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TRANSONIC SHOCK SOLUTIONS TO THE EULER–POISSON
SYSTEM IN QUASI-ONE-DIMENSIONAL NOZZLES∗

BEN DUAN† , ZHEN LUO‡ , AND JINGJING XIAO§

Abstract. In this paper, we study the transonic shock solutions to the Euler–Poisson system
in quasi-one-dimensional nozzles. For a given supersonic flow at the entrance of the nozzle, under
some proper assumptions on the data and nozzle length we first obtain a class of steady transonic
shock solutions for the exit pressure lying in a suitable range. The shock position is monotonically
determined by the exit pressure. More importantly, by the estimates on the coupled effects of the
electric field and the geometry of the nozzle, we prove the dynamic stability of the transonic shock
solutions under suitable physical conditions. As a consequence, there indeed exist dynamically stable
transonic shock solutions for the Euler–Poisson system in convergent nozzles, which is not true for the
Euler system [T.-P. Liu, Commun. Math. Phys., 83, 243–260, 1982].
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1. Introduction
We consider the compressible isentropic Euler–Poisson system in quasi-one-

dimensional nozzle⎧⎪⎨
⎪⎩
(A(x)ρ)t+(A(x)ρu)x=0,

(A(x)ρu)t+(A(x)ρu2)x+A(x)px=A(x)ρE, t>0, l<x<L,

(A(x)E)x=A(x)(ρ−b(x)).

(1.1)

System (1.1) characterizes the propagation of electrons in submicron semiconductor
devices and plasmas (see [24]). Here u, ρ, and p represent the macroscopic particle
velocity, electron density, and pressure, respectively. E is the electric field, b(x)>0
stands for the density of fixed positively charged background ions, and A(x)>0 is the
cross-section area of the given nozzle (semiconductor device). The typical examples are
1D, 2D rotationally symmetric, and 3D spherically symmetric Euler–Poisson systems,
where A(x) are 1, x, and x2, respectively.

We assume A(x) is C1 smooth, b(x) is continuous, and the pressure p satisfies:

p(0)=p′(0)=0, p′(ρ)>0, p′′(ρ)≥0, for ρ>0, p(+∞)=+∞.

For polytropic gas, p(ρ)=aργ with constant a>0 and adiabatic exponent γ≥1. The
sound speed is c(ρ) :=

√
p′(ρ). The flow is called supersonic if |u|>c(ρ); subsonic if

|u|<c(ρ); sonic if |u|= c(ρ). The Mach number M is defined to be M = |u|
c(ρ) .
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First, we study the steady transonic shock solutions to⎧⎪⎨
⎪⎩
(A(x)ρu)x=0,

(A(x)ρu2)x+A(x)px=A(x)ρE, l<x<L,

(A(x)E)x=A(x)(ρ−b(x)),

(1.2)

with boundary conditions

(ρ,u,E)(l)=(ρl,ul,El), (1.3)

and

ρ(L)=ρr. (1.4)

Suppose at the entrance of the nozzle the flow is supersonic with positive density and
velocity, i.e.

ul>
√

p′(ρl), ρl>0, ul>0. (1.5)

The transonic shock solution means a piecewise smooth solution of (1.2) with two
smooth solutions separated by a shock connecting a supersonic state on the left to a
subsonic state on the right. We give the strict definition as follows.

Definition 1.1. Set

(ρ,u,E)=

{
ρ−(x),u−(x),E−(x), l�x<rs,

ρ+(x),u+(x),E+(x), rs<x�L.

We call (ρ,u,E) a steady transonic shock solution to (1.2)–(1.4) if

(i) (ρ±,u±,E±) satisfy (1.2)–(1.4) piecewisely, with M−>1, M+<1, here M± are
the Mach numbers.

(ii) The following Rankine–Hugoniot conditions hold at x= rs,⎧⎪⎨
⎪⎩
[ρu]=0,

[ρu2+p]=0,

[E]=0.

(1.6)

In the previous works, many purely subsonic and supersonic solutions are obtained
for both one-dimensional and multi-dimensional Euler–Poisson system (cf. [2, 3, 5, 6,
26, 34] and references therein). However, for transonic shock solutions, there are only
a few results even for one-dimensional Euler–Poisson system. In the one-dimensional
case, A(x)=1, a transonic shock problem with a linear pressure p(ρ)=kρ and special
boundary conditions was discussed in [1]. To study a general case, phase plane analysis
was given in [32], however, there is no result for transonic shock solutions. In [7], Gamba
constructed a transonic shock solution, which may contain boundary layers due to a
technical limit. A thorough study of the transonic shock solutions for one-dimensional
Euler–Poisson equations with a constant background charge b(x)= b0 was given by Luo–
Xin in [20]. The existence, non-existence, uniqueness, and non-uniqueness of solutions
with transonic shock were obtained and the discussion is based on the different cases in
category with respect to the boundary data and the physical interval length. Later on,
Luo–Rauch–Xie–Xin [19] investigated the structural stability of one type of transonic
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shock solutions obtained in [20] under small perturbations of the background charge
b(x), and they also proved that transonic shock is dynamically stable if the electric field
E is not too negative at the shock position. For a viscous approximation of transonic
solutions in the two-dimensional case (see Gamba–Morawetz [8]).

In this paper, we extend the results on one-dimensional transonic shocks in [19,20]
to the quasi-one-dimensional case and we expect this may be helpful for studying the
multi-dimensional transonic shock problem for the Euler–Poisson system. We first prove
that under specific assumptions on the supersonic data (1.3) and the nozzle length L,
there exists a suitable range [ρmin,ρmax] such that the steady transonic shock solution
to (1.2)–(1.4) exists for any exit density ρr lying in [ρmin,ρmax]. Moreover, the shock
position is monotonically dependent on the exit pressure (density). (See Theorem 2.8
for the details.) One major difficulty compared with the one-dimensional problem in [20]
is that the powerful phase plane analysis technique is not applicable due to the effect
of the geometry of the nozzle A(x) and the non-constant background charge b(x). We
rewrite the system (1.2) into an ODE system, which is degenerate in the sonic state, and
derive the existence of purely supersonic/subsonic solutions via the ODE theory. The
key comparison Lemma 2.5 implies the monotone relation between the shock position
and the exit pressure as well as the uniqueness of the transonic shock solution.

Secondly, we study the unsteady transonic shock solutions to the initial bound-
ary value problem (1.1), (1.3), and (1.4) with given initial condition which is a small
perturbation of any steady transonic shock solution (ρ̄, ū,Ē)(x) with shock position x0.
Suppose at the shock position x0, the coupled effect of the geometry of the nozzle A′(x0)
and the electric field Ē(x0) is not too negative, then the unsteady transonic shock so-
lution exists globally and approaches (ρ̄, ū,Ē)(x) at an exponential rate as time goes to
infinity, which implies the transonic shock solution is dynamically stable in this nozzle.
(See Theorem 3.2 for the details.) The main idea of the proof is inspired by Section 3 [19]
and also see Remark 7 [19]. First, we introduce a non-trivial transformation to refor-
mulate the problem into a second-order quasilinear hyperbolic equation. The linearized
problem resembles a Klein–Gordon equation. Under our assumptions on the coupled
effect of the geometry and the electric field, we are able to prove the exponential decay
of a non-trivial energy functional for the solution to the linearized problem. Finally
the uniform a priori energy estimates for the original nonlinear problem, together with
the local existence result yields the global existence of the unsteady transonic shock
solutions.

It is interesting to compare our result with the transonic shock solution for quasi-
one-dimensional Euler system{

(A(x)ρ)t+(A(x)ρu)x=0,

(A(x)ρu)t+(A(x)ρu2)x+A(x)px=0.
(1.7)

where ρ, u, and p denote, respectively, the density, velocity and pressure, and A(x) is
the cross-sectional area of the nozzle. In [16], a wave front tracking variant of Glimm’s
scheme was used by Liu to prove that when |A′(x)/A(x)| is small, a weak transonic shock
is dynamically stable if A′(x0)>0 and dynamically unstable if A′(x0)<0, where x0 is the
shock position. The smallness assumption was removed later by Rauch–Xie–Xin [28]
and they proved the exponential decay estimates for the transonic shock solution in
divergent nozzle. Since the effect of the electric force in the Euler–Poisson system has a
similar stabilizing effect as geometry of divergent domain in the Euler system, we prove
the dynamic stability without restriction A′(x)>0 in [16] for Euler system. The key
issue in the analysis is the comparison between the stabilizing effect and destabilizing
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effect from the electric force and the geometry of the nozzle, and the balance of the two
effects make the transonic shock solution stable.

The rest of this paper is organized as follows. In Section 2, we construct a class
of transonic shock solutions to (1.2)–(1.4), and the monotonic dependence between the
shock location and the exit density is shown in Theorem 2.8. Section 3 will be devoted to
the dynamic stability of the transonic shock solutions and Theorem 3.2 will be proved.

2. Steady transonic shock solutions
In this section, we investigate the existence of steady transonic shock solution to

(1.2)–(1.4) under suitable assumptions on the boundary data and the nozzle length. To
obtain the main existence result we need the following lemmas.

Lemma 2.1 (Local existence of supersonic/subsonic solutions). For any fixed y≥ l and
for any given supersonic/subsonic state (ρ∗,u∗,E∗) at y with ρ∗>0,u∗>0, there exists
Ly determined by ρ∗, u∗, E∗, l, b(x), A(x), and y such that the initial value problem{

equation (1.2), for y<x<L,

(ρ,u,E)(y)=(ρ∗,u∗,E∗),
(2.1)

has a unique supersonic/subsonic solution (ρ,u,E)(x) on [y,Ly).

Proof. A Direct computation from (2.1) shows that, a smooth non-sonic solution
(ρ,u,E) satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρx=
ρE

c2−u2
+

A′(x)
A(x)

ρu2

c2−u2
,

ux=
−uE
c2−u2

− A′(x)
A(x)

uc2

c2−u2
,

Ex=−A′(x)
A(x)

E+ρ−b,

(ρ,u,E)(y)=(ρ∗,u∗,E∗).

(2.2)

By the local existence theory of ODE system, one can defined Ly to be the lifespan of
the supersonic/subsonic solution (ρ,u,E) to (2.2).

Remark 2.2. Consider problem (2.1) with given supersonic initial data (ρl,ul,El)
at l satisfying (1.5) and let L1 be the lifespan of the corresponding supersonic smooth
solution (ρ,u,E)(x). Then (1.2)1 implies that

A(x)ρ(x)u(x)≡A(l)ρlul=:J >0. (2.3)

Therefore, any smooth solution must satisfy ρ(x)>0, u(x)>0. Furthermore, we claim
that for finite L1, the smooth solution (ρ,u,E)(x) is sonic at x=L1, which can be proved
by contradiction.

More precisely, suppose the smooth solution is supersonic on [l,L1], then the solution
blows up at x=L1 by the property of lifespan. Solve the equation J

A(x)ρ = c(ρ) for ρ and

denote the smooth solution as ρs(x), which is the density for the sonic state. Then the
flow being supersonic is equivalent to ρ<ρs(x). Note that ρs(x) is bounded on [l,L1],
thus ρ and E are uniformly bounded at L1. Next, from (2.2)2, the velocity u satisfies
the estimate |ux|≤ uC1

u2−C2
≤uC3 where C1,C2,C3 are constants depending on the bound

for ρ, E, and A(x). This estimate implies u grows at most exponentially, and therefore
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is bounded at L1. The boundedness of the smooth solution (ρ,u,E)(x) at L1 gives a
contradiction to the blow up phenomena, by which, we finish the proof of the claim.

Lemma 2.3. Let (ρ−,u−,E−)(·) be the smooth supersonic solution to problem (2.1)
with initial data (ρl,ul,El) at x= l. For any point x∈ [l,L1), the left supersonic state
(ρ−,u−,E−)(x) is fixed. Then there exists a unique right subsonic state (ρ+,u+,E+)(x)
such that the Rankine–Hugoniot conditions (1.6) hold at x.

Proof. According to Rankine–Hugoniot condition at x, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ+(x)u+(x)=ρ−(x)u−(x)=

J

A(x)
,

ρ+(x)u+(x)
2
+p(ρ+)=ρ−(x)u−(x)

2
+p(ρ−),

E+(x)=E−(x),

that is,

J2

A2(x)ρ+
+p(ρ+)=

J2

A2(x)ρ−
+p(ρ−) and E+(x)=E−(x),

where J is as in (2.3). For fixed x, define F (ρ)= J2

A(x)ρ +p(ρ), which is decreasing in

(0,ρs(x)) and increasing in (ρs(x),+∞), where ρs(x) is the same as the one in Re-
mark 2.2. Moreover, F increases to infinity as ρ increases to infinity. Thus, for given
ρ−<ρs, there exists an unique ρ+, such that F (ρ+)=F (ρ−) and ρ−<ρs(x)<ρ+. De-
note the solution ρ+ by s(ρ−(x),x) and set t(u−(x),x)= J

A(x)s(ρ−(x),x) , then the unique

right state is (s(ρ−(x),x),t(u−(x),x),E−(x)) which is subsonic, since s(ρ−(x),x)>ρs.

Remark 2.4. For fixed supersonic initial data (ρl,ul,El) satisfying (1.3), by
Lemma 2.1 we can always solve the IVP (1.2)–(1.3) to get a supersonic solution
(ρ−(x),u−(x),E−(x)) on [l,s] for any s∈ [l,L1]. Then we obtain the right state
(ρ+(s),u+(s),E+(s))=(s(ρ−(s),s),t(u−(s),s),E−(s)) according to Lemma 2.3. Now
fix a s∈ [l,L1], by Lemma 2.1, we can solve the problem (1.2) with initial data
(s(ρ−(s),s),t(u−(s),s),E−(s)) at s to get a subsonic solution (ρ+(x),u+(x),E+(x)).

In the rest of this section, we will suppose L<L1, where L1 is defined as in Re-
mark 2.2. Next, we will discuss the relation between the exist density ρ+(L) and the
shock position s.

Lemma 2.5 (Monotone Dependence). Let

(ρ(i),u(i),E(i))(x)=

{
(ρ

(i)
− ,u

(i)
− ,E

(i)
− )(x) l<x<xi,

(ρ
(i)
+ ,u

(i)
+ ,E

(i)
+ )(x) xi<x<L,

i=1,2 be two transonic shock solutions to (1.2) with given supersonic initial data
(ρl,ul,El) at x= l, and ρ(1)(l)=ρ(2)(l)=ρl, u

(1)(l)=u(2)(l)=ul, E
(1)(l)=E(2)(l)=El,

x1<x2. Assume

E
(2)
− (x)+

A′(x)
A(x)

u
(2)
− (x)t(u

(2)
− (x),x)>0, ∀x∈ [x1,x2], (2.4)

then we have

ρ(1)(L)>ρ(2)(L).
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Proof. Define Eα(x) on [x1,x2] to be the solution to

{
(A(x)Eα)x=A(x)(s(ρ

(2)
− (x),x)−b(x)), x∈ [x1,x2],

Eα(x1)=E
(1)
− (x1)=E

(1)
+ (x1)=E

(2)
− (x1).

Then we have

{
(A(x)(E

(2)
− −Eα))x=A(x)(ρ

(2)
− −s(ρ

(2)
− (x),x))<0, x∈ [x1,x2],

(E
(2)
− −Eα)(x1)=0,

since ρ
(2)
− <ρs< s(ρ

(2)
− ,x) and therefore Eα(x)>E

(2)
− (x), x∈ [x1,x2].

Differentiating the equation of s(ρ
(2)
− (x),x),

p(s(ρ
(2)
− (x),x))+

J2

A2(x)s(ρ
(2)
− (x),x)

=p(ρ
(2)
− (x))+

J2

A2(x)ρ
(2)
− (x)

,

with respect to x, it holds for x∈ [x1,x2] that,

ds(ρ
(2)
− (x),x)

dx

(
p′(s(ρ(2)− (x),x))− J2

A2s(ρ
(2)
− (x),x)2

)

=ρ
(2)
− E

(2)
− +

2A′J2

A3s(ρ
(2)
− (x),x)

− A′J2

A3ρ
(2)
− (x)

=ρ
(2)
−

(
E

(2)
− +

A′(x)
A(x)

u
(2)
− (x)t(u

(2)
− (x),x)

)
+

A′J2

A3s(ρ
(2)
− (x),x)

− A′J2

A3ρ
(2)
− (x)

<s(ρ
(2)
− (x),x)

(
E

(2)
− +

A′(x)
A(x)

u
(2)
− (x)t(u

(2)
− (x),x)

)
+

A′J2

A3s(ρ
(2)
− (x),x)

− A′J2

A3ρ
(2)
− (x)

<s(ρ
(2)
− (x),x)

(
Eα+

A′(x)
A(x)

u
(2)
− (x)t(u

(2)
− (x),x)

)
+

A′J2

A3s(ρ
(2)
− (x),x)

− A′J2

A3ρ
(2)
− (x)

=s(ρ
(2)
− (x),x)Eα+

A′J2

A3s(ρ
(2)
− (x),x)

,

where the assumption (2.4), the fact ρ
(2)
− (x)< s(ρ

(2)
− (x),x) and E

(2)
− (x)<Eα(x) are used.

Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ds(ρ
(2)
− (x),x)

dx
<

1

p′(s(ρ(2)− (x),x))− J2

A2s(ρ
(2)
− (x),x)2

(s(ρ
(2)
− (x),x)Eα+

A′J2

A3s(ρ
(2)
− (x),x)

),

dEα

dx
=−A′(x)

A(x)
Eα+s(ρ

(2)
− (x),x)−b(x),

s(ρ
(2)
− (x1),x1)=ρ

(1)
+ (x1), Eα(x1)=E

(1)
+ (x1).

(2.5)
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Note that (ρ
(1)
+ (x),E

(1)
+ (x)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ
(1)
+

dx
=

1

p′(ρ(1)+ )− J2

A2ρ
(1)
+

(ρ
(1)
+ E

(1)
+ +

A′J2

A3ρ
(1)
+

),

dE
(1)
+

dx
=−A′(x)

A(x)
E

(1)
+ +ρ

(1)
+ −b(x),

ρ
(1)
+ (x1)=ρ

(1)
+ (x1), E

(1)
+ (x1)=E

(1)
+ (x1),

(2.6)

then by the idea in [19], one can apply the comparison principle for ODE system to
(2.5)–(2.6) and obtain

s(ρ
(2)
− (x),x))<ρ

(1)
+ (x), Eα(x)<E

(1)
+ (x), x∈ (x1,x2]. (2.7)

Therefore, ρ
(2)
+ (x2)= s(ρ

(2)
− (x2),x2))<ρ

(1)
+ (x2) and E

(2)
+ (x2)=E

(2)
− (x2)<Eα(x2)<

E
(1)
+ (x2). Note that (ρ

(1)
− ,E

(1)
− ) and (ρ

(2)
− ,E

(2)
− ) satisfy the same ODE system on [x2,L],

thus

ρ
(1)
+ (L)>ρ

(2)
+ (L) and E

(1)
+ (L)>E

(2)
+ (L) (2.8)

by the comparison principle again.

Remark 2.6. We give another proof to (2.7). First, systems (2.5)–(2.6) give

ds(ρ
(2)
− (x),x)

dx
(x1)<

dρ
(1)
+

dx
(x1),

which implies that there exist a x3∈ (x1,x2] such that s(ρ
(2)
− (x),x)<ρ

(1)
+ (x) for x∈

(x1,x3]. Thus,

(A(Eα−E
(1)
+ ))′(x)=A(s(ρ

(2)
− (x),x)−ρ

(1)
+ )<0, x∈ (x1,x3],

and therefore Eα(x)<E
(1)
+ (x) for x∈ (x1,x3]. Define

x∗=sup{x3∈ (x1,x2] : s(ρ
(2)
− (x),x)<ρ

(1)
+ (x),for x∈ (x1,x3]}.

If x∗<x2, then (2.7) holds for x∈ (x1,x
∗) with s(ρ

(2)
− (x∗),x∗))=ρ

(1)
+ (x∗), Eα(x

∗)≤
E

(1)
+ (x∗), and

ds(ρ
(2)
− (x),x)

dx (x∗)− dρ
(1)
+

dx (x∗)≥0. On the other hand, (2.5) and (2.6) imply

ds(ρ
(2)
− (x),x)

dx
(x∗)− dρ

(1)
+

dx
(x∗)<0,

which leads to a contradiction. Thus x∗=x2 and (2.7) holds for x∈ (x1,x2). By using
the same contradiction argument, (2.7) is true at x=x2.

Finally, (2.8) can be proved by the same contradiction argument again.

Remark 2.7. The assumption (2.4) is essential to guarantee the monotone relation
between the position of transonic shock and the exit density. Thus, in order to obtain
the following main existence theorem, we assume the upstream boundary data satisfies
the following condition,

El+
A′(l)
A(l)

ult(ul,l)>0. (2.9)
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Now we state our main result for this section:

Theorem 2.8. Assume the upstream boundary data (ρl,ul,El) satisfies (1.5) and
(2.9). Then there exists a constant L∗=L∗(ρl,ul,El,A(x),b(x),l) such that if the nozzle
length L<L∗, then there exist two constants ρmin,ρmax such that the boundary value
problem (1.2)–(1.4) with ρr ∈ [ρmin,ρmax] has a unique transonic shock solution on
[l,L]. Moreover, the position of the transonic shock depends on the exit density ρr
monotonically.

Proof. For given supersonic state (ρl,ul,El) at x= l, let L1 be defined as in Re-
mark 2.2 and the corresponding supersonic solution be (ρ−(x),u−(x), E−(x)). Assume

L<L1 and for any x in [l,L], the function E−(x)+
A′(x)
A(x) u−(x)t(u−(x),x) is continuous

with respect to x. Since the upstream boundary data satisfies (2.9), we can define

L2 := sup
[l,L]

{
y : E−(x)+

A′(x)
A(x)

u−(x)t(u−(x),x)>0 for all x∈ [l,y]
}
.

It is clear that L2>l.

Next, suppose l<L<min{L1,L2}, and the shock occurs at the entrance l. By
Lemma 2.1, we obtain the local subsonic solution (ρl+(x),u

l
+(x),E

l
+(x)) to the problem

(1.2) with boundary data (s(ρl,l),t(ul,l),El), whose lifespan is denoted by L3>l.

Set L∗=min{L1,L2,L3}, and let l<L<L∗. As in Remark 2.4, for any
shock position s∈ [l,L], one can solve the IVP (1.2)–(1.3) to get the supersonic
solution (ρ−(x),u−(x),E−(x)) on [l,s], and then obtain the right subsonic state
(s(ρ−(s),s),t(u−(s),s),E−(s)) by Lemma 2.3. Next, we solve the problem (1.2) with
boundary data (s(ρ−(s),s),t(u−(s),s),E−(s)) at s to get a local subsonic solution
(ρs+(x),u

s
+(x),E

s
+(x)). We claim that such local subsonic solution exists on [s,L]. To this

end, we apply Lemma 2.5 to compare (ρs+(x),u
s
+(x),E

s
+(x)) with (ρl+(x),u

l
+(x),E

l
+(x))

and deduce that ρs+(x)≤ρl+(x). Similarly, we have ρs+(x)≥ s(ρ−(x),x))>ρs(x) for
x∈ [s,L]. Therefore, ρs+(x) never blows up or touches sonic state for x∈ [s,L], and
as a consequence, the subsonic solution exist upto L.

Denote by ρmin the exit density corresponding to s=L and by ρmax to be the exit
density corresponding to s= l. Then, if ρr ∈ [ρmin,ρmax], we can find a unique shock
front s such that (1.2) -(1.4) has a transonic shock solution on [l,L] and the shock
position depends monotonically on the exit density ρr by Lemma 2.5.

Remark 2.9. In the proof of Theorem 2.8, L3 is the lifespan of the subsonic solution.
It is not clear whether the solution blows up at L3 or the sonic state occurs first. In
contrast, for the supersonic solution, by Remark 2.2, the sonic state occurs before the
blow up of the solution.

Remark 2.10. The background charge b(x) does not need to be a constant, and there
is no restriction on b(x)<ρs(x) or b(x)>ρs(x) as in [20].

3. Dynamical stability of transonic shock solutions

Denote (ρ̄, ū,Ē)(x) to be the steady transonic shock solution to (1.2)–(1.4) with
shock position x0. Suppose the solution is away from vacuum

inf
x∈[l,L]

ρ̄(x)>0. (3.1)
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Consider the initial boundary value problem of system (1.1) with boundary condi-
tions {

(ρ,u,E)(t,l)=(ρl,ul,El),

ρ(t,L)=ρr,
(3.2)

and the initial condition

(ρ,u,E)(0,x)=(ρ0,u0,E0)(x). (3.3)

Assume the initial data (ρ0,u0,E0)(x) with the form

(ρ0,u0)(x)=

{
(ρ0−,u0−)(x), if l<x<x̃0,

(ρ0+,u0+)(x), if x̃0<x<L,
(3.4)

and

E0(x)=El+

∫ x

l

(ρ0(s)−b(s))ds, (3.5)

is a small perturbation of (ρ̄, ū,Ē)(x) in the sense that

|x0− x̃0|+‖(ρ0+,u0+)−(ρ̄+,ū+)‖Hk+2([x̌0,L])

+‖(ρ0−,u0−)−(ρ̄−,ū−)‖Hk+2([l,x̂0])<ε,
(3.6)

for some small constant ε>0, and some integer k≥15, where x̌0=min{x0,x̃0} and
x̂0=max{x0,x̃0}. Moreover, (ρ0,u0,E0) is assumed to satisfy the Rankine–Hugoniot
conditions as x= x̃0,(

(p(ρ0+)+ρ0+u
2
0+−(p(ρ0−)+ρ0−u2

0−)
) ·(ρ0+−ρ0−)(x̃0)

=(ρ0+u0+−ρ0−u0−)2(x̃0). (3.7)

We will study the global existence and asymptotic behavior of the transonic shock
solutions to the initial boundary value problem (1.1), (3.2), and (3.3). The transonic
shock solutions are time-dependent piecewise smooth entropy solutions, which are de-
fined as follows.

Definition 3.1. Assume

(ρ,u,E)(t,x)=

{
ρ−(t,x),u−(t,x),E−(t,x), l�x<s(t),

ρ+(t,x),u+(t,x),E+(t,x), s(t)<x�L.

Then we call (ρ,u,E)(t,x) a piecewise smooth entropy solution to (1.1), (3.2)–(3.3) if:

(i) (ρ±,u±,E±) satisfy (1.1), (3.2)–(3.3) piecewisely, with M−>1, M+<1, where
M is the Mach number.

(ii) the following Rankine–Hugoniot conditions hold at x=s(t),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(p(ρ)+ρu2)(t,s(t)+)−(p(ρ)+ρu2)(t,s(t)−)
=(ρu(t,s(t)+)−ρu(t,s(t)−))ṡ(t),
ρu(t,s(t)+)−ρu(t,s(t)−)=(ρ(t,s(t)+)−ρ(t,s(t)−))ṡ(t),
E(s(t)+,t)=E(s(t)−,t).

(3.8)
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(iii) the Lax geometric entropy condition holds,

(u−
√
p′(ρ))(t,s(t)−)>ṡ(t)> (u−

√
p′(ρ))(t,s(t)+),

(u+
√
p′(ρ))(t,s(t)+)>ṡ(t).

The dynamical stability result in this paper is the following theorem.

Theorem 3.2. Let (ρ̄, ū,Ē) be any steady transonic shock solution to (1.2)–(1.4)
satisfying (3.1). Then there exist positive constants δ, ε0 depending on (ρ̄, ū,Ē,A,b,l,L)
such that if ε≤ ε0 and

Ē−(x0)+
A′(x0)

A(x0)
ū−(x0)ū+(x0)>−δ, (3.9)

and if the initial data (ρ0,u0,E0) satisfies (3.4)–(3.7) and the (k+2)th order compat-
ibility conditions hold at x= l, x=x0 and x=L, then the initial boundary value prob-
lem (1.1), (3.2)–(3.3) admits a unique piecewise smooth entropy solution (ρ,u,E)(x,t)
for (t,x)∈ [0,∞)× [l,L] containing a single transonic shock x=s(t) (l<s(t)<L) with
s(0)= x̃0. Furthermore, there exist T0>0 and λ>0 such that

(ρ−,u−,E−)(t,x)=(ρ̄−,ū−,Ē−)(x), for l≤x<s(t), t>T0

and

‖(ρ+,u+,)(·,t)−(ρ̄+,ū+)(·)‖Wk−7,∞(s(t),L)+‖E+(·,t)− Ē+(·)‖Wk−6,∞(s(t),L)≤Cεe−λt,

k−6∑
m=0

|∂m
t (s(t)−x0)|≤Cεe−λt,

for t≥0, where (ρ̄±,ū±,Ē±) are the solutions of the Euler–Poisson equations in the
associated regions.

Remark 3.3. The compatibility conditions for the initial boundary value problems
for hyperbolic equations were discussed in detail in [21, 25,29].

3.1. Formulation of the problem. It follows from the argument in [14] that
there exists a local piecewise smooth solution containing a single shock x=s(t) (with
s(0)= x̃0) satisfying the Rankine-Hugoniot conditions and Lax geometric shock condi-
tion (3.8) of the initial boundary value problem (1.1),(3.2)–(3.3) on [0,T̄ ] for some T̄ >0,
which can be written as

(ρ,u,E)(x,t)=

{
(ρ−,u−,E−), if l<x<s(t),
(ρ+,u+,E+), if s(t)<x<L.

Note that, when t>T0 for some T0>0, (ρ−,u−,E−) depends only on the boundary
conditions at x= l. Moreover, when ε is small, by the standard lifespan argument, we
have T0<T̄ (see [14]). Therefore,

(ρ−,u−,E−)=(ρ̄−,ū−,Ē−) for t>T0. (3.10)

Without loss of generality we assume T0=0. Then the key point to extend the local
solution to global solution is to obtain uniform estimates in the region x>s(t),t>0.
First, from the Rankine–Hugoniot conditions (3.8) one has

[ρu2+p][ρ]= [ρu]2,
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which is equivalent to(
p(ρ+)(t,s(t))+

J2
+(t,s(t))

A2(s(t))ρ+(t,s(t))
−p(ρ−)(t,s(t))−

J2
−(t,s(t))

A2(s(t))ρ−(t,s(t))

)
·(ρ+−ρ−)

=

(
J+(t,s(t))−J−(t,s(t))

A(s(t))

)2

,

where J(t,x)=A(x)ρ(t,x)u(t,x). It follows from (3.10) that,

J(t,s(t)−)= J̄ =A(l)ρlul.

Then the Taylor expansions and the Rankine–Hugoniot conditions imply that{
p′(ρ̄+)(s(t))(ρ+(t,s(t))− ρ̄+(s(t)))− J̄2

A2ρ̄2+
(s(t)) ·(ρ+(t,s(t))− ρ̄+(s(t)))

+
2J̄

A2ρ̄+
(s(t)) ·(J+(t,s(t))− J̄(s(t)))+∂x(p(ρ̄+)+

J̄2

A2ρ̄+
)(x0) ·(s(t)−x0)

−∂x(p(ρ̄−)+ J̄2

A2ρ̄−
)(x0) ·(s(t)−x0)+R1

}
(ρ̄+(x0)− ρ̄−(x0)+R2)

=

(
J+(t,s(t))− J̄(s(t))

A(s(t))

)2

,

with

R1=O((ρ+− ρ̄+)
2+(J+− J̄)2+(s(t)−x0)

2),

R2=O(|ρ+− ρ̄+|+ |(s(t)−x0)|).
Thus, by the implicit function theorem,

(J+− J̄)(t,s(t))=A1((ρ+− ρ̄+)(t,s(t)),s(t)−x0), (3.11)

where A1 is considered to be a function of two variables satisfying A1(0,0)=0 and

∂A1

∂(ρ+− ρ̄+)
|(0,0)=−

A(p′(ρ̄+)− ū2
+)

2ū+
(x0),

∂A1

∂(s−x0)
|(0,0)=−(ρ̄+− ρ̄−)(

A′ū−
2

+
AĒ

2ū+
)(x0).

Substituting (3.11) into the Rankine–Hugoniot conditions yields

s′(t)=A2(ρ+− ρ̄+,s(t)−x0), (3.12)

where A2 satisfies A2(0,0)=0 and

∂A2

∂(ρ+− ρ̄+)
|(0,0)=−

p′(ρ̄+)− ū2
+

2ū+(ρ̄+− ρ̄−)
(x0),

∂A2

∂(s(t)−x0)
|(0,0)=−(A

′ū−
2A

+
Ē+

2ū+
)(x0).

It follows from (1.1)3 that

A(x)E+(x,t)=A(l)El+

∫ s(t)

l

A(y)(ρ−−b)(y)dy+

∫ x

s(t)

A(y)(ρ+−b)(y)dy
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for s(t)<x≤L. The equation (1.1)1 and the Rankine–Hugoniot conditions (3.8) give

∂t(A(x)E+)=−J+(t,x)+ J̄ .

Let Y =A(x)(E+(x,t)− Ē+(x)). Then

Yt= J̄−J+, Yx=A(ρ+− ρ̄+).

Therefore, it follows from (1.1)2 that

∂ttY +∂x

(
J̄2

Aρ̄+
− (J̄−Yt)

2

Aρ̄++Yx

)
+A∂x

(
p(ρ̄+)−p(ρ̄++

Yx

A
)

)
+YxĒ++ ρ̄+Y +

Y Yx

A
=0.

(3.13)

Set ξ=(ξ0,ξ1)=(t,x), then we have∑
0≤i,j≤1

āij(x,Yt,Yx)∂ijY +
∑

0≤i≤1

b̄i(x,Yt,Yx)∂iY + c̄(x,Yt,Yx)Y =0, (3.14)

where āij , b̄i and c̄ are smooth functions of their arguments, and satisfy

L0Y =
∑

0≤i,j≤1

āij(x,0,0)∂ijY +
∑

0≤i≤1

b̄i(x,0,0)∂iY + c̄(x,0,0)Y

=∂ttY +A∂x(p
′(ρ̄+)

Yx

A
)−∂x(ū

2
+Yx)+∂x(

2J̄

ρ̄+
Yt)+ Ē+Yx+ ρ̄+Y.

Furthermore, the Rankine–Hugoniot conditions (3.11) and (3.12) yield

Yt=−A1(
Yx

A
,s(t)−x0), (3.15)

and

s′=A2(
Yx

A
,s−x0). (3.16)

Direct computation yields

Y (s(t),t)=A(s(t))(E+(s(t),t)− Ē+(s(t)))

=(∂x(AĒ−)−∂x(AĒ+))(x0) ·(s(t)−x0)+O((s(t)−x0)
2).

Then from (1.1)3 one has

s(t)−x0=A3(Y (t,s(t))) (3.17)

with A3(0)=0 and ∂A3

∂Y (0)= 1
A(ρ̄−−ρ̄+) (x0). It follows from (3.15) and (3.17) that

∂tY =A4(Yx,Y ), at x=s(t), (3.18)

where

A4(0,0)=0,
∂A4

∂Yx
(0,0)=

c2(ρ̄+)− ū2
+

2ū+
(x0),

∂A4

∂Y
(0,0)=− Ē+

2ū+
(x0)− A′ū−

2A
(x0).
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Note that on the right boundary, x=L, Y satisfies

∂xY =0, at x=L. (3.19)

Our goal is to derive uniform estimates for Y and s which satisfy (3.14), (3.17)–(3.19).
To transform the problem to the fixed domain [x0,L], we introduce the transforma-

tion

t̃= t, x̃=(L−x0)
x−s(t)

L−s(t)
+x0, σ(t̃)=s(t)−x0.

Set

q1(x̃,σ)=
L− x̃

L−x0−σ(t̃)
, q2(σ)=

L−x0

L−x0−σ(t̃)
.

Then (3.13) can be rewritten as

σ′′(t̃)q1∂x̃Y

=∂t̃t̃Y +(q1σ
′(t̃))2∂x̃x̃Y −2σ′(t)q1∂x̃t̃Y −q1

2(σ′(t̃))2

L−x0−σ(t̃)
∂x̃Y

+Aq2∂x̃

(
p(ρ̄+)−p(ρ̄++

q2Yx̃

A
)

)
+q2∂x̃

(
J̄2

Aρ̄+
− (J̄−Yt̃+σ′(t̃)q1Yx̃)

2

ρ̄++q2Yx̃

)

+ ρ̄+Y + Ē+q2∂x̃Y +
q2Y Yx̃

A
.

By straightforward computation, the equation (3.17) becomes

σ=A3(Y (t,x̃=x0)). (3.20)

The equation for the shock front, (3.16), becomes

dσ

dt̃
=A2(

q2(σ)Yx̃

A
, σ(t̃)).

Applying (3.20) in order to represent the quadratic terms for σ in terms of Y , at x̃=x0,
we have

dσ

dt̃
+σ(

Ē+

2ū+
+

A′ū−
2A

)(x0)=C2(Yx̃,Y ), (3.21)

where C2 satisfies ∣∣∣∣C2(Yx̃,Y )+
c2(ρ̄+)− ū2

+

2(ρ̄+− ρ̄−)ū+A
(x0)Yx̃

∣∣∣∣≤C(Y 2
x̃ +Y 2).

It follows from (3.20) and (3.21) that one can represent (σ,σ′) in terms of Y and the
derivative Yx̃ at x̃=x0. Thus, by (3.18), (3.20), and (3.21)

Yt̃=C1(Yx̃,Y ), at x̃=x0.

Or, equivalently,

Yx̃=C3(Yt̃,Y ), at x̃=x0,
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where C3 satisfies∣∣∣∣∣C3(Yt̃,Y )− 2ū+

c2(ρ̄+)− ū2
+

(x0)Yt̃−
Ē++ A′ū+ū−

A

c2(ρ̄+)− ū2
+

(x0)Y

∣∣∣∣∣≤C(Y 2
t̃ +Y 2).

We drop ˜ both in x̃ and t̃ for simplicity. Then the original problem can be formu-
lated into the following compact form⎧⎪⎪⎪⎨

⎪⎪⎪⎩

L(x,Y,σ)Y =σ′′(t)q1∂xY, (t,x)∈ [0,∞)× [x0,L],

∂xY =d1(Yt,Y )Yt+e1(Yt,Y )Y, atx=x0,

∂xY =0, atx=L,

σ(t)=A3(Y (t,x0)),

(3.22)

where, by using ξ0 and ξ1 to denote t and x, respectively,

L(x,Y,σ)Z=
1∑

i,j=0

aij(x,Y,∇Y,σ,σ′)∂ijZ+

1∑
i=0

bi(x,Y,∇Y,σ,σ′)∂iZ

+g(x,Y,∇Y,σ,σ′)Z

with

d1(Yt,Y )=

∫ 1

0

∂C3
∂Yt

(θYt,θY )dθ, e1(Yt,Y )=

∫ 1

0

∂C3
∂Y

(θYt,θY )dθ.

Furthermore, one has L(x,0,0)Z=L0Z, and

a00(x,Y,∇Y,σ,σ′)=1, a01(x,0,0,0,0)=a10(x,0,0,0,0)=
J̄

Aρ̄+
= ū+,

a11(x,0,0,0,0)=−
(
c2(ρ̄+)− ū2

+

)
,

b0(x,0,0,0,0)=∂x (2ū+) , b1(x,0,0,0,0)=−∂x
(
c2(ρ̄+)− ū2

+

)
+ Ē++

A′c2(ρ̄+)
A

,

g(x,0,0,0,0)= ρ̄+, d1(0,0)=
2ū+

c2(ρ̄+)− ū2
+

(x0), e1(0,0)=
Ē++ A′ū+ū−

A

c2(ρ̄+)− ū2
+

(x0).

3.2. Linearized problem. This subsection is devoted to the study of the lin-
earized problem.

Lemma 3.4. Let Y be a smooth solution of the linearized problem⎧⎪⎪⎨
⎪⎪⎩

L(x,0,0)Y =0, x0<x<L, t>0,
∂xY =d1(0,0)∂tY +e1(0,0)Y, at x=x0,

∂xY =0, at x=L,
Y (0,x)=h1(x), Yt(0,x)=h2(x), x0<x<L.

(3.23)

Then the following dissipation identity holds:

ϕ(Y,t)+D(Y,t)=ϕ(Y,0), (3.24)

where

ϕ(Y,t)=

(
Ē+ū++

A′

A
ū2
+ū−

)
(x0)Y

2(t,x0)

+

∫ L

x0

ū+

{
ρ̄+Y

2+
(
p′(ρ̄+)− ū2

+

)
(∂xY )2+(∂tY )2

}
(t,x)dx
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and

D(Y,t)=2

(∫ t

0

ū2
+(∂tY )2(s,L)ds+

∫ t

0

ū2
+(∂tY )2(s,x0)ds

)
.

Proof. Multiplying the first equation in (3.23) by ū+∂tY on both sides and
integrating the result equation on [0,t]× [x0,L], we have

0=
1

2

∫ L

x0

ū+

{
(∂tY )2+

(
p′(ρ̄+)− ū2

+

)
(∂xY )2+ ρ̄+Y

2
}
(t,x)dx

− 1

2

∫ L

x0

ū+

{
(∂tY )2+

(
p′(ρ̄+)− ū2

+

)
(∂xY )2+ ρ̄+Y

2
}
(0,x)dx

+

∫ t

0

(
ū2
+Y

2
t +(ū2

+−c2(ρ̄+))ū+YxYt

) |x=L
x=x0

ds

+

∫ t

0

∫ L

x0

(
ū+Ē+−∂xū+(ū

2
+−c2(ρ̄+))+

A′

A
ū+c

2(ρ̄+)

)
dxds

=
4∑

i=1

Ii. (3.25)

Since ∂xū+= −ū+Ē+

c2(ρ̄+)−ū2
+
− A′(x)

A(x)
ū+c2(ρ̄+)
c2(ρ̄+)−ū2

+
, we have

I4=0, (3.26)

which together with the boundary condition (3.23) implies that

I3=
1

2
D(Y,t)+

Y 2

2
(ū+Ē++

A′

A
ū2
+ū−)|(t,x0)

(0,x0)
. (3.27)

Then the lemma follows from (3.25)–(3.27).

The estimate in Lemma 3.4 implies the decay of the solution to (3.23) is exponential.

Lemma 3.5. There exists δ>0 such that if (3.9) holds, then the solution Y of (3.23)
satisfies

ϕ(Y,t)≤Ce−λ0tϕ(Y,0),

and ∫ ∞

0

e
λ0t
4 (|∂tY |2(t,x0)+ |∂tY |2(t,L))dt≤Cϕ(Y,0),

for some constants λ0>0 and C>0.

Proof.
Step 1: (The Rauch–Taylor-type estimates). Using the boundary conditions

at x=x0 and the fact that
c2(ρ̄+)−ū2

+

2u+
(x0)≥C for some constant C>0, it is easy to see

that

D(Y,t)≥C1

∫ t

0

(Y 2
t +Y 2

x )(s,x0)ds−C2

∫ t

0

Y 2(s,x0)ds,
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for some positive constants C1 and C2 independent of t. Therefore,

ϕ(Y,t)+C1

∫ t

0

(Y 2
t +Y 2

x )(s,x0)ds≤ϕ(Y,0)+C2

∫ t

0

Y 2(s,x0)ds.

By the ideas in [19], there exist T >0 and δ∈ (0,T/4) such that

∫ T

0

(Y 2
t +Y 2

x )(t,x0)dt≥
∫ T

2 +δ

T
2 −δ

ϕ(Y,s)ds−C3

∫ T

0

Y 2(t,x0)dt.

Note that ϕ(Y,t) is decreasing with respect to t by (3.24). Thus∫ T

0

(Y 2
t +Y 2

x )(t,x0)dt≥δϕ(Y, T
2
+δ)−C3

∫ T

0

Y 2(t,x0)dt

≥δϕ(Y,T )−C3

∫ T

0

Y 2(t,x0)dt,

which together with (3.24) and (3.2) gives

(1+C4)ϕ(Y,T )≤ϕ(Y,0)+C5

∫ T

0

Y 2(t,x0)dt

for some positive constants C4 and C5 independent of t.

Step 2: (The spectrum of the solution operator). Define a new norm ‖·‖X
for the function h=(h1,h2)∈H1×L2([x0,L]),

‖h‖2X=(Ē+ū++
A′

A
ū2
+ū−)(x0)|h1|2(x0)

+

∫ L

x0

ū+

{|h2|2+(p′(ρ̄+)− ū2
+)|h′

1|2+ ρ̄+|h1|2
}
(x)dx.

By Sobolev embedding theorems, there exists a constant δ>0, such that if (3.9) holds,
then the new norm ‖(h1,h2)‖X is equivalent to ‖h1‖H1 +‖h2‖L2 .

The associated complex Hilbert space will be denoted by (X,‖·‖X). Define the
solution operator St :X 
→X as

St(h)=(Y (t, ·),Yt(t, ·)),
where Y is the solution of the problem (3.23) with the initial data h=(h1,h2).

According to the standard Fredholm-type lemma in [27], there are only finitely
many generalized eigenvalues for the operator ST in the annulus { 1

1+C6
< |z|≤1} on the

complex plane. Each of these eigenvalues has finite multiplicity. More precisely, by the
computations in [19] we can show that the spectrum σ(ST ) does not touch the unit
circle. Therefore, there exists 0<β0<1 such that σ(ST )⊂{|z|≤

√
β0}, which implies

that

ϕ(Y,T )≤β0ϕ(Y,0).

Step 3: (Exponential decay). Noting that ϕ(Y,t) is decreasing in t, for any
t∈ [nT,(n+1)T ), n∈N, one has

ϕ(Y,t)≤ϕ(Y,nT )≤βn
0 ϕ(Y,0)≤β

t
T −1
0 ϕ(Y,0)= e−λ0tβ−1

0 ϕ(Y,0),
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where we have chosen λ0=− lnβ0

T .
According to (3.24),

∫ 2i+1T

2iT

e
λ0t
4 (|∂tY |2(t,x0)+ |∂tY |2(t,L))dt

≤Ceλ02
i−1T (ϕ(Y,2iT )−ϕ(Y,2i+1T ))

≤Ceλ02
i−1Tβ−1

0 e−λ02
iTϕ(Y,0)=Cβ−1

0 e−λ02
i−1Tϕ(Y,0).

Thus ∫ ∞

0

e
λ0t
4 (|∂tY |2(t,x0)+ |∂tY |2(t,L))dt

=

∞∑
i=0

∫ 2i+1T

2iT

e
λ0t
4

k+1∑
l=1

(|∂tY |2(t,x0)+ |∂tY |2(t,L))dt

≤C
∞∑
i=0

β−1
0 e−λ0T2i−1

ϕ(Y,0)≤Cϕ(Y,0).

Thus completing the proof of the lemma.

Since the coefficients of the equation and the boundary conditions in (3.23) are
independent of t, we can take differentiation with respect to t and apply Lemma 3.5 to
∂l
tY to get the following corollary.

Corollary 3.6. Suppose (3.9) holds and δ>0 is chosen as in Lemma 3.5. For any

0≤k∈N, define ϕk(Y,t)=
∑k

l=0ϕ(∂
l
tY,t), then

ϕk(Y,t)≤Ce−λ0tϕk(Y,0),

and

∫ ∞

0

e
λ0t
4

k+1∑
l=1

(|∂l
tY |2(t,x0)+ |∂l

tY |2(t,L))dt≤Cϕk(Y,0),

where λ0>0 is the constant in Lemma 3.5.

3.3. Uniform a priori estimates. The existence of local-in-time solutions for
the problem (1.1), (3.2)–(3.3) satisfying the conditions (3.1), (3.4)–(3.7) is standard,
see [14]. In order to get the global existence, it suffices to derive the global a priori
estimate for the problem (3.22) with the initial condition

Y (0,x)=h1(x), Yt(0,x)=h2(x), x0<x<L, and σ(0)=σ0. (3.28)

The following computations are similar to the computations in [19]. First we choose
T large enough such that

α0 :=Ce−λ0T <1,

where C,λ0 are the constants in Lemma 3.5. Then choose an integer k≥15, and define

‖|(Y,σ)|‖= |̃(Y,σ)̃|+ ‖̃(Y,σ)‖̃,
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where

|̃(Y,σ)̃|= sup
τ∈[0,t)

∑
0≤m≤k−6

⎛
⎝ ∑

0≤l≤m

e
λτ
16 ‖∂l

t∂
m−l
x Y (τ, ·)‖L∞([x0,L])+e

λτ
16

∣∣∣∣dmσ

dtm

∣∣∣∣(τ)
⎞
⎠

and

‖̃(Y,σ)‖̃= sup
0≤τ≤t

⎛
⎜⎜⎝ ∑

0≤l≤m,
0≤m≤k

‖∂l
t∂

m−l
x Y (τ, ·)‖L2([x0,L])+

∑
0≤l≤k

‖∂l
t∂

k+1−l
x Y (τ, ·)‖L2([x0,L])

⎞
⎟⎟⎠

+ sup
0≤τ≤t

‖∂k+1
t Y (τ, ·)− dk+1σ

dtk+1
q1(·,σ)∂xY (τ, ·)‖L2([x0,L])

+
∑

0≤l≤m,
0≤m≤k+1

(‖∂l
t∂

m−l
x Y (·,x0)‖L2[0,t]+‖∂l

t∂
m−l
x Y (·,L)‖L2[0,t]

)

+
∑

0≤m≤k+1

∥∥∥∥dmσ

dtm

∥∥∥∥
L2[0,t]

,

with λ will be defined in (3.46).
Furthermore, for any l∈N and given Y and σ such that ‖|(Y,σ)|‖<∞, we define

Φ(Z,t;Y,σ)=a11e1ū+(∂tZ)2(t,x0)+

∫ L

x0

{ū+(∂tZ)2−a11ū+(∂xZ)2+gū+Z
2}(t,x)dx,

D(Z,t;Y,σ)=−2
∫ t

0

ū+((a11d1+a01))(∂
l+1
t Z)2(τ,x0)dτ+2

∫ t

0

ū+a01(∂
l+1
t Z)2(τ,L)dτ,

Φl(Z,t;Y,σ)=

l∑
m=0

Φ(∂m
t Z,t;Y,σ), Dl(Z,t;Y,σ)=

l∑
m=0

D(∂m
t Z,t;Y,σ),

Φ̂l(Z,t;Y,σ)=Φl−1(Z,t;Y,σ)+Φ0(∂
l
tZ−q1(x,σ)Yx

dlσ

dtl
,t;Y,σ),

D̂l(Z,t;Y,σ)=Dl−1(Z,t;Y,σ)+D0(∂
l
tZ−q1(x,σ)Yx

dlσ

dtl
,t;Y,σ).

It is easy to see that if ‖|(Y,σ)|‖≤ ε for some ε>0, then

Φ(Z,t;Y,σ)(t)≥C

∫ L

x0

(∂tZ)2+(∂xZ)2+Z2)(t,x)dx,

for some constant C>0 independent of t.

Proposition 3.7. Assume (3.9) holds, then there exists an ε0>0 such that for any
ε∈ (0,ε0), if (Y,σ) is a smooth solution of the problem (3.22) and (3.28) with (h1,h2)
and σ0 satisfying

|σ0|+‖h1‖Hk+2 +‖h2‖Hk+1 ≤ ε2≤ ε20

and ‖|(Y,σ)|‖≤ ε for t>T , then

‖|(Y,σ)|‖≤ ε

2
. (3.29)
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Proof. Step 1: (Lower order energy estimates). Taking the mth (0≤m≤
k−1) order derivative for the equation (3.22) with respect to t, then

L(x,Y,σ)∂m
t Y =Fm(x,Y,σ)+ F̃m(x,Y,σ), (3.30)

where

Fm(x,Y,σ)=
∑

1≤l≤m

Cl
m

⎧⎨
⎩−

1∑
i,j=0

∂l
taij∂ij∂

m−l
t Y −

1∑
i=0

∂l
tbi∂i∂

m−l
t Y −∂l

tg∂
m−l
t Y

⎫⎬
⎭ ,

and

F̃m(x,Y,σ)=
∑

0≤l≤m

Cl
m

dl+2σ

dtl+2
∂m−l
t (q1(x,σ)Yx) ,

with the standard binomial coefficient Cl
m=

(
m
l

)
.

Multiplying both sides of (3.30) by ū+∂
m+1
t Y and integrating the result equation

on Ω=: [0,t]× [x0,L] implies∫∫
Ω

L(x,Z,σ)∂m
t Y ū+∂

m+1
t Y (τ,x)dτdx

=

∫ L

x0

ū+

2

(
(∂m+1

t Y )2−a11(∂x∂
m
t Y )2+g(∂m

t Y )2
)
(t,x)dx

+

∫∫
Ω

(b0ū+−∂x (a01ū+))(∂
m+1
t Y )2(τ,x)dτdx

+

∫∫
Ω

(b1ū+−∂x (a11ū+))∂
m
t ∂xY ∂m+1

t Y (τ,x)dτdx

+

∫∫
Ω

ū+∂ta11
(∂x∂

m
t Y )2

2
(t,x)− ū+∂tg

(∂m
t Y )2

2
(τ,x)dτdx

+

∫ t

0

(
a11ū+∂x∂

m
t Y ∂m+1

t Y +a01ū+(∂
m+1
t Y )2

)
(τ,L)dt

−
∫ t

0

(
a11ū+∂x∂

m
t Y ∂m+1

t Y +a01ū+(∂
m+1
t Y )2

)
(τ,x0)dτ

−
∫ L

x0

ū+

2
((∂m+1

t Y )2−a11(∂x∂
m
t Y )2+g(∂m

t Y )2)(0,x)dx

=

7∑
i=1

Ji.

Since the coefficients in the integrals J2 and J3 vanish at (Y,σ)=(0,0), we have

|J2+J3|≤C
∫ t

0

[
2∑

l=0

(
l∑

i=0

‖∂i
t∂

l−i
x Y ‖L∞([x0,L])+ |∂l

tσ|(τ)
)]

×
m+1∑
l=1

1∑
i=0

‖∂l−i
t ∂i

xY (τ, ·)‖2L2[x0,L]dτ
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≤C sup
0≤τ≤t

∣∣∣∣∣eλτ
64

[
2∑

l=0

(
l∑

i=0

‖∂i
t∂

l−i
x Y ‖L∞([x0,L])+ |∂l

tσ|(τ)
)]∣∣∣∣∣

×
∫ t

0

e−
λτ
64 Φ̃m(Y,τ ;Y,σ)dτ

≤C‖|(Y,σ)|‖
∫ t

0

e−
λτ
64 Φ̃m(Y,τ ;Y,σ)dτ. (3.31)

Similarly,

|J4|≤C‖|(Y,σ)|‖
∫ t

0

e−
λτ
64 Φ̃m(Y,τ ;Y,σ)dτ. (3.32)

The boundary condition Yx(t,L)=0 implies

J5=

∫ t

0

a01
ρ̄+

(∂m+1
t Y )2(τ,L)dt>0, (3.33)

if ‖|(Y,σ)|‖ is sufficiently small.
Differentiating the boundary condition

∂xY =d1(Yt,Y )Yt+e1(Yt,Y )Y

m times with respect to t, one has

∂m
t Yx=d1∂

m+1
t Y +e1∂

m
t Y +Gm, at x=x0,

where Gm satisfies

|Gm|≤C

⎛
⎝[m2 ]+1∑

l=0

l∑
i=0

(|∂l
tY ||∂m+1−i

t Y |+ |∂l
tY ||∂m−i

t Y |)
⎞
⎠ .

Therefore,

J6=−
∫ t

0

ū+(a11d1+a01)(∂
m+1
t Y )2(τ,x0)+

(
a11e1ū+∂

m
t Y ∂m+1

t Y
)
(t,x0)dτ

−
∫ t

0

Gma11ū+∂
m+1
t Y (τ,x0)dτ

≥−
∫ t

0

ū+(a11d1+a01)(∂
m+1
t Y )2(τ,x0)(τ,x0)dτ−

(
a11e1ū+

(∂m
t Y )2

2

)
(t,x0)

+

(
a11e1ū+

(∂m
t Y )2

2

)
(0,x0)−C‖|(Y,σ)|‖

∫ t

0

m+1∑
l=0

(∂l
tY )2(τ,x0)dτ. (3.34)

Summing up all the estimates in (3.31)–(3.34) yields∫∫
Ω

L(x,Y,σ)∂m
t Y ū+∂

m+1
t Y dtdx

≥1

2
Φm(Y,t;Y,σ)− 1

2
Φm(Y,0;Y,σ)+

1

2
Dm(Y,t;Y,σ)
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−C‖|(Y,σ)|‖
[∫ t

0

e−
λτ
64 Φ̃m(Y,τ ;Y,σ)dτ+Dm(Y,t;Y,σ)

]
. (3.35)

On the other hand, it holds that∣∣∣∣
∫∫

Ω

Fmū+∂
m+1
t Y dtdx

∣∣∣∣
≤C‖|(Y,σ)|‖

∫ t

0

e−
λτ
64

[
Φ̃m(Y,τ ;Y,σ)+‖|(Y,σ)|‖

m+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2
]
dτ (3.36)

and∣∣∣∣
∫∫

Ω

F̃m
∂m+1
t Y

ρ̄+
dtdx

∣∣∣∣≤C‖|(Y,σ)|‖
∫ t

0

e−
λτ
64

[
Φ̃m(Y,τ ;Y,σ)+

m+2∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2
]
dτ, (3.37)

where the following estimate∥∥∥∥dl+2σ

dtl+2

∥∥∥∥
L2([x0,L])

≤C

∣∣∣∣dl+2σ

dtl+2

∣∣∣∣
has been used. Combining the estimates in (3.35)–(3.37), one has

Φm(Y,t;Y,σ)+Dm(Y,t;Y,σ)

≤Φm(Y,0;Y,σ)+C‖|(Y,σ)|‖
[∫ t

0

e−
λτ
64

[
Φm(Y,τ ;Y,σ)+

m+2∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2
]
dτ+Dm(Y,t;Y,σ)

]
,

(3.38)

for m=0,1, . . . ,k−1.

Step 2: (The highest order energy estimates). Take the kth order derivative
for the Equation (3.22) with respect to t, then

L(x,Y,σ)∂k
t Y =Fk(x,Y,σ)+

dk+2σ

dtk+2
q1(x,σ)Yx+

∑
0≤l≤k−1

Cl
k

dl+2σ

dtl+2
∂k−l
t (q1(x,σ)Yx) .

In order to handle the term dk+2σ
dtk+2 , we consider the equation for Y̌ =∂k

t Y −q1(x,σ)Yx
dkσ
dtk

,

L(x,Y,σ)Y̌ =Fk(x,Y,σ)+ F̌(x,Y,σ), (3.39)

where

F̌(x,Y,σ)=−2
dk+1σ

dtk+1
∂t (q1(x,σ)Yx)− dkσ

dtk
∂2
t (q1(x,σ)Yx)

−(2a01∂t∂x+a11∂
2
x+

1∑
i=0

bi∂i+g)

(
dkσ

dtk
q1(x,σ)Yx

)
.

Multiplying both sides of (3.39) by ū+∂tY̌ and integrating on Ω, one has

Φ0(Y̌ ,t;Y,σ)+D0(Y̌ ,t;Y,σ)
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≤Φ0(Y̌ ,0;Y,σ)+C‖|(Y,σ)|‖
[∫ t

0

e−
λτ
64

[
Φ̂k(Y,τ ;Y,σ)+

k+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2
]
dτ+D̂k(Y,t;Y,σ)

]
.

(3.40)

Then (3.40) and (3.38) imply

Φ̂k(Y,t;Y,σ)+D̂k(Y,t;Y,σ)

≤Φ̂k(Y,0;Y,σ)+C‖|(Y,σ)|‖
{∫ t

0

e−
λτ
64

[
Φ̂k(Y,τ ;Y,σ)+

k+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2
]
dτ+D̂k(Y,t;Y,σ)

}
.

(3.41)

Step 3: (The boundedness of the energy). Differentiating the equation for
the shock front

σ(t)=A3(Y (t,x0)) (3.42)

with respect to t, we have

k+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2

(τ)≤C

(
|σ(τ)|2+

k+1∑
l=0

|∂l
tY (τ,x0)|2

)
. (3.43)

Therefore,

k+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2

≤C

k∑
l=1

|∂l
tY (τ,x0)|2+ |∂tY̌ |2,

which together with (3.43) gives

∫ t

0

e−
λτ
64

k+1∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣
2

dτ ≤C

(∫ t

0

e−
λτ
64 Φ0(Y,τ ;Y,σ)dτ+D̂k(Y,t;Y,σ)

)
.

Thus, the energy estimate (3.41) is equivalent to

Φ̂k(Y,t;Y,σ)+D̂k(Y,t;Y,σ)

≤Φ̂k(Y,0;Y,σ)+C‖|(Y,σ)|‖
(
D̂k(Y,τ ;Y,σ)+

∫ t

0

e−
λτ
64 Φ̂k(Y,τ ;Y,σ)dτ

)
.

If ‖|(Y,σ)|‖≤ ε, then

Φ̂k(Y,t;Y,σ)+D̂k(Y,t;Y,σ)≤CΦ̂(Y,0;Y,σ)≤Cε4.

This yields

‖̃(Y,σ)‖̃≤C

(
sup

0≤τ≤t
Φ̂

1/2
k (Y,τ ;Y,σ)+D̂1/2

k (Y,t;Y,σ)

)
≤Cε2≤ ε

4
. (3.44)

Step 4: (The decay of the lower energy and the shock position).
The basic idea is to estimate the deviation of the solution Y to the nonlinear problem
(3.22) from the solution Ȳ to the linear problem (3.23).
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At time τ = t0, choose h̄1∈Hk and h̄2∈Hk−1 such that there exists a solution
Ȳ ∈Ck−1−i([t0,∞);Hi([x0,L])) of the linear problem (3.23) satisfying Ȳ (t0, ·)= h̄1 and
Ȳt(t0, ·)= h̄2. Additionally Ȳ satisfies

k−1∑
l=0

l∑
i=0

‖∂i
t∂

l−i
x Ȳ (t0, ·)‖L2[x0,L]≤C‖|(Y,σ)|‖

for some uniform constant C, and

Φ̂k−4(Y − Ȳ ,t0;Y,σ)≤C‖|(Y,σ)|‖Φ̂k−4(Y,t0;Y,σ).

Note that Y − Ȳ satisfies the equation

1∑
i,j=0

aij(x,Y,σ)∂ij(Y − Ȳ )+

1∑
j=0

bj(x,Y,σ)∂j(Y − Ȳ )+g(x,Y,σ)(Y − Ȳ )

=
1∑

i,j=0

(aij(x,Y,σ)−aij(x,0,0))∂ij Ȳ +
1∑

j=0

(bj(x,Y,σ)−bj(x,0,0))∂j Ȳ

+(g(x,Y,σ)−g(x,0,0))Ȳ +σ′′(t)q1(x,σ)∂xY,

and the boundary conditions⎧⎪⎨
⎪⎩
∂x(Y − Ȳ )=d1(Yt,Y )∂t(Y − Ȳ )+e1(Yt,Y )(Y − Ȳ )

+(d1(Yt,Y )−d1(0,0))∂tȲ +(e1(Yt,Y )−e1(0,0))Ȳ , at x=x0,

∂x(Y − Ȳ )=0, at x=L.

Then the energy estimate for Y − Ȳ implies:

Φ̂k−4(Y − Ȳ ,t0+T ;Y,σ)+D̂k−4(Y − Ȳ ,t0+T ;Y,σ)−D̂k−4(Y − Ȳ ,t0;Y,σ)

≤Φ̂k−4(Y − Ȳ ,t0;Y,σ)+C‖|(Y,σ)|‖
[∫ t0+T

t0

k−3∑
l=0

(∣∣∣∣dlσdtl
∣∣∣∣
2

+‖∂i
t∂

k−3−i
x (Y − Ȳ )‖2L2

)
dτ

+

∫ t0+T

t0

(
Φ̂

1/2
k−4(Y,τ ;Y,σ)Φ̂

1/2
k−4(Y − Ȳ ,τ ;Y,σ)+Φ̂k−4(Y − Ȳ ,τ ;Y,σ)

)
dτ

+(D̂k−4(Y − Ȳ ,t0+T ;Y,σ)−D̂k−4(Y − Ȳ ,t0;Y,σ))

+(D̂k−4(Y,t0+T ;Y,σ)−D̂k−4(Y,t0;Y,σ))

]
.

Using the contraction of the energy for Ȳ and noting that the derivation of Y and
Ȳ at t0 is of higher order, one has

34+30α0

64
Φ̂k−4(Y,t0+T ;Y,σ)≤ 2+30α0

32
Φ̂k−4(Y,t0;Y,σ) (3.45)

if ε is sufficiently small. Using the method in Lemma 3.5, one obtains immediately from
(3.45) and the shock front equation (3.42) that

Φ̂k−4(Yt,t;Y,σ)+σ2(t)≤C(Φ̃k−4(Y,0;Y,σ)+σ2(0))e−2λt,
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where

λ=− ln 1+α
2

2T
, and α=

2+30α0

17+15α0
. (3.46)

Thus

k−6∑
l=0

‖Y (t, ·)‖L∞[x0,L]≤Cε2e−λt, (3.47)

provided Φ̂k−4(Y,0;Y,σ)≤ ε4. This yields that

k−6∑
l=0

∣∣∣∣dlσdtl
∣∣∣∣≤Cε2e−λt. (3.48)

By combining (3.44), (3.47) and (3.48), (3.29) holds. This completes the proof.

Proposition 3.7, together with the local existence, implies Theorem 3.2 by a contin-
uation argument.
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