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DECAY ESTIMATES OF SOLUTIONS TO THE COMPRESSIBLE
NAVIER-STOKES-MAXWELL SYSTEM IN R3*

ZHONG TANT AND LEILEI TONG#

Abstract. The compressible Navier—-Stokes—Maxwell system with linear damping is investigated
in R3, and the global existence and large-time behavior of solutions are established. We first construct
the global unique solution under the assumptions that the H® norm of the initial data is small but
that the higher-order derivatives can be arbitrarily large. Further, if the initial data belongs to H —*
(0<s<3/2) or B;’(‘; (0<s<3/2), by a regularity interpolation trick, we obtain the various decay rates
of the solution and its higher-order derivatives. As an immediate byproduct, the LP—L? (1 <p<2) type
of the decay rates follow without requiring that the LP norm of initial data is small.
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1. Introduction
In this paper, we consider the three-dimensional isentropic compressible Navier—
Stokes—Maxwell equations with the linear damping [17]

Op+div(pu) =0,

O(pu) +div(pu@u)+Vp(p) = —p(E+ux M) +vAu—apu,

OE—V x M = pu, (1.1)
M4V x E=0,

divE =poo —p, divM =0.

The unknown functions p,u, ', M represent the density, velocity, electric field, and mag-
netic field of the fluid, respectively. The pressure p=p(p) is smooth, and p’(p) >0 for
p>0. The constant v >0 is the viscosity coefficient, the constant a >0 models friction,
and po, >0 is a constant denoting the uniform background density (e.g., of ions).

This system (1.1) is supplemented by the following initial and compatible conditions:

{ (p7u7E7M)(xvt)|t:0: (p07anEOaMO)(:C)v (:L'ﬂf) ERS 28 [O,+OO),

divEy = pee — po, divMy=0. (1.2)

Despite its physical importance, due to the mathematical complexity, a small num-
ber of mathematical studies on the Navier—-Stokes—Maxwell system have been obtained.
For isentropic compressible Navier-Stokes—Maxwell equations, Duan [1] proved the
global existence and asymptotic behavior of smooth solutions around a constant steady
state by using Green’s function argument. Hong et al. [8] considered the initial boundary
value problem to the Navier—Stokes—Maxwell system with large initial data and initial
vacuum in a bounded annulus Q of R3 and obtained the global spherically symmetric
classical solutions. For the non-isentropic case, by using careful energy estimates and
the techniques of symmetrizer, Feng—Peng—Wang [3] established the large-time behav-
ior of global smooth solutions in R3. [14] dealt with the low Much number limit of the
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1190 COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM

full compressible Navier—Stokes—Maxwell system in the framework of [12]. For incom-
pressible Navier—Stokes-Maxwell equations, with the help of Fujita-Kato’s method in
[*-based (for the Fourier coefficients) functional spaces, Ibrahim—Yoneda [10] established
the existence of a local unique solution and loss of smoothness of the velocity and mag-
netic field for the periodic problem. Ibrahim-Keraani [9] also obtained the existence
of global small mild solutions in three dimensions and the same results in spaces as
close as possible to the energy space in two dimensions. Masmoudi [15] obtained the
existence and uniqueness of global strong solutions in 2D. Fan-Li [2] established the
uniform local existence and uniqueness of classical solutions to the density-dependent
Navier—Stokes—Maxwell system in R3. [25] studied the combined quasi-neutral and non-
relativistic limit in a three-dimensional torus. Germain-Ibrahim-Masmoudi [6] proved
the local existence of mild solutions for arbitrarily large data in a space similar to the
scale-invariant spaces classically used for Navier-Stokes by using an a priori L?(L°)
estimate for solutions of the forced Navier—Stokes equations and refined the results
in [9].

The main purpose of this paper is to derive various time decay rates of the solutions
as well as their spatial derivatives of any order by using this refined energy method to-
gether with the interpolation trick in [7,22]. We also establish a refined global existence
of smooth solutions near the constant equilibrium state (peo,0,0,Bs) to the compress-
ible Navier—Stokes—-Maxwell system. We reformulate the Cauchy problem (1.1)—(1.2) of
the compressible Navier—Stokes—Maxwell system. Without loss of generality, we set the
constants poo, v, a, p'(1)=p"(1) to be 1. Denote n=p—1, B=M — By,. Then the
Cauchy problem (1.1)—(1.2) is transformed into the following:

Oyn~+divu=—u-Vn—ndivu,
ou—Aututux Boo +Vn+E=—u-Vu— f(n)Vn—ux B—g(n)Au,

O F—V x B—u=nu, (1.3)
O, B+V x E—=0,
divE=—n, divB=0,
with
(n,u,E,B)(x,t)|t=0 = (no,u0, Eo, Bo)(x), (x,t)€R3x[0,+00), (1.4)
diVEQ =—Nyg, diVBO =0. '
Here the nonlinear functions f(n),g(n) are defined by
p(n+1) n
= 7 1 [ m— 1.5
sy =D gy T (15)

Notation. In this paper, we use H*(R?),s €R to denote the usual Sobolev spaces with
norm |- 5. and LP(R?®),1<p< oo to denote the usual LP spaces with norm |-||,,. In
particular, we denote the L? spaces with norm |[|-||, and V! with an integer [ >0 stands
for, as usual, any spatial derivatives of order [. When [ <0 or [ is not a positive integer,
V! stands for Al defined by A'f:=F~1(|¢|'Ff), where F is the usual Fourier transform
operator and F~! is its inverse. We use HS(RB),SER to denote the homogeneous
Sobolev spaces on R? with norm ||-|| 7. defined by || f|| 7. :=||A* f||. We then recall the
homogeneous Besov spaces. Let ¢ € Cg°(RZ) be such that ¢(¢)=1 when [¢|<1 and

¢(§) =0 when [¢] >2. Let ¢(£)=0¢(&) — d(28) and ¢;(£§) =p(277¢) for j€Z. Then, by

the construction, 3 ¢;(&)=1 if £#£0. We define A, f:=F~(p;)*f. Then, for scR,
JEZ
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we define the homogeneous Besov spaces Bgm(R?’) with norm ||| B3 defined by

171155, =sup2 A7) . (1.6)

Throughout this paper, we let C' denote some positive (generally large) universal
constants which do not depend on either k or N; otherwise, we will denote them by Cy,
Cn, etc. We will use a <bif a <Cb, and a~b means that a <b and b <a. We use Cj to
denote the constants depending on the initial data and k,NV,s. For simplicity, we write

I(A,B)llx :=[lAllx + 1Bl x and [ f:= [os fda.
For N >3, we define the energy functional by

N
EN(t):ZHVZ(n,u,E,B)HQ (1.7)
1=0

and the corresponding dissipation rate by

N 9 N+1 5 N—-1 5 N—-1 9
D)= IVl + 0 [Vl X VBT I )
1=0 1=0 =0 =1

Our first main result about the global unique solution to the system (1.3) is stated
as follows.

THEOREM 1.1.  There exists a sufficiently small constant 6o >0 such that, if E5(0) < do,
then the system (1.3) has a unique global solution satisfying

sup Es(t)+ /O Dy (r)dr < CE5(0). (1.9)

0<t<Loo

Moreover, if En(0) <400 for any N >3, there exists an increasing continuous function
Py () with Pn(0)=0 such that the unique solution satisfies

sup En(t)+ / " D (r)dr < CPu(E(0)). (1.10)
0<t<oo 0

The proof of Theorem 1.1 is inspired by the works of [5,23,24]. The major difficulty
here is the regularity-loss of the electromagnetic field. We will do the refined energy
estimates stated in Lemma 2.8-2.9, which allow us to deduce

d
ﬁ&s +D5 < V/EDs

and, for N >4,

d
%5N +Dn <CnDn_1éN.

Then Theorem 1.1 follows in the fashion of [5,23,24].
Our second main result is on some various decay rates of the solution to the system
(1.3) by making the much stronger assumption on the initial data.

THEOREM 1.2.  Assume that (n,u,E,B)(t) is the solution to the Cauchy problem (1.3)-
(1.4) constructed in Theorem 1.1 with N >5. There exists a sufficiently small 6o = do(N)
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such that, if Ex(0) <do, and assuming that (uo,Eo,Bo) € H=* for some s€0,3/2) or
(uo, Eo, Bo) € By 3, for some s €(0,3/2], then we have

(B, B)(#)] - < Co (L11)
or
1w, B, B)(#)| 3,2, < Co (1.12)
Moreover, for any fived integer k>0, if N >2k+2+s, then
V% (n,u, B, B)(t)|| < Co(1+1) 5. (1.13)

Furthermore, for any fixed integer k>0, if N >2k+4+s, then

V¥ (n,u, E) (1) || < Co(1+8)" =7 (1.14)
if N>2k+6+s, then
IV En(t)]| < Co(1+1) =2 (1.15)
and, if N>2k+12+s and By =0, then
V5 (n, diva) (£) || < Co(1+8)~(3H+e), (1.16)

The proof of Theorem 1.2 is based on the regularity interpolation method developed
in Strain and Guo [19], Guo and Wang [7], and Sohinger and Strain [20]. To prove the
optimal decay rate of the dissipative equations in the whole space, Guo and Wang [7]
developed a general energy method of using a family of scaled energy estimates with
minimum derivative counts and interpolations among them. The method of [7,20] can be
applied to many dissipative equations in the whole space. However, it cannot be applied
directly to the compressible Navier—Stokes—Maxwell system which is of regularity-loss.
In addition to the regularity-loss of the electromagnetic field, there is another difficulty,
that is, the dissipation DZH contains HV’”‘3UH2 which cannot be contained in 8,’:”.
Based on the refined energy estimates stated in Lemma 2.8-2.9, we deduce

%5,’;”+D,’§+2 <Cr|(nyw) || oo | VEP2 (o) | | VEH2(E, B) | (1.17)
where 5,’:+2 and Dllj“ with minimum derivative counts are defined by (3.5) and (3.6),
respectively. Then, combining the methods of [7,20] and a trick of Strain and Guo [19]
to treat the electromagnetic field and the term ]|V’“+3u}|2, we are able to conclude the
decay rate (1.13). If in view of the whole solution, the decay rate (1.13) can be regarded
as optimal. The faster decay rates (1.14)—(1.16) follow by revisiting the equations
carefully. In particular, we will use a bootstrap argument to derive (1.16).
As quoted above, by Theorem 1.2, we have the following corollary of the usual
LP—L? type of the decay results.

COROLLARY 1.1.  Under the assumptions of Theorem 1.2 exceptl that we replace the
H—7 or By 5, assumption by that (ug,Eo,Bo) € LP for some p€[1,2], then, for any fized

integer k 270, if N>2k+2+s,, then

ktsp

V¥ (n,u, E,B)(t)|| < Co(1+t)” = . (1.18)
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Here, the number s, :=3 (% - é) .
Furthermore, for any fized integer k>0, if N >2k+4+s,, then

kt+l+sp

|VF(n,u, E)#)|| < Co(1+8) "= (1.19)
if N>2k+6+sp, then
[VEn(@)|| <Co(l4t) =2, (1.20)
and, if N >2k+12+s, and Boc =0, then
[ VF (n,diva) (8) || < Co(14)~(EHE+0), (1.21)

The following are remarks for Theorem 1.1, Theorem 1.2, and Corollary 1.1.

REMARK 1.1. In Theorem 1.1, we only assume the H? norm of the initial data is
small, but the higher-order derivatives can be arbitrarily large. Notice that, in Theorem
1.2, the H* and BQ_ 5. norms of the solution are preserved along the time evolution
but that in Corollary 1.1 it is difficult to show that the LP norm of the solution can
be preserved. Note that the L? decay rate of the higher-order spatial derivatives of
the solution are obtained. Then the general optimal L7 (2<¢<o0) decay rates of the
solution follow by the Sobolev interpolation.

REMARK 1.2.  We remark that, in Theorem 1.2, the homogeneous Sobolev space H—
was introduced there to enhance the decay rates. By the usual embedding theorem, we

know that, for pe (1,2], L? C H* with s=3 (% — %) €[0,3/2). Hence the LP—L? type
of the optimal decay results follows as a corollary. However, this does not cover the case

p=1. To amend this, Sohinger and Strain [20] instead introduced the homogeneous
Besov space B;go due to the fact that the endpoint embedding L' C BQ_i{Q holds.

The rest of our paper is organized as follows. In Section 2, we establish the refined
energy estimates for the solution and derive the negative Sobolev and Besov estimates.
Theorem 1.1 and Theorem 1.2 are proved in Section 3.

2. Nonlinear energy estimates
In this section, we will do the a priori estimate by assuming that
||(n,u, E,B)(t)|| s <0 < 1. Then, by Sobolev’s inequality, we have

%<1+n<g- (2.1)
Since the Navier—-Stokes—Maxwell system is a symmetrizable hyperbolic system, the
Cauchy problem in R? has a unique local smooth solution when the initial data is
smooth; see Kato [13] and Jerome [11] for instance. According to [18], the global
existence of smooth solutions follows from the local existence and the a priori estimates
via a standard continuity argument.

2.1. Preliminary. In this subsection, we collect the analytic tools which will
be used in the paper.

LEMMA 2.1. Let 2<p<+4o0 and a,m,£>0. Then we have

1V Flle <Co IV £ 921
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Here 0<0<1 (if p=+o0, then we require that 0<0<1) and « satisfy

a+3(1—1) =m(1-0)+0.

2 p
Proof.  For the case 2 <p < +00, we refer to Lemma A.1 in [7]; for the case p=+o0,
we refer to Exercise 6.1.2 in [4]. O

LEMMA 2.2.  Assume ||n|| ;s <1 and the function h(n) satisfies
h(n)~n and ‘h(k)(n)‘ <C} for any k> 1. (2.2)
Then, for any integer k>0 and p>2, we have

[V5R(n)||, . < Cx||VEn|[* |75+ 20 ) (2.3)

I

and

[V, < Cx [ V¥l (2.4)

Proof.  The proof is based on Lemma 2.1. For (2.3), we refer to Lemma 3.1 in [7].
For (2.4), in light of (2.2), it suffices to prove that, when k> 1, (2.4) holds for all h(n)
with bounded derivatives. We will use an induction on k> 1. If k=1, we have

IVRM)| Lo =B (R)Vnll o STV L -
Assume (2.4) holds for from 1 to k—1. We use the Leibniz formula to have

[VFh(n)|| ., = VF (R (n)Vn)

(P [P

k—1

<ck(uh Yhn, + [OH )T, + 3[R )T fnum).
(=2

(2.5)

Here, if k=2, then the summing term in (2.5) is nothing, etc. By Hélder’s and Sobolev’s
inequalities, we have

|1 ()0, [V,
and

VR @)Vl L, SNVRlles [VF 0]l
SV S | [ g |
SVl
where « is defined by

1 1 a 1 2pk+p—3 ko1 2p—3 6pk+9p—18
- = X — | X ==
2pk+3p—6 3 p 2pk+3p—6 4pk+2p—6

3 2 \3 2
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For the summing term, we use the induction hypothesis to obtain that, for 2</<k—1,

V0 () V* [, <[|V70(

HLp ||Vk*€n||Lm S HvenHLzﬂ Hvk4n||1:w'

By Lemma 2.1, if £< [%}, then we have

I e P e A A T M i
<I*l

where « is defined by

{_1 (a 1>X2pk—2p€+3p (k 1) 2pl — 6
3 p 2pk+3p—6 2pk+3p—6
_6pk+9p—18<
Apk —4Apl+6p

3 2

3 p

and, if £> [ ] +1, then we have

9l 19 55555 |5 B 8 555

SVl L.
where « is defined by

k—t a 1 ><2p€—0—3p—6 k1 » 2pk — 2pl a_6pk+9p—18<
3 2pk+3p—6 2pk+3p—6  Apl+6p—12

3 3 p

We thus conclude the lemma. 0
We recall the following commutator and product estimates.
LEMMA 2.3. Let k>1 be an integer and define the commutator
[V¥.g] h=V"(gh)—gV*h. (2.6)

Then we have

IV®,9] Al oo < G IV Gl Lo (1957 Al o + V59 o W] 1) -

In addition, we have that, for k>0,

IV (9P| oo < C (N9l o (VR g + V59| o 1B o) - (2.7)
In the above, po,p2,ps € (1,400) such that
1 1 1 1 1

Po P1 P2 D3 P4.

Proof. Tt can be proved by using Lemma 2.1; see Lemma 3.4 in [16] for instance.O
We have the following LP embeddings.
LEMMA 2.4. Let 0<s<3/2 and 1 <p<2 with 1/2+s/3=1/p. Then

1= SN o (2.8)
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Proof. Tt follows from the Hardy-Littlewood—Sobolev theorem; see [4]. 0

LEMMA 2.5. Let 0<s<3/2 and 1<p<2 with 1/24+s/3=1/p. Then
1l sy Sl ze - (2.9)
Proof. See Lemma 4.6 in [20]. O

It is important to use the following special interpolation estimates:

LEMMA 2.6. Let s>0 and £>0. Then we have

IVl < 9 G wher69:£+1+8. (2.10)
Proof. 1t follows directly by the Parseval theorem and Holder’s inequality. ]
LEMMA 2.7. Let s>0 and £>0. Then we have
198 A< 95 71 1% where = 52— (2.11)
100 +1+s
Proof.  See Lemma 4.5 in [20]. O

2.2. Energy estimates. In this subsection, we derive the basic energy estimates
for the solution to the Navier-Stokes—Maxwell system (1.3). We begin with the standard
energy estimates.

LEMMA 2.8. For any integer k>0, we have
k42 k+3

d
LS IV B+ S |9
=k =k

S Inll gz + lull grs + 1V Bl 1)

k+2 5 k+3 5 k+1 5 9
» (Zuvlnn SRS [ e )
=k =k =k

()l [V () | [ VEF2 (2, B (2.12)

Proof.  The standard V! (I=Fk,k+1,k+2) energy estimates on the system (1.3)
yield

Ld
2dt
:—/VZ (u~Vn+ndivu)Vln—/Vl (u-Vu+ f(n)Vn)-V'u

[V o B B+ [+ |9 )

- [V aman- V- [ VuxB) Tt [Vi)-v'E
=L+ I+ I3+ 14+ Is5. (213)
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We shall estimate the terms I1—I5 on the right-hand side of (2.13). First, we estimate
I,-I5. We consider the case [ =k=0. By Holder’s, Sobolev’s, and Cauchy’s inequalities,
we obtain

—/(an—«—ndivu)n—/(u~Vu+f(n)Vn)~u—/g(n)Au-u
S Ul o 19l s+ 1] e vl ]|+ el o 192 ]
@IVl o lull o+ 1V90) | o IVl full o + g ()] oo |Vl
<l V) (Il el ) (214)

For the case [>1 (I=k,k+1,k+2), by the integration by parts, lemmas 2.2-2.3, and
Holder’s, Sobolev’s, and Cauchy’s inequalities, we obtain

I1=—/([Vl,u]-Vn+u~VVln)Vln—/vl(ndivu)vln
S|V ul- nl| | V0] + [[diva] o || V0] + ||V (ndivu) || |74
S IVl 90|+ 9"l o 9] o) (190|970 |97
+ ([Inll oo IV ul [+ [ V0| 1V o) [ 90|
S V)l ([940] + 75 ]*), (2.15)

Izz/vlfl(quJrf(n)Vn)~Vl+1u
SV V) |[+ [V ) V) [) [V |
S (lull poo [Vl [+ [V 0l o [V ull o) [[ V7
+(IF ) oo [Vl + [V )] o 197 2a) [V e
SIe V) e (V' )|+ (19" ] *). (2.16)
and
/vl n)Au)-V'u /vl Lg(n)Au) - ViHiy
SHVI Hg(m)Au) [ |V ]
S (lla HLNHVZ Al + |V g ()| o 1A o) [V
S (Il e [V | + [V 0] [ V] o) |V
S Uil o+ 190l =) (| V] + 91 *). (2.17)

In light of the estimates (2.14)—(2.17), we have
Lt B+ I S (0, 90) e (|9 )|+ (9120 )

Next, we estimate the term I, and we must be much more careful with this term
since the magnetic field B has the weakest dissipative estimates. First of all, by Holder’s
inequality, we have

14:—/vl(ux3)-vlugHvl(uxB)HHvluH. (2.18)
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We have to distinguish the arguments by the value of . We make good use of the
product estimates (2.7) of Lemma 2.3 to bound

IV (ux B)| <Ci (I Bll o | V]| + lull 5 [V Bl 0)
<CL(IVB|l g |Vl + lull g [VHB))  for 1=k; (2.19)

|9 ux B| < Ci (1B e [ 7|+ 1l | 7' BI)
<CL(IVBl g1 V'l + [Jull 2 [|[ V' B]) ~ for 1=k+1;

|9 ux B)| < Cr (UB] o ||V + sl e [ 9B
<C (IVB|l g | V|| +Jull pe [[V'B]|)  for I=k+2.

Hence, by Young’s inequality, we deduce from (2.18) that, for [ =k,
L <Gy (lull i + 19 Bl ) (| V5u]*+ [ 95+ B] "), (2.20)
for l=k+1,
L < Crlllull gz + IV Bl ) (JIV* ] *+ [ 9541 B)
and, for [ =k +2,
L < G| VB 1 |V 2] + i ull o V542 B V5420

Finally, we estimate the last term I5. First, by Holder’s inequality, we obtain
I5:/Vl(nu)-VlE,§Hvl(nu)HHVZEH. (2.21)

We next again have to distinguish the arguments by the value of [. By the product
estimates (2.7) of Lemma 2.3 and Sobolev’s inequality, we have

19 )l <ol [l + ol |91
<Cr(Inll g [V |+ 1IVull g ||Vi0]]) - for 1=k, k+1;
[V nw)|| < Co(Infl o || Vil + |ull oo || ViR]])  for 1=k+2.

Hence, by Young’s inequality, we deduce from (2.21) that, for =k, k+1,
I <Cr(Inll 1 + IVl ) (|90, B) |+ 9410
and, for [=k+2,
I5 < Gy | (n,0) | [ V442 ()| 92

Consequently, plugging these estimates for I1-I5 into (2.13) with =k, k+1, k+2
and then summing up, we deduce (2.12). O

Note that, in Lemma 2.8, we only derive the dissipative estimate of u. We now
recover the dissipative estimates of n, E/, and B by constructing some interactive energy
functionals in the following lemma.
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LEMMA 2.9.  For any integer k>0, we have

d k+1 k+1
o (Z/Vlu-vvanrZ/Vlu-VlE/VkE-VkaB>
IVl IV E
=k I=k

k+2 9 k+3 5 5 k+3 5
5(Hn||i,2+||uH§{3+HVBH§I1) (Zuvlnu +3 [V + ||V B )—l—ZHVluH :
1=k =k =k

(2.22)

Proof. We divide the proof into several steps.

Step 1: Dissipative estimate of n.
Applying V! (I=k,k+1) to (1.3), and then taking the L? inner product with VV'n,
we obtain

/8tVlu-VVln—|—HVVlnH2
<= [ VBV |9 [V ] +-C 7 |9
+{|V (u- Vut f(n)Vn+ux B+g(n)Au) |||V 0| (2.23)
For the first term on the left-hand side of (2.23), we similarly obtain
/vlatwvvln:%/vlwvvln—/vlu.vvl@n
z%/vlu-vvln—i—/vldivuvl&gn
z%/vlu-vvln—HvldiquQ—/Vldivuvldiv(nu).
By the product estimates (2.7) of Lemma 2.3, we easily obtain
[V div(nu)|| < Co || (n,u) | g2 |V (2, )|
So, we obtain
/Vlatu-VVan%/Vlu-Van—CHVlHuW—CZ||(n7u)HiIz||Vl+1(n7u)H2. (2.24)

For the first term on the right-hand side of (2.23), by integrating by parts and using
the equation (1.3),, we have

—/VZE-VVln:/VldivEVln:—HVlnHZ. (2.25)

By (2.7), (2.4), and Sobolev’s inequality, we have

[V (u- Vu+ f(n)Vn+g(n)Au) |
<Ci(llullgoe [V ul| #1970 o [Vl 5)
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+Co (1)l o [V [+ [V £ )| o V1] 15)

+Ci(lgm)ll o |70+ [V g ()| o [0 )
<Ci(lInll g+ llull o) (97 )| 4[|V ]) (2.26)

From the estimate of Iy in Lemma 2.8, we have that, for [=Fk or k+1,

V! (ux B)|| < Cr ([ull g + IV Bl 1) (

|Vl + | V¥ B])). (2.27)
Plugging the estimates (2.24)—(2.27) into (2.23), by Cauchy’s inequality, we obtain that
g k! k42
0 Z/Vlu VVanrZ [V'n))?

k+2 9 k+3 5 5 k+3 5
< (Il + 1l + VB3 ) (ZHWH + 3Vl + [ B >+Zy|vlu|| |
=k =k =k

(2.28)

This completes the dissipative estimate for n.

Step 2: Dissipative estimate of E.
Applying V! (I=k,k+1) to (1.3), and then taking the L? inner product with V'E,
we obtain
/Vlatu-VlE—&—HVlEHz§—/Vvln-VZE—&-/VZAU-VlE—kCHVluHHVZEH
+|| V! (u- Vu+ f(n)Vn+ux B+g(n)Au)|||V'E||. (2.29)

First, for the first term on the left-hand side of (2.29), by integrating by parts in
the t-variable and using the Equation (1.3), in the Maxwell system, we obtain

/Vlatu-VlE:%/Vlu-VlE—/Vlel@tE
—%/Vlu-VlE— |\vluH2—/vlu-vl (nu+V xB). (2.30)
By the product estimates (2.7) of Lemma 2.3, we have that

IV ()| < o (Inll o [l 90 1l ) < ) g [P )] (230)
We must be much more careful with the remaining term in (2.30) since there is no small
factor in front of it. The key is to use Cauchy’s inequality and to distinguish the cases
of I=k and [=k+1 due to the weakest dissipative estimate of B. For [ =k, we have
/Vku-v><V’“BSE||V’““BH2+CEHV’“UHQ; (2.32)
for I=k+1, integrating by parts, we obtain
/Vk+1u~V x VHB = /V X VL VR B <o [ VRBP4 O VR (2.33)

By Holder’s and Young’s inequalities, we have

/VlAu-VlES V52| | V' E|| S || V20| +2 || VB . (2.34)
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Plugging the estimates (2.30)—(2.34) and (2.25)—(2.27) from Step 1 into (2.29), by
Cauchy’s inequality, we obtain

d k41 k+1 )
aZ/vlu~le+ZHle||
=k =k

5 k+3 5
Se[ VBT Y|Vl
=k

k+2 k+3
+(||n\|§p+\|u||i,3+||VB||§{1) <Z||Vln|}2+2|{vluH2+HV’““BH2>. (2.35)
=k 1=k

This completes the dissipative estimate for E.

Step 3: Dissipative estimate of B.
Applying V¥ to (1.3), and then taking the L? inner product with —V x V¥ B, we
obtain

—/vkatE-v x V¥B+ ||V x V¥ B||*
<[|VFu|| |V x VFB||+ | VF (nu) |||V x V¥ B]|. (2.36)

For the first term on the left-hand side of (2.36), integrating by parts for both the
t- and z-variables and using the Equation (1.3),, we have

—/VkatE-VxV’“B:—%/V’“E-VkaB+/V><VkE~Vk8tB

:f% VEE-VxVFB—||Vx V*E|”. (2.37)
By (2.34), we obtain
[V (nw)]| < Cic[|(n,w) | 7= |V (n,w) | (2.38)

Plugging the estimates (2.37)—(2.38) into (2.36), by Cauchy’s inequality, since
divB =0, we obtain

_i ko ok k+1 |2
dt/VEVVxB—i—HV B||

SIIVE| + VB ) 3 [V ()| (2.39)
This completes the dissipative estimate for B.

Step 4: Conclusion.

Multiplying (2.39) by a small enough but fixed constant, adding it with (2.35) so
that the second term on the right-hand side of (2.39) can be absorbed, and choosing
small enough so that the first term in (2.35) can be absorbed, we obtain

d k+1 k+1 9 9
i (Z [vtuvie- [ v’“Evkva) B ) A2
=k

=k
k+2 ) k+3 ) ) k+3 )
5(Hn||§12+||uH§{3+HVBH§p) (Zuvlnu +3 |V + || VB )—l—ZHVluH :
1=k =k =k

(2.40)
Adding the inequality above with (2.28), we get (2.22). O
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2.3. Negative Sobolev estimates. In this subsection, we derive the evolu-
tion of the negative Sobolev norms of the solution (u,F,B). In order to estimate the
nonlinear terms, we need to restrict ourselves to that s € (0,3/2). We will establish the
following lemma.

LEMMA 2.10.  For s€(0,1/2], we have

d
1, B, B) .+l + IVl -

S (1000 + IV Bl ) 10, B, B) - + 1Bl (2.41)
for s€(1/2,3/2), we have

d 2 2 2
77 10w By Bl - Hllull - + 1Vl -

2 2 s—1/2 3/2—s 2
< (Il + el +1BI 2 IV B2 Jul ) 0, B, B) . 41BN (2.42)

Proof. The A=* (s>0) energy estimate of (1.3),-(1.3), yield
1d
2dt

:—/A*S (u-Vu+ f(n)Vn)-A"%u

2 2 2
(s B, B)[F—s + lull g - +[[Vull -

f/Af‘anJ\*Suf/Afs(uxB+g(n)Au)'Afqur/A*S(nu)'A*SE

Slu-Vut f(n)Vnll g llull g« +1Vnll g lull 5
+llux B+g(n)Aulz-. Bl (2.43)

ull s +lInul g -

We now restrict the value of s in order to estimate the nonlinear terms on the
right-hand side of (2.43). If s€(0,1/2], then 1/2+s/3<1 and 3/s>6. Then, applying
Lemma 2.4 together with Holder’s, Sobolev’s, and Young’s inequalities, we obtain

lu-Val g-. Sllu-Vall o Sllullpa

S N

2
S HquHl :

Vull

[Vull

Similarly, we can bound
2 2
£ )Vl g SIVAll + 1Vl
2 2
lg(r)Aull . SIVRl +[| V]|
2 2
[l s STVl +lInl”;
2 2
l[ux Bl - SIVB[g +lull”

Now, if s€(1/2,3/2), we shall estimate the right-hand side of (2.43) in a different
way. Since s€ (1/2,3/2), we have that 1/2+s/3<1 and 2<3/s<6. Then, applying
Lemma 2.4 and using (a different) Sobolev’s inequality, we have

—-1/2 3/2— 2
Val| S lull >Vl [Vl S [lullop

lu-Vull g Sl s/
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1£ () Vnll o Sl +1Vnll*;
lux Bl SIBI™2 IV B2 Jul;
lo(m)Aull . S all3 + (9%l
Il o SllullZ + lInll*.
Note that we fail to estimate the remaining last term on the right-hand side of

(2.43) as above. To overcome this obstacle, the key point is to make full use of (1.3).
This idea was also used in [21]. Indeed, using (1.3);, we have

IVnl . SIAT*VAVE| S| Bl g -
Now, collecting all the estimates we have derived, by Cauchy’s inequality, we deduce
(2.41) for s€(0,1/2] and (2.42) for s€(1/2,3/2). O

2.4. Negative Besov estimates. In this section, we derive the evolution of the
negative Besov norms of (u, E, B). The argument is similar to the previous subsection.

LEMMA 2.11.  For s€(0,1/2], we have
A BB« + iy, +Vull,
dt 2,00 2,00 2,00
S (10w e + IV BIG ) 10, B, B) e +11E e
for s€(1/2,3/2], we have

d 2 2 2
S BB+l +I9ul

2 2 s—1/2 3/2—s 2
S (Il + el + 18I 2 I B2 Jull) s B, Bl g =+ Elre.

Proof. The A; energy estimates of (1.3),-(1.3), yield, with multiplication of 2257
and then taking the supremum over j € Z,

1d

§E”<U’E’B)H%;;+||““QB;;+||Vu||2B;;
Ssup2*25j <_/Aj (U~VU+f(n)Vn+g(n)Au+uxB).Aju)
JEZ

+sup2 2% (/Aj(nu)-AjE—/AjVn-Aju>

JEZ
Sllu-Vut f(n)Vn+g(n) Autux Bl| 5

|U||1'32jgo

tlmul e 1Bl e +19ml o s
Then, the proof is exactly the same as the proof of Lemma 2.10 except that we should
apply Lemma 2.5 instead to estimate the B, 5. norm. Note that we allow s=3/2. 0O
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3. Proof of theorems

3.1. Proof of Theorem 1.1. In this subsection, we will prove the unique global
solution to the system (1.3), and the key point is that we only assume the H? norm of
the initial data is small.

Step 1. Global small E3 solution.

We close the energy estimates at the H3 level by assuming a priori that /&3(t) <4
is sufficiently small. Taking k=0, 1 in (2.12) of Lemma 2.8 and then summing up, we
obtain

d 3 4
= |V (. B.B) |+ Y| V'ul* S VEDs + VDoV DsVE S6Ds. (3.)
=0 =0

Taking £=0,1 in (2.22) of Lemma 2.9 and then summing up, we obtain
d /2 2 1
dt(Z/vlu.vvanrZ/vlu.le—Z/le.vlv><B>
> 2 & 2 2 2
+D IVl + X IV Bl e+ >[IV B
1=0 1=0 1=1

4
<194y +6°Ds. (3.2)
1=0

Multiplying (3.2) by € and then adding it to (3.1), since ¢ is small, we deduce that there
exists an instant energy functional £3 equivalent to &3 such that

d -
—E3+D3<0.
ar 3+ D3

Integrating the inequality above directly in time, we obtain (1.9). By a standard con-
tinuity argument, we then close the a priori estimates if we assume at initial time that
E5(0) < 0y is sufficiently small. This concludes the unique global small &3 solution.

Step 2: Global En solution.

We will prove this by an induction on N >3. We assume (1.10) holds for N —1
(now N >4) since we have proved in step 1 that (1.10) is valid for N =3. Summing up
(2.12) of Lemma 2.8 from k=0,1,--- N —2, we obtain

g , N+l ,
%ZHvl(n,u,E,B)H JrZHVluH
1=0 1=0

N+1

SVDN-1VEN VDN + VD1V DuVEN +VE Y ||VH

N+1

VDN VENVDN +VE S |[VH|). (3.3)
=0

Here, we have used the fact that 3<N—2+1=N—1 since N >4. Note that it is
important that we have put the first two factors in (2.12) into the dissipation.
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Taking k=0,---,N —2 in (2.22) of Lemma 2.9 and then summing up, we obtain

d N-1 N-1 N-2
dt(Z/vlu.vvlmZ/vlu.leZ/VIE.valB>
=0 =0 =0

N , Nl , Nl )
2 V'l + DIV B+ D VB
1=0 1=0 1=1
N+1 N+1

S IVl VDN VDN VEN +VE S Vi (3.4)
=0 =0

Since /&3 <0 is sufficiently small, we deduce from (3.4)xe+ (3.3) (for sufficiently small

€) that there exists an instant energy functional £y equivalently to Ex such that, by
Cauchy’s inequality, we have

d ~
%51\[ +Dn <$VDyn_1VENVDN SeDy+Dy_1En.
Thus, we have

4

< 1
_ <
dtf’:N-‘r 2DN SDn_1EN-

‘We then conclude
t
En(t)+ / Dy (r)dr < En(0)elo Py—1(DdT < g (0)ePN-1(EN(0) = P (£4(0))
0

upon on application of the Gronwall inequality and the induction hypothesis. This
concludes the global £y solution. The proof of Theorem 1.1 is completed.

3.2. Proof of Theorem 1.2. In this subsection, we will prove the various time
decay rates of the unique global solution to the system (1.3) obtained in Theorem 1.1.
Fix N>5. We need to assume that Ex(0) <dy=039(/V) is small. Then Theorem 1.1
implies that there exists a unique global £y solution, and Ex(t) < PyEn(0) < dp is small
for all time ¢. Since now our J is relative small with respect to N, we just ignore the
N dependence of the constants in the energy estimates in the previous section.

Step 1. Basic decay.

For the convenience of presentations, we define a family of energy functionals and
the corresponding dissipation rates with minimum derivative counts as

k+2
g2 =" ||V (n.u. B, B)||* (3.5)
1=k
and
k+2 & 1|12 = 112 = 1|2 k+1 |2
D=3 [Vl + Y[V D IVIE] VB (3.6)
1=k 1=k I=k

By Lemma 2.8, we have that, for k=0,...,N —2,

d k+2 5 k+3 )
A IV BB+ 3 9]
=k =k
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VDL (00) o [F5F2 (.0 |[[| V442 (B, B

(3.7
By Lemma 2.9, we have that, for k=0,...,N —2,
g [ k+1
5 (Z/vlu~vvln+2/vlule—/v’fE-v’fv><B>
1=k 1=k
k42 , Kl ) )
+ IVl + D[V B+ [V B
1=k 1=k
k+3 9
S ||Vl + 60Dy 2.
1=k

(3.8)
Multiplying (3.8) by a sufficiently small but fixed factor ¢ and then adding it with

(3.7), since g is small, we deduce that there exists an instant energy functional §£+2
equivalent to €:+2 such that

d ~
ZE D SN [V (0 | [[VH(E, B (3.9)

Note that we cannot absorb the right-hand side of (3.9) by the dissipation Di“ since
it does not contain ’V"’+2(E ,B)H2. We will distinguish the arguments by the value of
k. If k=0, we bound HV’H‘Q(E,B)H by the energy. Then we have that, for k=0,1,

d ~

ﬁg,fﬁ + D2 </ DEF2DETE N/ E3 SV 00D, (3.10)
which implies
d ~
$85+2+D,’j+2§0. (3.11)

If k>2, we have to bound ||V*+2(E,B)| in term of |[V¥*1(E, B)|| since /Dy *? can-
not control ||(n,u)||; .. The key point is to use the regularity interpolation method
developed in [7,19]. By Lemma 2.1, we have

17,0l e [V 2 (n,w) ||| V*42(E, B)

Sl w2 [[* () || 7|92 () | | VLB B) || VO (BB, (3.12)
where « is defined by

3 3 5

(3.13)
Hence, for k>2, if N2§k+1<:>2§k§%(N—1), then by (3.12), we deduce from
(3.9) that

d ~

&E’I:H + D2 <\/ENDT2 S V60 DY, (3.14)
which allow us to find that, for any integer k with 0<k<2(N —1) (note that N —2>
3(N—1)>2 since N >5), we have

d ~
%55“‘ +D 2 <0. (3.15)
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The fact that DZ“ is weaker than 5,’;“ prevents the exponential decay of the
solution. In order to effectively derive the decay rate from (3.15), we still manage to

bound the term ||V’“+3u||2 in D} and the missing terms in the energy, that is, ||V’“B||2

and ||V’€+2 (E,B) ||2 in terms of 8}5” in (3.15). We again use the regularity interpolation
method, but now we need to use the negative Sobolev or Besov norms. Assume for the
moment that we have proved (1.11) or (1.12). Using Lemma 2.6, we have that, for s >0
and k+s>0,

1

IV*B|| < Bl

>~ L0 .

and

1

Hvk-‘rQUH < ”uH:It?,:é

V’“*%H% <Cy HVH?’”H%‘

Similarly, using Lemma 2.7, we have that, for s >0 and k+s>0,

V%8 < HBH;:—z v B|| Z e <C, ||vk‘+1BH7kiTis (3.17)
and
HVHQUH < HqutéJr Hvk+3uH P <Cy Hvk+3“H Riats .
2,00

On the other hand, for k42 < N, we have

V2B, B)|| < ||+ (E,B)|| e ||VN(E’B)||7N—IIC—1 <Co|V*(E,B)|| N=ET
(3.18)
Then, we deduce from (3.15) that
%E,’j” +{g2 1 <o, (3.19)

where 0:max{%ﬂ,m}. Solving this inequality directly, we obtain in particular
that

_ —1/9 X
5,5*2@)3{[5,5“(0)] 19—1—1%} < Co(141)"YP = Cy(1 4+ ¢)~min{k+s,N=k=2} (3 o)

Notice that (3.20) holds also for k+s=0 or k+2=N. So, if we want to obtain the
optimal decay rate of the whole solution for the spatial derivatives of order k, we only
need to assume N large enough (for fixed k and s) that k+s<N—k—2. Thus, we
should require that

N>max{k+2,Zk+1,2k+2+s}:2k+2+s. (3.21)

This proves the optimal decay (1.13).

Finally, we turn back to prove (1.11) and (1.12). First, we prove (1.11) by using
Lemma 2.10. However, we are not able to prove them for all s €[0,3/2) at this moment.
We must distinguish the arguments by the value of s. First, for s € (0,1/2], integrating
(2.41) in time, by (1.9) we obtain that, for s€ (0,1/2],

1B B)O - Sl 0. B B+ [ Do) 1+ BB )
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<Cy <1+ sup (u,E,B)(T)HHS) . (3.22)
0<T<t

By Cauchy’s inequality, this together with (1.9) gives (1.11) for s€[0,1/2] and thus

verifies (1.12) for s€[0,1/2]. Next, we let 36(1/2 1).  Observing that we have

(uo, Eo, Bo) € H=1/2 since H-*NL?>C H~* for any s’ € [0,s], we then deduce from what

we have proved for (1.13) with s=1/2 that the following decay result holds:

[V (n,u, B, B)(#)]| ,» < Co(1+4)~ 2~ for k=0, 1. (3.23)

2
Here, since we have required N >5 and now s=1/2, we could have taken k=1 in

(1.13). Thus, by (3.23), (1.9), and Holder’s inequality, we deduce from (2.42) that, for
se(1/2,1),

||(u,E,B)(t)H§;,S§||(u0,Eo,BO)H§;,S+/O Ds(7) (14 ||(u, B, B)(7) | -+ ) dT
+/0 1B IV B ¥ /D3 (1) || (w, B, B) (1) y—. dr
<Cy <1+<1+/0 (1—|—7’)_2(1_S/2)d7> sup (u,E,B)(T)HHS)

0<r<t
<Co 1+ s BB ). (3.24)
0<r<t

Here, we have used the fact s € (1/2,1) so that the time integral in (3.24) is finite. This
gives (1.11) for s€(1/2,1) and thus verifies (1.13) for s€(1/2,1). Now, let s€[1,3/2).
We choose sy so that s—1/2< sy <1. Hence, (ug,Eo,By) € H~%. We then deduce from
what we have proved for (1.13) with s=s( that the following decay result holds:

V" (n,u, B, B)(t)|| ;o < Co(1+4)" 7" for k=0,1. (3.25)

=

Here, since we have required N >5 and now s=sy <1, we could have taken k=1 in
(1.13). Thus, by (3.25) and Holder’s inequality, we deduce from (2.42) that, for s€
[1,3/2), similarl to in (3.24),

I(u, B,B) (t)[|%-. < Co (1+<1+/t(1+7)—<80+3/2‘5)d7) sup ||(U7EvB)(T)||Hs>

0 0<r<t

<Gy (14 sup 0 BB ). (3.26)
0<7<t
Here, we have used the fact s —sg <1/2 so that the time integral in (3.26) is finite. This
gives (1.11) for s€[1,3/2) and thus verifies (1.13) for s€[1,3/2). Note that (1.12) can
be proved similarly except that we use instead Lemma 2.11.

Step 2. Further decay.

We first prove (1.14) and (1.15). First, noticing that divE'=—n, by (1.13) and
Lemma 2.2, if N >2k+4+s, then

+s

[VFn@l| <[ 9* divE@)| < [V* B | S Co+6)~ (3.27)

Next, applying V* to (1.3), and (1.3),, multiplying the resulting identities by V*u
and VFE respectively, summing up, and integrating over R3, we obtain

2 2 2
23 [ 175 @B+ |[V¥ul 4 [ 7+
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:—/Vk(VTH—qu—Ff(n)VTH—uxB)~Vku

+/V’H(g(n)Au)V’““H/vk(vxB+nu)-V’€E
SIVF R VRu]| 4+ ||V (u- Vut f(n) Vit x B)|]||VFul|
+Hvk_1(g(n)Au)HHVkJrluH—i—HVk(VxB—i—nu)HHVkEH. (3.28)

On the other hand, taking =k in (2.29), by the integration by parts and Holder’s
inequality, we may have

/VkathkE—kHV’“EHz
< ||Vk+1n||2+ ||Vku||2+ ||Vk (u-Vu+ f(n)Vn+ux B)H2
+||VEH (gm)Aw) ||| VEHE| + || VE || [V E]. (3.29)

Substituting (2.30) with =k into (3.29), we may then have

da k, ok k|2
dt/v u-V*E+|V*E|
S|V + [ VE (ru, BY ||+ ][V (- Va+ £(n)Vn+ux B
+]|VF(V x B4nu)||*+]| v (g(n)Aw) || (3.30)
Multiplying (3.30) by a sufficiently small but fixed factor ¢ and then adding it with

(3.28), since ¢ is small, we deduce that there exists Fj(t) equivalent to ||Vk(u7E)(t)||2
such that, by Cauchy’s inequality, (2.26), (2.19), (1.13), and (3.27),

%fk(t)+fk(t)
SHvk+1(n,E)H2+Hvk+1BH2+Hvk(u.vu_i_f(n)vn)uz

T BY [P+ [ )|+ 9 (g m) ) |
'SHVICH(”’E’B)HQ+(||n||H2+||u||H3)2HVk+1(n,u)H2

B [ 9 )|+ 920 |95
ST (3.31)

where we required N >2k+4+s. Applying the standard Gronwall lemma to (3.31), we
obtain

t

fk(t)gfk(O)e—tJrOO/ e~ (14 7) = RHH9) g < Cp (1 4¢) ~ k1), (3.32)
0

This implies

k4+14s

[VF(u,E) ()| SVFe(t) SCo(14+8)~ = . (3.33)

We thus complete the proof of (1.14). Notice that (1.15) now follows by (3.27) with the
improved decay rate of E in (1.14), just requiring N >2k+6+s.
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Now we prove (1.16). Assuming B, =0, we can extract the following system from
(1.3);(1.3),, denoting ¢ =divu:

{ atn+¢:—u-Vn—nd1VU7 (3.34)

Y+ —AYp—n=—An—div(u-Vu+ f(n)Vn+g(n)Au+ux B).

Applying V¥ to (3.34), multiplying the resulting identities by V*n and V¥, respec-
tively, summing up, and integrating over R3, we obtain

535 [ (75l 1750 4 [ o+
= / V* (u- Vn+ndivu) VFn — / VEARVE
—/vk [div(u-Vu+ f(n)Vn+g(n)Autux B)| V)
:—/vk(u-Vn+ndivu)vkn—/v’mw’w+/vk (g(n)Au) - VF+H1ey

- /Vk [div(u-Vu+ f(n)Vn4ux B)|VFip. (3.35)

Applying V* to (3.34),, multiplying by —V¥n, integrating by parts over t and x variables
as before, and using the equation (3.34),, we may obtain

_d
dt

:HV’WHQ—F|\Vk+2¢||2+/Vk(u-Vn—kndivu)V’w

VEpVE+ || Vn |

+/Vk [An+div(u-Vu+ f(n)Vn+g(n)Au+ux B)|VFn
ZHVk1/1H2+HV’“HQ&HQ—F/Vk(an—l—ndivu)sz/J—i—/Vk_l(g(n)Au)Vk+2n
+/Vk [An+div(u-Vu+ f(n)Vn+ux B)| VFn. (3.36)

Multiplying (3.36) by a sufficiently small but fixed factor € and then adding it with
(3.35), since ¢ is small, we deduce that there exists Gi(t) equivalent to HV’“(n,z/)) H2 such

that, by Cauchy’s inequality,
@ Gt +Gu(t)
dt
S92, 0) [P+ [V (- )|+ |94 (f () V)
+][VH(gm)Aw) |+ |VE (g(n)Au) |+ || VE T (ux B)
+[IVF (- ) |+ ||V (ndiva) | (3.37)

I

By Lemma 2.3 and Cauchy’s inequality, we obtain

V¥ (ux B)|”
—|lux VEH B+ [VE ] x B
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<[ux VHB|7 + || [VELu] x B|)®
Sl [V B + 1V ull2 ||V B + | V5 | | B - (3.38)

The other nonlinear terms on the right-hand side of (3.37) can be estimated similarly.
Hence, we deduce from (3.37) that, by (1.13)—(1.15),

4 Ge(t) +Gu(1)
SV, 0) |+ ull e |95 (0, B) || IVl || V5 (0, B) |
B |75 1) 1) [ |92 0,0 || 4 19 () [ |9 (0,0 ||
VRl [l + )l [ 95 ]+ V2] o [0
+ {192 [} . [[7* |
<C, ((1_|_t)—(k+3+s) (L)~ OT/2429) (1+t)—(k+11/2+23))
<Co(1+1)~+3+e),

where we required N >2k+8+s. Applying the Gronwall lemma to (3.39) again, we
obtain

t
gk(t)ggk(o)e—t+co/ e~ (14 7) B39 gr < O (1 41) ~RH3+9), (3.39)
0

This implies

V5 () (D) £ V/Gr(8) < Co(L+)~ 55 (3.40)
If required that N >2k+12+s, then, by (3.40), we have
1752 (n, ) ()| S Co(1+4)~ 5 (3.41)

Having obtained such faster decay, we can then improve (3.39) to be

%gk(t)+gk(t)§00 ((1+t)—(k+5+s)+(1+t)—(k+7/2+25)) §00(1+t)_(k+7/2+25)~

(3.42)
Applying the Gronwall lemma again, we obtain

[V*(n, ) ()] S V/Gi(8) < Co(1+)~W/2HT/4+9), (3.43)
We thus complete the proof of (1.16). The proof of Theorem 1.2 is completed.
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