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GLOBALLY SMOOTH SOLUTION AND BLOW-UP PHENOMENON
FOR A NONLINEARLY COUPLED SCHRODINGER SYSTEM IN
ATOMIC BOSE-EINSTEIN CONDENSATES*

BOLING GUOT, QIAOXIN LI¥, AND XINGLONG WU$

Abstract. In this paper, we study the nonlinearly coupled Schrédinger equations for atomic
Bose-Einstein condensates. By the Galérkin method and a priori estimates, the global existence of a
smooth solution is obtained. Under some assumptions of the coefficients and p, the blow-up theorem
is established.

Key words. Galérkin method, locally smooth solution, globally smooth solution, a priori esti-
mates, blow-up solution.

AMS subject classifications. 35E15, 35Q53.

1. Introduction
In this paper we consider the following nonlinearly coupled Schrodinger system

ihuy = (—QE—;AHquPH\vP+gn|u\2p+g\ulp‘1lv|”“) u+v20m,
, (1.1)
ihoy = (—f—MA—i—E—l—)\U\vP+/\\u|2—|—g|u|p+1|v|p_1 +g22|v|2p) v—l—%uz,

with the initial condition and periodic boundary conditions

u(z,0) =ug(z), v(z,0) =vo(z), r e, (1.2)

u(z+2L,t)=u(x,t), wv(x+2L,t)=v(x,t), x€Q, t>0, (1.3)

where A:aa—;; i=+v/—1; p>1; L>0, Q=(—L,L); h is Planck constant; M >0 is the
mass of a single atom; \,, \,, A represent the strengths of the atom-atom, molecule-
molecule, and atom-molecule interactions, respectively; €, « are real constants.

It was an eagerly anticipated event when the Ketterle’s group found the Feschbach
resonances in the inter-particle interactions of a dilute Bose—Einstein condensate of
Na-atoms at MIT [22]. Since all quantities of interest in the atomic BECs crucially
depend on the scattering length, a tunable interaction suggests very interesting studies
of the many-body behavior of condensate systems. Then, for the time evolution of
the dilute single-condensate system, the corresponding equation becomes the Gross—
Pitaevskii equation, which is the Dirac time-dependent variational scheme.
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When p=h=M=1, system (1.1) is similar to the following coupled Gross—
Pitaevskii equations

e = (=54 V(@) + Ol + Af?) ) u-+av,
(1.4)
vy = (= + V(@) +e+ (o +Auf?)) v+ au,

Several authors are interested in the existence of a solution for this problem. In
2011, Weizhu Bao and Yongyong Cai [4] proved the existence and uniqueness results
for the ground states of the above coupled Gross—Pitaevskii equations and obtained
the limiting behavior of the ground states with large parameters. Tingchun Wang and
Xiaofei Zhao [23] also studied this problem. They proposed and analyzed the finite
difference methods for solving (1.4) in two dimensions.

The single Gross—Pitaevskii equation has been considered by many authors. In
2003, Weizhu Bao, Dieter Jaksch, and Peter A. Markowich [6] obtained the numerical
solution of the time-dependent Gross-Pitaevskii equation (TGPE). In [5], Weizhu Bao
and Weijun Tang proposed a new numerical method to compute the ground-state solu-
tion of trapped interacting Bose—Einstein condensation at zero or very low temperature
by directly minimizing the energy functional via finite element approximation. Further
discussion can be found in [2,3,18,19].

However, to our knowledge, the TGPE has not yet been fully studied. When p=1,
system (1.1) reduces to

ihuy = (f%A+a|u|2 +b\v|2) u-++/ 200,
, : (1.5)
ihvy = (—fWA+8+b|u|2+c|v|2) v+ %uQ,

These coupled nonlinear equations replace the usual Gross—Pitaevskii equation that
describes the time evolution of the dilute single-condensate system [12,17,22]. In this
paper, we consider system (1.1), which is a more general problem than (1.5), as a
mathematical model in nonlinear partial differential equations. Our aim is to obtain
the globally smooth solution of system (1.1) and, under some conditions, to establish
the blow-up theorem for the case of p>2. The main difficulty is to establish certain
delicate a priori estimates that govern our strategy to prove the existence of the smooth
solution.

In [13-16], the initial value problem and the periodic boundary value problem were
studied by Boling Guo for a class of systems of standard nonlinear Schrédinger equations.
In this paper, we prove the existence and uniqueness of the global solution to the periodic
boundary value problem for the nonlinearly coupled Schrodinger system (1.1) by using
the Faedo—Galékin method.

Since the a priori estimates of the solution to system (1.1)—(1.3) are unconcerned
with the period L, we can derive the global smooth solution as L — oo, a.e. x € R. The
global smooth solution to the periodic boundary value problem for the system (1.1) is
proved in Theorem 1.2 and for the case of x € R it is established in Theorem 1.3

Before starting the main results, we review the notation and the calculus inequalities
used in this paper.

To simplify the notation in this paper we shall denote by f U(z)dx the integration
fQ U(z)dz and let C be a generic constant, which may assume different values in different
formulas.
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Let L™(2),1 <m <o be the classical Lebesgue space with the norm

RO (1 <m<oo)
Q

llulloo =ess.sup.{|u(x)]:x €}, (m=o00).

The usual L? inner product is (u,v)= fQ uvdx, where v denotes the complex conjugate
of v and the norm of L? is |julla = /(u,u).

Denote by H™(2),m=1,2,... the Sobolev space of complex-valued functions with
the norm

2

ull s = / S |D%ufrds
Q
la|<m
Define A={ue H'(R):|zluc L*(R)} with norm |lul|3dz= [,(|Vu|*+ |x[*|u?)dz
and A x A is simply denoted by AZ.
The following auxiliary lemmas will be needed.

LeEMMA 1.1 (The Gagliardo-Nirenberg inequality).  Assume ue LY(R), 0J'u €
L"(R), 1<q, r<oo. Let p and « satisfy

1 1 1 ]
—=j+a(=-m)+(1—a)=; L <a<i,
p r q m
Then,
[0%ull, < Cp,m, j,q,m) |07 ull flully = (1.6)

In particular, when m=1, j=0, p=4, r=2, =2, we have

lulli < Cllua13lull3, (1.7)

2p+2 +2
lullzprs < Cllusll5]lully™ (1.8)

LEMMA 1.2 (The Gronwall inequality).  Let ¢ be a constant, and b(t),u(t) be
nonnegative continuous functions in the interval [0,T] satisfying

u(t) §c+/0 b(T)u(T)dr, te[0,7].

Then, u(t) satisfies the estimate
¢
u(t) <cexp (/ b(T)dT) , for te€l0,T]. (1.9)
0

The main result of this paper is stated in the following theorem.

THEOREM 1.1.  Let the initial data (uo(x),vo(x)) € H.(Q) x H (Q), and m> 1.

per per
Then there exists a Ty >0 such that system (1.1)-(1.3) has a unique solution (u,v),
which satisfies
(u,v) € L=([0,Ty]; H™,.(2))%. (1.10)

per
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THEOREM 1.2.  Let the initial data (uo(z),vo(z)) € HJ%,.(Q) x H (Q)and m> 5. Sup-
pose one of the following conditions holds:

(i) p>2, g11, 922>0, <911 g ) is positive definite,
9 922
(i) 1<p<2.
Then, for all T >0, system (1.1)—(1.3) has a uniquely global solution

(u,0) € L ([0,T); HI, ().

per

(1.11)

THEOREM 1.3.  Let the initial data (uo(z),vo(x)) € H™(R) x H™(R)and m > . If one
of the following conditions holds

(1) p>2, g11, g22>0, (gu J ) is positive definite,
g 922
(i) 1<p<2,

then the system (1.1)—(1.2) has a uniquely global solution

(u,v) € L2, ([0,00); H™(R))*. (1.12)

THEOREM 1.4. Let p>2 and (u,v) €A%, Let gi1, g22>0, (g; gg ) be negative
22

definite. If e > |¥a|, Au > |¥a|, R, Ay, A>0 and one of the following conditions holds
(Z) FEy= E(UO7U0) <0,
(i) Eo=0 and Im [ (20 + x0z0up) <0,
(iii) Eo>0 and Im [(2Uovz0 + ZVouz0) < —% h(0)Ey,

then solution (u,v) of system (1.1) blows up in a finite time, i.e. there exists Ty >0 such
that

lim (|uz]? + v, |?)dx = +o0. (1.13)

t—T,

Theorem 1.1 can be easily proved by the Galérkin method (see, e.g., [11]). The
detailed proof is omitted here.

2. The global existence of smooth solution

In this section, we give the demonstration of a priori estimates that guarantee
the existence of the global smooth solution of system (1.1)—(1.3). Also, we get the
uniqueness of the solution.

LEMMA 2.1.  Let ug(x) € L*(Q),vo(z) € L2(R2) and (u,v) be a locally smooth solution
of system (1.1) with initial data (ug,vo). Then, we have the identity

lu(z, )13 +2[[v(z, )13 = [[uo (@)1 + 2] vo () 13- (2.1)

Proof. Taking the inner product for the first equation of system (1.1) with u and
the second equation with v, respectively, and integrating the resulting equations with
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respect to x on (2, and then taking the imaginary part of the resulting equations, we
obtain

%di||u||2 =+v/2alm [ (u)%vdz,
i . (2.2)
2|3 = fImfu vdz.

Multiplying the second equation of system (2.2) by 2 and then summing up the first
equation, it follows that

hd d
S 3+ [vll3 =

which implies identity (2.1). O

LEMMA 2.2. Under the conditions of Lemma 2.1, if (uo,v0) € H),,.(Q) x H,,,.(),
M >0, and one of the following conditions holds
(1) p>2, g11,922 >0, (gu g ) is positive definite,
g 922
(i) 1<p<2,
then we can get

JSup ClluCOllar + o0l a1) <C, VT >0, (2.3)

where C' is a constant depending only on ||uo||

1o llvolla,
Proof.  We take the inner product of the first equation of system (1.1) with wu;
and the second equation with v;. Integrating and taking the real part of the resulting

equations, we get
0=1- dtf|uz|2dx+ w4 [ ulide + ARe [ |v]*utiydz + V20 Re [Tt da

+gu [ |ulPutiyde + g [ fulP~ o+ ua,de,
(2.4)
0= SM dtf|v$‘2d$+2dtf‘v‘2dx+ f‘“‘4d$+>\R€f‘u|2U5td$

—|—%Refu2@dx—|—gf\u|p+1\v|p_1v@da:—|—gzgf|v|2pvﬂtdaj.

Summing up the two equations of the system (2.4), we have

a 4
4Mdt </|ux do+ = /|vx| d;z:> 4dt( /\u| dx+ M\, /|v| dz>
+fi/| |2d +——/|u| |v| dgg+7Re—/u vdx
2 dt 2 dt V2
1 d

+m% (gll/|u|2p+2dx+29/|U|p+1|v|p+1dx+ggg/|v|2p+2dx> —0.

h? 2 1 2 1 4 4
I.—W</ux| dm+§/|vm| dx), II.—4<>\U/|u| dx+)\v/|v| dm),

A € «
.= ul?|v|?dz, IV::f/ v|?dz, V;:—Re/u%dx,
5 [Pl =W =

Let
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1
VI:= pro (911/|u|2p+2dl’+2g/|uP+1|vp+1dx+922/v|2p+2d1')

Then
E(t) =1+II+1II4+IV+V+VI= E(0). (2.5)

Applying Lemma 1.1 and the Young inequality, we have

C
lull2 < Cllull3 Iumllz<(52|| ||2+52||um||§), (2.6)

C
ollE < Cllvll3llvell < (52||v2+52||vx||§>- (2.7)

Then, we can bound term II by

C
11 5 (GO0l 4 A oll) + 20l -+ M) ). (2.)

For term III, using the Holder’s inequality

A A
3 [P oPde <3 (uld+ol). (29)

Combining inequalities (2.6) and (2.7), term III can be bounded by

c/1
1)< (5 Bl + 1009+ 82l + 102 1) ). (2.10)
The term
V:iRe/u%dxgi/|u|2|v|dng||vH2||u|\3. (2.11)
V2 V2

Applying inequality (2.7) and Lemma 2.1 yields

1
V1< (gl + 20l (212)
Using the estimates of terms II, III, and V, we deduce
1
]+ [+ [V|<C ((SQ(UIISHIUIISH(;Q(II%§+|vx||§)> : (2.13)
In view of Lemma 2.1, it follows that
€2
=5 lvll2<C. (2.14)

Next, we need to estimate term VI:

2p+2 2 2p+2 2
lullzpts < CllusBllulls™,  [lvllzpts < Clloall5llolls™.
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Using Holder’s inequality, we have
2p+2 2p+2
[t <cqui i+ o)
1 (p+2) 325 (P+2) 325
<0 (U™ 117 4 8o B+ e 1)) (2.15)

Therefore, term VI can be bounded by

1 (p+2) 52 (r+2) 525
WHSC<5qu T ol 2’0+&wu§+mma>- (2.16)

For 1<p <2, combining the estimates in (2.13), (2.14), and (2.16) yields

) a2+ Sy <0
AM Yall2 T 5 12ll2) = &

almost all
2||ug |3+ [lva I3 < C.
For p>2

E:=14+1I+II+IV+V+VI=C.

Note that the matrix <g;1 gg ) >0. Consequently,
22

I+II+III+IV4V < C.

Combining estimates (2.13) and (2.14) yields

1
1= 6(lus I3+ 5 l2113) <C.

2]luq 3+ lval3 < C.

This completes the proof of Lemma 2.2. 1]

LEMMA 2.3.  Let T be any positive number, uo € H7,,.(Q), vo € HZ,,. (). Under the
conditions of Lemma 2.1, we have

sup (2/|u(,t) ||z +|lv (- )| 72) < C, VT >0, (2.17)
0<t<T

where the constant C' depends only on T and ||uo|| g2, ||vol| g2

per per

Proof. Taking the inner product of g, with the first equation of system (1.1)
and v, with the second equation and integrating the resulting equations with respect
to x on €2, and then taking the imaginary part of the resulting equations, we obtain

hd

5% |tz |3 :)\uIm/ (uQ(ﬂM)2 + 2|t |PUTly +2|u|iuwﬂm) dz
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+ )\Im/ (Vo0 VW + Vi VU + 2|05 |* Wl + 2|0 |20 Uy ) d
+glllm/(|u|2pu)mﬂmd:c+gIm/(|u\p*1|’u|p+1u)mﬂmdz

+ \/§a1m/ (|t [T+ Vi Wl + 210 U3 U ) i

hd

2dtvaHQ )\q,lm/ (Taw)? + 2|0z vvm+2|v|xvxvm)dx

+ )\Im/ (umﬂvﬁm Ty UVT g + 2| | VT +2(|u\§vm)@m) dx
+9221m/(|v|2pv)mﬂmd:r+glm/(|v|p_1|u|p+1v)mﬁmdx
+ 2—a1m/(umuﬁm 42U Uy )Vppd.
7
Denote &4 |ju,,[|3 =I+II+III+1V, where
IE)\uIm/ (u2(ﬂm)2+2|uw|2uﬂm+2\u|iugﬂﬂm) dz,
1= )\Im/ (vmiuﬂm + TV VW g + 2|03 |2 T + 2|v|iuaﬂm) dx,
1= gurtin [ (o) sado gl [ (ol ),
V= \/ﬁalm/ (|t |2V 4 Virp Wl + 203V U ) d.

We denote 24 ||v,,(|3 =V+VI+VII+VIII, where

VE)\UIm/(v2(5w1)2+2|vm|21@m+2|v|iv§m) dz,

Vi= /\Im/ (umﬂvﬁm F U UVT g + 2| | VT g +- 2|u|ivﬁm) dx,
VII= gglm / ([0]P0) aBpud + gTm / (0P~ P+ 0)aBuada,
VIl = —Im/ U UWD g + 2Ugp Uy Vg ) dix.

Firstly, we estimate term I.
By using the Sobolev embedding theorem and Holder’s inequality, we have

1] < Otz |l + Cr luz |3l taz 2
Applying inequality (1.7) and Lemma 2.2 yields
3
Gy Hux||4||uzzu2 < 02||UM||2 ||UIH2 [uzzll2 < Cslluge |5 < 4H“M||§ +Cs.
So

1| < Ci ||tz ||2 + Co. (2.18)
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Next, we will deal with term II.
Applying the Sobolev embedding theorem and the Hoélder inequality

| < Cr(fuza 3 + v2zll3) + Calluza 2 llva 13+ Csllve lallua lalluas |2

Applying the inequality (1.7)and Lemma 2.2

1 3 1 5
02||“xa:||2||UxHi"'03||Ux|‘4||“w||4“uwz”2 §C4Huxx||2||vxx”22 ”Utzz "’O5||anc||24 ”u:wc”é1
SC(||UII||%+||UJECE||§+1)

Therefore,
(2.19)

1] < C(||vaa 13 + sz I3 +1)-

For term III,
gllIm/(|u\2pu)mﬂmdx:gllIm/(|u|2p)muﬁmdx+29111m/|u\§pumﬂmdx

:gnIm{/2p|u\2p—2|um\2uﬁm +p|u\2p—2(ﬂm)2u2

+p(p— 1)|u\2p—4(|u|2)iuﬂmdx} +29111m/ |u|i”uzﬂmdﬂc.

Using the Sobolev embedding theorem and Holder’s inequality, we have

<C(L+|luzal3)-

gnlm/(|u|2pu)mﬂmda:

Similarly,
gIm/(|u|p*1\v|p+1u)mﬂmd;ﬂ
=gIm (/|u|§;1|vp+1uumdq:—|—/|v?;Il|up_1uumdx)
+2gIm (/|u§_1|v|’z’+1udx+/|up_1|v|’m’+1uzdx+/|u|§_lv|p+1uzdx)
=gIm (/(P1)|U|p3|um|2vl”“uumder/p;lmW3(umm)2u2|v|p+1dx>

—1p—3
+glm< DL o P e+ [ (|vp“>m|up1uumdx)

+2gIm (/|u7;_1|v|§+1udx+/|up_1|v|§+1umdx+/|u|£_lv|p+1uxdx)

<C(1+ HUMH% + HUMHg)

Therefore
(2.20)

[T <C(1+ HszH%‘F ”ua:a:H%)

For term IV, we can immediately get the estimate
VI < Cllvasll3 + l[uaall3 +1). (2.21)
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Comparing term I with term V and term II with term VI, we get
IVI<Clveall3+1), VI < C([vaall3 +lluas|[3 +1). (2.22)
Comparing III and VII, we get
VI < C(1+ vwe I3+ [[uaa[3)- (2.23)
For term VIII, we have
[VIL| < C([Jtza |3+ 0223 +1)- (2.24)
Applying (2.18)—(2.24), we can obtain the following estimate

d

Using the Gronwall inequality
||Um||§ + |vze ”% <C.

This completes the proof of Lemma 2.3. O

LEMMA 2.4. Let m>0 be an integer. Under the conditions of Lemma 2.1, we have

sup (2[[u(-t)]|szm + ()l m) < C, VT >0, (2.25)
0<t<T

where the constant C' depends only on T and ||uo]| g, ||vol| grm -

Proof.  This lemma is proved by mathematical induction as follows. When m =
0,1,2, according to lemmas 2.1, 2.2, and 2.3, the inequality (2.25) holds.

Suppose that (2.25) is valid for m < k. We will prove that (2.25) holds for m=k+1.

Taking the inner product of D2(*+1y with the first equation of system (1.1) and
D21y with the second equation, and then integrating and taking the imaginary part
of the resulting equations, we get

hd
2 dt
=Im <)\u/Dk+1(|uQu)DkHudx—f—)\/Dk+1(|v|2u)Dk+1udx)

1D+ 3

1 (g [ DH PP D e g [ Do) D4 s )

+v2aIm / DM (Tw) DR ada := T+ TT41I,

hd
2 dt
=Im <)\U/Dk+1(|vQv)Dkﬂvder)\/DkH(u|2v)Dk+1vd:c)

1D o3

+Im (gzz/Dk+1(|v|2pv)Dk+1vda:—|—g/Dk+1(|v|p1|u|p+1v)Dk+1vdx)

+ %Im / DR (u?) D* %ds :=TV+V+VL
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By the normal computation, we can obtain
/Dk+1(|u|2u)Dk+1ﬂdx:/(Dk+1|u|2)uDk+1ﬂ+ Cl/(D’f\uF)DuD’f“ﬂdH---

+Ck/(D|u|2)DkuDk+1ﬂdx+/|u|2Dk+1uDk+1Eda:.
(2.26)

Using the induction assumption for m <k, ||u||gm +|v|gm <C, so when k=3, we
can get ||ullgs <O, ||v|gs <C. Using the Sobolev embedding theorem, || D?ulls <
C, ||D?v|| <C. Therefore,

AuIm/Dk+1(|u|2u)Dk+1ndxgcluD’““unngCQ, (2.27)
Applying the same computation yields
Alm/Dk“(m?u)Dk“mx < C1|| D)3+ Co|| DM |3+ Cs. (2.28)

Therefore,
1| < Cy || DF 10|34 Co| [ DF 1|3+ Cs. (2.29)

Also by the normal computation, we can obtain
/ DR+ (juf2Pu) D d / (DFL[u]2P)uD 154 Cy / (DF[ul?) DuD* s + - -
—|—C;€/(D|u\2p)DkuDk+1ﬂdx+/|u\2pDk+1uDk+1ﬂdx,
SO
glllm/Dk+1(|u|2pu)Dk+1ﬂdx§Cl||Dk+1uH§+C'2.
Using the same computation yields
gt [ DF (a2 o) D e < Gy [0 0]+ Co D a4 Co
Hence
11| < G4 | D+ o3+ Col| D a3+ C. (2.30)
Applying the induction computation, we have
/ (D" ) DM ade = / Dy DFade + ¢y / D™aDvD* ' adx -
+C’k/DﬂDkakHﬂdﬂc—i—/ﬂDkHkaHﬂdaz.

So, we have the estimate of term III

[T < Oy || DF1ul|2 + Co || DR o||2 4 Cs. (2.31)
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Comparing term I with term IV, and term II with term V, we get

[IV] < Cy | D103+ Cof | D" a3 + Cs, (2.32)

V| < Cy||DFF |2 + Cy|| DF |2 4 Cs. (2.33)

For term VI, by direct computation, we have

/ DF?2 DF dr = / DFtYyuD* uds + 4 / DFuDuD*'udz +- -
+C / DuD*uD*udz + / uD* uDF 1 hdy,

Using the induction assumption and the Sobolev embedding theorem yields
[VI| < C1 || D" 3+ Co. (2.34)

Comparing (2.29)—(2.34), we have
d
(D |3+ [ D" ol3) < C(ID* 5+ [ D ol341).
Using the Gronwall inequality yields
D"+ |3+ || Dol 5 < C.

This completes the proof of Lemma 2.4. ]

Finally, we prove the uniqueness of the solution to system (1.1)—(1.3) in the follow-
ing.
Let (u1,v1),(u2,v2) be two solutions which satisfy system (1.1)-(1.3). Then (s=
U1 — Uz, m=1uv1 — Vs satisfies
. 2
ths; = —zh—MAs—&— Ao (JurPug —uz)?u2) + A(Jvr | 2ur — vz |2ug) + g11 (Jur|*Pus
—[uz*Puz) +g(Jo1 [P fur [P~ g — Jog [PH ug [P~ ug) + V20 (T o1 —Tav2),
. 2
ihm, = —f—MAm+£m+)\v(\v1|2v1 — w2 2ve) + A(Jur [Pv1 — [uz|?ve) + gz (|1 |*Poy
—[v2?Pv2) + g(fua [PF [vr [P~ o = [ug [PH va P~ g ) + G5 (uf —u3),

V2
(2.35)

s(0)=0, m(0)=0.

Taking the inner product of the first equation of system (2.35) with s and the second
equation with m, considering the imaginary part of the resulting equations, we obtain
hd

§£Hs||§:)\u1m/(|u1|2u1f|uQ|2uQ)§dx+/\Im/(|v1|2u1f\v2|2uQ)§dx

+g111m/(|u1|2pu1—|uz|2qu)§daﬁ+\/§aIm/(ﬂ1v1—ﬂg@g)@dx

+gIm/(|Ul P g [P~ Ry — v [P [ug [P~ ug)3d,
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5 i mlE =t [ (o Pos ~ eaPoa)mda-+ M [ (un o ~ s Pz
+9221m/(|’l}1|2p’l}1 —|v2|2pv2)mdx+%lm/(u%—ug)mdx
+gIm/(|u1|p+1|v1|p71v1 — |ug|P T g [P~ g )der.

However,

)\ulm/ (Jus [Pus — JuzPuz) 5do < C/|(|u1|25§+(|u1|2 ~ Jus[?)uzs) | dz < O 3.

Similarly,
gnIm / (I P — s 2Pz < C| ]2,
2 2 — 2
Avlm/(\vﬂ vy — |ve|“ve )Tdx < C||m|3,
gaatin [ (fo [0, = oo P o) < C 3.
Also,

)\Im/(|vl|2u1—|vg|2uQ)§dx
SC/|(|U1|285+(|U1|2—|U2|2)U2§)|dISC(HSHngHmH%)
glm/(|vl\p+l|u1|p_lul—|U2|p+l|u2|p_lu2)§d$SC(||8||§+||m||§)7
glm/(|“1|p+1\7fllp*17f1—|u2|p+1|v2|pflvz)mdl“SC(||8H§+||mH§)’

/(ﬂlvl — gy )Sdx
:/(ﬂlvl—ﬂlvg +ﬂ1v2—Hgvg)gdxgcl/(mE—i—\S\Q)dngg(HmHg—i-||s||§),
/(u%—ug)mdaﬁ:/((uf—ulug)—i—(ulug—ug))mdxgC’l/smdeCg(Hng—i—||mH§).
By the above inequalities, one can easily check that
%(llsllgﬂlmll%) <C(|Isl3+IImll3)-

Applying the Gronwall inequality, we get s =0,m =0. Thus the uniqueness is obtained.

REMARK 2.1. By virtue of the local smooth solution, the a priori estimates, and the
continuous extension theorem, we obtain the global smooth solution of the period initial
value problem (1.1)—(1.3). Thus, Theorem 1.2 is obtained.

REMARK 2.2.  All the above estimates are unconcerned with the period L and only
depend on the norm of initial data. Therefore, by using the a priori estimates of the
solution to the system (1.1)—(1.3) for L, as in [25], we derive the global smooth solution
as L — 0o. Thus, Theorem 1.3 is obtained.
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3. Blow-up phenomenon of the solution

In this section, we give some conditions on the existence of blow-up solutions of
system (1.1).

THEOREM 3.1. Letp>2 (ug,v0) €A% and (u(t),v(t)) € C([0,Tp),A?) be the solution of
system (1.1). Define h(t)= [, |x|*(Ju(t)|*+2[v(t)|*)dz. Then, h(t) is well defined for
te[0,7y). Moreover,

h'(t)= %Im/ (uzuy, + vV, )de, (3.1
R

252 1 1
h//(t)zm/(‘ux|2+§|um|2)d1'+ﬂ ()\u/R|u|4dx+)\v/R|11|4dx+2)\‘/Ru|2|fu|2d.’t>
+\faRe/ u?Tdx
R

2p / 2p+2 / 2p+2 / 1 1
+— P2y + P22 42 AP ). (3.2
Mp+D) (911 R|u\ T+ ga2 R|U| T +2g R|U| [P dr ). (3.2)

Proof. We only prove (3.1) and (3.2) formally.
h
R (t) :2Re/ \x|2(ﬂut+2ivt)dx:——lm/ 2|2 (Wt + TV )d
R M Jr

2h
:Mlm/]%(ﬂxul—i—fwi)dx,

h”(t):——lm/ Ut (U+ 220Uz ) + v (V+ 2200, )dx

242
:_7R / < 2;{3 —)\u|u|2—)\|v|2—gu\u|2p—g|u|p71|v|p+1)u—\/§aﬂv) (u+2zu,)dz

h*o* 2 2 p+1) p—1 2p a2\ —
+ ( —e—=Xo|v|" = Au|” —glu|" " = go2|v| v — —=u”" | (T+ 2275 )dx.

4M Oyy V2
Note that
h2Re/ Ul g da = ——/|u ?dz,
2M xrxr - xT
h? 9
mRe 2umzu3«dzf—ﬂ |t |“de.
Then,
h? n?
mRe um(u+2xux)dz——ﬂ |ux|2dx.
Similarly,
h2
mRe Vg (T4 227,,) dx———/ |ve|?d,

)\uRe/ |u|2u(ﬂ+2xﬂw)dx:—u/ lu|*dz,
R 2 Jr
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Re/ \v|2u(ﬂ+2xﬂ$)dx:)\/ (Jul®|v]? +[v]*z|ul?) dz
R R
guRe/ |u\2pu(ﬂ+2xﬂ1)dx=gu/ <|u|2p"’2
R R
gRe/nuvaw+%Au+2xuwdwg/n(ww+wvw+l
R R

Ay
)\URe/ |v|2v(@+2xiz)da¢:—/ lv|*dz,
R 2 Jr

P |u|2p+2> dx,

_Hw“%wwﬁm,
)\Re/ |u|2v(ﬂ+2x@z)dx:)\/ (Jo?[ul* + |u*z|v]2) dx
R R
Re/ 51}(@—}—29@1)(190:5/ (Jo]>=|v[?) dz =0,
R R

gRe/ |u|p+1|v|p—1v(i+2wm)dl‘=g/ <|v|p+1|u|p+1 |up+1$|v|p+1> dz,
R R

p+1
gggRe/ |v|2pv(@+2xﬁm)dx:ggg/ <|112p+2 v2p+2> dx.
Therefore,
h”(t):ﬁ (|u \2+1|v \z)dHi Mo [ |ultde 4+, [ oltde+2) [ |ul?|o]?da
\[OéRe/u%d:E
M R
2p ( / 2p+2 2p+2 +1 +1
+——— (911 [ [u]*PTdxz+ge [ |v[PT2dx+2g [ |ulPT 0[P dr ).
M(p+1) R R R
This completes the proof of Theorem 3.1. ]

Proof. (Proof of Theorem 1.4.) Assuming that the solutions exist globally in time,
we obtain from Theorem 3.1 that

8 4e 1
h”(t):—E(t)——/ lv|2dx — — ()\u/ |u|4dx+)\v/ |v|4d:c+2)\/ u|2|v|2dx)
M M Jg M R R R

2
— 3\[QR6/ w?vdx
M R

2(2—p) < / 2p+2 / 2p+2 /
- dz + PH20r+2 L P ) .
(p+ )M g11 R|U| 922 R|U| T T 29 R|U‘ v
(/ |u|4d:z:+/ |v|2dx>.
R R
4
M@sSEw—<€

= >/||dz—<— >/||4dx
N 4, 2N 212
M/RM dx M/R|u| [v|*dx

Using Holder’s inequality, we have

2
— 3v2a Re/ wodr <
R

3v2a
M 2M

So,

3v2a 3v2a
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2(2—-
B MZ ( / <gu|u|2p+2+gzz|v|2p+2+2g|up+1|v|p+1>dx> '
R

Because M >0, (4e— |@\) >0, ()\u—|35{2/[’1|) >0, Ay, A>0, we deduce

8 2(2—p) < /
M) —E(t)— —~ ul?P2de + [P 2dr +2 wlPH P lde ).
(03502 (g [ e [ 1o g [ 1l

Since p>2, g11 >0, and (g; g ) is negative definite, it follows that

922
(1) < 2Bt = 2 E(0) (33)
- M M ' '
By a classical analysis, we have that
t
h(t)=h(0)+ h’(O)t+/ (t—1)h'(T)dr, 0<t<+o00. (3.4)
0
It follows that
4
h(t)gh(O)+h’(0)t+MEot2, 0<t<-+oo.

Moreover, h(t) is a nonnegative function,
(0)= [ la?(uol?+ 2o )z
and
/ 2h _ _
W (0)= Mlm (TUguoy +2VoVo, )dx. (3.5)

In the following, we discuss this theorem through three cases.

(a) If (i) holds, from (3.3) we have h”(t) <+ E(0)<0. Then, h(t) is a concave
function of ¢ which implies that there exists T < oo such that lim;_,7« h(t) =0.

(b) If (ii) holds, from (3.3) and (3.5) we have b (t) < 5 E(0)=0 and #'(0) <0. Thus
there exists T < co such that lim;_, 7« h(t) =0.

(c) If (7i7) holds, assuming

f(t)=h(0)+n'(0)t+ %Eotz,

we have (h/(0)%—12h(0)Ey) >0. Thus there exists at least ¢ such that

f(t1) :h(0)+h’(0)t1+%Eot2:O. (3.6)

From (3.4) and (3.6), there exists T\ < oo such that lim;_,r h(t)=0.

By (a), (b), and (c¢), we can get lim;_,p h(t) =0, which together with (2.1) leads to
a contradiction. Thus, the maximal existence time T" of the solution (u,v) to the system
(1.1)—(1.3) is finite.

This completes the proof of Theorem 1.4. 0
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