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EFFECTS OF AN ADVECTION TERM IN NONLOCAL

LOTKA–VOLTERRA EQUATIONS∗

REBECCA H. CHISHOLM† , TOMMASO LORENZI‡ , AND ALEXANDER LORZ§

Abstract. Nonlocal Lotka–Volterra equations have the property that solutions concentrate as
Dirac masses in the limit of small diffusion. In this paper, we show how the presence of an advection
term changes the location of the concentration points in the limit of small diffusion and slow drift. The
mathematical interest lies in the formalism of constrained Hamilton–Jacobi equations. Our motiva-
tions come from previous models of evolutionary dynamics in phenotype-structured populations [R.H.
Chisholm, T. Lorenzi, A. Lorz, et al., Cancer Res., 75, 930–939, 2015], where the diffusion operator
models the effects of heritable variations in gene expression, while the advection term models the effect
of stress-induced adaptation.

Key words. Nonlocal Lotka–Volterra equations, Dirac masses, phenotype-structured populations,
stress-induced adaptation.

AMS subject classifications. 35R09, 45M05, 92D25, 92D15.

1. Introduction

We consider the equation

ε∂tnε(t,x)+ε∇x ·(v(x)nε(t,x))=R
(
ρε(t),x

)
nε(t,x)+ε2Δnε(t,x), (1.1)

which models the evolutionary dynamics of a well-mixed population structured by the
phenotypic traits x∈R

d. Here, the function nε(t,x)≥ 0 is the population density which
characterises the phenotype distribution of individuals at time t∈R+, and we note that
time has already been rescaled with respect to the parameter ε in order to study the
population dynamics in the limit of many generations [3, 4, 5].

In this mathematical framework, natural selection is driven by the fitness function
R
(
ρε(t),x

)
, which models the net proliferation rate of individuals in the environment

characterised by the total population density

ρε(t)=

∫
Rd

nε(t,x)dx. (1.2)

The Laplace term takes into account heritable variation in gene expression (i.e., epimu-
tations) due to non-genetic instability, whereas the drift term models the effects of
stress-induced epimutations [1]. In this setting, the direction of the vector v corre-
sponds with the direction of stress-induced adaptation, while its modulus measures the
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strength of the selective stress. Furthermore, the small parameter ε incorporates the fol-
lowing two ideas: (i) epimutations are less frequent than proliferation and death events;
(ii) non-genetic instability induces epimutations which occur on a timescale slower than
that of stress-induced epimutations.

When v(·)=0, the solutions of equation (1.1) are known to concentrate as Dirac
masses in the limit ε→0. In this case, the concentration points are understood as
maximum points of the function uε(t,x), which is introduced through a real phase
WKB ansatz

nε= euε/ε, or equivalently uε= ε ln(nε), (1.3)

and satisfies, in the limit ε→0, the constrained Hamilton–Jacobi equation presented
in [2]. Furthermore, under the concavity assumptions considered in [2, 4, 5], it is possible
to prove that there is one single concentration point whose time dynamics is governed by
a differential equation that acts as the canonical equation of adaptive dynamics. Here,
we show how the inclusion of an advection term influences the dynamics of the Dirac
concentration point in the limit ε→0.

2. Assumptions and main results

We make the following assumptions:
Assumptions on the function R
- R belongs to C2(R+×R

d) and there exists a constant ρM ∈R+ such that (fixing
the origin in x appropriately):

max
x∈Rd

R(ρM ,x)=0=R(ρM ,0). (2.1)

- There exist some positive real constants K0, K1, K1, K2, K2, and K3 such
that for all ρ∈ [0,ρM ]:

−K1|x|
2≤R(ρ,x)≤K0−K1|x|

2, (2.2)

−2K1≤D2R(ρ,x)≤−2K1< 0, (2.3)

−K2≤
∂R

∂ρ
≤−K2, ΔR≥−K3. (2.4)

- Finally,

D3R(ρ, ·)∈L∞(Rd), uniformly for ρ∈ [0,ρM ]. (2.5)

Assumptions on the drift v
- v belongs to C2∩W 4,∞(Rd) and there exists some real constants A1,A2> 0
such that

‖∇v(x)‖≤A1,
∣∣Tr(D2v(x))

∣∣≤ 2A2
1

1+ |x|
. (2.6)

Assumptions on the initial data n0
ε(x)

- The initial data n0
ε ∈L1∩L∞(Rd) satisfies n0

ε(x)≥ 0 a.e. on R
d, and there is a

positive real constant ρm such that

0<ρm<ρε(0) :=

∫
Rd

n0
ε(x)dx<ρM . (2.7)
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- There exists a function u0
ε such that:

n0
ε(x)= e

u
0
ε
(x)

ε (2.8)

with

D3u0
ε ∈L∞(Rd) componentwise uniformly in ε. (2.9)

With this assumption we can prove a gradient bound ‖∇uε‖≤C∇u(1+ |x|)
(cf. equation (2.28)) and we can use the constant C∇u to formulate the next
assumption

K1−A2C∇u> 0. (2.10)

- There exist some positive real constants B, B, L0, L0, L1, and L1 such that:

−L0−L1|x|
2≤u0

ε(x)≤L0−L1|x|
2 (2.11)

and

−2L1≤D2u0
ε ≤−2L1, (2.12)

with

L1≤B≤B≤L1. (2.13)

We will specify B, B in equations (2.32), (2.33).
- Finally,

n0
ε(x)−−−⇀

ε→0
ρ(0)δ(x− x̄0) weakly in the sense of measure. (2.14)

In the framework of these assumptions, we can prove the following

Theorem 2.1 (Limit ε→0). Let assumptions (2.1)–(2.4), (2.6), (2.7), and
(2.13)–(2.12) hold true. Then, for all T > 0:

i) A priori bounds on ρε(t).
The solutions nε to (1.1) satisfy

ρm≤ρε(t)≤ρM a.e. on [0,T ], (2.15)

and ρε is uniformly bounded in BV (R+).

ii) Asymptotic behaviour of ρε and nε for ε→0.
There exists a subsequence of ρε, denoted again as ρε, such that

ρε(t)→ρ(t) in L1
loc(R+), as ε→0, (2.16)

with

ρm≤ρ(t)≤ρM ,
d

dt
ρ(t)≥ 0. (2.17)

Moreover, weakly in measures,

nε(t,x)⇀ρ(t)δ(x− x̄(t)), as ε→0, (2.18)
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and the pair (ρ(t), x̄(t)) satisfies:

R(ρ(t), x̄(t))=0, a.e. on [0,T ]. (2.19)

iii) Asymptotic behaviour of uε(t,x) for ε→0.
There exists a subsequence of uε, denoted again as uε, such that

uε(t,x)−−−→
ε→0

u(t,x) strongly in L∞
(
(0,T );W 1,∞

loc

(
R

d
))
, (2.20)

where u(t,x) is a C2-function, with D3u(t, ·)∈L∞(Rd), that satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t
u(t,x)=R(ρ(t),x)+ |∇u(t,x)|2−(v ·∇u)(t,x), (t,x)∈R+×R

d,

max
x∈Rd

u(t,x)=0=u(t,x̄(t)),

u(t=0,x)=u0(x)

(2.21)

in the viscosity sense introduced in [5].

Theorem 2.2 (Canonical equation). Let assumptions (2.1)–(2.12) hold true.
Then, x̄(·) belongs to W 1,∞(R+) and satisfies the following initial value problem⎧⎪⎪⎨

⎪⎪⎩
˙̄x=(−D2u(t,x̄))−1 ·

(
∇R(ρ(t), x̄)−∇(v ·∇u)(t,x̄)

)
, t∈R+,

x̄(t=0)= x̄0,

(2.22)

where x̄0 is defined by assumption (2.14) and ρ(·)∈W 1,∞(R+).

Theorem 2.3 (Long-time asymptotics). Let assumptions (2.1)–(2.12) hold true.
Then,

ρ(t)→ρ∞ and x̄(t)→ x̄∞, as t→∞, (2.23)

and the limits ρ∞ and x̄∞ are identified by the relations

R(ρ∞, x̄∞)=0,
[
∇R(ρ∞,x)−∇(v ·∇u∞)(x)

]
x=x̄∞

=0, (2.24)

where u∞(x) satisfies

{
R(ρ∞,x)+ |∇u∞(x)|2−(v ·∇u∞)(x)=0, x∈R

d,

max
x∈Rd

u∞(x)=0=u∞(x̄∞).
(2.25)

With the additional assumptions (2.6), proofs of the above theorems are similar to
those presented in [4, 5] and are left without proof. However, we show that the semi-
convexity and the concavity of the initial data is preserved which can be checked with
calculations on D2uε(t, ·):

Proof. (Bounds on D2uε.) We begin by calculating

∂tnε=nε ∂tuε/ε, ∇nε=nε∇uε/ε, Δnε=nεΔuε/ε+nε |∇uε|
2/ε2. (2.26)
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Plugging this into equation (1.1), we find that uε satisfies the Hamilton–Jacobi equation

∂

∂t
uε(t,x)=R(ρε(t),x)+ |∇uε(t,x)|

2+εΔuε(t,x)−(v ·∇uε)(t,x)−ε∇·v(x). (2.27)

In the same way as in [4] Section 8, we obtain the gradient bound. To increase readability
we give a brief version here. We write uε=K−q2 with a constant K large enough such
that q(t,x)>C> 0. Then we obtain

∇uε=−2q∇q Δuε=−2qΔq−2|∇q|2

and therefore it follows from equation (2.27) that

−2q∂tq=R+4q|∇q|2−2εqΔq−2ε|∇q|2+2vq∇q−ε∇v.

Dividing by −2q, taking the derivative with respect to xi and defining p :=∇q, we have

∂tpi=−

(
R

2q

)
xi

−2pip
2−2qp ·∇pi+εΔpi+ε

p ·∇pi
q

−ε
p2

v2
pi

−vxi
·p−v ·∇pi+ε

∇·qxi

2q
−ε

∇·v

2q2
qi.

Since the term of highest order in p on the right hand side is −2pip
2, we obtain that p

is bounded and therefore there is a constant C∇u such that

‖∇u‖≤C∇u(1+ |x|). (2.28)

To prove the concavity results, we only give formal arguments for the limit case.
To adapt the argument for the ε-case is purely technical. For a unit vector ξ, we use
the notation uξ :=∇ξuε and uξξ :=∇2

ξξuε to obtain

uξt=Rξ+2∇u ·∇uξ−vξ ·∇u−v ·∇uξ, (2.29)

uξξt=Rξξ+2∇uξ ·∇uξ+2∇u ·∇uξξ−vξξ ·∇u−2vξ ·∇uξ−v ·∇uξξ. (2.30)

Along the line of [4], we use the fact that |∇uξ|≥ |uξξ| and we introduce the definition
w(t,x) :=minξuξξ(t,x) to achieve

∂tw≥−2K1+2w2+2∇u ·∇w−vξξ ·∇u−2vξ ·∇uξ−v ·∇w

≥−2K1+2w2+2∇u ·∇w−2A2C∇u−2A1|w|−v ·∇w. (2.31)

Defining

B=
A1+

√
A2

1+4(K1+A2C∇u)

4
, (2.32)

by a comparison principle and assumptions (2.6), (2.12), (2.13), the differential inequal-
ity (2.31) gives that if B≤L1 then w(t,x)≥−2L1 for all times t.

The upper bound −2L1≥D2u(t,x) can be obtained similarly with

B=
−A1+

√
A2

1+4(K1−A2C∇u)

4
. (2.33)
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In a similar way, we can establish a L∞-bound (uniform in ε) on the third derivative
of uε(t, ·).

Moreover, since the function ρ(t) is continuous away from a countable set of dis-
continuity points, the proof of the relation (2.19) follows the method of Perthame and
Barles [5]:

Proof. (R(ρ,x̄)=0.) Let t∗ be a continuity point of ρ(t) and x̄(t∗) be a maximum
point of u(t∗, ·). Using the viscosity subsolution criteria in (t∗, x̄(t∗)) and testing against
the test function 0, we find

R(ρ(t∗), x̄(t∗))≥ 0. (2.34)

On the other hand, integrating in time equation (2.21) on the interval (t∗,t∗+h) at the
point x= x̄(t∗), we obtain

0≥
u(t∗+h,x̄(t∗))

h
≥

1

h

∫ h

0

R(ρ(t∗+s), x̄(t∗))ds + 0,

which implies, since t∗ is a continuity point of ρ(t),

0≥R(ρ(t∗), x̄(t∗)) . (2.35)

We can then use (2.34) and (2.35) to achieve (2.19).

Finally, the derivation of the canonical equation (2.22) follows the method of Lorz,
Mirrahimi, and Perthame [4]:

Proof. (Canonical equation.) Since uε(·,x) is concave and smooth, we can define
x̄ε(t) as the maximum point of uε(t, ·) and conclude that ∇uε(t,x̄ε(t))=0. This implies
that

d

dt
∇uε(t,x̄ε(t))=0,

and the chain rule gives

∂

∂t
∇uε(t,x̄ε(t))+D2uε(t,x̄ε(t)) ˙̄xε(t)=0. (2.36)

Using equation (2.27) we thus find that, for almost every t,

D2uε(t,x̄ε(t)) ˙̄xε(t)=−
∂

∂t
∇uε(t,x̄ε(t))=−∇R(ρε(t), x̄ε(t))+∇(v ·∇uε)(t,x̄ε(t))

−εΔ∇uε(t,x̄ε(t))+ε(∇(∇·v))(x̄ε(t)).

Since R belongs to C2(R+×R
d), v is a C2-function and D3uε is bounded uniformly in

ε, we can pass to the limit in the above equation and obtain (2.22).

3. Numerics

We illustrate the asymptotic results established by theorems 2.1–2.3 by performing
numerical simulations in Matlab. An implicit-explicit finite difference scheme with
3000 points on the interval [−0.5,1.5] is used to solve the mathematical problem defined
by equation (1.1), zero Neumann boundary conditions, and the following initial data

n0
ε(x) := e−

(x−0.65)2

ε . (3.1)
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Fig. 3.1. Dynamics of nε(t,x) (left) and profile of uε(t,x) at t=10 (right). The dashed line
highlights the maximum point of nε(t,x) at t=10.
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Fig. 3.2. Profiles of R(ρε(t),x) (left) and −∇R(ρε(t),x)+∇(v ·∇u)(t,x) (right) at t=10. The
dashed lines highlight the maximum point of nε(t,x) at t=10.

We select the interval [0,10] as the time domain (time step dt=0.0001), and we define

ε :=0.001, v(·) :=−1, R(ρε(t),x) :=0.1+0.8 e−5(x−1)2−0.1ρε(t). (3.2)

The results presented in figures 3.1–3.2 show that the solution of equation (1.1) does
not concentrate in the point x=1, as it would do in the absence of the advection term.
Instead, it concentrates in the point that satisfies the relations (2.24).
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