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AN IMPROVED RESULT ON RAYLEIGH–TAYLOR INSTABILITY OF
NONHOMOGENEOUS INCOMPRESSIBLE VISCOUS FLOWS∗

FEI JIANG†

Abstract. In [F. Jiang and S. Jiang, Adv. Math., 264, 831–863, 2014], the author and Jiang
investigated the instability of Rayleigh–Taylor steady-state of a three-dimensional nonhomogeneous
incompressible viscous flow driven by gravity in a bounded domain Ω of class C2. In particular, we
proved the steady-state is nonlinearly unstable under a restrictive condition of that the derivative
function of steady density possesses a positive lower bound. In this article, by exploiting a standard
energy functional and more-refined analysis of error estimates in the bootstrap argument, we further
show the nonlinear instability result without the restrictive condition.
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1. Introduction
The motion of a three-dimensional (3D) nonhomogeneous incompressible viscous

fluid in the presence of a uniform gravitational field in a bounded domain Ω⊂R
3 of

C2-class is governed by the following Navier–Stokes equations⎧⎪⎨
⎪⎩

ρt+v ·∇ρ=0,

ρvt+ρv ·∇v+∇p=μΔv−gρe3,

divv=0,

(1.1)

where the unknowns ρ :=ρ(t,x), v :=v(t,x), and p :=p(t,x) denote the density, velocity,
and pressure of the fluid, respectively; μ>0 stands for the coefficient of shear viscosity,
g>0 for the gravitational constant, e3=(0,0,1) for the vertical unit vector, and −ge3
for the gravitational force. In the system (1.1) the equation (1.1)1 is the continuity
equation, while (1.1)2 describes the balance law of momentum.

We studied the instability of the following Rayleigh–Taylor (RT) steady-state to
the system (1.1) as in [16]:

v(t,x)≡0 and ∇p̄=−gρ̄e3 in Ω, (1.2)

where the steady density ρ̄ satisfies:

ρ̄∈C2(Ω̄), inf
x∈Ω

{ρ̄(x)}>0, and ∂x3
ρ̄(x0)>0 for some x0∈Ω. (1.3)

It is easy to show that the steady density ρ̄ only depends on x3, the third component
of x. Hence we can denote ρ̄′ :=∂x3

ρ̄ for simplicity. Moreover, we can give explicitly
the associated steady pressure p̄ determined by ρ̄. The third condition posed on ρ̄ in
(1.3) means that there is a region in which the RT density profile has larger density
with increasing x3 (height), thus leading to the nonlinear RT instability as shown in
Theorem 1.1 below. RT instability is well known as gravity-driven instability in fluids
when a heavy fluid is on top of a light one.
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To investigate the RT instability of the system (1.1) around the steady-state (1.2),
we denote the perturbation by

�=ρ− ρ̄, u=v−0, q=p− p̄,

then, (�,u,q) satisfies the perturbed equations:⎧⎪⎨
⎪⎩

�t+u ·∇(�+ ρ̄)=0,

(�+ ρ̄)ut+(�+ ρ̄)u ·∇u+∇q=μΔu−g�e3,

divu=0.

(1.4)

To complete the statement of the perturbed problem, we specify the initial and boundary
conditions

(�,u)|t=0=(�0,u0) in Ω (1.5)

and

u|∂Ω=0 for any t>0. (1.6)

Moreover, the initial data should satisfy the compatibility conditions u0|∂Ω=0 and
divu0=0. If we linearize the equations (1.4) around the steady-state (ρ̄,0), then the
resulting linearized equations read as⎧⎪⎨

⎪⎩
�t+ ρ̄′u3=0,

ρ̄ut+∇q=μΔu−g�e3,

divu=0,

(1.7)

where u3 denotes the third component of u.
Here we briefly introduce the research progress for RT instability of continuous

flows, please refer to [12,13,22,24] for incompressible and compressible stratified fluids,
and [3, 14, 19, 20] for stratified MHD fluids. Instability of the linearized problem (i.e.
linear instability) for an incompressible fluid was first introduced by Rayleigh in 1883
[23]. In 2003, Hwang and Guo [15] proved the nonlinear RT instability of ‖(�,u)‖L2(Ω)

in the sense of Hadamard for a 2D nonhomogeneous incompressible inviscid fluid (i.e.
μ=0 in the equation (1.4)) with boundary condition u ·n|∂Ω=0, where Ω={(x1,x2)∈
R

2 | − l<x2<m} and n denotes the outer normal vector to ∂Ω. Jiang et al. [17] showed
the nonlinear RT instability of ‖u3‖L2(R3) for the Cauchy problem of (1.4) in the sense
of Lipschitz structure, and further gave the nonlinear RT instability of ‖u3‖L2(Ω) in [18]
in the sense of Hadamard in an unbounded horizontal period domain Ω.

Recently, for a general bounded domain Ω, the author and Jiang showed that the
steady-state (1.2) to the linearized problem (1.4)–(1.6) is linear unstable (i.e., the linear
solution grows in time in H2(Ω)) by constructing a standard energy functional for the
time-independent system of (1.7) and exploiting a modified variational method. Based
on the linear instability result, they further showed the nonlinear instability of the
perturbed problem (1.4)–(1.6) by a bootstrap technique under the following restrictive
condition (i.e., the derivative function of steady-density enjoys a positive lower bound):

inf
x∈Ω

{ρ̄′(x)}>0. (1.8)

The bootstrap technique has its origins in the paper of Guo and Strauss [10, 11]. It
was developed by Friedlander et al. [5], and widely quoted in the nonlinear instability
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literature, see [1,4,6–9,21] for example. However the Duhamel’s principle in the standard
bootstrap argument can not be directly applied to show the nonlinear instability of the
problem (1.4)–(1.6), see [16] for the details. To circumvent this obstacle, The author
and Jiang used some specific energy error estimates to replace Duhamel’s principle, in
which the key step is to deduce an error estimate for (�d,ud) in L2(Ω) (i.e the L2(Ω)-
norm of difference between a nonlinear solution (�δ,uδ) to the problem (1.4)–(1.6) and
a linear solution (�a,ua) to the problem (1.5)–(1.7)) in the bootstrap technique. To this
purpose, they introduced a new energy functional under the condition (1.8) to avoid
the integrand term

∫ t

0

< ((�δ+ ρ̄)ud
τ )τ ,u

d
τ >dτ, (1.9)

since the energy estimate of Gronwall-type (see (2.3)) does not directly offer any estimate
for the term ((�δ+ ρ̄)ud

τ )τ . Here < ·, ·> denotes the corresponding dual product between
the two spaces H−1

σ (Ω) and H1
σ(Ω), and H−1

σ (Ω) represents the dual space of H1
σ(Ω) :=

{u∈H1
0 (Ω) | divu=0}. Using the new energy functional, they can get a sharp growth

rate Λ of any linear solution (�,u) in the norm “
√
‖�‖2L2 +‖u‖2L2(Ω)”. Thus, applying

this property to the process of specific energy error estimates, they easily obtained the
desired error estimate, and thus showed the nonlinear instability.

This article is devoted to canceling the condition (1.8) in the proof of nonlinear
instability in [16]. More precisely, we establish the following improved result by using a
standard energy functional and more-refined analysis techniques to deduce the error es-
timate for ‖(�d,ud)‖L2(Ω) in the bootstrap argument, which will be showed in Section 3.

Theorem 1.1. Assume that the steady density ρ̄ satisfies (1.3). Then, the steady-
state (1.2) of the system (1.4)–(1.6) is unstable in the Hadamard sense, that is, there
are positive constants Λ, m0, ε, and δ0, and functions (�̄0,ū0)∈H2(Ω)×H2(Ω), such
that for any δ∈ (0,δ0) and initial data (�0,u0) :=(δ�̄0,δū0) there is a unique strong
solution (�,u)∈C0([0,Tmax),H2(Ω)×H2(Ω)) of (1.4)–(1.6) with an associated pressure
q∈C0([0,Tmax),H1(Ω)), such that

‖�(T δ)‖L2(Ω), ‖(u1,u2)(T
δ)‖L2(Ω), ‖u3(T

δ)‖L2(Ω)≥ε

for some escape time T δ := 1
Λ ln

2ε
m0δ

∈ (0,Tmax), where Tmax denotes the maximal time
of existence of the solution (�,u).

By virtue of [16], the key step in the proof of Theorem 1.1 is to establish a error
estimate

‖(�d,ud)‖L2(Ω)≤Cδ3e3Λt for some constant C (1.10)

without the restrictive condition (1.8) (i.e., Lemma 3.1). Here we sketch the main idea
in the proof of (1.10) without the presence of (1.8). In view of the property of standard
energy functional (see (2.1)), Λ is also a sharp growth rate of any linear solution (�,u)

in the norm “
√
‖�‖2L2 +‖u‖2H2(Ω)”, see [16, Proposition 3.3]. When applying the sharp

growth rate of the standard energy functional to the process of specific energy error
estimates, we need to deal with the difficulty arising from the term (1.9). However, by
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a classical regularization method, we can show that

2

∫ t

0

< ((�δ+ ρ̄)ud
τ )τ ,u

d
τ >dτ

=

∫
Ω

(�δ+ ρ̄)|ud
t (t)|2dx−

∫
Ω

(�δ(0)+ ρ̄)|ud
t (0)|2dx+

∫ t

0

∫
Ω

�δτ |ud
τ |2dxdτ,

Then, we can deduce from the error equations (see (3.9)) that

‖
√
�δ+ ρ̄ud

t (t)‖2L2 +2μ

∫ t

0

‖∇ud
τ‖2L2dτ =

∫
gρ̄′|ud

3(t)|2dx+R1+R2(t),

where the two higher-order terms R1 and R2(t) (see (3.14) and (3.15) for their defini-
tions) can be controlled by δ3e3Λt. Using the definition of sharp growth rate, we can
further estimate that

‖
√
�δ+ ρ̄ud

t (t)‖2L2 +2μ

∫ t

0

‖∇ud
τ‖2L2dτ

≤Λ2‖
√
�δ+ ρ̄ud(t)‖2L2 +Λμ‖∇ud(t)‖2L2 +Cδ3e3Λt.

Based on the estimate above, by more-refined analysis, we can further infer the following
Gronwall’s inequality

d

dt
‖
√
�δ+ ρ̄ud(t)‖2L2 +μ‖∇ud(t)‖2L2

≤2Λ
(
‖
√
�δ+ ρ̄ud(t)‖2L2 +μ

∫ t

0

‖∇ud‖2L2dτ

)
+Cδ3e3Λt.

Since �δ+ ρ̄ possesses a positive lower bound, we immediately get the desired error
estimate (1.10) from the Gronwall’s inequality above and the mass equation. We men-
tion that the author and Jiang [16] used another energy functional and the restrictive
condition (1.8) to deduce the following Gronwall’s inequality

d

dt

∫ ( |�d|2
ρ̄′

+
ρ̄|ud|2

g

)
dx≤2Λ

∫ ( |�d|2
ρ̄′

+
ρ̄|ud|2

g

)
dx,+Cδ3e3Λt

and thus obviously got (1.10) under (1.8).

Finally, we end this section by explaining the notations used throughout the rest
of this article. For simplicity, we drop the domain Ω in Sobolev spaces and the corre-
sponding norms as well as in integrands over Ω, for example,

Lp :=Lp(Ω), Hk :=W k,2(Ω), H1
σ :=H1

σ(Ω),

∫
:=

∫
Ω

.

In addition, we denote IT := (0,T ) and ĪT := [0,T ] for simplicity.

2. Preliminaries

This section is devoted to introduction of two auxiliary results, which were estab-
lished in [16] and will be used to prove Theorem 1.1 in next section. The first result is
about the instability result of the linearized problem (1.5)–(1.7).
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Proposition 2.1. Assume that the steady density ρ̄ satisfies (1.3). Then the steady-
state (1.2) of the linearized system (1.5)–(1.7) is unstable. That is, there exists an
unstable solution

(�,u,q) :=eΛt(−ρ̄′ṽ3/Λ, ṽ, p̃)

to (1.5)–(1.7), where (ṽ, p̃)∈H2×H1 solves the following boundary problem{
Λ2ρ̄ṽ+Λ∇p̃=ΛμΔṽ+gρ̄′ṽ3e3,
div ṽ=0, ṽ|∂Ω=0

with the positive constant growth rate Λ defined by

Λ2= sup
w̃∈Hσ

0

g
∫
ρ̄′w̃2

3dx−Λμ
∫
Ω
|∇w̃|2dx∫

ρ̄|w̃|2dx . (2.1)

Moreover, ṽ satisfies ṽ3≡/ 0, ṽ21+ ṽ22≡/ 0 and

ρ̄′ṽ3≡/ 0, (2.2)

where ṽi denotes the ith component of ṽ for i=1,2,3.

Remark 2.2. The linear instability was showed in [16, Theorem 1.1] except (2.2).
However, we can easily get (2.2) by contradiction. Suppose that ρ̄′ṽ3≡0, then

0<Λ2=
g
∫
ρ̄′ṽ23dx−Λμ

∫ |∇ṽ|2dx∫
ρ̄|ṽ|2dx =−Λμ

∫ |∇ṽ|2dx∫
ρ̄|ṽ|2dx <0,

which contradicts. Therefore, (2.2) holds.

The second result is about a local existence result of a unique strong solution to
the perturbed problem (1.4)–(1.6), which enjoys an energy estimate of Gronwall-type,
see [16, Proposition 3.3] for the detailed proof.

Proposition 2.3. Assume that the steady density ρ̄ := ρ̄(x) satisfies (1.3). For any
given initial data (�0,u0)∈H2×(H2∩H1

σ) satisfying infx∈Ω{�0(x)+ ρ̄}>0, there exist
a unique strong solution (�,u)∈C0([0,Tmax),H2×H2) to the perturbed problem (1.4)–
(1.6) with an associated pressure q∈C0([0,Tmax),H1), where Tmax denotes the maximal
time of existence. Moreover,

(1) ut∈C0([0,Tmax),L2) and

0< inf
x∈Ω

{�0(x)+ ρ̄}≤ inf
x∈Ω

{�(t,x)+ ρ̄}≤ sup
x∈Ω

{�(t,x)+ ρ̄}≤ sup
x∈Ω

{�0(x)+ ρ̄}<+∞

for any t∈ [0,Tmax).

(2) there is a constant δ̄0∈ (0,1), such that if E(t)≤ δ̄0 on some interval ĪT ⊂
[0,Tmax), then the strong solution satisfies

E2(t)+‖(ut,∇q)(t)‖2L2 +

∫ t

0

‖(∇u,uτ ,∇uτ )‖2L2dτ

≤C1

(
E20 +

∫ t

0

‖(�,u)‖2L2dτ

)
(2.3)
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for any t∈ ĪT , where we have defined that

E(t) :=E((�,u)(t))=
√
‖�(t)‖2L2 +‖u(t)‖2H2 ,

E0 :=E((�,u)(0))=
√
‖�0‖2L2 +‖u0‖2H2 ,

and the constant C1>0 only depends on μ, g, ρ̄ and Ω.

3. Proof of Theorem 1.1
Now we are in a position to prove Theorem 1.1. To begin with, in view of Proposition

2.1, we can construct a linear solution(
�l,ul

)
= eΛt (�̄0,ū0)∈H2×(H2∩H1

σ) for each t>0 (3.1)

to the equation (1.5) with an associated pressure ql= eΛtq̄0, where q̄0∈H1, and (�̄0,ū0)∈
H2×(H2∩H1

σ) satisfy

‖�̄0‖L2‖ū03‖L2‖(ū01,ū02)‖L2 >0, (3.2)

E((�̄0,ū0))=
√
‖�̄0‖2L2 +‖ū0‖2H2 =1,

where ū0i stands for the ith component of ū0 for i=1,2,3.
Denote (�δ0,u

δ
0) := δ(�̄0,ū0), and C2 :=‖(�̄0,ū0)‖L2 . Keeping in mind that the condi-

tion infx∈Ω{ρ̄(x)}>0 and the embedding H2 ↪→L∞, we can choose a sufficiently small
δ̃∈ (0,1), such that

infx∈Ω{ρ̄(x)}
2

≤ inf
x∈Ω

{�δ0(x)+ ρ̄(x)} for any δ∈ (0, δ̃).

Thus, by virtue of Proposition 2.3, for any δ< δ̃, there exists a unique local solu-
tion (�δ,uδ)∈C0([0,Tmax),H2×H2) to the perturbed problem (1.4)–(1.6) with an as-
sociated pressure qδ ∈C0([0,Tmax),H1), emanating from the initial data (�δ0,u

δ
0) with

E((�δ0,uδ
0))= δ, where Tmax denotes the maximal time of existence. Moreover,

0<
infx∈Ω{ρ̄(x)}

2
≤ inf

x∈Ω
{�δ(t,x)+ ρ̄} (3.3)

and

sup
x∈Ω

{�δ(t,x)+ ρ̄}≤ sup
x∈Ω

{�̄0(x)+ ρ̄}≤C3‖�̄0‖H2 +‖ρ̄‖L∞ (3.4)

for any t∈ [0,Tmax), where C3 is the constant from the imbedding H2 ↪→L∞.
Let C1>0 and δ̄0>0 be the same constants as in Proposition 2.3, and ε0∈ (0,1) be

a constant, which will be defined in (3.33). Denote δ0=min{δ̃, δ̄0}, for given δ∈ (0,δ0),
we define

T δ :=
1

Λ
ln
2ε0
δ

>0, i.e., δeΛT δ

=2ε0, (3.5)

T ∗ := sup
{
t∈ ITmax

∣∣ E((�δ,uδ)(t))≤ δ0
}
>0

and

T ∗∗ := sup
{
t∈ ITmax

∣∣ ∥∥(�δ,uδ
)
(t)

∥∥
L2 ≤2δC2e

Λt
}
>0 .
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Then T ∗ and T ∗∗ may be finite, and furthermore,

E((�δ,uδ
)
(T ∗))= δ0 if T ∗<∞, (3.6)∥∥(�δ,uδ

)
(T ∗∗)

∥∥
L2 =2δC2e

ΛT∗∗
if T ∗∗<Tmax. (3.7)

Now, we denote Tmin :=min{T δ,T ∗,T ∗∗}, then for all t∈ ĪTmin , we deduce from the
estimate (2.3) and the definitions of T ∗ and T ∗∗ that

E2((�δ,uδ)(t)
)
+‖uδ

t (t)‖2L2 +

∫ t

0

‖∇uδ
τ‖2L2dτ

≤C1δ
2E2((�̄0,ū0))+C1

∫ t

0

∥∥(�δ,uδ
)∥∥2

L2 dτ

≤C1δ
2+4C1C

2
2δ

2e2Λt/(2Λ)≤C4δ
2e2Λt (3.8)

where C4 :=C1+4C1C
2
2/(2Λ) is independent of δ.

Let (�d,ud)=(�δ,uδ)−δ(�l,ul). Noting that (�a,ua) := δ(�l,ul)∈C0
(
[0,+∞),H2×

H2
)
is also a linear solution to (1.5)–(1.7) with the initial data (�δ0,u

δ
0)∈H2×H2 and

with an associated pressure qa= δql∈C0([0,+∞),H1), we find that (�d,ud) satisfies the
following error equations:⎧⎪⎨

⎪⎩
�dt + ρ̄′ud

3 =−uδ ·∇�δ,

(�δ+ ρ̄)ud
t −μΔud+∇qd=fδ−g�de3,

divud=0

(3.9)

with initial and boundary conditions

(�d(0),ud(0))=0, ud|∂Ω=0

and compatibility conditions

ud(0)|∂Ω=0, divud(0)=0,

where we have defined that

qd := qδ−qa∈C0(ĪTmin
,H1) and fδ :=−(�δ+ ρ̄)uδ ·∇uδ−�δua

t .

Next, we shall establish an error estimate for (�d,ud) in L2-norm.

Lemma 3.1. There is a constant C4, such that for all t∈ ĪTmin
,

‖(�d,ud)(t)‖2L2 ≤C4δ
3e3Λt. (3.10)

Proof. Recalling that (�d,ud)=(�δ,uδ)−(�δ,uδ), in view of the regularity of
(�δ,uδ) and (�a,ua), we can deduce from (3.9)2 that for a.e. t∈ ITmin

,

d

dt

∫
(�δ+ ρ̄)|ud

t |2dx=2< ((�δ+ ρ̄)ud
t )t,u

d
t >−

∫
�δt |ud

t |2dx

=2

∫
(fδ

t −g�dt e3)u
d
t dx−2μ

∫
|∇ud

t |2dx−
∫

�δt |ud
t |2dx, (3.11)

and ‖
√
�δ+ ρ̄ud

t ‖L2 ∈C0(ĪTmin), please refer to [2, Remark 6]. Noting that

d

dt

∫
ρ̄′|ud

3 |2dx=2

∫
ρ̄′ud

3∂tu
d
3dx,
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thus, using (3.9)1, we can rewrite the equality (3.11) as

d

dt

∫ [
(�δ+ ρ̄)|ud

t |2−gρ̄′|ud
3 |2

]
dx+2μ

∫
|∇ud

t |2dx

=

∫ (
2ft+2guδ ·∇�δe3−�δtu

d
t

) ·ud
t dx. (3.12)

Recalling that ud
3(0)=0, thus, integrating (3.12) in time from 0 to t, we get

‖
√
�δ+ ρ̄ud

t (t)‖2L2 +2μ

∫ t

0

‖∇ud
τ‖2L2dτ =

∫
gρ̄′|ud

3(t)|2dx+R1+R2(t), (3.13)

where

R1=

[∫
(�δ+ ρ̄)|ud

t |2dx
]∣∣∣∣

t=0

(3.14)

and

R2(t)=

∫ t

0

∫ (
2fτ +2guδ ·∇�δe3−�δτu

d
τ

) ·ud
τdxdτ. (3.15)

Next, we control the two higher-order terms R1 and R2(t). In what follows, we denote
by C a generic positive constant which may depend on μ, g, ρ̄, Λ, Ω, and (�̄0,ū0). The
symbol a� b means that a≤Cb.

Multiplying (3.9)2 by ud
t in L2, we get∫

(�δ+ ρ̄)|ud
t |2dx=

∫
(fδ−g�de3+μΔud) ·ud

t dx.

Exploiting (3.3) and Cauchy’s inequality, we get∫
(�δ+ ρ̄)|ud

t |2dx�‖fδ−g�de3‖2L2 +‖Δud‖2L2 . (3.16)

By the definition of ua
t , it holds that

‖∂j
t u

a‖Hk =ΛjδeΛt‖ū0‖Hk for 0≤k, j≤2, (3.17)

thus, using (3.4), (3.8), Hölder’s inequality, and the imbedding H2 ↪→L∞, we have

‖fδ−g�de3‖2L2 �‖�d‖2L2 +‖(�δ+ ρ̄)‖2L∞‖uδ‖4H2 +‖�δ‖2L2‖ua
t‖2H2

�‖�d‖2L2 +δ4e4Λt. (3.18)

Noting that �d(0)=0, Δud(0)=0, and δ∈ (0,1), chaining the estimates (3.16) with
(3.18) together, and taking limit for t→0, we immediately obtain the following estimate
for the first higher-order term R1:

R1=lim
t→0

∫
(�δ+ ρ̄)|ud

t (t)|2dx
� lim

t→0
(‖�d(t)‖2L2 +‖Δud(t)‖2L2 +δ4e4Λt)= δ4≤ δ3. (3.19)
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Now we turn to estimate the most complicated higher-order term R2(t). Recalling
the definition of R2(t), we see that

R2(t)=−2

∫ t

0

∫ [
�δua

ττ +(�δ+ ρ̄)uδ
τ ·∇uδ+(�δ+ ρ̄)uδ ·∇uδ

τ

] ·ud
τdxdτ

+

∫ t

0

∫ [
2guδ ·∇�δe3−�δτ

(
2ua

τ +ud
τ +2uδ ·∇uδ

)] ·ud
τdxdτ

:=R2,1(t)+R2,2(t).

Using (3.4), (3.8), (3.17), Hölder’s inequality, and the imbeddings H2 ↪→L∞ and H1 ↪→
L4, the integral term R2,1(t) can be estimated as follows:

R2,1(t)�
∫ t

0

(‖�δ‖L2‖ua
ττ‖H2 +‖(�δ+ ρ̄)‖L∞‖uδ‖H2‖uδ

τ‖H1)‖ud
τ‖L2dτ

�
∫ t

0

δ2e2Λτ (δeΛτ +‖∇uδ
τ‖L2)dτ

�δ3e3Λt+

(∫ t

0

δ4e4Λτdτ

) 1
2
(∫ t

0

‖∇uδ
τ‖2L2dτ

) 1
2

� δ3e3Λt. (3.20)

To estimate the second term R2,2(t), we use the mass equation (i.e. �δt =−(uδ ·∇�δ+
ρ̄′uδ

3)) and the formula of integration by parts to rewrite R2,2(t) as follows:

R2,2(t)=

∫ t

0

∫ [(
uδ ·∇�δ+ ρ̄′uδ

3

)(
2ua

τ +ud
τ +2uδ ·∇uδ

)
+2guδ ·∇�δe3

] ·ud
τdxdτ

=

∫ t

0

∫ [
ρ̄′uδ

3

(
2ua

τ +ud
τ +2uδ ·∇uδ

)
ud
τ −2g�δuδ ·∇∂τu

d
3

]
dxdτ

−2

∫ t

0

∫ [
�δuδ ·∇(

uδ
τ +uδ ·∇uδ

) ·ud
τ +�δuδ ·∇ud

τ ·
(
ua
τ +uδ ·∇uδ

)]
dxdτ

=R2,2,1(t)+R2,2,2(t).

Similarly to (3.20), we can estimate that

R2,2,1(t)�
∫ t

0

[‖uδ
3‖H2(‖ua

τ‖L2 +‖uδ
τ‖L2 +‖uδ‖2H2)‖ud

τ‖L2 +‖�δ‖L2‖uδ‖H2‖∇∂τu
d
3‖L2 ]dτ

�
∫ t

0

[
δ3e3Λτ (1+δeΛτ )+δ2e2Λτ‖∇∂τu

δ
3‖L2

]
dτ � δ3e3Λt(1+δeΛt), (3.21)

and

R2,2,2(t)�
∫ t

0

‖�δ‖L∞‖uδ‖H2(‖∇uδ
τ‖L2‖ud

τ‖L2 +‖uδ‖2H2‖ud
τ‖L2

+‖ua
τ‖L2‖∇ud

τ‖L2 +‖uδ‖2H2‖∇ud
τ‖L2)dτ

�
∫ t

0

[
δ3e3Λτ (1+δeΛτ )+δ2e2Λτ‖∇uδ

τ‖L2

]
dτ � δ3e3Λt(1+δeΛt). (3.22)

By the definition of ε0∈ (0,1) in (3.5),

δ≤ δeΛt≤ δeΛT δ ≤2 for any t∈ ĪTmin
. (3.23)
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Thus, summing up the estimates (3.19)–(3.22), we get

R1+R2(t)=R1+R2,1(t)+R2,2,1(t)+R2,2,2(t)� δ3e3Λt, (3.24)

which, together with (3.13), yields that

‖
√
�δ+ ρ̄ud

t (t)‖2L2 +2μ

∫ t

0

‖∇ud
τ‖2L2dτ ≤

∫
gρ̄′|ud

3 |2dx+Cδ3e3Λt.

Thanks to (2.1), we have∫
gρ̄′|ud

3 |2dx≤Λ2

∫
ρ̄|ud|2dx+Λμ

∫
|∇ud|2dx

=Λ2

∫
(�δ+ ρ̄)|ud|2dx+Λμ

∫
|∇ud|2dx−Λ2

∫
�δ|ud|2dx

≤Λ2

∫
(�δ+ ρ̄)|ud|2dx+Λμ

∫
|∇ud|2dx+Cδ3e3Λt.

Chaining the previous two inequalities together, we obtain

‖
√
�δ+ ρ̄ud

t (t)‖2L2 +2μ

∫ t

0

‖∇ud
τ‖2L2dτ

≤Λ2‖
√
�δ+ ρ̄ud(t)‖2L2 +Λμ‖∇ud(t)‖2L2 +Cδ3e3Λt. (3.25)

Recalling that ud∈C0(ĪTmin ,H
2) and ∇ud(0)=0, thus, using Newton–Leibniz for-

mula and Cauchy–Schwarz inequality, we find that

Λμ‖∇ud(t)‖2L2 =2Λμ

∫ t

0

∫
Ω

∑
1≤i,j≤3

∂xiu
d
j ∂xiu

d
jτdxdτ

≤Λ2μ

∫ t

0

‖∇ud‖2L2dτ+μ

∫ t

0

‖∇ud
τ‖2L2dτ, (3.26)

where ud
jτ denotes the jth component of ud

τ . Putting (3.25) and (3.26) together, we
have

1

Λ
‖
√

�δ+ ρ̄ud
t (t)‖2L2 +μ‖∇ud(t)‖2L2

≤Λ‖
√
�δ+ ρ̄ud(t)‖2L2 +2Λμ

∫ t

0

‖∇ud‖2L2dτ+Cδ3e3Λt. (3.27)

On the other hand,

d

dt
‖
√
�δ+ ρ̄ud‖2L2 =2

∫
(�δ+ ρ̄)ud ·ud

t dx+

∫
�δt |ud|2dx

≤ 1

Λ
‖
√

(�δ+ ρ̄)ud
t ‖2L2 +Λ‖

√
�δ+ ρ̄ud‖2L2 +

∫
�δt |ud|2dx

and ∫
�δt |ud|2dx=−

∫
(uδ ·∇�δ+ ρ̄′uδ

3)|ud|2dx

=

∫
(2�δuδ ·∇ud− ρ̄′uδ

3u
d) ·uddx

�δ3e3Λt



F. JIANG 1279

Putting the previous three estimates together, we get the differential inequality

d

dt
‖
√
�δ+ ρ̄ud(t)‖2L2 +μ‖∇ud(t)‖2L2

≤2Λ
(
‖
√
�δ+ ρ̄ud(t)‖2L2 +μ

∫ t

0

‖∇ud‖2L2dτ

)
+Cδ3e3Λt. (3.28)

Recalling that ud=0, thus, applying Gronwall’s inequality to (3.28), one obtains

‖
√
�δ+ ρ̄ud(t)‖2L2 +μ

∫ t

0

‖∇ud‖2L2dτ ≤ e2Λt

∫ t

0

(Cδ3e3Λτ )e−2Λτdτ � δ3e3Λt (3.29)

for all t≤ ĪTmin , which, together with (3.4) and (3.27), yields that

‖ud(t)‖2H1 +‖ud
t (t)‖2L2 +

∫ t

0

‖∇ud‖2L2dτ � δ3e3Λt. (3.30)

Finally, using the estimates (3.8), (3.23), and (3.30), we can deduce from the equation
(3.9)1, that

‖�d(t)‖L2 ≤
∫ t

0

‖�dτ‖L2dτ

�
∫ t

0

(‖ud‖2H1 +‖uδ ·∇�δ‖L2)dτ

�
∫ t

0

(δ
3
2 e

3Λ
2 τ +δ2e2Λτ )dτ � δ

3
2 e

3Λ
2 t, (3.31)

which, together with (3.30), yields (3.10). This completes the proof of Lemma 3.1.

Now, we claim that

T δ =Tmin, (3.32)

provided that small ε0 is taken to be

ε0=min

{
δ0
4
,
C2

2

8C4
,
m2

0

C4

}
, (3.33)

where we have defined that m0=:min{‖�̄0‖L2 ,‖ū03‖L2 ,‖(ū01,ū02)‖L2}>0 due to (3.2).
Indeed, if T ∗=Tmin, then T ∗<∞. Moreover, from (3.5) and (3.8) we get

E((�δ,uδ
)
(T ∗))≤ δeΛT∗ ≤ δeΛT δ

=2ε0<δ0,

which contradicts with (3.6). On the other hand, if T ∗∗<Tmin, then T ∗∗<T ∗≤Tmax.
Moreover, in view of (3.1), (3.5), and (3.10), we see that∥∥(�δ,uδ

)
(T ∗∗)

∥∥
L2 ≤‖(�aδ ,ua

δ)(T
∗∗)‖L2 +

∥∥(�d,ud
)
(T ∗∗)

∥∥
L2

≤δ∥∥(�l,ul
)
(T ∗∗)

∥∥
L2 +

√
C4δ

3/2e3ΛT∗∗/2

≤δC2e
ΛT∗∗

+
√

C4δ
3/2e3ΛT∗∗/2≤ δeΛT∗∗

(C2+
√
2C4ε0)

<2δC2e
ΛT∗∗

,
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which also contradicts with (3.7). Therefore, (3.32) holds.
Since T δ =Tmin, (3.10) holds for t=T δ. Thus, we can use (3.33) and (3.10) with

t=T δ to deduce that

‖�δ(T δ)‖L2 ≥‖�aδ(T δ)‖L2−‖�d(T δ)‖L2 = δ‖�l(T δ)‖L2−‖�d(T δ)‖L2

≥δeΛT δ‖�̄0‖L2−
√

C4δ
3/2e3Λ

∗T δ/2

≥2ε0‖�̄0‖L2−
√

C4ε
3/2
0 ≥2m0ε0−

√
C4ε

3/2
0 ≥m0ε0,

Similar, we also have

‖uδ
3(T

δ)‖L2 ≥2m0ε0−
√

C4ε
3/2
0 ≥m0ε0,

and

‖(uδ
1,u

δ
2)(T

δ)‖L2 ≥2m0ε0−
√

C4ε
3/2
0 ≥m0ε0,

where uδ
i (T

δ) denote the ith component of uδ(T δ) for i=1,2,3. This completes the
proof of Theorem 1.1 by defining ε :=m0ε0.
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