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A HIERARCHICAL EXTENSION SCHEME FOR SOLUTIONS OF THE
WRIGHT–FISHER MODEL∗

JULIAN HOFRICHTER† , TAT DAT TRAN‡ , AND JÜRGEN JOST§

Abstract. We develop a global and hierarchical scheme for the forward Kolmogorov (Fokker–
Planck) equation of the diffusion approximation of the Wright–Fisher model of population genetics.
That model describes the random genetic drift of several alleles at the same locus in a population.
The key of our scheme is to connect the solutions before and after the loss of an allele. Whereas in
an approach via stochastic processes or partial differential equations, such a loss of an allele leads to a
boundary singularity, from a biological or geometric perspective, this is a natural process that can be
analyzed in detail. Our method depends on evolution equations for the moments of the process and a
careful analysis of the boundary flux.
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1. Introduction
The Wright–Fisher model [16, 35], the basic model of population genetics, models

random genetic drift in a finite population of fixed size. It describes the evolution of the
probabilities between non-overlapping generations of several alleles, that is, competing
alternatives for representation at a genetic locus. These probabilities are obtained from
random sampling in the parental generation. In more detail, we have a population of
finite size N carrying initially n+1 different alleles, at a single locus in the basic version
that we are concerned with here. For each member of a new generation – the model
works with discrete time steps – randomly (with replacement) a mother is drawn from
the previous generation, who then donates her allele to that offspring. Eventually, all
but one allele will get lost by random drift from the population, because it may happen
that at some time, by chance no carrier of a particular allele is chosen as a mother for a
member of the next generation. Then in that and all future generations, that particular
allele will no longer be represented. Therefore, almost surely, asymptotically only a
single allele will survive. For the mathematical analysis, starting with the pioneering
work of Kimura [23–25], one goes to the diffusion approximation of the process, that is,
rescales time as t= 1

N and lets N→∞. The evolution of the probability distribution
of the alleles in the population is then described by the so-called forward Kolmogorov
equation

∂

∂t
u(x,t)=

1

2

n∑
i,j=1

∂2

∂xi∂xj

(
xi(δij−xj)u(x,t)

)
in (Δn)∞=Δn×(0,∞), (1.1)

which is also known as the Fokker–Planck equation (cf. also Section 3 for more details).
The state space here is the n-dimensional probability simplex Δn. That is, instead
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of the original model of a finite population evolving in discrete time steps, rather one
considers the diffusion approximation for an infinite population in continuous time.

The basic model just described covers a single genetic locus only. Extensions to
several loci are possible, as is the inclusion of mutation, selection, or a spatial population
structure, and this has driven research in mathematical population genetics (see [4,14]).
The forward Kolmogorov equation is a partial differential equation of parabolic type.
There is another important PDE associated with this process, the backward Kolmogorov
equation

∂

∂t
u(x,t)=

1

2

n∑
i,j=1

(
xi(δij−xj)

) ∂2

∂xi∂xj
u(x,t) in (Δn)∞=Δn×(0,∞), (1.2)

which is the adjoint of the forward equation w.r.t. a suitable product (and with a
boundary contribution whose analysis will be the main new tool of the present paper).

The forward equations describes how an initial probability distribution for the al-
leles in a population evolves in time. Since, as explained, alleles can disappear from
the population by random genetic drift and will then be lost forever (unless the possi-
bility of mutations is included, which, however, we do not consider in this paper), one
needs to dynamically connect strata corresponding to different allele numbers. This is
the main source of difficulties addressed in this paper, particularly as the operator in
equation (1.1) becomes degenerate towards the boundary of the domain.

We note that we cannot prescribe boundary values for the Kolmogorov forward
equation (1.1). In terms of the process, the boundary plays a passive role as there is
flux from the interior to the boundary, but not in the other direction. Therefore, the
boundary values are determined by the evolution of the solution in the interior. In
analytical terms, we have an exit boundary in the terminology of Feller [15].

The backward equation, in contrast, describes the evolution of the probabilities
of the distributions of ancestral states giving rise to the present allele distribution.
Solutions of an inhomogeneous backward equation also yield formulas for expected loss
of allele times. In the backward equation, the transition between strata is simpler,
because the contributions from the various strata essentially add up. That is, the
degeneracy at the boundary is easier for the backward than for the forward equations,
and there already exists a substantial literature deriving corresponding expansions for
the solution of the backward equations, see for instance [10, 17, 18, 27–30]. A powerful
tool in this line of research has been Kingman’s coalescent [26], that is, the method of
tracing lines of descent back into the past and analyzing their merging patterns (for
a quick introduction to that theory, see also [21]). We shall describe some of these
achievements in more detail below.

Here, as already mentioned, we analyze the more difficult boundary transitions for
the forward equation. For this purpose, we shall also utilize the duality between the
forward and the backward equation in an essential manner. Nevertheless, we should
emphasize that the solutions of the forward equation are different from those of the
backward equation and cannot be recovered from the latter. Therefore, the results
about solutions of the backward equation that we shall reference below do not directly
apply to the forward equation. Therefore, we develop a different approach in this paper.

Since the original work of Fisher, Wright, and Kimura, the Wright–Fisher model as
well as several extensions or generalizations of it have been investigated in considerable
detail. One research line incorporated the model into the general theory of stochastic
processes or partial differential equations and derived existence and regularity results
from that general perspective, see for instance [9, 11–13, 22] for stochastic processes
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or [7, 8] for partial differential equations. Much research was also concerned with ex-
plicit results and formulas, for instance for the expected time of loss of an allele, and
therefore, while relying on the abstract theory, had to work out the specific and explicit
structure of the model. We propose a third line of research on the Wright–Fisher model,
based on geometric constructions, more specifically on information geometry, that is,
the geometry of probability distributions, see [1, 2].

In fact, the structure of the model is surprisingly rich, in particular when viewed
from a geometric perspective. We are carrying out a systematic research project (see
[19,31–34]) to develop this structure and thereby obtain an understanding of the Wright–
Fisher model that is both deeper and more explicit, in the sense that precise formulae
for the quantities of interest can be derived. The present paper, which is based on [19],
is a key component of this project.

There are many solution schemes for the Kolmogorov forward equation (1.1) in the
literature. As early as 1956, Kimura presented a local solution scheme for the 3-allelic
case (n=2) in [25]. Another approach by separation of variables was presented by
Baxter, Blythe, and McKane in [3], this time for an arbitrary number of alleles. For
the Kolmogorov backward equation, the situation is even better. The starting point
of much of the literature was the observation of Wright [36] that when one includes
mutation, the degeneracy at the boundary is removed. And when the probability of a
mutation of allele i into allele j depends only on the target j, then the backward process
possesses a unique stationary distribution, at least as long as those mutation rates are
positive. This then lead to explicit representation formulas in [10, 17, 18, 27–30]. Some
of these formulas, in particular those of [10, 29] also pertain to the limit of vanishing
mutation rates. In [29], a superposition of the contributions from the various strata was
achieved, whereas in [10] one could write down an explicit formula in terms of a Dirichlet
distribution. As already mentioned, for the Kolmogorov forward equation, the situation
is more subtle because such a superposition for the contributions from the various strata
no longer holds. The difference is the following. The backward equation produces the
probability distribution of ancestral states giving rise to a current distribution. That
latter distribution may involve states with different numbers of alleles present. Their
ancestral distributions, however, do not interfere, regardless of the numbers of alleles
they involve. Thus, some superposition principle holds, and the Kolmogorov backward
equation nicely extends to the boundary. In contrast, the Kolmogorov forward equation
yields the future distribution evolving from a current one. Here, however, the probability
of some boundary state does not only depend on the flow within the corresponding
boundary stratum, but also on the distribution in the interior, because at any time, there
is some probability that an interior state loses some allele and turns into a boundary
state. Thus, there is a continuous flux into the boundary strata from the interior.
Therefore, the extension of the flow from the interior to the boundary strata is different
from the intrinsic flows in those strata, and no superposition principle holds.

Let us now describe in more specific terms what we achieve in this paper. The key is
the degeneracy at the boundary of the Kolmogorov equations. While from an analytical
perspective, this presents a profound difficulty for obtaining boundary regularity of the
solutions of the equations, from a biological or geometric perspective, this is very natural
because it corresponds to the loss by random drift of some alleles from the population in
finite time. And from a stochastic perspective, this has to happen almost surely. Now,
however, even after an allele gets lost, the population keeps evolving by random genetic
drift according to the Wright–Fisher scheme, simply with fewer alleles than before, until
only one allele is left and the evolution comes to a halt (in this basic model). Therefore,
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it is biologically essential and geometrically natural to connect the processes before and
after the loss of an allele. When the original process, starting with, say, n+1 alleles,
takes place on an n-dimensional probability simplex, after the loss of an allele, we have
a process on an (n−1)-dimensional simplex. The latter then should be identified as a
facet of the former, that is, the loss of an allele simply means that the process moves
from the interior into the boundary of the original simplex. Of course, this will then
be repeated when further alleles get lost, and the process moves to lower and lower
dimensional boundary strata until it gets stuck in a corner. In this paper, we therefore
construct a global solution that incorporates and connects these successive loss of allele
events, that is:

Theorem 1.1 (cf. Theorem 4.12 on p. 1109). For n∈N and a given initial condi-
tion f ∈L2(Δn), the Kolmogorov forward equation (1.1) corresponding to the diffusion
approximation of the n-dimensional Wright–Fisher model possesses a unique extended
solution U :

(
Δn

)
∞−→R, which is defined on the entire closed simplex.

The key to our solution concept is the evolution of the moments of the underlying
process. These moments are global quantities, and their evolutions include what flows
into the boundary. For instance, the total mass of the process remains 1. The mo-
ment evolution equations constitute an infinite family of ODEs. We have ∂

∂t μ̄0(t)=0
(preservation of the total mass) and

∂

∂t
μ̄α(t)=−|α|(|α|−1)

2
μ̄α(t)+

n∑
i=1

αi(αi−1)

2
μ̄α−ei(t) (1.3)

where the moment μ̄α is the expectation value of xα, for α=(α1, . . . ,αn), |α|≥1 (ei de-
notes the multi-index (0, . . . ,0,1,0, . . . ,0) with 1 at the ith position). Our global solution
respects and reflects all these moment evolutions, and is in turn determined by them.
In that sense, the moment evolution equation (1.3) are equivalent to (our solution of)
the Kolmogorov forward equation.

In technical terms, this concept of (the extended) solution involves developing a
hierarchical scheme that relies on equations for the moments of the process, the interplay
between the forward and the backward Kolmogorov equations, representations of the
solutions in terms of Gegenbauer polynomials and on a careful analysis of the boundary
flux. We should also point out, that while the existing literature draws upon concepts
and results from the theory of stochastic processes in an essential way, our approach is
analytical and geometric and therefore offers an alternative to the existing ones. The
processes for fewer alleles that occur in our hierarchical scheme combine the intrinsic
dynamics with a reduced allele number with the contributions through loss-of-allele
events from larger allele sets. This avoids any singularities.

In geometric terms, we carefully investigate the boundary flux from a simplex into
its various boundary faces. In analytical terms, we reduce the Kolmogorov type PDE to
a family of ODEs, the moment evolution equations. Earlier research in that direction is
due to Dawson and Hochberg [5] and Dynkin [6], within a more general and therefore less
explicit scheme. In our approach, the moment equations are global and guarantee the
consistency of the process beyond loss-of-allele events and across the various boundary
faces, see Theorem 4.11. And in [32–34], we have already constructed a global solution,
which (implicitly) made use of the hierarchical scheme presented here.

From the PDE perspective [7, 8], it might be of interest to see how a PDE with
singular behavior at a singular boundary – recall the lower-dimensional boundary strata
where the boundary has corners – can be explicitly solved by a hierarchical scheme.
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Extensions to several loci and the effects of genetic recombination, processes with
mutations, presence of selective forces, etc. will be studied elsewhere.

2. Preliminaries and notation
Since we plan to develop a hierarchical scheme for the solution of the Kolmogorov

equations on the various boundary strata of the standard simplex, we need to develop
some notation for the recursive application of our scheme on different boundary strata.
We also need suitable hierarchical products. That is the purpose of this section.

We consider relative frequencies x0,x1, . . . ,xn of alleles 0,1, . . . ,n. Thus we have the
normalization

∑n
j=0x

j =1, and we therefore have x0=1−∑n
i=1x

i. We shall therefore
work with the (open) n-dimensional standard orthogonal simplex

Δn :=
{
(x1, . . . ,xn)∈Rn

∣∣xi>0 for i=1, . . . ,n and

n∑
i=1

xi<1
}
, (2.1)

or equivalently,

Δn=
{
(x1, . . . ,xn)∈Rn

∣∣xj >0 for j=0,1, . . . ,n and

n∑
j=0

xj =1
}
. (2.2)

Its topological closure is

Δn=
{
(x1, . . . ,xn)∈Rn

∣∣xi≥0 for i=1, . . . ,n and

n∑
i=1

xi≤1
}
. (2.3)

In order to include time t∈ [0,∞), we shall also use the notation

(Δn)∞ :=Δn×(0,∞).

The boundary ∂Δn=Δn \Δn consists of various subsimplices of descending di-
mensions called faces, starting from the (n−1)-dimensional facets down to the ver-
tices (which represent 0-dimensional faces). Each subsimplex of dimension k≤n−1
is isomorphic to the k-dimensional standard orthogonal simplex Δk. For an index set
Ik={i0,i1, . . . ,ik}⊂{0, . . . ,n} with ij �= il for j �= l we put

Δ
(Ik)
k :=

{
(x1, . . . ,xn)∈Δn

∣∣xi>0 for i∈ Ik; xi=0 for i∈ In \Ik
}
. (2.4)

We note that Δn=Δ
(In)
n .

For a given k≤n−1, there are of course
(
n+1
k+1

)
different such subsets Ik of In, each

of which corresponds to a certain boundary face Δ
(Ik)
k . We therefore introduce the

k-dimensional boundary ∂kΔn of Δn

∂kΔ
(In)
n :=

⋃
Ik⊂In

Δ
(Ik)
k ⊂∂Δ(In)

n for 0≤k≤n−1. (2.5)

With this notation, we have ∂nΔn=Δn, although this is not a boundary component.
The concept of the k-dimensional boundary also applies to simplices which are them-

selves boundary instances of some Δ
(Il)
l , Il⊂ In for 0≤k<l≤n, thus

∂kΔ
(Il)
l =

⋃
Ik⊂Il

Δ
(Ik)
k ⊂∂Δ

(Il)
l . (2.6)
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In the Wright–Fisher model, Δn corresponds to the state where all n+1 alleles are
present, whereas ∂kΔn represents the state where exactly (any) k+1 alleles are present

in the population. An individual Δ
({i0,...,ik})
k in ∂kΔn corresponds to the state where

exactly the alleles i0, . . . ,ik are present in the population. Likewise, ∂k−1Δ
({i0,...,ik})
k

corresponds to the state where exactly one further allele out of i0, . . . ,ik is eliminated
from the population.

In order to define integral products on Δn and its faces, we need appropriate spaces
of square integrable functions. Thus,

L2
( n⋃
k=0

∂kΔn

)
:=

{
f : Δn−→R

∣∣∣f |∂kΔn
is λλk-measurable and

∫
∂kΔn

|f(x)|2λλk(dx)<∞ for all k=0, . . . ,n
}
. (2.7)

Here, λλk is the k-dimensional Lebesgue measure, but when integrating over some Δ
(Ik)
k

with 0 /∈ Ik, the measure needs to be replaced with the one induced on Δ
(Ik)
k by the

Lebesgue measure of the containing Rk+1. That measure, however, will still be denoted

by λλk as it is clear from the domain of integration Δ
(Ik)
k with either 0∈ Ik or 0 /∈ Ik which

version is actually used. In particular, for the top-dimensional simplex, we simply have

L2(Δn) :=
{
f : Δn−→R

∣∣∣f is λλn-measurable and

∫
Δn

|f(x)|2λλn(dx)<∞
}
. (2.8)

Furthermore, we also define for k∈N∪{∞}

Ck
0 (Δn) :=

{
f ∈Ck(Δn)

∣∣f |∂Δn =0
}
, (2.9)

Ck
0 (Δn) :=

{
f ∈Ck(Δn)

∣∣∃ f̄ ∈Ck
0 (Δn) with f̄ |Δn

=f
}

(2.10)

as well as

Ck
c (Δn) :=

{
f ∈Ck(Δn)

∣∣supp(f)�Δn

}
. (2.11)

We can now introduce a product of functions u,v∈L2(Δn) by

(u,v)n :=

∫
Δn

u(x)v(x)λλn(dx). (2.12)

Importantly, we integrate here only over the interior Δn; the index – if no confusion is to
be expected – may be omitted. As n was arbitrary, the product may also be recursively

applied on some Δ
(Ik)
k ⊂∂Δn.

Utilising the various products ( · , ·)k on ∂kΔ
(In)
n for k=0, . . . ,n, we can now define

a hierarchical product on the closure of the simplex Δn. For functions u,v : Δn−→R

with u,v|
∂kΔ

(In)
n

∈L2
(
∂kΔ

(In)
n

)
for all k=0, . . . ,n, we put

[u,v]n :=
n∑

k=0

(u,v)k (2.13)
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with (u,v)k denoting the integral over the full k-dimensional boundary ∂kΔn of Δn (cf.
equation (2.5)), thus

[u,v]n=

n∑
k=0

(u,v)k=

n∑
k=0

∫
∂kΔn

u(x)v(x)λλk(dx)=

n∑
k=0

∑
Ik⊂In

∫
Δ

(Ik)

k

u(x)v(x)λλk(dx); (2.14)

here, λλk again denotes either the Lebesgue measure of Rk or – if the domain of integra-

tion is some Δ
(Ik)
k with 0 /∈ Ik – the measure induced on Δ

(Ik)
k by the Lebesgue measure

of the containing Rk+1.

3. The Kolmogorov equations
The Kolmogorov forward equation for the diffusion approximation of the n-allelic

1-locus Wright–Fisher model reads{
∂
∂tu(x,t)=Lnu(x,t) in (Δn)∞=Δn×(0,∞)

u(x,0)=f(x) in Δn, f ∈L2(Δn)
(3.1)

for u( · ,t)∈C2(Δn) for each fixed t∈ (0,∞) and u(x, ·)∈C1((0,∞)) for each fixed x∈Δn

and with

Lnu(x,t) :=
1

2

n∑
i,j=1

∂2

∂xi∂xj

(
xi(δij−xj)u(x,t)

)
(3.2)

being the forward operator. Analogously, we have the backward operator

L∗
nu(x,t) :=

1

2

n∑
i,j=1

(
xi(δij−xj)

) ∂2

∂xi∂xj
u(x,t), (3.3)

appearing in the corresponding Kolmogorov backward equation. The definitions of the
operators given in equations (3.2) and (3.3) also apply to the closure Δn, and in fact,
we shall also consider extensions of the solution and the differential equation to the
boundary. However, the operators become degenerate at the boundary. In fact, on the
boundary, the corresponding entries in the coefficient matrix (xi(δij−xj))ij vanish, thus
the operators are not uniformly elliptic on Δn.

Later, we will also use a weak formulation of the Kolmogorov forward equation[
∂

∂t
U(t),ϕ

]
n

=
[
U(t),L∗

nϕ
]
n

for ϕ∈C∞(Δn) and all t∈ (0,∞). (3.4)

Properties and eigenfunctions. For relations between the two operators, we
immediately have the following two lemmas:

Lemma 3.1. Ln and L∗
n are (formal) adjoints with respect to the product ( · , ·)n in the

sense that

(Lnu,ϕ)n=(u,L∗
nϕ)n for u∈C2(Δn), ϕ∈C2

0 (Δn). (3.5)

Proof. The assertion directly follows from Proposition 4.4 below.

Lemma 3.2. For an eigenfunction ϕ∈C2(Δn) of Ln and ωn :=
∏n

k=1x
k
(
1−∑n

l=1x
l
)
,

we have: ωnϕ∈C2
0 (Δn) is an eigenfunction of L∗

n corresponding to the same eigenvalue
and conversely.
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Proof. Looking for a function ωn with L∗
n(ωnu)=ωnLn(u) (and hence, for Ln-

eigenfunctions ϕ, L∗
n(ωnϕ)=ωnLn(ϕ)=−λωnϕ), we have on the one hand

Lnu=−n(n+1)

2
u+

∑
i

(1−(n+1)xi)
∂

∂xi
u+

1

2

∑
i,j

xi(δij−xj)
∂

∂xi

∂

∂xj
u (3.6)

and on the other hand

L∗
n(ωnu)=

1

2

∑
i,j

xi(δij−xj)
∂

∂xi

∂

∂xj
(ωnu)

=
1

2

∑
i,j

xi(δij−xj)
(( ∂

∂xi

∂

∂xj
ωn

)
u+2

∂

∂xj
ωn

∂

∂xi
u+ωn

∂

∂xi

∂

∂xj
u
)
. (3.7)

Thus, it suffices that such a function ωn satisfies⎧⎨
⎩
∑

i,j x
i(δij−xj) ∂

∂xi
∂

∂xj ωn=−n(n+1)ωn∑
j x

i(δij−xj) ∂
∂xj ωn=(1−(n+1)xi)ωn for all i,

(3.8)

which is the case for ωn=
∏n

k=1x
k
(
1−∑n

l=1x
l
)
as may easily be verified by direct

computation.

For our hierarchical scheme, it will be important that the operator L∗
n, if restricted

to subsimplices Δ
(Ik)
k

∼=Δk in ∂Δ
(In)
n of any dimension k, is the adjoint of the differential

operator Lk corresponding to the evolution of a (k+1)-allelic process in Δk:

Lemma 3.3. For 0≤k<n and Ik⊂{0, . . . ,n}, |Ik|=k, we have

L∗
n

∣∣
Δ

(Ik)

k

=L∗
k. (3.9)

Proof. For Ik⊂{1, . . . ,n}, |Ik|=k, we directly have:

L∗
n

∣∣
Δ

(Ik)

k

=
1

2

n∑
i,j=1

(
xi(δij−xj)

) ∂2

∂xi∂xj

∣∣∣
Δ

(Ik)

k

=
1

2

∑
i,j∈Ik

(
xi(δij−xj)

) ∂2

∂xi∂xj
≡L∗

k. (3.10)

By symmetry, this then also holds for Ik with 0∈ Ik, hence for arbitrary Ik.

We may therefore omit the index k in L∗
k whenever convenient, in particular when

considering domains where (parts of) the boundary are included. For the operator Ln,
in contrast, we do not have such a restriction property.

The starting point of our solution scheme will be the solution constructed in [33].
That solution depends on::

Proposition 3.4. For n∈N+ and each multi-index α=(α1, . . . ,αn) with |α|=α1+
· · ·+αn= l≥0,

Cl,α(x) :=xα+

l−1∑
|β|=0

al,βx
β , x∈Δn (3.11)
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with al,β inductively defined by al,β := δαβ for |β|= l and

al,β :=−
∑n

i=1(β
i+2)(βi+1)al,(β1,...,βi+1,...,βn)

(l−|β|)(l+ |β|+2n+1)
for all 0≤|β|≤ l−1, (3.12)

is an eigenfunction of Ln in Δn corresponding to the eigenvalue λ
(n)
l = (n+l)(n+l+1)

2 .

4. Solution schemes for the Kolmogorov forward equation

Knowing the eigenfunctions (cf. Proposition 3.4), it is straightforward to reconstruct
the local solution of [3, 25] (for details cf. [31, 33]).

Proposition 4.1. For n∈N and any initial condition f ∈L2(Δn), the Kolmogorov
forward equation corresponding to the diffusion approximation of the n-dimensional
Wright–Fisher model (3.1) always possesses a unique solution u :

(
Δn

)
∞−→R with

u( · ,t)∈C∞(Δn) for each fixed t∈ (0,∞) and u(x, ·)∈C∞((0,∞)) for each fixed x∈Δn.
Furthermore, this solution (and all its spatial derivatives) may be extended continuously
to the boundary ∂Δn.

The regularity, which follows from the regularity of the generalized Gegenbauer
polynomials, of course agrees with standard PDE theory (cf. e.g. [20]).

4.1. Moments and the weak formulation of the Kolmogorov forward
equation. The solution of equation (3.1) in Δn lacks conservation properties: As

the smallest eigenvalue of Ln is λ
(n)
0 = n(n+1)

2 >0, a solution tends to 0 everywhere in
Δn for t→∞. In particular, the total mass and all other moments are not preserved.
However, these properties are an important property of the model, and what disappears
in the interior of the simplex should accumulate in its boundary. After all, the process
should continue after the loss of one or several alleles. We shall therefore introduce
a suitable extended solution on the entire Δn. This solution will be derived from the
conservation of the moments of the process.

The moments of the n-dimensional process as obtained as limits of those from the
underlying discrete model satisfy the moment evolution equations

∂

∂t
μ̄α(t)=−|α|(|α|−1)

2
μ̄α(t)+

n∑
i=1

αi(αi−1)

2
μ̄α−ei(t) (4.1)

for α=(α1, . . . ,αn), |α|≥1, whereas ∂
∂t μ̄0(t)=0 (with ei denoting the multi-index

(0, . . . ,0,1,0, . . . ,0) with 1 appearing at the ith position). These moments can be de-
fined as

μ̄α(t) :=
[
U,xα

]
n
≡

n∑
k=0

∫
∂kΔn

U(x,t)xαλλk(dx), t≥0, α=(α1, . . . ,αn), (4.2)

with the hierarchical product introduced in equation (2.13). This now involves an
integration over Δn, that is, including the boundary ∂Δn of the state space, which
corresponds to configurations of the model where some allele frequencies may be zero.
Therefore, we introduce the capitalized U : (Δn)∞−→R as an extended solution as
the probability density function of the diffusion approximation of the n-dimensional
Wright–Fisher process on the entire Δn (thus in particular U |Δn is a solution of the
Kolmogorov forward equation (3.1) in Δn).
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We shall now discuss the consistency between the moments evolution equation (4.1)
and the Kolmogorov backward operator L∗ in Δn as defined in equation (3.3) (actu-
ally, the following considerations also hold for a generic product [ · , · ]). Since L∗ has
polynomial coefficients, it maps polynomials to polynomials, and we have

L∗xα=
1

2

n∑
i,j=1

(
xi(δij−xj)

) ∂2

∂xi∂xj
xα

=
1

2

n∑
i=1

αi(αi−1)(xα−ei−xα)− 1

2

∑
i �=j

αiαjx
α

=
1

2

n∑
i=1

αi(αi−1)xα−ei− 1

2
|α|(|α|−1)xα for x∈Δn, (4.3)

which yields, using the notation of Equation (4.2),

[
U(t),L∗

nx
α
]
n
=

1

2

n∑
i=1

αi(αi−1)μ̄α−ei(t)−
1

2
|α|(|α|−1)μ̄α(t) (4.4)

where the right-hand side is equal to that of Equation (4.1). Thus, if the moments
equation is fulfilled for some probability density function U , we may equivalently write

∂

∂t
μ̄α(t)=

[
∂

∂t
U(t),xα

]
n

=
[
U(t),L∗

nx
α
]
n

for t∈ (0,∞). (4.5)

Since the xα generate the space of all polynomials and since the polynomials are
dense in C∞, we therefore also have such relations for arbitrary test functions ϕ,[

∂

∂t
U(t),ϕ

]
n

=
[
U(t),L∗

nϕ
]
n

for ϕ∈C∞(Δn) and all t∈ (0,∞). (4.6)

This is our weak formulation (3.4) of the Kolmogorov forward Equation (3.1). We may
also write the initial condition1 weakly as[

U( · ,0),ϕ]
n
=

[
f,ϕ

]
n

for all ϕ∈C∞(Δn), (4.7)

which requires no explicit regularity towards the boundary (but we shall need that
its restriction to interior instances can be continuously extended to the correspond-
ing boundary). Only, an integrability condition applies, which is U( · ,t), ∂

∂tU( · ,t),f ∈
L2

(⋃n
k=0∂kΔn

)
for t≥0.

Summarizing our findings, we have:

Lemma 4.2. A function U :
(
Δn

)
∞−→R, U( · ,t), ∂

∂tU( · ,t)∈L2
(⋃n

k=0∂kΔn

)
for t≥0

with corresponding moments μ̄α(t)= [U(t),xα]n, α=(α1, . . . ,αn), t≥0 that satisfies the
moments evolution equation (4.1) also solves the weak formulation of the Kolmogorov
forward equation (4.6) and conversely.

1Since we integrate over Δn, f may now also be formulated as an extended initial condition on
the entire Δn. Then, f |∂Δn �=0 would correspond to the process (partially) already starting on certain
boundary instances. However, these parts of the process exactly evolve as a proper process of corre-
sponding dimension, and hence do not yield any further insight into the nature of the process. For this
reason, we will usually assume f |∂Δn ≡0 or that f is extended that way if it is only given on Δn.
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4.2. A hierarchical extension of solutions and the boundary flux. We
shall now construct suitable boundary values as required for an extended solution
U :

(
Δn

)
∞−→R. For that purpose, we shall introduce the concept of the boundary

flux. The investigation of the boundary flux as the basis for a hierarchical solution
scheme is the main new contribution of this paper and will follow below.

Definition 4.3. For Δ
(In)
n with In={0,1, . . . ,n} and a solution u :

(
Δ

(In)
n

)
∞−→R of

the Kolmogorov forward equation (3.1) for given f : Δ
(In)
n −→R as in Proposition 4.1,

a hierarchical extension

U :
(
Δ

(In)
n

)
∞−→R with U(x,t) :=

n∑
k=0

Uk(x,t)χ∂kΔ
(In)
n

(x) (4.8)

is given by

Uk :
(
∂kΔ

(In)
n

)
∞−→R with Uk(x,t):=

⎧⎪⎨
⎪⎩
u(x,t) for x∈Δ(In)

n ≡∂nΔ
(In)
n

Uk,Ik(x,t) for x∈Δ(Ik)
k ⊂∂kΔ

(In)
n ,Ik⊂ In

0 otherwise

(4.9)

for all 0≤k≤n and

Uk,Ik :
(
Δ

(Ik)
k

)
∞−→R with Uk,Ik(x,t) :=

t∫
0

uτ
k,Ik

(x,t−τ)dτ (4.10)

for 0≤k≤n−1 and for all subsets Ik⊂ In. Here, uτ
k,Ik

(x,t) :
(
Δ

(Ik)
k

)
∞−→R is a solu-

tion of ⎧⎨
⎩
Lku(x,t)=

∂
∂tu(x,t) (x,t)∈ (

Δ
(Ik)
k

)
∞

u(x,0)=
∑

Ik+1⊃Ik
G⊥

Uk+1,Ik+1
(x,τ) x∈Δ(Ik)

k

(4.11)

for all τ >0 as in Proposition 4.1 and G⊥
Uk+1,Ik+1

is the normal component of the flux

of the continuous extension of Uk+1,Ik+1
to Δ

(Ik+1)
k+1 .

In general, the flux Gu : (Δn)∞−→Rn of a solution u : (Δn)∞−→Rn of equa-
tion (3.1) is given in terms of its components

Gi
u(x,t) :=−

1

2

n∑
j=1

∂

∂xj
(xi(δij−xj)u(x,t))=−1

2

n∑
j=1

∂

∂xj
(aiju(x,t)), i=1, . . . ,n. (4.12)

In particular, we have

divGu=

n∑
i=1

∂

∂xi
Gi

u=−Lnu=−ut. (4.13)

Again, this concept directly extends to boundary instances of Δn if u extends to the
boundary such that the extension is of class C2 with respect to the spatial variables
(which is the case for a solution from Proposition 4.1).
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With this flux, we can now state a generalized form of Lemma 3.1, which yields the
adjointness for the Kolmogorov operators Ln and L∗

n also for non-vanishing boundary
terms:

Proposition 4.4. For n∈N+ and u,ϕ∈C2
(
Δn

)
, we have

(Lnu,ϕ)n=−
∫

∂n−1Δn

ϕGu ·νdλλn−1+(u,L∗
nϕ)n (4.14)

where Gu is the flux of u and ν the outward unit surface normal to ∂Δn.

Proof. We use the integration by parts formula∫
Ω

∂u

∂xi
ϕdΩ=

∫
∂Ω

ϕuνid∂Ω−
∫
Ω

u
∂ϕ

∂xi
dΩ, (4.15)

holding for a domain Ω with piecewise continuous boundary ∂Ω, u,ϕ∈C1(Ω) and νi

being the ith component of the outward unit surface normal to ∂Ω. This yields

(Lnu,ϕ)n=−
∫
Δn

∑
i

∂

∂xi
Gi

uϕdλλn

=−
∫

∂Δn

∑
i

Gi
uν

iϕdλλn−1+

∫
Δn

∑
i

Gi
u

∂

∂xi
ϕdλλn. (4.16)

⋃n−2
k=0 ∂kΔn clearly is a null set with respect to λλn−1, and we may hence replace the

domain of integration of the first summand by ∂n−1Δn. For the second term, we apply
the integration by parts formula again (with the modified domain of integration):

∫
Δn

∑
i

Gi
u

∂

∂xi
ϕdλλn=−

∫
∂n−1Δn

1

2

∑
i,j

xi(δij−xj)uνj
∂

∂xi
ϕdλλn−1

+

∫
Δn

1

2

∑
i,j

aiju
∂2

∂xi∂xj
ϕdλλn. (4.17)

For the boundary integral over ∂n−1Δn=
⋃n

l=0Δ
(In\{l})
n−1 , we have νj =−δjl on Δ

(In\{l})
n−1 ,

l=1, . . . ,n and νj = 1√
n
on Δ

(In\{0})
n−1 , which yields

∑
j

xi(δij−xj)uνj =−xi(δil−xl)u=0 on Δ
(In\{l})
n−1 =

{
xl=0

}
(4.18)

and

∑
j

xi(δij−xj)uνj =
1√
n

∑
j

xi(δij−xj)u

=
1√
n
xi
(
1−

∑
j

xj
)
u=0 on Δ

(In\{0})
n−1 =

{
1−

∑
j

xj =0
}
. (4.19)
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Thus, the second integral over ∂n−1Δn vanishes. Altogether, we have

(Lnu,ϕ)n=−
∫

∂n−1Δn

∑
i

Gi
uν

iϕdλλn−1+

∫
Δn

u
1

2

∑
i,j

aij
∂2

∂xi∂xj
ϕdλλn (4.20)

=−
∫

∂n−1Δn

Gu ·νϕdλλn−1+(u,L∗
nϕ)n. (4.21)

If ϕ : Δn−→R is a polynomial of degree less than 2, we have L∗ϕ=0. Integrating
the flux Gu on ∂n−1Δn over time as boundary values for a solution u of equation (3.1)
(resp. for its continuous extension to ∂Δn), Proposition 4.4 already yields the behaviour
for the 0th and the 1st moment which is prescribed by the moments evolution equa-
tion (4.2). Thus, the total mass and the expectation value of the process are preserved
in this case.

This concept of a solution in Δn plus accumulated flux on the boundary ∂n−1Δn is
not yet sufficient. In general it does not yield the desired evolution laws for moments of
degree 2 or higher, nor does ∂n−1Δn account for the full boundary ∂Δn. This is resolved
by assuming that the incoming flux rather evolves as if it were an (n−1)-dimensional
Wright–Fisher process, i.e. as a subsolution on ∂n−1Δn instead of accumulating it on
∂n−1Δn for n≥2 statically. Iteratively repeating the construction of boundary data to
the boundary instances of lower dimension by assessing the respective boundary flux of
the subsolutions on each ∂n−2Δn−1 leads to Definition 4.3.

Remark 4.5. For a given solution u of equation (3.1), the induced boundary func-

tions Uk on ∂kΔ
(In)
n for 0≤k≤n−1 of Definition 4.3 in general do not satisfy the

equation ∂
∂tUk=LkUk in some Δ

(Ik)
k ⊂∂kΔ

(In)
n . Consequently, they are not solutions of

the corresponding k-dimensional problem (3.1) in Δ
(Ik)
k .

4.3. An application of the hierarchical conception. For the hierarchically
extended solution and the product [ · , · ]n, we may now continue the line of reasoning of
Lemma 3.1 and Proposition 4.4.

Proposition 4.6. A hierarchical extension U :
(
Δ

(In)
n

)
∞−→R (cf. Definition 4.3) of

a solution u of the Kolmogorov forward equation (3.1) in Δn satisfies

[
∂

∂t
U(t),ϕ

]
n

=
[
U(t),L∗ϕ

]
n

(4.22)

for ϕ∈C∞(
Δ

(In)
n

)
and for all t∈ (0,∞).

Proof. By Proposition 4.4 we have for Un≡u and arbitrary ϕ∈C∞(
Δ

(In)
n

)
(

∂

∂t
Un,ϕ

)
n

=
(
LnUn,ϕ

)
n
=−

∫
∂n−1Δ

(In)
n

ϕG⊥
Un

dλλn−1+
(
Un,L

∗
nϕ

)
n
, (4.23)

where G⊥
Un

=GUn
·ν denotes the (normal) flux of the continuous extension of Un to

∂n−1Δ
(In)
n . The boundary integral can be expressed in terms of the evolution of the
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boundary function Un−1 that lives on ∂n−1Δ
(In)
n . As this implies a hierarchical depen-

dence on the particular subprocesses, we directly start our consideration for arbitrary
k∈{1, . . . ,n}. Then we have by Proposition 4.4 and for all Ik⊂ In∫

Δ
(Ik)

k

(LkUk,Ik)ϕdλλk=−
∫

∂k−1Δ
(Ik)

k

ϕG⊥
Uk,Ik

dλλk−1+

∫
Δ

(Ik)

k

Uk,IkL
∗
kϕdλλk, (4.24)

where GUk,Ik
again denotes the flux of the continuous extension of Uk,Ik to ∂k−1Δ

(Ik)
k

(not to be confused with the proper boundary function Uk−1 on ∂k−1Δ
(In)
n ). Thus, for

the whole k-dimensional boundary ∂kΔ
(In)
n of Δ

(In)
n , we have to sum over all Δ

(Ik)
k ⊂

∂kΔ
(In)
n resp. all subsets Ik⊂ In. This yields (since

⋃
Ik⊂In

Δ
(Ik)
k =∂kΔ

(In)
n and because

of the definition of Uk)∫
∂kΔ

(In)
n

(LkUk)ϕdλλk=
∑

Ik⊂In

∫
∂k−1Δ

(Ik)

k

ϕG⊥
Uk,Ik

dλλk−1+

∫
∂kΔ

(In)
n

UkL
∗
kϕdλλk. (4.25)

Transforming the boundary term using
⋃

Ik⊂In
∂k−1Δ

(Ik)
k =

⋃
Ik−1⊂In

Δ
(Ik−1)
k−1 and em-

ploying the product notation, we get

(
LkUk,ϕ

)
k
=

∑
Ik−1⊂In

∫
Δ

(Ik−1)

k−1

ϕ
∑

Ik⊃Ik−1

G⊥
Uk,Ik

dλλk−1+
(
Uk,L

∗
kϕ

)
k
. (4.26)

Now, the sum of fluxes appearing here may be expressed in terms of the evolution of the

associated boundary function Uk−1,Ik−1
on Δ

(Ik−1)
k−1 for every Ik−1⊂ In. By the chain

rule, we have on Δ
(Ik−1)
k−1

∂

∂t
Uk−1,Ik−1

(x,t)=
∂

∂t

t∫
0

uτ
k−1,Ik−1

(x,t−τ)dτ

=uτ
k−1,Ik−1

(x,t−τ)
∣∣
τ=t

+

t∫
0

∂

∂t
uτ
k−1,Ik−1

(x,t−τ)dτ

=ut
k−1,Ik−1

(x,0)+

t∫
0

Lk−1u
τ
k−1,Ik−1

(x,t−τ) (4.27)

by the solution property of uτ
k−1,Ik−1

. Interchanging Lk−1 with the τ -integration and

substituting ut
k−1,Ik−1

(x,0) by the initial values as prescribed altogether yields

−
∑

Ik⊃Ik−1

G⊥
Uk,Ik

(x,t)=− ∂

∂t
Uk−1,Ik−1

(x,t)+Lk−1Uk−1,Ik−1
(x,t). (4.28)

Multiplying this with ϕ, integrating over Δ
(Ik−1)
k−1 and summing over all Ik−1⊂ In results

in

−
∑

Ik−1⊂In

∫
Δ

(Ik−1)

k−1

ϕ
∑

Ik⊃Ik−1

G⊥
Uk,Ik

dλλk−1
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=−
∑

Ik−1⊂In

∫
Δ

(Ik−1)

k−1

ϕ
∂

∂t
Uk−1,Ik−1

dλλk−1+
∑

Ik−1⊂In

∫
Δ

(Ik−1)

k−1

ϕLk−1Uk−1,Ik−1
dλλk−1

=−
(

∂

∂t
Uk−1,ϕ

)
k−1

+
(
Lk−1Uk−1,ϕ

)
k−1

, (4.29)

since
⋃

Ik−1⊂In
Δ

(Ik−1)
k−1 =∂k−1Δ

(In)
n . Combining this with equation (4.26), we get

(
LkUk,ϕ

)
k
=−

(
∂

∂t
Uk−1,ϕ

)
k−1

+
(
Lk−1Uk−1,ϕ

)
k−1

+
(
Uk,L

∗
kϕ

)
k
, (4.30)

which – by assumption – holds for all k∈{1, . . . ,n}. Hence, this formula may be iterated
over k, yielding (

∂

∂t
Un,ϕ

)
n

=
(
LnUn,ϕ

)
n

⇔
(

∂

∂t
Un,ϕ

)
n

+

(
∂

∂t
Un−1,ϕ

)
n−1

=
(
Un,L

∗
nϕ

)
n
+
(
Ln−1Un−1,ϕ

)
n−1

...

⇔
n∑

k=0

(
∂

∂t
Uk,ϕ

)
k

=

n∑
k=1

(
Uk,L

∗
kϕ

)
k
+
(
L0U0,ϕ

)
0
. (4.31)

The last summand on the right-hand side may (formally) be replaced by
(
U0,L

∗
0ϕ

)
0
as

they both vanish due to L0=L∗
0=0, thus proving the assertion.

By Lemma 4.2 we immediately obtain:

Corollary 4.7. All moments μ̄α(t), t≥0 as defined in equation (4.2) of a hierarchical

extension U :
(
Δ

(In)
n

)
∞−→R (cf. Definition 4.3) of a solution u of the Kolmogorov

forward equation (3.1) in Δn satisfy the moments evolution equation (4.1).

Proof. For ϕ=1 and ϕ=xi, we have L∗(ϕ)=0, thus by equation (4.22)

n∑
k=0

(
∂

∂t
Uk,ϕ

)
k

=0. (4.32)

Thus, the hierarchical extension of a solution of the Kolmogorov forward equation
(3.1) via the flux of the solution yields the ‘right’ boundary values on the entire ∂Δn in
the sense that all moments of the process defined via the hierarchical product [ · , · ]n in
Equation (4.2) do behave like the limit of the moments underlying the discrete processes,
which as well confirms the specific choice of [ · , · ]n.

Moreover, we may show that any extension of a solution of the Kolmogorov forward
equation (3.1) to Δn yielding the correct moments already coincides with the hierarchical
extension as in Definition 4.3. This is due to Lemma 4.2 and the following proposition:

Proposition 4.8. For any initial condition f ∈L2(Δn), a solution U :
(
Δn

)
∞−→R

of the weak Kolmogorov forward equation (4.6) is uniquely defined on Δn.
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Corollary 4.9. For any initial condition f ∈L2(Δn), a solution U :
(
Δn

)
∞−→R

of the weak Kolmogorov forward equation (4.6) coincides with the hierarchical extension
U :

(
Δn

)
∞−→R (cf. Definition 4.3) of a solution u of the (strong) Kolmogorov forward

equation (3.1) in Δn.

For the proof of Proposition 4.8, we need the following lemma:

Lemma 4.10. The linear span of
{
ωnϕ∈C∞

0

(
Δn

)∣∣ϕ eigenfunction of Ln

}
is dense

in C∞
c (Δn).

Proof. From Proposition 3.4 we already see that the linear combinations of the
eigenfunctions of Ln are dense in C∞(Δn). Dividing a function f ∈C∞

c (Δn) by ωn (cf.
Lemma 3.2) again yields a function in C∞

c (Δn)⊂C∞
0 (Δn) as ωn is in C∞

0 (Δn) itself
and positive in the interior Δn.

Proof. (Proof of Proposition 4.8.) Assume that U ′ :
(
Δn

)
∞−→R is another solu-

tion of equation (4.6) for a given initial condition f . We need to show that U and U ′

agree on all ∂kΔn⊂Δn for k=n,...,0. We start with ∂nΔn≡Δn. For an eigenfunction
ϕ∈C∞(Δn) of Ln (corresponding to the eigenvalue λ), we obtain by Lemma 3.2 that
ψ :=ωnϕ is an eigenfunction of L∗

n with eigenvalue λ and, by the properties of ωn, that
ψ∈C∞

0 (Δn). For such a ψ, the weak Kolmogorov forward equation (4.6) then reduces
to (

∂

∂t
U,ψ

)
n

=(U,L∗
nψ)n ≡−λ(U,ψ)n (4.33)

and

(
∂

∂t
U ′,ψ

)
n

=(U ′,L∗
nψ)n≡−λ(U ′,ψ)n (4.34)

respectively. Consequently, by t-integration we have

(U(t),ψ)n= e−λt(U(0),ψ)n, (4.35)

(U ′(t),ψ)n= e−λt(U ′(0),ψ)n, (4.36)

from which we obtain via U(0)=U ′(0)=f

(U(t),ψ)n=(U ′(t),ψ)n for t≥0 (4.37)

and for all eigenfunctions ψ. Since the linear span of these functions is dense in C∞
c (Δn)

(cf. Lemma 4.10), U and U ′ agree in Δn.
Now, we proceed inductively. Assume that we have already shown that U and U ′

agree on all ∂kΔn⊂Δn with k>m. Then for an eigenfunction ϕ : Δm−→R of Lm

(corresponding to the eigenvalue λ), ψ :=ωmϕ again is an eigenfunction of L∗
m with

eigenvalue λ and ψ∈C∞
0 (Δm). From any such ψ : Δm−→R, a function ψ : Δ

(In)
n −→R

may be composed, e.g. by copying ψ to Δ
(Im)
m ⊂∂mΔn for all Im⊂ In and employ-

ing convex combinations of the boundary values to spread to all higher dimensional
(boundary) instances subsequently while putting ψ :=0 on all lower dimensional bound-
ary instances. Of course, ψ in general is not an eigenfunction of L∗ in Δn, but we still

have (L∗ψ)
∣∣
Δ

(Im)
m

=L∗
mψ=−λψ for all Δ

(Im)
m ⊂∂Δn.
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For such a ψ, the weak Kolmogorov forward equation (4.6) becomes

(
∂

∂t
U,ψ

)
m

=−(
U,L∗

nψ
)
m
+

n∑
k=m+1

((
∂

∂t
U,ψ

)
k

−(
U,L∗

kψ
)
k

)
(4.38)

and

(
∂

∂t
U ′,ψ

)
m

=−(
U ′,L∗

nψ
)
m
+

n∑
k=m+1

((
∂

∂t
U ′,ψ

)
k

−(
U ′,L∗

kψ
)
k

)
(4.39)

with the sums on the right agreeing as U =U ′ on all ∂kΔn with k>m, hence(
∂

∂t
(U−U ′),ψ

)
m

=
(
U ′−U,L∗

nψ
)
m
≡λ

(
U ′−U,ψ

)
m
, (4.40)

which yields – analogously to our considerations above – U =U ′ in ∂mΔn on account of
the completeness of the ψ’s and the initial condition.

Thus, with the additional assumptions that the moments of the process coincide
with the limits of the moments of the underlying discrete processes, we altogether have:

Theorem 4.11. For n∈N and a given initial condition f ∈L2(Δn), the Kol-
mogorov forward equation corresponding to the diffusion approximation of the n-
dimensional Wright–Fisher model (3.1) always possesses a unique extended solution
U :

(
Δn

)
∞−→R in the sense that U |Δn

is a solution of equation (3.1) and its mo-

ments μ̄α(t) :=
[
U(t),xα

]
n
, t≥0 (cf. equation (4.2)) satisfy the n-dimensional moments

evolution equation (4.1).
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[30] S. Tavaré, Line-of-descent and genealogical processes, and their applications in population genetics

models, Theor. Popn. Biol., 26, 119–164, 1984.
[31] T.D. Tran, Information Geometry and the Wright–Fisher Model of Mathematical Population

Genetics, PhD thesis, University of Leipzig, 2012.
[32] T.D. Tran, J. Hofrichter, and J. Jost, An introduction to the mathematical structure of the Wright–

Fisher model of population genetics, Theory Biosc., 132, 73–82, 2013.
[33] T.D. Tran, J. Hofrichter, and J. Jost, A general solution of the Wright–Fisher model of random

genetic drift, submitted.
[34] T.D. Tran, J. Hofrichter, and J. Jost, The evolution of moment generating functions for the

Wright–Fisher model of population genetics, Mathematical Biosciences, to appear.
[35] S. Wright, Evolution in Mendelian populations, Genetics, 16, 97–159, 1931.
[36] S. Wright, Adaptation and Selection, G. Jepson, E. Mayr, and G. Simpson (eds.), Genetics, Pale-

ontology, and Evolution, Princeton Univ. Press, 365–389, 1949.


