuracy is the averaged pattern
correlation:

Cor=
2

T

T∑
n=T/2

〈V n−U,Un−U〉
|V n−U ||Un−U | ,
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where U denotes the climatological average of the true model (the mean of the
invariant measure) and V n as usual denotes the average of the filter ensemble.
We will also plot the of the posterior error, |V n−Un|, for one realization of a
typical trajectory for the four filters.

The following experiments have also been carried out with both ESRF methods.
All these methods have performance very similar to EnKF based method, as well as the
effect of adaptive inflation over them. We do not present these results for brevity.

7.1. Accuracy for different turbulent regimes. In this section we compare
the performance of the four filters across the three turbulent regimes. In each experiment
we use observation interval h=0.05 and (when required) constant additive inflation
strength ρ=0.1.

7.1.1. Weak turbulence. Here we compare the performance of the filters in
a weakly turbulent regime, by setting F =4. The performances of the four filters are
presented in Table 7.1, where we compare frequency of catastrophic filter divergence,
RMSE and pattern correlation. In Figure 7.1, we compare the posterior error for the
four filters for one typical trajectory.

We found that, among 100 trials, none of the filters experience catastrophic filter
divergence. The adaptive inflation in EnKF-AI has been triggered in 30 trials, and on
average 1.96 times in each trial. In EnKF-CAI, the adaptive inflation has been turned
on in 9 trials, and only once in each trial. Hence the typical realizations of EnKF and
EnKF-AI are identical and similarly for EnKF-CI and EnKF-CAI, since the adaptive
inflation is seldom triggered.

In terms of accuracy, all four filters perform quite well. For each filter the RMSE is
significantly lower than the benchmark RMSE, which is 3.64 and the pattern correlation
is very high. Unsurprisingly, the filters with constant covariance inflation (EnKF-CI
and EnKF-CAI) have more skill than EnKF, with lower RMSE and higher pattern
correlation. Somewhat more surprising is that EnKF-AI also performs better than
EnKF, both in RMSE and pattern correlation, even though the adaptive covariance
inflation has only been switched on in 30 of the 100 trials. This indicates that the
performance of EnKF must be quite bad in those 30 and the adaptive inflation is
needed to ensure the accuracy. Of course, in this regime one could also achieve this
with non-adaptive constant inflation.

Filter EnKF EnKF-AI EnKF-CI EnKF-CAI
Cata. Div. 0% 0% 0% 0%
RMSE 0.89 0.54 0.22 0.22

Pattern Cor. 0.91 0.96 0.98 0.98

Table 7.1. In the weak turbulence regime (F =4), for the four algorithms we compare frequency
of catastrophic filter divergence (Cata. Div.), RMSE, and pattern correlation (Pattern Cor.) The
benchmark RMSE is 3.25.

We now briefly describe how the thresholds and benchmarks were calculated. The
equilibrium mean on each mode is x̄i≈1.22 and the variance is var(xi)≈3.38. Using
Kalman one time assimilation, the posterior variance of x1 will be reduced to 0.01, while
the benchmark RMSE will be 3.25. From these statistics, we compute M1=σΘ=32.5
and M2=MΞ=6.2.
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Fig. 7.1. We compare the posterior error for one realization of the four filters in the weakly
turbulent (F =4) regime. Since the adaptive inflation is not triggered, trajectories collapse into two
groups (those with constant inflation and those without). The benchmark RMSE is included (black
dash) to emphasize the accuracy of the filters.

7.1.2. Moderate turbulence. Here we compare the performance of the filters
in a moderately turbulent regime, by setting F =8. The performances of the four filters
are presented in Table 7.2, where we compare frequency of catastrophic filter divergence,
RMSE, and pattern correlation. In Figure 7.2, we compare the posterior error for the
four filters for one typical trajectory.

Among 100 trials, catastrophic filter divergence takes place 12 times for EnKF, but
never takes place for the other three. The adaptive inflation in EnKF-AI has been
turned on in 96 trials, while on average 17.5 times in each of these trials. As for EnKF-
CAI, the adaptive inflation has been turned on in 20 trials, while on average 6.05 times
each of these trials.

In terms of accuracy, EnKF will not be analyzed due to the frequent occurrence
of catastrophic filter divergence. The EnKF-AI avoids the issue of catastrophic filter
divergence, however it has very little skill, since the RMSE is higher than the benchmark
RMSE 7.02 and the pattern correlation is quite low. However, the filters with constant
inflation (EnKF-CI and EnKF-CAI), behave almost identically, display significantly
better skill, beating the benchmark RMSE, and having high pattern correlation.

Filter EnKF EnKF-AI EnKF-CI EnKF-CAI
Cata. Div. 12% 0% 0% 0%
RMSE NaN 8.6 3.61 3.57

Pattern Cor. NaN 0.55 0.89 0.89

Table 7.2. In the moderate turbulence regime (F =8), for the four algorithms we compare fre-
quency of catastrophic filter divergence (Cata. Div.), RMSE, and pattern correlation (Pattern Cor.)
The benchmark RMSE is 7.02.
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Fig. 7.2. We compare the posterior error for one realization of the four filters in the moder-
ately turbulent (F =8) regime. The EnKF and EnKF-AI do not perform well, as they frequently
exceed the benchmark (black dashed). Adding constant covariance inflation significantly improves the
performance.

We now briefly describe how the thresholds and benchmarks were calculated. The
equilibrium mean on each mode is x̄i≈2.28 and the variance is var(xi)≈12.6. Using
Kalman one time assimilation, the posterior variance of x1 will be reduced to 0.01, while
the benchmark RMSE will be 7.02. From these statistics, we compute M1=σΘ=69.56
and M2=MΞ=28.8.

7.1.3. Strong turbulence. Here we compare the performance of the filters in
a highly turbulent regime, by setting F =16. The performances of the four filters are
presented in Table 7.3, where we compare frequency of catastrophic filter divergence,
RMSE and pattern correlation. In Figure 7.3, we compare the posterior error for the
four filters for one typical trajectory.

In this highly turbulent regime, both non-adaptive filters, EnKF and EnKF-CI
display frequent catastrophic filter divergence, making them practically useless. Among
100 trials, catastrophic filter divergence occurs in every trial of EnKF and in 18 trials of
EnKF-CI. Both EnKF-AI and EnKF-CAI experience no catastrophic filter divergence.
The adaptive inflation has been turned on in all trials of EnKF-AI, occurring 97.53
times on average per trial. The adaptive inflation has been turned on for EnKF-CAI in
80 trials, occurring 18.7 times on average per trial.

In terms of accuracy, the EnKF-AI exhibits very little skill, with RMSE significantly
higher than the benchmark RMSE 12.93 and with low pattern correlation. The EnKF-
CAI however does slightly beat the benchmark RMSE and displays moderate pattern
correlation. In Section 7.2, we show that the performance of EnKF-CAI is sharply
improved by a simple tuning of parameters.

We now briefly describe how the thresholds and benchmarks were calculated. The
equilibrium mean on each mode is x̄i≈3.1 and the variance is var(xi)≈40.6. Using
Kalman one time assimilation, the posterior variance of x1 will be reduced to 0.01, while
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Filter EnKF EnKF-AI EnKF-CI EnKF-CAI
Cata. Div. 100% 0% 18% 0%
RMSE NaN 24.48 NaN 11.91

Pattern Cor. NaN 0.23 NaN 0.69

Table 7.3. In the highly turbulence regime (F =16), for the four algorithms we compare frequency
of catastrophic filter divergence (Cata. Div.), RMSE, and pattern correlation (Pattern Cor.) The
benchmark RMSE is 12.93.
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Fig. 7.3. We compare the posterior error for one realization of the four filters in the strongly
turbulent (F =16) regime. The filter is very unstable, EnKF (red, upper panel) explodes to machine
infinity, and EnKF-CI (red, lower panel) does the same with significant probability. The adaptive
inflation mechanism, when applied to these two filters, is triggered frequently, preventing the ensem-
ble from exploding. The performance of EnKF-AI (blue, upper panel) is worse than the benchmark
(black dash). The performance of EnKF-CAI (blue, lower panel), is much better and outperforms the
benchmark.

the benchmark RMSE will be 12.93. From these statistics, we compute M1=σΘ=127.6
and M2=MΞ=81.4.

7.2. Dependence on constant inflation strength and observation time.
Based on previous discussions, the performance of EnKF-CI and EnKF-CAI are sat-
isfactory in the weakly and moderately turbulent regimes, but the strongly turbulent
regime poses a significant challenge. In this section, we study how constant covariance
inflation strength ρ and observation time h affect the performance of EnKF-CI and
EnKF-CAI in the F =16 regime.

In Table 7.4 we compare the performance of EnKF-CAI for different choices of
constant inflation strength ρ, including RMSE and pattern correlation. We also include
the frequency of catastrophic filter divergence in EnKF-CI to emphasize the impact of
adaptive inflation.

As constant inflation strength is decreased, the frequency of catastrophic filter di-
vergence increases. This agrees with the notion that removing inflation simply results
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in EnKF, which in Table 7.3 was shown to experience catastophic filter divergence in
100% of trials.

In terms of accuracy, the EnKF-CAI can be optimized by choosing a moderately
small constant inflation strength. In particular, when ρ is in the 0.01–0.02 range the
RMSE is significantly smaller than the benchmark RMSE 12.93 and the pattern cor-
relation is relatively high. Surprisingly, the optimal choice of ρ for EnKF-CAI is very
sub-optimal for EnKF-CI, with around half of all trials experiencing catastrophic fil-
ter divergence. This emphasizes the importance of creating the right balance between
adaptive inflation and constant inflation.

ρ 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005
EnKF-CI Cata. Div. 3% 8% 18% 18% 28% 42% 57% 75%
EnKF-CAI RMSE 13.05 13.62 13.43 11.91 8.82 8.51 9.3 10.51
EnKF-CAI Cor. 0.64 0.65 0.66 0.69 0.70 0.70 0.75 0.70

Table 7.4. In the F =16 regime we display for different choice of constant inflation strength
ρ, the frequency of catastrophic filter divergence for EnKF-CI (EnKF-CI Cata. Div.), the RMSE for
EnKF-CAI and the pattern correlation for EnKF-CAI (EnKF-CAI Cor.). Each statistic is generated
from 100 independent trials. The benchmark RMSE is 12.93.

In Table 7.5 we display the results of a similar experiment, now varying the obser-
vation interval h keeping a fixed inflation strength ρ=0.1. Again we display frequency
of catastrophic filter divergence for EnKF-CI and the and pattern correlation RMSE.
Each statistic is generated from 100 independent trials.

We found that the frequnecy of catastophic filter divergence is not monotonic in
h, but rather displays a peak at h=0.1. This agrees with the findings of [10]. We
also find that the accuracy of EnKF-CAI is not monotonic in h but rather, there is an
optimal choice around h=0.1. As with the inflation strength experiment, the optimal
parameter choice for the accuracy of EnKF-CAI occurs when EnKF-CI is exhibiting
frequent catastrophic filter divergence. The fact that filter performance decreased with
decreasing h can be attributed to a violation of filter observability conditions when the
time-step becomes too small [4].

h 0.01 0.02 0.05 0.1 0.2 0.5
EnKF-CI Cata. Div. 0% 1% 18% 25% 5% 0%
EnKF-CAI RMSE 25.75 20.71 11.91 6.43 14.09 14.80
EnKF-CAI Cor. 0.31 0.37 0.69 0.64 0.50 0.36

Table 7.5. In the F =16 regime we display for different choice of observation interval h, the
frequency of catastrophic filter divergence for EnKF-CI (EnKF-CI Cata. Div.), the RMSE for EnKF-
CAI and the pattern correlation for EnKF-CAI (EnKF-CAI Cor.). Each statistic is generated from
100 independent trials. The benchmark RMSE is 12.93.

7.3. Dependence on the numerical integrator. In this section, we address
the question of whether the catastrophic filter divergence can be avoided by simply
using a more stable integrator in EnKF and EnKF-CI. We will see that with implicit
methods and variable time step methods, one can avoid catastrophic filter divergence,
but at prohibitive computational cost. Moreover, although they avoid catastrophic
filter divergence, they do not avoid ordinary filter divergence; in particular we will
see that EnKF and EnKF-CI with implicit / variable time-steps do not exhibit any
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filtering skill, in contrast with EnKF-AI and EnKF-CAI. This corroborates the findings
of [9, Chapter 2], where it was shown that numerical model error from implicit methods
leads to reduced filtering skill.

In Table 7.6, we display the results from 100 trials, comparing the performance
of EnKF-AI with explicit Euler (step size Δ=10−4) against EnKF with (respectively)
explicit Euler (Δ=10−4), standard 4th order Runge–Kutta (Δ=2.5×10−3), ode45,
and implicit Euler (Δ=10−2). ode45 is a native MATLAB integrator, which is based
on a Runge-Kutta (4,5) method with variable step size. The implicit equation in implicit
Euler is solved using the native MATLAB function fslove. The average time is also
shown to indicate the computational expense associated with each method.

We see that ode45 and implicit Euler are the only methods that do not exhibit
catastrophic filter divergence, but each trial is enormously expensive when compared
to the explicit Euler based methods. Moreover, ode45 and Implicit Euler display zero
filtering skill, as judged by the RMSE and pattern correlation (the benchmark RMSE
is 12.93). As discussed earlier, EnKF-AI also exhibits little skill in this regime, but
we shall see that the skill is dramatically improved by introducing additional constant
inflation. Unsurprisingly, the explicit Euler based methods are much faster than both
the higher order and the implicit methods and the EnKF-AI method is only fractionally
more expensive than EnKF.

EnKF-AI EnKF
Integrator Explicit Explicit RK4 ode45 Implicit
Cata. Div. 0% 100% 92% 0% 0%
RMSE 24.48 NaN NaN 44.66 20.38

Pattern Cor. 0.23 NaN NaN 0.22 0.11
Avg. Time 2.49 2.39 19.53 41.00 662.48

Table 7.6. The performance and time cost of EnKF-AI (explicit Euler, Δ=10−4) against EnKF
in the F =16 regime. EnKF is implemented by explicit Euler (Δ=10−4), RK4 (Δ=2.5×10−3),
ode45, and implicit Euler (Δ=10−2). The benchmark RMSE is 12.93. The time cost is measured in
seconds.

In Table 7.7 we display the results from a similar experiment, now comparing EnKF-
CAI (with explicit Euler) against EnKF-CI with the same four choices of integrator.
Catastrophic filter divergence is overall less prevalent, with ode45 and implicit Euler
once again exhibiting no catastrophic filter divergence. In contrast with the previous
experiment, EnKF-CAI exhibits good filtering skill as judged by the RMSE and pattern
correlation (once again, the benchmark RMSE is 12.93). EnKF-CI with ode45 exhibits
less filtering skill than EnKF-CAI, with RMSE not beating the benchmark and EnKF-
CI with implicit Euler exhibits even less skill. As in the first experiment, the adaptive
inflation is more accurate and far cheaper than the higher order and implicit methods.

7.4. The distribution of Θn and Ξn. The filter ensemble statistics Θn and
Ξn, defined in Section 3 are used to determine when the adaptive inflation of EnKF-AI
should be triggered. In particular, the mechanism is triggered whenever either of the
two statistics passes an appropriately chosen threshold. In this section we look at the
distribution of these statistics in order to evaluate the choice of thresholds introduced
in Section 6. We have collected the data of Θn and Ξn from the EnKF-AI scheme from
all the analysis steps. In Table 7.8 we compare the distributions of Θn and Ξn in the
three different turbulent regimes and compare with the choice of threshold.
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EnKF-CAI EnKF-CI
Integrator Explicit Explicit RK4 ode45 Implicit
Cata. Div. 0% 18% 5% 0% 0%
RMSE 11.91 NaN NaN 14.95 16.29

Pattern Cor. 0.69 NaN NaN 0.71 0.42
Avg. Time 2.65 2.34 21.48 37.02 650.31

Table 7.7. The performance and time cost of EnKF-CAI (explicit Euler, Δ=10−4)) against
EnKF-CI in the F =16 regime. EnKF is implemented by explicit Euler (Δ=10−4), RK4 (Δ=2.5×
10−3), ode45, and implicit Euler (Δ=10−2). The benchmark RMSE is 12.93. The time cost is
measured in seconds.

F 4 8 16
M1 32.5 69.6 127.6

Average Θn 2.95 20.28 70
P(Θn>M1) 0.0285% 3.025% 9.73%

M2 6.2 28.8 81.4
Average Ξn 0.001 0.0437 0.22
P(Ξn>M2) 0% 0% 0%

Table 7.8. For the three turbulent regimes (F =4,8,16), we list the thresholds M1 and M2 chosen
according to the method of Section 6. We also list the average of Θn and Ξn over 100 independent
trials and also give the probability that the statistics pass their respective threshold.

It is clear from the table that stronger turbulence significantly increase the size of
both Θn and Ξn. The thresholds M1 and M2 are always larger than the average of Θn

and Ξn, but the ratios M1/〈Θn〉 and M2/〈Ξn〉 significantly decreases as the turbulence
gets stronger. As a result, the percentage of Θn and Ξn that are beyond the thresholds
significantly increases. Connecting this observation with the performance of EnKF-AI,
which is good in F =4, slightly off the benchmark in F =8, and very bad in F =16, we
can conclude that whether Θn and Ξn are beyond the thresholds is a good indicator
of the malfunctioning. As intended, the adaptive inflation is rarely triggered when the
filter operates properly, but frequently triggered when the situation is chaotic.

The histograms of Θn and Ξn in three regimes are presented in Figure 7.4. Note
that Θn has a Gaussian like tail in the weak turbulence regime and exponential like
in strong turbulence. The tail of Ξn is much heavier and polynomial-like. The thresh-
olds we compute from the benchmarks are fairly large comparing with the distribution.
These two posterior observations suggest that using even an aggressive threshold strat-
egy as 6.4, the outliers are relatively scarce so adaptive inflation does not hamper the
performance of the filters.

It is worth noting that Ξn is usually a small number and very rarely exceeds the
threshold M2. This suggests that the filter performance would be unaffected if the
adaptive inflation was changed to λn= cϕΘn so that only Θn is used to trigger the
inflation. We have tested this simpler adaptive inflation mechanism with both EnKF-
AI and EnKF-CAI in the setting of the previous subsections, and the performances
are much as the same. From a theoretical perspective however, both statistics must be
included to obtain a rigorously stable filter.
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Fig. 7.4. Histograms of Θn (upper panel) and Ξn (lower panel) in F =4,8,16 regimes. The
thresholds M1 are marked as black dashes. The thresholds M2 lie out side the x-axis for Ξn. Note the
logarithmic scale on the vertical axis.

7.5. Discussion of experiments. In Section 7.1, the numerical simulations
convincingly demonstrate that catastrophic filter divergence is prevalent in EnKF and
EnKF-CI, particularly when using an unstable integrator in the forecast step. By com-
paring with EnKF-AI and EnKF-CAI, adaptive inflation is shown to successfully avoid
catastrophic filter divergence, without sacrificing any filtering skill. In the weakly turbu-
lent regime, the adaptive inflation mechanism is rarely turned on and EnKF-AI performs
similarly to EnKF and likewise for the constant inflation counterparts. In more tur-
bulent regimes, the adaptive inflation is regularly triggered and the adaptive inflation
filters display filtering skill, typically beating the RMSE benchmark. In Section 7.2, it
is also shown that this skill can be optimized by tuning constant inflation strength.

We saw in Section 7.3 that catastrophic filter divergence can be avoided by using
implicit or variable time step integrators, but at the expense of prohibitive computa-
tional cost and the loss of filtering skill. Indeed, one would be better off using the naive
estimator developed for the RMSE benchmark.

The adaptive inflation method permits for the effective use of very cheap integrators
such as explicit Euler in the forecast step. As evidenced by EnKF, it is impossible to use
such integrators in turbulent models, due to prevalence of catastrophic filter divergence.
The adaptive inflation completely avoids this issue.

In Section 7.4, we provide the distribution analysis of Θn and Ξn which indicates the
thresholds are achieving our purpose. We also saw that the threshold for Ξn was never
triggered, indicating that a simpler adaptive inflation only using the statistic Θn will
have practically the same performance. This has been validated, but is not presented
here.

8. Conclusion and discussion

In this article we have proposed a novel modification of ensemble based methods
using an adaptive covariance inflation. This modified method resolves common issues
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with ensemble based methods, which were raised in the introduction, namely that there
is a lack of understanding of the stability properties of EnKF, with catastrophic filter
divergence drawing stark attention to this fact. The EnKF-AI and related filtering
methods (ETKF-AI, EAKF-AI, EnKF-CAI, etc.) resolve this stability issue entirely.

In particular we can develop a complete stability theory for these filters. In Section
4, we have proved time-uniform mean-square upper bounds for EnKF-AI and related
filters, using a Lyapunov argument. This is a considerable improvement on the known
results for EnKF [7] since the observable energy criterion is no longer required and the
resulting Lyapunov function for the filter always has compact sub-level sets. In Section
5, we exploit this fact to prove geometric ergodicity of the signal-ensemble process for
EnKF-AI and related methods. The ergodicity result is a type of stability which ensures
that filter initialization errors are dissipated exponentially quickly by the method.

In Section 7, we provide numerical evidence which supports the stability theory de-
veloped for EnKF-AI and related methods. In particular, catastrophic filter divergence
is completely eliminated by adaptive inflation, even when cheap unstable integrators
are used in the forecast step. For such integrators, catastrophic filter divergence is un-
avoidable in EnKF and EnFK-CI. Moreover, adaptive inflation does not sacrifice any
filtering skill, with EnKF-AI and EnKF-CAI displaying good accuracy when compared
to benchmark accuracy scores, even in highly turbulent regimes. This suggests that
adaptive inflation may in fact make filtering algorithms faster, since they allow for such
cheap, typically unstable forecast integrators.

In recent years, there have been many methods introduced featuring a type of
adaptive inflation filtering. These methods are motivated by very different principles.
For example, [12, 13] introduce a method that uses the norm of innovation to filter the
optimal parameter for multiplicative inflation. Two different ways to find the covariances
of the system and observation noises, assuming they are not known, are introduced
in [14, 15]. A covariance relaxation method, so the posterior ensemble is pulled back
to the forecast ensemble with a linear factor obtained from the innovation process is
designed in [16]. In [30] a modification of 3DVAR is proposed which relies on projection
back to a stable region, this modification has been theoretically analyzed from the
perspective of long-time accuracy. On one hand, these methods are quite different
from the EnKF-AI method we introduced. With the exception of [30], none have been
rigorously proved to be stable in the sense of our theorems here. On the other hand, it is
very possible that our theoretical framework here can be extended to these methods to
build a stability framework, at least in some simple settings. The compelling reason here
is that all these methods use the innovation sequence to decide the inflation, relaxation
or noise covariance, which all grow with respect to Θn. From this perspective, our
framework here offers an explanation of the good performance of these data assimilation
methods, as they are more resilient against filter divergence; and when the filter is on
the edge of malfunctioning, the adaptive mechanisms can pull the ensemble back to
more reasonable states.

Appendix A. Elementary claims.

Lemma A.1. By Young’s inequality, for any ε>0 and x,y∈R
d, the following holds:

|x+y|2= |x|2+ |y|2+2〈x,y〉≤ (1+ε2)|x|2+(1+ε−2)|y|2.
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Lemma A.2. For any group of vectors v1, . . . ,vn, the following holds:

argmin
v

n∑
k=1

|vi−v|2= 1

n

n∑
k=1

vi.

Proof. One can verify this by using the KKT condition.

Appendix B. Stability for ETKF-AI, EAKF-AI.
Proof. (Proof of Theorem 4.5.) We use the observed-unobserved notation intro-

duced in Section 2.3. Notice that the mean update of (3.5) is the ensemble averaged

version of (3.1) without the artificial perturbations ξ
(k)
n . Applying Jensen’s inequality

En−1|Xn|2≤ 1

K

K∑
k=1

En−1|X(k)
n |2

to (4.3), we find the following with a constant D1,

En−1|Xn|2−2ρ−1
0 ‖H0‖2En−1|HUn|2≤D1.

The corresponding part for (4.4) will become

|Y n|2≤ (1+
1

2
βh)|Ŷ n|2+(1+2β−1

h )|B̂T
nH

T
0 (I+H0C̃

X
n HT

0 )
−1(H0X̂n−Zn)|2.

Applying Jensen’s inequality to (4.5), we find the second part above is bounded by

|B̂T
nH

T
0 (I+H0C̃

X
n HT

0 )
−1(H0X̂n−Zn)|2≤K‖H0‖2max{M2

1M
2
2 ,ρ

−2
0 c−2

ϕ }.
So there is a constant D2 such that

En−1|V n|2−2ρ−1
0 ‖H‖2En−1|HUn|2≤ (1+

1

2
βh)|V̂ n|2+D2,

where we use the fact that ‖H0‖2=‖H‖2. Then notice that the posterior covariance

follows Cn� Ĉn by (2.9). Therefore, using

K∑
k=1

|V (k)
n |2=K|V n|2+tr(Cn)≤K|V n|2+tr(Ĉn),

and
∑K

k=1 |V̂ (k)
n |2=K|V̂ n|2+tr(Ĉn), we obtain from the previous inequality

En−1

K∑
k=1

|V (k)
n |2−2Kρ−1

0 ‖H‖2En−1|HUn|2≤ (1+
1

2
βh)En−1

K∑
k=1

|V̂ (k)
n |2+D2.

Assumption 4.1 leads to

(1+
1

2
βh)En−1

K∑
k=1

|V̂ (k)
n |2≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+(1+

1

2
βh)KKh,

and moreover
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En−1

K∑
k=1

|V (k)
n |2−2Kρ−1

0 ‖H‖2En−1|HUn|2

≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+(1+

1

2
βh)KKh+D2.

Then notice a multiple of Assumption 4.1 is

4Kβ−1
h ρ−1

0 ‖H‖2En−1|Un|2≤4Kβ−1
h ρ−1

0 ‖H‖2(1−βh)|Un−1|2+4Kβ−1
h ρ−1

0 ‖H‖2Kh.

The sum of the two previous two inequalities yields

En−1En=
K∑

k=1

En−1|V (k)
n |2+4Kβ−1

h ρ−1
0 (1− 1

2
βh)‖H‖2En−1|Un|2

≤ (1− 1

2
βh)

K∑
k=1

|V (k)
n−1|2+4Kβ−1

h ρ−1
0 ‖H‖2(1−βh)|Un−1|2+D,

with D :=4Kβ−1
h ρ−1

0 ‖H‖2Kh+(1+ 1
2βh)KKh+D2. Then notice that (1− 1

2βh)
2≥ (1−

βh), therefore

En−1En≤ (1− 1

2
βh)En−1+D.

Appendix C. Ergodicity formulas. Here we present the concrete formulas
that are used in Section 5 for ETKF-AI and EAKF-AI. We omit unneccessary details
concerning the transform and adjustment matrices, which can be found in [2–4, 7]. In
both ESRF methods, the Markov kernel Φ :X ×B(Y)→ [0,1] with E :=R

d×R
d×K and

Y :=R
d×R

d×K×R
q is described by

(Un−1,V
(1)
n−1, . . . ,V

(K)
n−1) 
→ (Un,V̂

(1)
n , . . . ,V̂ (K)

n ,Zn).

The deterministic step is given by the map Γ(U,V,Z)=(U,Γ(1), . . . ,Γ(K)) where

Γ(k)= V̂ − C̃HT (I+HC̃HT )−1(HV̂ −Z)+S(k) (C.1)

with V = 1
K

∑K
k=1 V̂

(k) and C̃= Ĉ= 1
K−1

∑K
k=1(V̂

(k)−V )⊗(V̂ (k)−V ) and S(k) is the

k-th column of the updated spread matrix S. S is given by ŜT (Ŝ) in the ETKF

method, and A(Ŝ)Ŝ in the EAKF method, where Ŝ is the forecast spread matrix Ŝ=

(V̂ (1)− V̂ , . . . ,V̂ (K)− V̂ ).
With the ETKF method, there are a few way to define the transformation matrix

T (Ŝ), one reasonable choice is taking the matrix square root

T (Ŝ)=
(
IK+(K−1)−1ŜTHTHŜ

)− 1
2 =

(
IK−(K−1)−1ŜTHT (I+HĈHT )−1HŜT

) 1
2 .

As for the EAKF method, the construction of the adjustment matrix A(Ŝ) is slightly
more complicated as the following

A(Ŝ)=QΛGT (I+D)−1/2Λ†QT .
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Here QΛR is the SVD decomposition of Ŝ and GTDG is the diagonalization of

(K−1)−1ΛTQTHTHTQΛT ,

and † indicates pseudo inverse of a matrix.
And for the ETKF-AI and EAKF-AI, everything is the same as their counterpart

without adaptive inflation, except that we use the following in (C.1)

C̃=
1

K−1

K∑
k=1

(V̂ (k)− V̂ )⊗(V̂ (k)− V̂ )+cϕΘn(1+Ξn)1Θn>M1 orΞn>M2
I.
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