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FAST COMMUNICATION

A NEWTON-LIKE ALGORITHM FOR THE SHORTEST PATH BASED
ON THE METHOD OF EVOLVING JUNCTIONS∗

SHUI-NEE CHOW† , WUCHEN LI‡ , AND HAOMIN ZHOU§

Abstract. We present a fast Newton-like algorithm within the framework of the method of evolving
junctions (MEJ) to find the shortest path in a cluttered environment. We demonstrate that the new
algorithm converges much faster than the existing methods via numerical examples.
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1. Introduction
Finding the shortest path while avoiding obstacles plays a vital role in many appli-

cations, such as robotics, computer graphics, and space exploration. Mathematically,
the problem can be formulated as follows. Let (X,d) be a length space, such as R

2 or
R

3, where d is the distance defined on X, and let P1, · · · ,PN be N open subsets of X rep-
resenting obstacles with boundaries {∂Pk}Nk=1. Given two points x,y∈Xc=X \∪N

i=1Pi,
we define the admissible set of paths connecting x and y to be the curves that have no
intersection with all the interior of obstacles, i.e.

A(x,y,Xc)={γ : [0,1]→X |γ(0)=x,γ(1)=y,γ∈Xc},

where γ is absolutely continuous. For each admissible path, its length in Euclidean
space is

J(γ(θ))=

∫ 1

0

|γ̇(θ)|dθ.

Then, finding the shortest path can be posed as an optimization problem:

γ∗=argminγ∈A(x,y,Xc)J(γ). (1.1)

If the obstacles are polygons, the problem can be converted to an optimization
problem on a graph, because the optimal path is a union of line segments connecting
selected vertices. In this case, the combinatorial methods, such as the well known
Dijkstra method, can be applied (see [1, 2, 3, 6, 8, 9, 11]). However, if the obstacles
contain non-polygons, such as ones with smooth curved boundaries, the combinatorial
methods cannot be applicable. In this case, most methods are based on differential
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equations, such as the Pontryagin maximal principle and the Hamilton–Jacobi equations
(see [7, 13, 14, 15, 16, 17, 18, 19]). However, for many problems, especially the ones
with a large number of obstacles, these methods may become inefficient.

To overcome computational challenges, a new strategy called the method of evolv-
ing junctions (MEJ) has been proposed recently [5]. Compared to the existing methods
for non-polygonal obstacles, it has two distinct properties: (1) It finds the shortest
path by solving an initial value problem for a finite-dimensional system of ordinary
differential equations (ODEs). This is different from the existing methods, which solve
infinite-dimensional problems. (2) MEJ uses intermittent diffusion, a stochastic differ-
ential equation (SDE) approach for the global optimization, to find the global solution.
The existing methods based on the Pontryagin principle can only find local minima,
and those based on Hamilton–Jacobi equations find the global solution with (often)
prohibitive computation requirements in practice.

In this paper, we further improve the MEJ presented in [5, 10]. In particular, we
focus on the shortest path problem in R

2. In short, we use an approximated Newton
method to replace the gradient flow in MEJ while retaining the overall MEJ framework,
including the SDEs, to help the solution jump out of the traps of local minimizers.
Such a replacement significantly reduces the computational time in finding the local
minimizers. In addition, the new method provides a fresh viewpoint for the shortest
path by posing it as an angle minimization problem, which has not been reported in
the past.

This paper is arranged as follows. In Section 2, we briefly review the MEJ proposed
in [5]. In Section 3, we state the main contribution of this paper and present the deriva-
tion of the approximated Newton method. In Section 4, we give numerical examples to
show the efficiency of our method. A short discussion is added in the end of the paper.

2. Method of evolving junctions
We start with a geometric structure, called separable, possessed by all shortest

paths.

Definition 2.1. A path γ : [0,1]→Xc is separable if there exists a finite number of
points {x1,x2, · · · ,xn} with xi∈∂Pki , ki≤N , such that γ concatenates line segments and
partial curves on the boundaries of the obstacles, i.e.

γ=γ0(x,x1) ·γc(x1,x2) ·γ0(x2,x3) ·γc(x3,x4) · · ·γ0(xn,y), (2.1)

where γ0(xi−1,xi) is the line segment connecting xi−1 and xi and γc(xi−1,xi) is the
geodesic on the boundary ∂Pki

between the two points.

A simple example is shown in Figure 2.1, and we call xi a junction.

Theorem 2.2. Let ∂Pk be a finite combination of convex and concave curves (surfaces).
Then, γ∗ is separable. Moreover, each line segment xi−1xi is tangent to the obstacle
∂Pki

.
Therefore, the length of the shortest path is a function depending on the junctions,

i.e. {x1, . . . ,xn},

J(x1, . . . ,xn)=

n∑
i=1

J(xi−1,xi),

where J(xi−1,xi) represents the distance connecting (xi−1,xi):

J(xi−1,xi)=

{
‖xi−1−xi‖, if i is odd;

distc(xi−1,xi), if i is even,
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Fig. 2.1: Each connecting point between a line segment and a boundary of the obstacles is a junction.

in which ‖·‖ is the Euclidean norm.

Based on this theorem, MEJ restricts the search space to the set of all admissi-
ble paths with separable structures, a finite-dimensional subset of A(x,y,Xc). More
precisely, MEJ finds the shortest path by solving the following optimization problem.

xi−1

xi xi+1

Fig. 2.2: Each junction on a boundary is connected to the points before and after it by a straight line
segment and an arc of the boundary.

min
x1,···,xn

J(x1, · · · ,xn). (2.2)

Remark 2.1. The dimension of variables, the number of junctions, can be changed
during the searching. This is very different from the existing methods.

To find the global solution of (2.2), MEJ uses intermittent diffusion (ID), an SDE-
based global-optimization method developed in [4]. More precisely, it solves

dx̂=−∇J(x̂)dt+σ(t)dWt, (2.3)

where x̂={x1, · · · ,xn} represents the junctions, Wt the standard Brownian motion in
R

N , and σ(t) a piecewise constant function

σ(t)=

m∑
j=1

σjχ[Sj ,Tj ](t), (2.4)

with 0=S1<T1< · · ·<Sm<Tm<Sm+1=T and χ[Sj ,Tj ] being the characteristic func-
tion of interval [Sj ,Tj ].

If σ(t)=0, equation (2.3) becomes a gradient-descent flow which converges to a
local minimizer; if σ(t)>0, the path has a certain (positive) probability, controlled by
σ(t), to jump out of the local traps and therefore to reach the global solution.
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3. The Newton-like algorithm
In this section, we present a new approximated Newton method on the shortest

path problem in R
2 by finding the line segments tangent to the obstacles directly to

replace the gradient flow in (2.3) when σ(t)=0.
In order to explain our method more clearly, we introduce an arc-length parameter

θ to represent junctions. Let xi=x(θi), xs
i =x(θsi ), xc

i =x(θci ), where θi, θsi , θci are
arc-length parameters on the corresponding boundaries, super index s indicates the
junction connected to xi by a straight line, and c denotes the junction connected to xi

by a boundary arc (see Figure 3.1 for an illustration). With these notations, the length of
the curve containing one straight line segment and the boundary arc γ0(x

s
i ,xi) ·γc(xi,x

c
i )

becomes

Ji(θ)=‖x(θi)−x(θsi )‖+d(θi,θ
c
i ),

where d(θi,θ
c
i )=min{d+(θi,θci ),d−(θi,θci )}, with d+, d− representing the counter-

clockwise and clockwise distance on the obstacle boundary between x(θci ) and x(θi),
respectively, as illustrated in Figure 3.1.

xs
i

xi xc
i

(a)

xs
i

xc
i

xi

(b)

Fig. 3.1: Two different scenarios for each junction on a boundary that is connected to the points
before and after it by a straight line segment and an arc of the boundary.

Thus, the optimization problem (2.2) becomes

min
θ1,···,θn

J(θ)=
1

2

n∑
i=1

Ji(θ),

where θ=(θ1, · · · ,θn), and the intermittent diffusion (2.3) is

dθ=−∇J(θ)dt+σ(t)dWt, (3.1)

in which we have

∂J

∂θi
=

x(θi)−x(θsi )

‖x(θi)−x(θsi )‖
· ẋ(θi)+sign(d+(θi,θ

c
i )−d−(θi,θci )),

where ẋ(θi)=
dx(θi)
dθi

.

The main idea of this paper is that, instead of using the gradient flow to find the
local minimizer of (2.2), we apply the Newton method to solve ∇J(θ)=0 directly. This
is equivalent to solving the tangent condition in Theorem 2.2, as stated in the next

theorem. Here, we denote J
(k)
i (θ)= ∂kJi

∂θk
i

(θ), k=2,3.

Theorem 3.1. If θ∗ is the local minimizer of (2.2), then the following statements are
equivalent:
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(i) The line segment is tangent to the obstacle;

(ii) The second-order derivative J
(2)
i (θ∗)=0 for i=1, . . . ,n.

Moreover, the third-order derivative satisfies

|J (3)
i (θ∗)|= |κ(θ∗i )|2

and

∂J
(2)
i

∂θj
(θ∗)=0

for any i,j=1, · · · ,n and i �= j.

Proof. First, we show that solving ∇J(θ)=0 implies that the line connecting the
junctions is tangent to the obstacles, since

∂J

∂θi
=g(θi,θ

s
i )+sign(d+(θi,θ

c
i )−d−(θi,θci ))=0, (3.2)

where

g(θi,θ
s
i )=

x(θi)−x(θsi )

‖x(θi)−x(θsi )‖
· ẋ(θi). (3.3)

Hence ∇J(θ)=0 is to solve g(θi,θ
s
i )

2=1 for each i. Moreover, since θ is the arc-length
parameter, ẋ(θi) is a unit vector, which implies that g(θi,θ

s
i ) is the inner product of two

unit vectors. Then, g(θi,θ
s
i )

2=1 means x(θi)−x(θsi ) is parallel to tangent vector ẋ(θi),
which implies the tangent property.

To show the equivalence of (i) and (ii), we need to prove that (i) implies (ii). Without
loss of generality, let us assume sign(d+(θi,θ

c
i )−d−(θi,θci ))=−1. Since g(θi,θ

s
i )≤1,

solving (3.2) is equivalent to finding the maximizer θ∗ of

max
θi,θs

i

g(θi,θ
s
i ).

Then, it must satisfy

gθi(θ
∗
i ,θ

s∗
i )=0.

Since J
(2)
i (θ)=gθi(θi,θ

s
i ), we have J

(2)
i (θ∗)=0.

(ii) implies (i): A direct computation gives the second-order derivative of J :

J
(2)
i (θ)=

1−g(θi,θ
s
i )

2+(x(θi)−x(θsi )) · ẍ(θi)
‖x(θi)−x(θsi )‖

. (3.4)

If J
(2)
i (θ∗)=0 for all i=1, . . . ,n, we have

1−g(θ∗i ,θ
s∗
i )2+(x(θ∗i )−x(θs∗i )) · ẍ(θ∗i )=0.

Notice that 1−g(θ∗i ,θ
s∗
i )2≥0. Moreover, since x(θ∗i )x(θ

s∗
i ) first intersects obstacle Pki

at point x(θ∗i ), which implies angle between vector x(θ∗i )−x(θs∗i ), and since ẍ(θ∗i ) is not
larger than π

2 , (x(θ∗i )−x(θs∗i )) · ẍ(θ∗i )≥0. Hence, the solution satisfies g(θ∗i ,θ
s
i )

2=1,
which implies the tangent property.
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xs
i

xi

ẋi

ẍi

The third derivative is

J
(3)
i (θ)=(

1

‖x(θi)−x(θsi )‖
)(1) ·J (2)

i (θ)

+
1

‖x(θi)−x(θsi )‖
· [2ẋ(θi) · ẍ(θi)−2g(θi) ·J (2)

i (θ)

+(x(θi)−x(θsi )) · ...x (θi)].
Considering that θi is an arc-length parameter, we have ẋ(θi) · ẍ(θi)=0. Combining

it with J
(2)
i (θ∗)=0, we can show

J
(3)
i (θ∗)=

(x(θ∗i )−x(θ∗si )) · ...x (θ∗i )
‖x(θ∗i )−x(θ∗si )‖ .

By the tangent property, (3) can be formulated as

|J (3)
i (θ∗)|= |ẋ(θ∗i ) · ...x (θ∗i )|.

Since

F (θi)=

∫ θi

0

ẋ(u)
...
x (u)du

=ẋ(0)ẍ(0)−
∫ θi

0

ẍ(u)2du

and |κ(u)|= |ẍ(u)|,

ẋ(θi) · ...x (θi)= dF (θi)

dθi
=−κ2(θi),

which implies |J (3)
i (θ∗)|=κ2(θ∗i ).

In the end, we show that
∂J

(2)
i

∂θj
(θ∗)=0 for j �= i. Since J

(2)
i (θ) depends on θsi and θi,

we only need to show
∂J

(2)
i

∂θs
i
(θ∗)=0. By direct computations, we have

∂J
(2)
i

∂θsi
(θ∗)=−2gθs

i
(θ∗i ,θ

s∗
i )g(θ∗i ,θ

s∗
i )

‖x(θ∗i )−x(θs∗i )‖ .

Since

gθs
i
(θ∗i ,θ

s∗
i )=0,

∂J(2)

∂θs
i
(θ∗)=0, which finishes the proof.
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Now, we are ready to present our method. We want to solve the tangent condition
∇J(θ)=0 directly through the Newton method. By Theorem 3.1, it can be found that
∇J(θ)=0 is a degenerate system, i.e. its Jacobian matrix becomes 0 at θ∗. Hence, we
can solve the system

J (2)(θ)=(J
(2)
1 (θ), · · · ,J (2)

n (θ))=0

instead. We use an approximated Jacobian matrix of J (2)(θ) given by

H(θ)=diag(J
(3)
i (θ)),

and it leads to the following iterations:

θk+1=θk−H(θk)−1J (2)(θk). (3.5)

We must point out that, in this iterative scheme, we consider obstacles with non-
zero curvature boundaries. Hence, H is an invertible diagonal matrix and that the
iteration can be carried out. On the other hand, when boundaries are straight lines
or curves with curvature close to 0, we can simply adjust H(θ), such as letting H(θ)=

diag(J
(3)
i (θ)+λiI), with λi being a selected scalar, to continue the iteration.

This iteration is an “approximated” Newton method. Only at the minimizer θ∗ is
the Jacobian matrix of J (2)(θ) exactly as H(θ). Otherwise, H(θ) is an approximation to
the Jacobian. We use this formulation because its computation complexity is as low as
the gradient-descent algorithm. However, its convergence is superlinear, which is faster
than the gradient-descent algorithm.

Theorem 3.2. Let J (2)(θ) : R
N →R

N be smooth, with no zero-curvature points for
the boundaries of all obstacles in R

2. Then, there exists ε>0 such that, if the iteration
(3.5) starts at ‖θ0−θ∗‖<ε, θk converges to θ∗ superlinearly.

Proof. The proof of the theorem follows the standard procedure for Newton-like
methods, which is often divided into two steps. Firstly, we use the fixed-point theorem
to show that there exists a sufficiently small ε such that, if ‖θ0−θ∗‖<ε, θk converges
to θ∗. In other words, let us consider a map l :RN →R

N , i.e.

l(θ)=θ−H(θ)−1J (2)(θ).

We want to find a small neighbor of θ∗, B(θ∗,ε)={θ | ‖θ−θ∗‖≤ ε}, such that
supθ∈B(θ∗,ε)‖Dl(θ)‖<1, where D is a Jacobian operator. To show this, by using the
fact that H(θ)=diag(hi(θ)) is diagonal, we directly calculate

Dl(θ)= I−H(θ)−1DJ (2)(θ)+M,

where M is an n×n matrix with Mij =
∂

∂θj
( 1
hi(θ)

)J
(2)
i (θ). Substitute H(θ∗)=DJ (2)(θ∗)

and J (2)(θ∗)=0 into the above equation, and we have Dl(θ∗)=0. By the continuity of
Dl(θ), there exists ε>0 such that supθ∈B(θ∗,ε)‖Dl(θ)‖<1. Hence θk is convergent.

Secondly, we show that the convergence rate is superlinear. To show this, let ek=
θ∗−θk, we need to show limk→∞‖ek+1‖/‖ek‖=0. Since θk converges to θ∗, we only
consider the bounded region B(θ∗,ε). On one hand, by the Taylor expansion of J (2)(θ),

0=J (2)(θ∗)=J (2)(θk+ek)=J (2)(θk)+DJ (2)(θk)ek+O(‖ek‖2).
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Hence

ek+DJ (2)(θk)−1J (2)(θk)=O(‖ek‖2). (3.6)

On the other hand, substitute ek+1, ek and (3.6) into equation (3.5):

ek+1=θ∗−θk+1=θ∗− [θk−H(θk)−1J (2)(θk)]

=ek+DJ (2)(θk)−1J (2)(θk)+[H(θk)−1−DJ (2)(θk)−1]J (2)(θk)

=O(‖ek‖2)+[H(θk)−1−DJ (2)(θk)−1]J (2)(θk). (3.7)

We need to consider ‖[H(θk)−1−DJ (2)(θk)−1]J (2)(θk)‖ in terms of ek. Here, we notice
thatDJ (2)(θ∗) is invertible and J (2)(θ) is smooth. Then by the inverse function theorem,
DJ (2)(θ)−1 exists and is a smooth function when θ∈B(θ∗,ε). Moreover, we apply the
Taylor expansion to the function ‖H(θ)−1−DJ (2)(θ)−1‖:

‖H(θk)−1−DJ (2)(θk)−1‖≤‖H(θ∗)−1−DJ (2)(θ∗)−1‖+C‖θk−θ∗‖
=C‖θk−θ∗‖=C‖ek‖,

where

C= sup
θ∈B(θ∗,ε)

‖D(‖H(θ)−1−DJ (2)(θ∗)−1‖)‖.

Combining all results into (3.7), we obtain

‖ek+1‖≤‖H(θk)−1−DJ (2)(θk)−1‖‖J (2)(θk)‖+O(‖ek‖2)
≤C‖ek‖‖J (2)(θk)‖+O(‖e2k‖).

Hence

‖ek+1‖
‖ek‖ ≤C‖J (2)(θk)‖+O(‖ek‖).

Since θk converges to θ∗, we have limk→∞‖J (2)(θk)‖=‖J (2)(θ∗)‖=0 as well as
limk→∞‖ek‖=0. This implies limk→∞‖ek+1‖/‖ek‖=0, indicating that θk converges
to θ∗ superlinearly.

3.1. Algorithm. With all the components discussed above, we are ready to
state our algorithm.

Method of Evolving Junctions
Input: Number of intermittent diffusion intervals m.
Output: The optimal set γ∗ for the junctions.

1. Initialization. Find the initial path γ(0)=(θ1, · · · ,θn);
2. Select the duration of diffusion ΔTl, l≤m;
3. Select diffusion coefficients σl, l≤m;
4. for l=1 :m
5. γ(l)=γ(0);
6. for j=1 :ΔTl

7. Find ∇J(γ(l)).
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8. Update γ(l) according to (3.1) with σ(t)=σl;
9. Remove junctions from or add junctions to γ(l) when necessary;
10. end
11. while ‖∇J(γ(l))‖>ε
12. Update γ(l) according to (3.5) with σ(t)=0;
13. end
14. end
15. Compare J(γ(l)), l≤m and set γopt=argminl≤mJ(γ(l));

In our implementation, we choose the parametrization direction, either clockwise or
counterclockwise, according to the initial condition θ0. For instance, if sign(d+(θ0i ,θ

0c
i )−

d−(θ0i ,θ
0c
i ))=1, we parametrize Pki clockwise.

4. Numerical experiment

In this section, we use two numerical examples to show the effectiveness of the new
algorithm.

Example 1: In this case, the obstacles are 5 disks with centers (1,1), (1.5,1.5),
(0.5,0.5), (1.5,0.5), (0.5,1.5) and radii 0.2, 0.2, 0.3, 0.25, 0.15, respectively. The starting
and ending points are X=(1.8,0.2), Y =(0.1,1.7). We use m=20 for ID defined in
formula (2.4). Figure 4.1 shows the four shortest paths found by the algorithm. They
are all local minimizers except the global one shown in Figure 4.1(C).

(a) L=3.0167 (b) L=2.5762

(c) L=2.3575 (d) L=2.5045

Fig. 4.1: The algorithm finds 4 different shortest path, where (C) is the global minimizer.

It is worth pointing out that, by using a 2013 Macbook Air with CPU core i5, 1.8G
HZ, RAM 4GB, our method needs only 1.75 seconds to finish one simulation, while the
method in [5] spends 485.777 seconds. Here, both methods obtain 10 minimizers. On
average, it takes 0.175 seconds for our method to reach a minimizer, and the gradient-
descent method needs 48.58 seconds to do it. This indicates that the computation
time is reduced by more than 200 times. A further look at the experiments finds
that it often takes about 10 iterations for our Newton-like method to converge to a
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minimizer, which is much fewer steps, with a similar complexity for each step, than
that of the gradient-descent method. This agrees with the superlinear convergence
proved in Theorem 3.2. On the other hand, our algorithm still enjoys the advantages of
the ID strategy that allows us to find the global minimizer. Moreover, our experiment
shows that the larger the value of m, the larger the probability of obtaining a global
minimizer. To demonstrate this, we compute 10 independent simulations with m=20
for each simulation. We find the global minimizer plotted in Figure 4.1(C) in 5 out
of the 10 simulations. If we take m=50, we observe Figure 4.1(C) in 7 out of the 10
simulations. This indicates that the larger the value of m, the larger the probability of
reaching one of the global minimizers.

Example 2: We consider the same environment as the one used in [5]: four obstacles
with arbitrary shape, as shown in Figure 4.2. The starting point is X=(0.5,0.002), and
the ending point is Y =(0.5,0.98). Different from the previous example, for which
we have analytical parameterizations for the obstacles, here we compute the necessary
quantities, such as the curvature and the principle norm, numerically by the level-set
method [12]. To compare the result reported in [5], we take m=2 and focus on the
computation time to obtain one minimizer. Our method needs 3.719 seconds, while the
method in [5] takes 215.840 seconds. In fact, the minimizer is a global one.

Fig. 4.2: General obstacles.

5. Further discussion
In general, the shortest path problem is considered as an infinite-dimensional con-

strained optimal control problem, since any feasible path is an absolute continuous
function. Through the “separable” geometric structure possessed by the optimal path,
we present an efficient method for finding the global optimal solution via a finite-
dimensional system of differential equations. Moreover, the Newton-like algorithm pro-
vides a different but interesting viewpoint for the shortest path problem. Instead of
looking at the length function formulated by all junctions as we did in this paper, we
can study it from the tangent property between two adjoint junctions directly. To be
more precise, the shortest path problem in R

2 can be re-formulated so as to minimize
the angle ui between line xs

ixi and the tangent of the obstacle at xi, as shown in Figure
5.1. If we use the arc-length parametrization as we introduced in Section 3, finding the
junctions for the shortest path is equivalent to the following angle-optimization problem:

min
θi,θs

i

ui=<ẋ(θi),x(θ
s
i )−x(θi)> i=1, . . . ,n, (5.1)

where <,> represents the acute angle between vectors. Using the monotonicity of the
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xs
i

xi

ui

Fig. 5.1: Representing junctions though angle ui.

sine function in [0, π2 ], (5.1) can be posed as

min
θi,θs

i

sin2ui=1−g(θi,θ
s
i )

2, (5.2)

where g is the function defined in (3.3). Since the minimum of sin2ui is 0, this is to say
the minimizer θ∗ satisfying

g(θi,θ
s
i )=±1,

which is the same as (3.2) showing ∂J
∂θi

=0. In this sense, the equation J (2)(θ)=0 solved
by our Newton algorithm is the equation satisfied by the minimizer of (5.2). In other
words, the above optimization (5.2) only involves a junction pair, and our method is a
Newton method to solve such junction pairs directly. One may use other methods to
solve the optimization problem as well.

The significance of this viewpoint is that the angle ui only depends on the junc-
tion pair on the two obstacles, so this formulation only needs local, instead of global,
information of the optimal path, which is different from our general understanding of
the shortest path problem. This may provide new routes to construct more efficient
computation methods, which is among the future research considerations.

The framework of MEJ can be extended to the shortest path problem in R
3, as

discussed in [5]. However, the proposed Newton-like method must undergo a significant
change if one wants to apply to the 3-D case. The main challenges are listed below.

1 It takes two parameters to describe a junction on the surface in 3-D. This leads
to a much more complex formula than Equation (7) for the derivative of J ,
which may no long be degenerate. So, the second part of Theorem 3 may not
hold anymore. Without that, the formulations we used to design the algorithm
are not applicable either.

2 The proposed Newton-like algorithm is heavily based on the fact that the
second-order derivatives of J form a diagonal matrix. It is not clear whether
this is true in 3-D.

With the aforementioned difficulties, one has to re-derive the Newton method, and
this is among the tasks of our future investigations.

REFERENCES

[1] P.K. Agarwal, R. Sharathkumar, and H. Yu, Approximate Euclidean shortest paths amid convex ob-
stacles, in Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
Society for Industrial and Applied Mathematics, 283–292, 2009.

[2] R.K. Ahuja, K. Mehlhorn, J. Orlin, and R.E. Tarjan, Faster algorithms for the shortest path
problem, Journal of the ACM (JACM), 37(2), 213–223, 1990.



1180 A NEWTON ALGORITHM FOR THE SHORTEST PATH PROBLEM

[3] D.Z. Chen, G. Das, and M. Smid, Lower bounds for computing geometric spanners and approximate
shortest paths, in Proc. 8th Canad. Conf. Comput. Geom. Citeseer, 1996.

[4] S.-N. Chow, T.-S. Yang, and H. Zhou, Global Optimizations by Intermittent Diffusion, International
Journal of Bifurcation and Chaos, 466–479, 2013.

[5] S.-N. Chow, J. Lu, and H. Zhou, Fast numerical methods based on sdes for several problems related
to the shortest path, Meth. Appl. Anal., 20(4), 353–364, 2013.

[6] D.Z. Ghent, On the all-pairs euclidean short path problem, in Proceedings of the sixth annual
ACM-SIAM symposium on Discrete algorithms, SIAM, 76, 292, 1995.

[7] R. Goroshin, Q. Huynh, and H. Zhou, Approximate solutions to several visibility optimization
problems, Commun. Math. Sci., 9(2), 535–550, 2011.

[8] J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths in the plane, SIAM
J. Comput., 28(6), 2215–2256, 1999.

[9] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[10] J. Lu, Y. Diaz-Mercado, M. Egerstedt, H. Zhou, and S.-N. Chow, Shortest paths through 3-

dimensional cluttered environments, in Robotics and Automation (ICRA), 2014 IEEE Interna-
tional Conference on, IEEE, 6579–6585, 2014.

[11] J.S.B. Mitchell, Shortest paths and networks, in Handbook of Discrete and Computational Geom-
etry, CRC Press, Inc., 445–466, 1997.

[12] S. Osher and R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer Verlag,
2003.

[13] M. Sabry Hassouna, A.E. Abdel-Hakim, and A.A. Farag, PDE-based robust robotic navigation,
Image and Vision Computing, 27(1-2), 10–18, 2009.

[14] J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proceedings
of the National Academy of Sciences, 93(4), 1591, 1996.

[15] J.A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer
Vision, and Materials Science, 1999, Cambridge University Press Cambridge, 1996.

[16] J.A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational
geometry, fluid mechanics, computer vision, and materials science, 3, Cambridge University
Press, 1999.

[17] Y.-H.R. Tsai, L.-T. Cheng, S. Osher, P. Burchard, and G. Sapiro, Visibility and its dynamics in
a PDE based implicit framework, J. Comput. Phys., 199(1), 260–290, 2004.

[18] Y.-H.R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class of
Hamilton–Jacobi equations, SIAM Journal on Numerical Analysis, 41(2), 673–694, 2003.

[19] H. Zhao, A fast sweeping method for eikonal equations, Mathematics of Computation, 74(250),
603–627, 2005.


