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EMERGENCE OF PHASE-LOCKED STATES FOR THE KURAMOTO
MODEL IN A LARGE COUPLING REGIME∗

SEUNG-YEAL HA† , HWA KIL KIM‡ , AND SANG WOO RYOO§

Abstract. We study the emergence of phase-locked states to the finite-dimensional Kuramoto
model from generic initial configurations which are not phase-locked states in a large coupling regime.
In the literature of physics and engineering, it has often been argued that complete synchronization may
occur for a generic initial configuration in a large coupling regime. Such arguments are generally based
on the results of numerical simulations. Unfortunately, this plausible scenario has not been completely
verified by rigorous mathematical arguments, although there are several partial results available for a
restricted class of initial configurations. In this paper, we provide a sufficient framework for complete
synchronization from a generic initial configuration in a large coupling regime. Our analysis depends
on the gradient flow structure of the Kuramoto model and the uniform boundedness of the phase
configuration.
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1. Introduction
The synchronization of weakly coupled limit-cycle oscillators was first reported by

Huygens in the mid-17th century via two pendulum clocks hanging over a common bar.
Since then, the phenomenon was observed by several researchers [24] before Kuramoto’s
systematic studies [19,20] based on a coupled first-order ODE system (see [1,11,24,25]
for a brief history and mathematical results). In the last forty years, the Kuramoto
model has been extensively studied by physicists [1, 24, 25] and engineers in control
theory [7, 12, 18] in relation to a kind of phase-transition from a disordered to ordered
state at some critical coupling strength. For simplicity of presentation, we can visualize
Kuramoto oscillators as rotors moving on the unit circle S

1⊂C
1 in the complete plane.

Let zj = eiθj be the position of the jth rotor on the unit circle. In the following, θj and

θ̇j denote the phase and frequency, respectively, of the jth oscillator. Then, the phase
dynamics of Kuramoto oscillators are governed by the following system of ODEs:

θ̇j =Ωj+
K

N

N∑
k=1

sin(θk−θj), t>0, θj(0)=θj0, (1.1)

where K is the uniform positive coupling strength, and Ωj represents the intrinsic
natural frequency of the jth oscillator drawn from some distribution function g=g(Ω).
Without loss of generality, we assume that the natural frequencies and initial phases
both have an average of zero:

1

N

N∑
j=1

Ωj =0,
1

N

N∑
j=1

θj0=0, θj0∈ [−π,π), 1≤ j≤N. (1.2)
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Note that the right-hand side of (1.1) encodes the competing mechanisms of randomness
in the distributed natural frequencies and nonlinear coupling via the mean-field-type
sinusoidal interactions between oscillators. It is well known [1,11] that, as the coupling
strength K increases from zero to infinity, spontaneous synchronous dynamics emerges
among the ensemble of Kuramoto oscillators. However, this plausible scenario has not
been completely understood from a rigorous mathematical viewpoint, although several
mathematical results [7, 11, 12, 14, 15, 17, 18] are available for restricted classes of initial
configurations.

In this paper, we are mainly concerned with “(asymptotic) complete synchroniza-
tion,” whereby all oscillators asymptotically move on the unit circle with the same phase
velocity (frequency). The resulting asymptotic configuration (phase-locked state) looks
like a train moving on the circle. Thus, complete synchronization is sometimes called
an entrainment [1]. More precisely, for system (1.1) with finite N and a “generic ini-
tial configuration” Θ0, the complete synchronization problem (CSP) is to show that
the solution Θ(t) with initial configuration Θ0 converges to a phase-locked state for a
large coupling strength K. A detailed discussion on the CSP is given in Subsection 2.3.
Throughout this paper, we will consider the Kuramoto model whose phase space is RN ,
rather than T

N , although the right-hand side of (1.1) is 2π-periodic in the θ-variable,
and thus the configuration space is normally regarded as T

N. This extended view is
more convenient for the analysis in later sections.

It is well known [17,26] that the Kuramoto model (1.1) can be rewritten as a gradient
system with an analytical potential. Thus, as long as the configuration is bounded in
R

N , it converges to a unique phase-locked state (see Theorem 2.1). For system (1.1)
with the same natural frequencies Ωj =Ω, j=1, . . . ,N , Jadbabaie et al. [18] and Dong–
Xue [10] verified that all generic initial configurations lead to complete synchronization.
In particular, Dong–Xue showed that the phase configuration is uniformly bounded so
that the initial configuration tends asymptotically to the phase-locked state.

The main results of this paper are twofold. First, we provide a framework that
guarantees the uniform boundedness of solutions to (1.1)–(1.2). In Proposition 4.1, we
show the existence of a time-varying trapping set for dynamic solutions under a suffi-
ciently large coupling strength. This leads to the uniform boundedness of solutions to
(1.1)–(1.2). Second, we show that an initial configuration Θ0 with a positive Kuramoto
order parameter r(Θ0), where

r0= r(Θ0) :=
∣∣∣ 1
N

N∑
j=1

eiθj0
∣∣∣,

will evolve toward an admissible set in our framework described in Proposition 4.1 in
finite time. For this, we use the monotonicity of the order parameter for the ensem-
ble of identical oscillators and the closeness of dynamic trajectories of identical and
non-identical oscillators with small natural frequencies in a finite time interval (see
Proposition 4.1 and Lemma 4.1). Thus, our main result on the CSP can be stated as
follows (a detailed proof will be given in Section 4.2):

Theorem 1.1. Suppose that the initial configuration Θ0 and natural frequencies Ωi

satisfy the condition (1.2) and

r0>0, θj0 �=θk0, 1≤ j �=k≤N, max
1≤j≤N

|Ωj |<∞. (1.3)

Then there exists a large coupling strength K∞>0 such that if K≥K∞ then there exists
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a phase-locked state Θ∞ such that the solution with initial data Θ0 satisfies

lim
t→∞ ||Θ(t)−Θ∞||∞=0,

where the norm || · ||∞ is the standard �∞-norm in R
N .

Remark 1.1.
1. In [5,7,12,15], complete synchronization estimates have been obtained for some

restricted classes of initial configurations that can be confined to the half-circle
in finite time. However, the result presented in Theorem 1.1 covers all initial
configurations, except that with r0=0. Note that the set of all configurations
with r=0 has measure zero in the configurations space R

N .

2. (Non-uniqueness of phase-locked states): If we consider the phase-locked states
confined in a half circle region, it is unique up to phase-shift by orbital �1-
stability in a large coupling regime as shown in [5]. However in general, phase-
locked states are not unique even up to phase-shift as discussed in [3,22]. Thus,
our result in Theorem 1.1 is simply an existence theorem on the phase-locked
states.

3. Since we are mainly interested in the emergent phase-locked states from initial
configurations that are not phase-locked states, we imposed the first two condi-
tions in (1.3) to avoid trivial phase-locked states such as bipolar configurations
(see Definition 3.1), splay states which are uniformly distributed on the unit
circle as initial configurations in the case of identical oscillators.

The remainder of this paper consists of four sections. In Section 2, we briefly review
the gradient flow formulation of the Kuramoto model, Kuramoto order parameters, and
the state-of-the-art regarding the CSP. In Section 3, we study the structure of bipolar
configurations that emerge from generic initial configurations in an ensemble of identical
oscillators. In Section 4, we provide a proof of Theorem 1.1. Finally, Section 5 is devoted
to a summary of our main results and a discussion of possible future work.

2. Preliminaries
In this section, we review the gradient flow formulation of the Kuramoto model, the

dynamics of Kuramoto order parameters, and some state-of-the-art results on the CSP.
The first two subjects are crucial in later sections.

We first recall the definitions of a phase-locked state and complete synchronization
for the Kuramoto system (1.1).

Definition 2.1.
1. We say that Θ∞=(θ∞1 , . . . ,θ∞N ) is a phase-locked state of (1.1)–(1.2) if and only

if it is an equilibrium solution:

Ωj+
K

N

N∑
k=1

sin(θ∞k −θ∞j )=0, j=1, . . . ,N.

2. Let Θ=Θ(t) be a dynamic solution to system (1.1). Then, Θ exhibits complete
synchronization (in an asymptotic sense) if and only if the relative frequencies
tend to zero asymptotically, i.e.,

lim
t→∞ |θ̇j(t)− θ̇k(t)|=0, 1≤ j,k≤N.
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2.1. Kuramoto model as a gradient flow. For a given natural frequency set
{Ωj}Nj=1 and phase configuration Θ, we introduce the analytical potential V =V (Θ)

V [Θ] :=−
N∑

k=1

Ωkθk+
K

2N

N∑
k,l=1

(
1−cos(θk−θl)

)
. (2.1)

Then, it is easy to see [26] that system (1.1) can be rewritten as a gradient system with
potential V

Θ̇=−∇ΘV (Θ), t>0. (2.2)

As a gradient system, the Kuramoto model (2.1)–(2.2) has the following property re-
garding its asymptotic dynamics.

Theorem 2.2. [17] Let Θ=Θ(t) be a uniformly bounded global solution to (1.1)–(1.2)
in R

N :

sup
0≤t<∞

||Θ(t)||∞<∞.

Then the phase configuration Θ(t) and the frequency vector Θ̇(t) converge to a phase-
locked state and the zero vector, respectively as t→∞, i.e., there exists a phase-locked
state Θ∞ such that

lim
t→∞ ||Θ(t)−Θ∞||∞=0 and lim

t→∞ ||Θ̇(t)||∞=0.

Remark 2.1. In dynamical systems theory, uniform boundedness does not generally
imply convergence. This is essentially due to the gradient flow structure of the Kuramoto
flow with an analytical potential.

2.2. Order parameters. In this subsection, we review the dynamics of the
order parameters following the presentation in [15]. For a configuration Θ=Θ(t) gov-
erned by (1.1), the Kuramoto order parameters r and φ are defined by the following
relation:

reiφ :=
1

N

N∑
k=1

eiθk . (2.3)

Note that the modulus r is always bounded by 1, and is invariant under uniform rotation.
The state r(Θ)=1 corresponds to the state in which all phases are the same, i.e., phase
synchronization:

r(Θ)=1 ⇐⇒ Θ=(α,...,α), for some α∈R.

We next derive the dynamics of the order parameters r and φ. For this, we divide (2.3)
by eiθj to obtain:

rei(φ−θj)=
1

N

N∑
k=1

ei(θk−θj),



S.-Y. HA, H.K. KIM, AND S.W. RYOO 1077

and compare the real and imaginary parts of the above relation to find

rcos(φ−θj)=
1

N

N∑
k=1

cos(θk−θj),

rsin(φ−θj)=
1

N

N∑
k=1

sin(θk−θj).

(2.4)

By comparing the second relation in (2.4) and the coupling terms in (1.1), it is easy to
see that the Kuramoto system (1.1) can be rewritten in mean-field form:

θ̇j =Ωj−Krsin(θj−φ), t>0.

Lemma 2.3. [15] For identical oscillators with Ωi=0, the Kuramoto order parameter r
defined by relation (2.3) is monotonically increasing, i.e.,

ṙ≥0, t>0.

Remark 2.2. For identical oscillators, the order parameter r is non-decreasing, but
may not be strictly increasing. For example, let Θ0 be a bipolar configuration such that
m( �= N

2 ) identical oscillators are located at 0 and N−m are located at π. Then, it is
easy to see that this configuration is an equilibrium for (1.1), and

zc=
mei0+(N−m)eiπ

N
=

2m−N

N
�=0, r=

∣∣∣2m−N

N

∣∣∣>0.

Thus, we have

r(t)= r0, ∀ t≥0.

2.3. A complete synchronization problem. For the Kuramoto model (1.1)–
(1.2) with a randomly chosen initial configuration, as we increase the coupling strength
K from zero to a sufficiently large number compared to the size of Ωi, ensembles of
Kuramoto oscillators tend to phase-locked states as t→∞ in numerical simulations.
Thus, natural questions regarding this phenomenon are as follows.

• Problem A (emergence of phase-locked states): Can we verify the
emergence of phase-locked states for generic initial configurations,
when the coupling strength K is sufficiently large ?

• Problem B (existence of a critical coupling strength): Does a crit-
ical coupling strength exist in Problem A ? i.e., Is there a cou-
pling strength Kc such that if K>Kc, then the Kuramoto model
always exhibit the emergence of phase-locked states for generic
initial phase configurations, whereas if K<Kc, then there exists
a set S of initial configurations with a positive Lebesgue measure
in R

N such that phase-locked states do not emerge from initial
configurations in the set S ?

Of course, these two problems are closely related to each other. For the first problem,
there has been many previous works (see [11] for most updated results). The synchro-
nization problem [1, 8] has been studied using different approaches. Ermentrout [13]
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found a critical coupling at which all oscillators become phase-locked, independent of
their number, and the linear and nonlinear stabilities of this phase-locked state have
been studied in several papers (see [2, 4, 5, 9, 18, 21, 23, 26]) using tools such as Lya-
punov functionals, spectral graph theory, and control theory. The studies most closely
related to this paper are those of Chopra and Spong [7], Choi et al. [5], Dórfler and
Bullo [12], Ha et al. [15]. These papers use the phase diameter D(Θ) := max

1≤j,k≤N
|θj−θk|

as a Lyapunov functional, and study its temporal evolution via Gronwall’s inequality.
In fact, these papers only deal with initial configurations whose phase diameter is at
most π+ε with ε
1. More precisely, Ha–Kim–Park [15] extended the previous work
of Choi et al. [5] to allow initial configurations whose diameter is slightly larger than
π for sufficiently large coupling strength. In fact, they showed that sufficiently large
coupling can push initial configurations into configurations confined in the half circle so
that they can use the result in [5]. For this, they used the dynamics of order parameters
r and φ (see [15] for details). On the other hand, for Problem B, there are few works
available in [6, 12, 18]. In particular, Dórfler and Bullo [12] showed that K=D(Ω) is a
critical coupling strength for the set of initial configurations which can be confined in
the half circle. So far, the available necessary condition for a critical coupling strength is

Kc>
D(Ω)

2 . In this paper, we focus on the first problem on the emergence of phase-locked
states. We now recall a most recent result on complete synchronization from [5,15]. By
a slight modification of the arguments in [5, 15], we obtain the following estimate for
the Problem A.

Theorem 2.4. [5, 15] Suppose that the coupling strength K satisfies

K>D(Ω) := max
1≤j,k≤N

|Ωk−Ωj |.

and let Θ=Θ(t) be a solution to (1.1)–(1.2) such that there exists a positive time T ∈
(0,∞) such that

0<D(Θ(T ))<π−arcsin

(
D(Ω)

K

)
.

Then, there exist positive constants C0(T ) and Λ such that

D(Θ̇(t))≤C0 exp(−Λ(t−T )), as t→∞.

Remark 2.3.
1. For identical oscillators D(Ω)=0, complete synchronization has been shown

in [10] for an arbitrary initial configuration with D(Θ0)<2π. Of course, the
synchronization estimate given in [10] does not yield the detailed relaxation
process toward a phase-locked state as it is.

2. The result in [5] corresponds to the case T =0, i.e., D(Θ0)<π, and the result
in [15] deals with the case D(Θ0)<π+ε, ε
1 and K�D(Ω).

Before we close this section, we provide an elementary estimate of the dynamics of
Adler’s equation in R:

θ̇=Ω−K sinθ, t>0, θ(0)=θ0, (2.5)

where Ω and K are positive constants.
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An explicit representation of the solution to (2.5) can be found in Appendix D of [5].
Note that for K>Ω, equation (2.5) has the roots θ1u and θ1s :

0<θ1s <
π

2
<θ1u<π, θns =2(n−1)π+θ1s , θnu =2(n−1)π+θ1u, n �=1,

and a simple stability analysis shows that θns and θnu are stable and unstable equilibrium
points, respectively.

Lemma 2.5. Suppose the coefficients Ω and K in (2.5) and initial data θ0 satisfy

0<Ω<K, θ0∈ [−π,π), θ0 �=θ1u.

Then, the solution θ is uniformly bounded. More precisely, there are two cases:
1. If −π<θ0<θ1u, then

lim
t→∞θ(t)=θ1s .

2. If θ1u<θ0≤π, then

lim
t→∞θ(t)=θ1s+2π.

3. Structure of the emergent bipolar configuration
In this section, we study the structure of the emergent bipolar configuration from

the ensemble of identical Kuramoto oscillators.

We first define a bipolar configuration as follows.

Definition 3.1. We say that Θ=(θ1, . . . ,θN ) is a bipolar configuration if and only if
the following two conditions hold:

(i) |θk−θl|≡0, π mod 2π, 1≤k,l≤N and

(ii) ∃ k,j∈{1, . . . ,N} such that |θk−θj |≡π mod 2π.

It is clear that all bipolar configurations are equilibrium solutions to the following
system:

θ̇j =
K

N

N∑
k=1

sin(θk−θj), or equivalently θ̇j =Krsin(φ−θj). (3.1)

However, not all such bipolar configurations are emergent, i.e., they cannot be formed
from non-bipolar configurations via the Kuramoto flow. We first recall a result on the
possible asymptotic behavior of identical Kuramoto oscillators.

Proposition 3.2. [3, 15] Let Θ=(θ1, . . . ,θN ) be a solution to (3.1) with initial data
Θ0 satisfying (1.2) and r0 := r(Θ0)>0. Then, we have

lim
t→∞ |θj(t)−φ(t)|=0 or π, for all j=1, . . . ,N.

In the following lemma, we will refine the estimate of Proposition 3.1. For a dynamic
solution Θ(t) to (3.1), we divide the oscillator set N :={1, . . . ,N} into synchronous and
anti-synchronous oscillators with respect to the overall phase:

Is :={j : lim
t→∞ |θj(t)−φ(t)|=0}, Ib :={j : lim

t→∞ |θj(t)−φ(t)|=π}.
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Then, {Is,Ib} is a partition of N . First, we consider a two-oscillator system:

θ̇1=
K

2
sin(θ2−θ1), θ̇2=

K

2
sin(θ1−θ2).

The phase difference θ :=θ1−θ2 satisfies

θ̇=−K sinθ.

Unless θ0=0,π, the phase difference θ will decrease or increase according to whether
θ0∈ (0,π) or θ0∈ (π,2π) to asymptotically reach the point of phase synchronization.
Below, we study the phase synchronization of oscillators in the set Is.
Lemma 3.3. Let Θ=(θ1, . . . ,θN ) be a solution to (3.1) with initial configuration Θ0

satisfying (1.2) and following conditions:

r0>0, θk0 �=θj0, 1≤k,j≤N. (3.2)

Then, we have

|Ib|≤1,

where |A| is the cardinality of the set A.

Proof. We first note that the condition (3.2) and the uniqueness of the Kuramoto
flow imply

θj(t) �=θk(t) ∀ t>0.

For the desired estimate, we will show that the assumption |Ib|≥2 leads to a contra-
diction.

Suppose that the bipolar set Ib contains at least two oscillators, say the first and
second particles. Without loss of generality, we further assume that

φ− π

2
<θ1<θ2<φ+

3π

2
.

Since limt→∞ |θj−φ|=π, j=1,2, for any given 0<ε
1, there exists T1=T1(ε)>0
such that

π−ε<θ1−φ<θ2−φ<π+ε ∀ t>T1. (3.3)

On the other hand, it follows from (3.1) and the mean-value theorem that

d

dt
(θ2−θ1)=Kr[sin(φ−θ2)−sin(φ−θ1)]=Kr(cosξ12)(θ1−θ2), (3.4)

where ξ12 is between φ−θ1 and φ−θ2 and satisfies

|ξ12−π|≤ε and θ2−θ1>0. (3.5)

It follows from (3.4) and (3.5) that we have

d

dt
(θ2−θ1)≥Kr(−cos(π−ε))(θ2−θ1)=Krcos(ε)(θ2−θ1), t>T1. (3.6)
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On the other hand, since

r(t)≥ r0>0,

it follows from (3.6) that

|θ2(t)−θ1(t)|≥ |θ2(T1)−θ1(T1)|er0(cosε)(t−T1), t≥T1.

This contradicts (3.3). Thus, we have

|Ib|≤1.

Below, we show that the diameter of the configurations in the set Is will collapse
to zero exponentially fast. For this, we set

Θs=(θi1 , . . . ,θi|Is|), ij ∈Is, D(Θs) := max
j,k∈Is

|θj−θk|.

From the definition of the synchronizing set Is, it is clear that, for θj ,θk ∈Is,
|θj−θk|≤ |θj−φ|+ |θk−φ|→0, as t→∞.

The following lemma states that this convergence to zero is at least exponential.

Lemma 3.4. Let Θ=(θ1, . . . ,θN ) be a solution to (3.1) with initial data Θ0 satisfying
(1.2) and following conditions:

r0>0, θj0 �=θk0, 1≤ j,k≤N.

Then, there exists T2≥0 such that

D(Θs(t))≤ e−Kλ(t−T2)D(Θs(T2)), t≥T2,

where λ is a positive constant to be defined later.

Proof. It suffices to show that the desired estimate holds for N ≥3. It follows
from the definition of Is that, for a given ε>0, there is T2=T2(ε)≥0 such that

max
j∈Is

|θj(t)−φ(t)|≤ε t≥T2.

We set extremal phases:

θM :=max
j∈Is

θj θm :=min
j∈Is

θj .

Then, we have

D(Θs)=θM −θm.

We use (3.1) to obtain a Gronwall-type inequality:

d

dt
(θM −θm)

=
K

N

N∑
k=1

(sin(θk−θM )−sin(θk−θm))
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=
K

N

∑
k∈Is

(
sin(θk−θM )−sin(θk−θm)

)
+

K

N

∑
k∈Ib

(
sin(θk−θM )−sin(θk−θm)

)

≤K(N−1)

N

sin2ε

2ε
(θm−θM )+

K

N
(sin(θj−θM )−sin(θj−θm))

∣∣∣
k∈Ib

≤−K(N−1)

N

sin2ε

2ε
(θM −θm)+

K

N
(θM −θm)

=−K

N

[
(N−1)

sin2ε

2ε
−1

]
(θM −θm), t≥ t0. (3.7)

Note that since lim
ε→0

sinε

ε
=1, for a positive constant δ
1, there exists ε0>0 such that

sin2ε

2ε
>1−δ, ∀ ε<ε0.

Thus, we have

(N−1)
sin2ε

2ε
−1≥ (N−1)(1−δ)−1. (3.8)

Note that

(N−1)(1−δ)−1>0 ⇐⇒ N >1+
1

1−δ
, i.e., N ≥3. (3.9)

Finally, we can combine (3.7), (3.8), and (3.9) and then apply Gronwall’s inequality to
conclude

D(Θs(t)) ≤ D(Θs(T2))exp
[
−K

( (N−1)(1−δ)

N
− 1

N

)
(t−T2)

]
=:D(Θs(T2))exp

[
−Kλ(t−T2)

]
t≥T2.

4. Complete synchronization estimate
In this section, we provide a complete synchronization estimate for an initial

configuration Θ0 with the corresponding order parameter r0>0.

Consider the synchronization of the two-oscillator system:

θ̇1=Ω1+
K

2
sin(θ2−θ1), t>0,

θ̇2=Ω2+
K

2
sin(θ1−θ2).

We now consider the differences θ and Ω:

θ :=θ2−θ1, Ω:=Ω2−Ω1.

The difference θ satisfies the Adler equation:

θ̇=Ω−K sinθ, t>0.

Then, it follows from the explicit formula in [5] that, for K> |Ω|, complete synchroniza-
tion occurs for any initial configuration:

lim
t→∞ ||θ̇1(t)− θ̇2(t)||∞=0. (4.1)
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Again, we use
2∑

j=1

θ̇j =0 to find

lim
t→∞ ||Θ̇(t)||∞=0.

4.1. Preparatory estimates. In this part, we present several preparatory
estimates for the proof of Theorem 1.1, and for the simplicity of presentation, we restrict
the range of initial phase configuration in the box [−π,π)N in R

N .

Proposition 4.1. Suppose that the initial configuration Θ0 satisfies

θj0∈ [−π,π), 1≤ j≤N,

and let n0, �, and K satisfy

n0∈Z+∩
(N
2
,N

]
, �∈

(
0,2cos−1 N−n0

n0

)
,

max
1≤j,k≤n0

|θj0−θk0|<�, K>
D(Ω)

n0

N sin�− 2(N−n0)
N sin �

2

.
(4.2)

Let Θ be a global solution to system (1.1)–(1.2). Then, we have

sup
0≤t<∞

D(Θ(t))≤4π+�, lim
t→∞ ||Θ̇(t)||∞=0.

Proof. (i) (Uniform boundedness of D(Θ(t))): Let Θ=(θ1, . . . ,θN ) be a solution to
system (1.1)–(1.2) satisfying the condition on Θ0 in (4.2):

max
1≤j,k≤n0

|θj0−θk0|<�.

• Case A (Dynamics of {θ1, . . . ,θn0
}): For this, we set

Σ0(t) :={θ1(t), . . . ,θn0
(t)}⊂R,

I0 :=an interval containing the set Σ0 with length �.

We first study the dynamics of the set Σ0(t). We claim:

diamΣ0(t)≤ �, t≥0. (4.3)

Proof of claim (4.3): For this, we define

T := sup{ t∈ [0,∞)| max
1≤j,k≤n0

|θj(s)−θk(s)|≤ �, ∀ 0≤s≤ t}.

If T =∞, we are done. Otherwise, we derive a contradiction. Let us introduce the
notation

θMs := max
1≤j≤n0

θj , θms := min
1≤j≤n0

θj .

If T <∞, then it is easy to see that

θMs
(T )−θms

(T )= �,
d

dt
(θMs

−θms
)
∣∣∣
t=T

≥0. (4.4)
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However, we can use (1.1) to obtain

d

dt
(θMs−θms)

∣∣∣
t=T

=ΩMs−Ωms +
K

N

N∑
k=1

[
sin(θk−θMs)−sin(θk−θms)

]∣∣∣
t=T

≤D(Ω)− 2K

N
sin

θMs
−θms

2

[
N∑

k=1

cos(θk− θMs
+θms

2
)

]∣∣∣
t=T

=D(Ω)− 2K

N
sin

θMs−θms

2

×
[

n0∑
k=1

cos(θk− θMs +θms

2
)+

N∑
k=n0+1

cos(θk− θMs +θms

2
)

]∣∣∣
t=T

.

(4.5)

Using

∣∣∣θk(T )− θMs(T )+θms(T )

2

∣∣∣≤ 1

2
|θk(T )−θMs(T )+θk(T )−θms(T )|

≤ 1

2
max

{
|θk(T )−θMs

(T )|, |θk(T )−θms
(T )|

}
≤ �

2
, k=1, . . . ,n0,

and

cos(θk− θMs +θms

2
)≥−1, k=n0+1, . . . ,N,

we have that

n0∑
k=1

cos(θk− θMs +θms

2
)+

N∑
k=n0+1

cos(θk− θMs +θms

2
)
∣∣∣
t=T

≥n0 cos
�

2
−(N−n0). (4.6)

Thus, it follows from (4.5), (4.6), and the condition on K in (4.2) that

d

dt
(θM −θm)|t=T ≤D(Ω)− 2K

N
sin

�

2

[
n0 cos

�

2
−(N−n0)

]

=D(Ω)−K
[n0

N
sin�− 2(N−n0)

N
sin

�

2

]
<0. (4.7)

This gives a contradiction to (4.4), and we have

diamΣ0(t)≤ �, t≥0.

• Case B (Dynamics of {θn0+1, . . . ,θN}): We assume that

θn0+1(0), . . . ,θN (0)∈ [−π,π)∩(Σ0(0))
c,

and set

Σ−1 :=Σ0−2π, Σ1 :=Σ0+2π, I−1 := I0−2π, I1 := I0+2π.
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Below, we will show that the oscillator phases N ∩(Σ0)
c :=θn0+1, . . . ,θN are confined to

a bounded neighborhood of the set Σ0(t). Suppose that the trajectory of one oscillators
in the set N ∩(Σ0)

c is unbounded in R (say θn0+1 plays such a role). Then, before its
trajectory goes to∞ or −∞, this oscillator should enter at least one bounded neighbor-
hood of Σk, k=−1,0,1 in finite time. Without loss of generality, we assume that there
exists a time te≥0 such that

max
1≤k≤n0

|θn0+1(te)−(θk(te)+2π)|<�.

We claim:

max
1≤k≤n0

|θn0+1(t)−(θk(t)+2π)|≤ �, ∀ t> te. (4.8)

Proof of (4.8): Suppose that (4.8) does not hold, i.e.,

T := sup{ t | max
1≤k≤n0

|θn0+1−(θk+2π)|(s)≤ �, ∀ te≤s≤ t}<∞.

Then, either

θn0+1(T )−(θm(T )+2π)= �,
d

dt
(θn0+1−(θm+2π))|t=T ≥0, (4.9)

or

(θM (T )+2π)−θn0+1(T )= �,
d

dt
((θM +2π)−θn0+1)|t=T ≥0. (4.10)

We use the same argument as in (4.7) to derive a contradiction, i.e., by the same
argument, we have

Either
d

dt
(θn0+1−(θm+2π))|t=T <0 or

d

dt
((θM +2π)−θn0+1)|t=T <0,

which are contradictory to (4.9) and (4.10), respectively. Thus, we have (4.8).

Finally, we combine the results of Cases A and B to obtain

sup
0≤t<∞

D(Θ(t))≤4π+�. (4.11)

(ii) Note that the total phase is zero for any solutions to (1.1) and (1.2):

N∑
j=1

θ̇j(t)=0 ⇒
N∑
j=1

θj(t)=

N∑
j=1

θj0=0, t≥0.

Then, we combine the above estimate and our first result (4.11) to obtain

|θj(t)|≤ |θj(t)−θc(t)|+ |θc(t)|≤ sup
t≥0

D(Θ(t))+ |θc(0)|<∞, θc(t) :=
1

N

N∑
k=1

θk(t).

This clearly yields

sup
0≤t<∞

||Θ(t)||∞≤ sup
0≤t<∞

D(Θ(t))+ ||Θ0||∞≤4π+�+ ||Θ0||∞<∞.

We now apply Theorem 2.1 to derive the condition of complete synchronization.
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Remark 4.1. As a special case of Lemma 4.1, we choose n0=N . Then, we have
�∈ (0,π). Thus, we may choose �=D(Θ0)<π so that condition (4.2) becomes

D(Θ0)<π, K>
D(Ω)

sinD(Θ0)
,

which is exactly the same as in the framework in [5]. Thus, Lemma 4.1 improves the
estimate of Theorem 3.1 in [5].

Let ΘI and ΘNI be the phases of identical and non-identical oscillators, respectively,
whose dynamics are governed by the following systems:

θ̇Ij =
K

N

N∑
k=1

sin(θIk−θIj ), t>0, (4.12)

and

θ̇NI
j =Ωj+

K

N

N∑
k=1

sin(θNI
k −θNI

j ),

N∑
j=1

Ωj =0, t>0, (4.13)

subject to the same initial data

θIj (0)=θNI
j (0)=θj0. (4.14)

Lemma 4.2. Let ΘI and ΘNI be solutions to systems (4.12) and (4.13), respectively,
for the same initial data (4.14). Then, we have

||ΘNI(t)−ΘI(t)||∞≤ ||Ω||∞
2K

(e2Kt−1) t>0. (4.15)

Here, ||Ω||∞ is defined as the �∞-norm of Ωi:

||Ω||∞ := max
1≤j≤N

|Ωj |.

Proof. It follows from (4.12), (4.13), and the mean-value theorem that

d

dt
(θNI

j −θIj )=Ωj+
K

N

N∑
k=1

(
sin(θNI

k −θNI
j )−sin(θIk−θIj )

)

=Ωj+
K

N

N∑
k=1

cosξ∗kj
[
(θNI

k −θIk)−(θNI
j −θIj )

]
, (4.16)

where ξ∗kj is a value on the line segment between θNI
k −θNI

j and θIk−θIj .

We multiply sgn(θNI
j −θIj ) by (4.16) to find

d

dt
|θNI

j (t)−θIj (t)|≤ ||Ω||∞+2K||ΘNI(t)−ΘI(t)||∞. (4.17)

Note that the difference |ΘNI(t)−ΘI(t)| is a Lipschitz continuous function, so it is
differentiable almost everywhere. For a given t>0, there exist jt such that

||ΘNI(t)−ΘI(t)||∞= |θNI
jt −θIjt |.
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Then, for such it, we apply the estimate in (4.17) to obtain

d

dt
||ΘNI(t)−ΘI(t)||∞≤||Ω||∞+2K||ΘNI(t)−ΘI(t)||∞, a.e. t>0,

with the initial condition

||ΘNI(0)−ΘI(0)||∞=0.

The standard form of Gronwall’s lemma yields

||ΘNI(t)−ΘI(t)||∞≤ ||Ω||∞
2K

(e2Kt−1), t≥0.

Remark 4.2. In a finite-time interval [0,T ), the estimate in (4.15) yields convergence
from the dynamics of (4.13) to (4.12) in a zero natural frequency limit:

lim
||Ω||∞→0

sup
0≤t<T

||ΘNI(t)−ΘI(t)||∞=0.

4.2. Emergence of phase locked states. In this part, we first consider a
special case with K=1, and then reduce the general case to this special case using a
scaling argument.

Lemma 4.3. Suppose that the initial data, natural frequencies and coupling strength
satisfy (1.2) and following conditions:

r(Θ0)>0, θj0 �=θk0, 1≤ j,k≤N, ||Ω||∞≤L<∞, K=1.

Then, there exists L∞>0 such that, if L≤L∞, any solution Θ=Θ(t) of system (1.1)–
(1.2) has

lim
t→∞ ||Θ̇(t)||∞=0. (4.18)

Proof.
• Case A (N =2): In this case, we choose L∞< 1

2 . Then,

|Ωj−Ωk|≤2||Ω||∞≤2L∞<1=K.

Thus, it follows from (4.1) that

lim
t→∞ |θ̇1(t)− θ̇2(t)|=0.

We now combine the above relation and
2∑

j=1

θ̇j =0 to find

lim
t→∞ |θ̇j(t)|=0, j=1,2,

which gives the desired estimate (4.18).

• Case B (N ≥3): In this case, we use the approximation of (4.13) by (4.12) for
sufficiently small ||Ω||∞.
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� Step B.1 : Let ΘI be the solution to

θ̇Ij =
1

N

N∑
k=1

sin(θIk−θIj ), t>0, ΘI(0)=Θ0.

It follows from Lemma 3.4 that there exists T1>0 such that

max
i,j∈Is

|θIi (t)−θIj (t)|≤ e−λ(t−T1) max
i,j∈Is

|θIi (T1)−θIj (T1)|, ∀ t≥T1,

where N−1≤|Is|≤N . For any η
1, we choose a sufficiently large T2 such that

2πe−λ(T2−T1)≤η.

Then, this gives

max
i,j∈Is

|θIi (t)−θIj (t)|≤2πe−λ(t−T1)≤2πe−λ(T2−T1)≤η ∀ t≥T2, (4.19)

where we used

max
i,j
|θIi (t)−θIj (t)|≤2π ∀ t≥0,

for identical Kuramoto oscillators.

� Step B.2: For notational simplicity, we set

ΔjΘ:=θNI
j −θIj , Δφ :=φNI−φI .

It follows from Lemma 4.2 with K=1 that, for any ζ
1, there exists L1 such that, if
L≤L1,

max
1≤j≤N

|ΔjΘ(T2)|= ||ΘNI(T2)−ΘI(T2)||∞≤ L

2
(e2T2−1)≤ L1

2
(e2T2−1)≤ ζ. (4.20)

We can combine (4.19) and (4.20) to get

max
i,j∈Is

|θNI
i (T2)−θNI

j (T2)|≤ max
i,j∈Is

|θIi (T2)−θIj (T2)|+2max
j∈Is

|ΔjΘ(T2)|
=η+2ζ. (4.21)

Note that N ≥3 implies n0 :=N−1> N
2 . Hence, we can use Proposition 4.1 with K=1

and let � be a positive number such that

0<�<2cos−1 1

N−1
.

We choose L2>0 such that

L2<
1

2

(N−1

N
sin�− 1

N
sin

�

2

)
.

Then, if ||Ω||∞≤L2, we have

D(Ω)
N−1
N sin�− 1

N sin �
2

≤ 2||Ω||∞
N−1
N sin�− 1

N sin �
2

≤ 2L2

N−1
N sin�− 1

N sin �
2

<1=K.
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Now, we choose

η :=
�

2
ζ :=

�

4
L∞ :=min{L1,L2}.

If ||Ω||∞≤L∞, then (4.21) gives N−1 oscillators lying on an arc of length � at time T2.
Now, we apply Proposition 4.1 with n0=N−1 and T2 as the initial time. This gives
the desired estimate

lim
t→∞ ||Θ̇(t)||∞=0.

We are now ready to prove Theorem 1.1 in full generality. Recall the initial value
problem for the Kuramoto model:

dθj
dt

=Ωj+
K

N

N∑
k=1

sin(θk−θj), t>0, θj(0)=θj0. (4.22)

We introduce a slow time scale τ :=Kt, and rescale the natural frequency Ω̃j =
Ωj

K and

corresponding phase variable θ̃j :

τ :=Kt, θ̃j(τ) :=θj

( τ

K

)
and Ω̃j :=

Ωj

K
.

Then, system (4.22) can be rewritten as

dθ̃j
dτ

=Ω̃j+
1

N

N∑
k=1

sin(θ̃k− θ̃j), t>0, θ̃j(0)=θj0.

Note that the scaled natural frequencies Ω̃j satisfy

|Ω̃j |≤ L

K
.

We choose K∞ sufficiently large so that

L

K∞
<L∞.

This completes the proof of Theorem 1.1.

5. Conclusion
In this paper, we have presented a sufficient framework for the complete synchro-

nization to the Kuramoto model. Kuramoto oscillators can be visualized as point rotors
moving on the unit circle. In numerical simulations, it has been observed that the rela-
tive phase velocities (frequencies) of an ensemble of Kuramoto oscillators tend to zero,
regardless of initial configuration, so that the ensemble of rotors behave like a train
on the unit circle (the so-called emergence of entrainment). However, such numerical
results have not been confirmed in full generality by rigorous mathematical arguments,
although there are several partial results available in the literature. These previous
works restrict the diameter of the initial phase set to less than π+ε with ε
1. Thus,
previous studies do not cover initial configurations that are scattered around the whole
circle. In this work, we used three key arguments to the complete synchronization for
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generic initial configurations. First, we used that the ensemble of identical oscillators
is a good approximation for non-identical oscillators with small natural frequencies in
finite time. Second, we used the fact that the asymptotics of the ensemble of identical
oscillators with a nonzero initial order parameter is a phase sync or a bipolar configura-
tion that synchronized with the overall phase, except for at most one oscillator. Third,
we generalized the global analysis on the diameter of the whole configuration to the local
condition dealing with an oscillator set of more than half of the configuration. This new
localized version of the boundedness estimate yielded a uniform bound for the diameter
of the configuration. Combining the gradient flow structure of the Kuramoto model with
these three key arguments, we were able to derive a state of complete synchronization for
a generic initial configuration. Of course, there are many further questions in relation
to the complete synchronization problem. In this paper, we have only scratched the sur-
face, basically confirming that the complete synchronization results given by numerical
simulations are rigorous in a large coupling regime. In our main result in Theorem 1.1,
we did not optimize the coupling strength leading to complete synchronization. Thus,
in the ongoing work [16], we will pursue this issue.
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