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PURE-STATE N-REPRESENTABILITY IN
CURRENT-SPIN-DENSITY FUNCTIONAL THEORY"*

DAVID GONTIERT

Abstract. This paper is concerned with the pure-state N-representability problem for systems
under a magnetic field. Necessary and sufficient conditions are given for a spin-density 2 X 2 matrix R
to be representable by a Slater determinant. We also provide sufficient conditions on the paramagnetic
current j for the pair (R,j) to be Slater-representable in the case where the number of electrons N is
greater than 12. The case N <12 is left open.
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1. Introduction

The density functional theory (DFT), first developed by Hohenberg and Kohn [5]
then further developed and formalized mathematically by Levy [6], Valone [14], and
Lieb [7], states that the ground state energy and density of a non-magnetic electronic
system can be obtained by minimizing some functional of the density alone over the
set of all admissible densities. Characterizing this set is called the N-representability
problem. More precisely, as the so-called constrained search method leading to DFT
can be performed either with N-electron wave functions [6,7] or with N-body density
matrices [7,14], the N-representability problems can be recast in the pure-state setting
resp. in the mixed-state setting as follows: What is the set of electronic densities that
come from an admissible N -electron wave function, resp. an admissible N-body density
matriz? This question was answered by Gilbert [1], Harriman [3], and Lieb [7] (see also
Remark 3.3).

For a system subjected to a magnetic field, the energy of the ground state can be
obtained by a minimization over the set of admissible pairs (R,j), where R denotes the
spin-density 2 x 2 matrix [2] (from which we recover the standard electronic density p and
the spin angular momentum density m) and j the paramagnetic current [16]. This has
lead to several density-based theories that come from several different approximations.
In spin-density functional theory (SDFT), one is only interested in spin effects. Hence
the paramagnetic term is neglected. The SDFT energy functional of the system therefore
only depends on the spin-density 2 x 2 matrix R. The N-representability problems in
SDET are therefore: What is the set of spin-densities that come from an admissible N -
electron wave function, resp. an admissible N-body density matriz? (pure-state resp.
mixed-state representability). These questions were left open in the pioneering work
by von Barth and Hedin [17]. The mixed-state problem was answered recently in the
mixed-case setting [2]. In parallel, in current-density functional theory (CDFT), one
is only interested in magnetic orbital effects, and spin effects are neglected [15]. In
this case, the CDFT energy functional of the system only depends on p and j, and we
need a characterization of the set of pure-state and mixed-state N-representable pairs
(p,j). Such a characterization was given recently by Hellgren, Kvaal, and Helgaker in
the mixed-state setting [13] and by Lieb and Schrader in the pure-state setting when
the number of electrons is greater than 4 [9]. In the latter article, the authors rely on
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988 PURE-STATE N-REPRESENTABILITY IN CSDFT

the so-called Lazarev-Lieb orthogonalization process [8] (see also Lemma 4.2) in order
to orthogonalize the Slater orbitals.

The purpose of this article is to give some answers to the N-representability prob-
lems in the current-spin-density functional theory (CSDFT): What is the set of pairs
(R,j) that come from an admissible N-electron wave-function, resp. an admissible N -
body density matriz? (pure-state resp. mixed-state representability). We will answer
the question in the mixed-state setting for all N € N* and in the pure-state setting when
N >12 by combining the results in [2] and in [9]. In the process, we will answer the
N-representability problem for SDFT for all N € N* in the pure-state setting. The proof
relies on the Lazarev—Lieb orthogonalization process. In particular, our method does
not give an upper-bound for the kinetic energy of the wave-function in terms of the
previous quantities (we refer to [8,11] for more details). We leave open the case N <12
for pure-state CSDFT representability.

The article is organized as follows. In Section 2, we recall briefly what the sets of
interest are. We present our main results in Section 3, the proofs of which are given in
Section 4.

2. The different Slater-state, pure-state and mixed-state sets

We recall in this section the definition of Slater-states, pure-states and mixed-states.
We denote by LP(R3), H*(R3), C>°(R?), ... the spaces of real-valued LP, H*, C>, ...
functions on R? and by LP(R3 ,C%), H'(R3 ,C%), C>(R3,C?), ... the spaces of C?-valued
LP, H', C* functions on R®. We also make the identification LP(R3,C%)= (L?(R?,C))¢
(and similarly for H(R3,C9), ...). The one-electron state space is

rwe, e ={o =667, [0l = [ 677 +16} P <00 .

endowed with the natural scalar product (®1[®;):= [p, (471@4—(;7%%) The Hilbert

space for N-electrons is the fermionic space /\i\’:1 L?(R3,C?), which is the set of wave-
functions W€ L2((R3,C?)Y) satisfying the Pauli-principle: for all permutations p of
{1,...,N},

W(rp(1),8p(1)s-+ - Tp(N)»Sp(N)) =E(P)Y(T1,51,...,TN,5N),

where £(p) denotes the parity of the permutation p, rp € R? the position of the k-th
electron, and s, € {1,]} its spin. The set of admissible wave-functions, also called the
set of pure-states, is the set of normalized wave-functions with finite kinetic energy

N
W= {‘P e AL*(R?,C?), | V¥|72 <00, ¥[| 2 (gan 1},

i=1

where V is the gradient with respect to the 3N position variables. A special case
of wave-functions is given by Slater determinants: letting ®,P5,...,®n be a set of
orthonormal functions in L?(R?,C?), the Slater determinant generated by (®1,...,®y)
is (we denote by xj :=(rg,sx) the k-th spatial-spin component)

1
y[q)l,...7¢N](X1,...,XN) = Wdet(@i(xj))lgi,jgN‘

The subset of Wi consisting of all finite energy Slater determinants is noted Wgtater,
It holds that WPlater = WP and Wilater CWRM for N > 2.
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For a wave-function ¥ € W™, we define the corresponding N-body density matrix

I'y := W) (W], which corresponds to the projection on {CW¥} in A, L2(R?,C?). The set
of pure-state (resp. Slater-state) N-body density matrices is

GIJ)\}Jre — {qu,\If c ijvure} resp. G?\}ater — {F\p,\I/ c WJSVlater}'

It holds that GP'#*" =Gy and that GR**" C GR'™ for N >2. The set of mixed-state
N-body density matrices G*¢d is defined as the convex hull of GR™:

Gr]%iXEd{ nk|\I/k><\I/k,O§nk§1,an1,\I/k€W]r\),ure}.
k=1 k=1

It is also the convex hull of G3#t°*. The kernel of an operator I' € G'** will be denoted
by
(11,81, s TN, SN T 5815, Ty Sy )

The quantities of interest in DFT are the spin-density 2x2 matrix and the
paramagnetic-current. For I' € Gﬁ”‘ed7 the associated spin-density 2 x 2 matrix is the
2 x 2 hermitian function-valued matrix

(PN
metee= (e 1)

where, for a, 8 € {1,|}?,

p?’g(r)::N Z / I(r,o,Z,8;r,3,Z,5) dZ.
se{tayov-n TR

In the case where I' comes from a Slater determinant .7 [®q,...,Dy], we get
N T2 ot L
Oyl p
Rr(r)=)_ ('k kPk ) (2.1)
= \oioy |0l

In order to lighten the notation, we will denote by plt = plﬁ, plf ::pliai7 and op ::plti

the elements of such a matrix R so that

"
o

Rr= (pp {)
or Pr

The total electronic density is pr = p; + plf, and the spin angular momentum density is
mr =trez[oRr], where

0:=(04,0y4,0;) = (((1) (1)> ’ (? 61) ’ <(1) Ol))

contains the Pauli matrices. As pr only depends on I' through Rr, we will sometimes use
the notation pr. :=pr or simply pr when no confusion is possible. Note that the pair
(pr,mr) contains the same information as Rp. Hence, the N-representability problem
for the matrix R is the same as the one for the pair (p,m). However, as noticed in [2], it
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is more natural mathematicaly speaking to work with Rp. The Slater-state, pure-state
and mixed-state sets of spin-density 2 x 2 matrices are respectively defined by

j]%later = {RF, Te G?\}ater} 7
TR = {Re, DGR,
jjrvnixed = {RF; Te G%ixed} )
Since the map I'— Ry is linear, it holds that 7, J%latcr cIvec jjr\;lixcd and that j]{]nixgd
is convex and is the convex hull of both J¥a* and Jy"°.

For an N-body density matrix FGGrﬁixed, we define the associated paramagnetic
current jr= jlt + jfﬂ where

j¥=Im N Z / Ve (r,a,Z, 57 «,Z,5) dz
se{r, N1/ RITY e
In the case where I' comes from a Slater determinant S[®1,...,Py], we get
N _ _
jr=>"1m (6] Vel +6;vo}). (22)
k=1

Note that, while only the total paramagnetic current j appears in C(S)DFT, the pair
(j7,j%) is sometimes used to design accurate current-density functionals (see [16] for
instance). In this article, however, we will only focus on the representability of j.

3. Main results
3.1. Representability in SDFT. Our first result concerns the characterization

of Jtater | 7R and Ja*ed. For this purpose, we introduce

CN::{REMQXQ(LI(RS,(C)), R*=R, R>0,
3.1
/tr@z[R]:N, \/EEMQXQ(HI(R?’AC))} 3
R3

and C% :={ReCy, det R=0}, where Mayo(FE) denotes the set of 2 x 2 matrices with
elements in the Banach space E.
The following characterization of Cx was proved in [2].

"
LEMMA 3.1. A function-valued matriz R= <p0 ;L) is in Cy if and only if its coeffi-
cients satisfy
ptr =0, plpt—lo>>0, / p“r/ p*=N,

R3 R3

Vpthe HY(R?), o,v/det(R)e WH3/2(R?),

Val?p~t e L'(R?),

’V\/det(R)‘zp_leLl(R3).
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The complete answer for N-representability in SDFT is given by the following the-
orem, whose proof is given in Section 4.1.
THEOREM 3.2.
Case N =1: It holds that

jlslater _ \71pure — C? and jlmixed _ Cl )
Case N >2: For all N >2, it holds that
j]%later _ J}\}ure _ Ir\)/fvlixed _ CN

The equality J*xed =Cy for all N € N* was already proven in [2].

REMARK 3.3. Gilbert [1], Harriman [3], and Lieb [7] proved that the N-
representability set for the total electronic density p is the same for Slater-states, pure-
states, and mixed-states and is characterized by

Isz{peLl(R3), p>0, /RSp:N, \/ﬁeHl(R3)}. (3.2)

Comparing (3.2) and (3.1), we see that our theorem is a natural extension of the previous
result.

3.2. Representability in CSDFT.  We first recall some classical necessary
conditions for a pair (R,j) to be N-representable (we refer to [9,13] for the proofs).

LEMMA 3.4. If a pair (R,j) is representable by a mized-state N-body density matriz,
then

i2/pe LM (R). (3:3)

{ RelCy

From the second condition of (3.3), it must hold that the support of j is contained
in the support of p. The vector v:=p~!j is called the velocity field, and w:=curl(v)
is the vorticity.

Let us first consider the pure-state setting. Recall that, in the spin-less setting, in
the case N =1, a pair (p,j) representable by a single orbital ¢ generally satisfies the
curl-free condition curl(p=1j)=0 (this is the case for instance when ¢ is of the form
¢=|¢le” ", where the phase u is in C*(R?); see [9,13]). This is no longer the case when
spin is considered, as is shown in the following lemma (see Section 4.2 for the proof).

LEMMA 3.5 (CSDFT, case N=1). Let ®=(¢",¢")T e WIater be such that both ¢'
and ¢* have phases in C1(R®). Then the associated pair (R,j) satisfies R€C?, |j|?/p€
LY (R3), and the two curl-free conditions

curl <‘]Im(JYJ)> =0, curl <‘]+Im(JYU)> =0. (3.4)
P pp p pp

REMARK 3.6. If we write o =|co|e!”, then |o|2=pp* and

Im (GVo)=|o*Vr=p'p*Vr. (3.5)
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In particular, it holds that

curl (Im (@Vo) L Im(aVo)

=curl (V1)=0,
pp* pp! ) (v7)

so that one of the equalities in (3.4) implies the other one.

REMARK 3.7.  We recover the traditional result in the collinear-spin setting, where
o=0.

In the case N > 1, things are very different. In [9], the authors gave a rigorous proof
for the representability of a pair (p,j) by a Slater determinant whenever N >4 under a
mild condition (see equation (3.6) below). By adapting their proof to our case, we are
able to ensure representability of a pair (R,j) by a Slater determinant for N > 12 under
the same mild condition (see Section 4.3 for the proof).

THEOREM 3.8 (CSDFT, case N >12). A sufficient set of conditions for a pair
(R,j) to be representable by a Slater determinant is:

e ReCy with N>12 and j satisfies |j|*/p€ L' (R3).
o There exists 6 >0 such that

seuﬂg3 f(r)(1+5)/2(|w(r)\—|—\Vw(r)|) < 00, (3.6)

where w:=curl (p~1j) is the vorticity, and
Fr) =1+ (r)*) 1+ (2)*) (1+ (73)%).

REMARK 3.9. The condition (3.6) is the one found in [9]. The authors conjectured
that this condition “can be considerably loosened.”

Let us finally turn to the mixed-state case. We notice that, if (R,j) is representable
by a Slater determinant .[®1,...,Py], then, for all k€N* the pair (k/N)(R,j) is
mixed-state representable, where N is the number of orbitals (simply take the uniform
convex combination of the pairs represented by .7 [®1], .7’[®2], etc.). In particular, from
Theorem 3.8, we deduce the following corollary.

COROLLARY 3.10 (CSDFT, case mixed-state). A sufficient set of conditions for a
pair (R,j) to be mized-state representable is that R€Cy for some N € N*, j satisfies
lil?/p€ LY (R3), and (3.6) holds for some &> 0.

In [13], the authors provide different sufficient conditions than (3.6) for a pair (p,j)
to be mixed-state representable, where p is the electronic density. They proved that, if

(1+]-12)p|V(p )| e L1 (R),

then the pair (p,j) is mixed-state representable. Their proof can be straightforwardly
adapted for the representability of the pair (R,j), so that similar results hold. The
details are omitted here for the sake of brevity.
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4. Proofs

4.1. Proof of Theorem 3.2.  The mixed-state case was already proved in [2].
We focus on the pure-state representability.

Case N=1. The fact that J5'*" = 7P"° simply comes from the fact that G§13*r =
Gpure. To prove jSlaterCC we let RejSlater be represented by ((ZbT,(ZsL)T

Hl(]Rig,(Cz)7 so that
R (1072 oTer)
Prol [t

Since R e Jplater ¢ gmixed = and det R=0, we deduce R€C).
We now prove that CcC gdater.  TLet R= (a p¢> €CY. From detR=0 and

pr>0, plpt=lof?, / p +/
/pT/ EH RS O'GWI 3/2( (41)
Vol /pe LA (@),

Lemma 3.1, we get

There are two natural choices that we would like to make for a representing orbital,
namely

7 \T o - T
(I)l = (\/77 \/F) and (I)QZ (\/ﬂT7 \//T> . (42)
Unfortunately, it is not guaranteed that these orbitals are indeed in H'(R3,C2%). It
is the case only if |Va|?/pt is in LY(R3) for ®; and if |Vo|?/p! is in LY(R3) for ®,.
Due to (4.1), we only know that |Va|?/pe L*(R3). The idea is therefore to interpolate
between these two orbitals, taking ®; in regions where p' > p* and ®, in regions where
p*> p'. This is done via the following process.

Let x € C*°(R) be a non-decreasing function such that 0 <x <1, y(z)=0if 2 <1/2,
and y(x)=11if x>1. We write c =«a+if, where « is the real-part of o and § is its
imaginary part. We introduce

Va2 +x2(p1/ph) 5 3
A= — s 1=/ 1=x3(pT /pt) —=,
ali+ B _ B —am

Ag 1= ——— H2
ot ot

and we set
ST i=X\ +igy and %= o +ipus.

Let us prove that ®:=(¢",4') represents R and that ® € Water | First, an easy calcu-
lation shows that
?+x2B2+(1—x*)B _ o
672 =23+ 413 = P Pl
|¢¢|2 — (042‘*‘52)()\%‘*‘#%) _ w :Pi,
(p1)? p!
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. a )\2_|_ 2
Re (6737) =duda = s = “CLE) o,
2 2
177 — _ BN+
Tm (§76F) = Aupia+ dagn = =20 =,

so that ® € L?(R3,C?) with ||®| =1, and ® represents R. To prove that ® € W;later
we need to check that A1, A\s, 1, and ps are in Hl(R?’). For A\{, we choose another
non-increasing function £ € C*°(R) such that 0<£<1, £(z)=0 for <1, and &(z)=1
for x> 2. Note that (1—x)£=0. It holds that

VA== (p"/p)VA+E(p"/p*) VA (4.3)
The second term in the right-hand side of (4.3) is non-null only if p" > p¥, so that

x(p"/p*)=1 on this part. In particular, from the equality p'p*=|o|?, we get

E(5" /oA =52<pT/p¢>;’;=52<pT/pl>¢p?
and similarly,

E(p" /P VI =EX(p"/p") VP,

which is in L2?(IR?) according to (4.1). On the other hand, the first term in the right-hand
side of (4.3) is non-null only if pT <2p*, so that (1/3)p<p* on this part. In particular,
from the following pointwise estimate

IVVF+9l<IVVEI+IVVaL

which is valid almost everywhere whenever f,g>0, the inequality (a+b)% <2(a?+b?),
and the fact that o+ 232 <|o|?, we get (we write x for x(p'/p*))

2

T = | VOV — a2 xEFY
o
Va2 2822 (a?+ 232
<2 | ' | +( X )|V\/p7|2
p (p%)
PVt —pt vt | p2
Vo 2VXEIGETE B 0w a2 o o
<2 + + + Vv pt
p p* pt (p¢)2| |

Finally, we use the inequality (p*)~! <(3/p), and the inequality |o|?/(p*)%2=p"/p* <2
and get

\V4 2 VTZ vi2 \V4 2
|V)\1|2§C<;X|+Vx||%m(| Pl Vel )+| f' —|—|V\/p¢|2>.

of ot

The right-hand side is in L'(R?) according to (4.1). Hence, (1—£2(pt/p*))|V 1| €
L2(R?), and finally \; € H'(R?). The other cases are treated similarly, observing the
following:
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e Whenever p' >p*, then xy=1, and ®=®;, where ®; was defined in (4.2). We
then control (p')~! with the inequality (p')~! <2p~ 1.
e Whenever p! <p*/2, then x =0, ®=®,. We control (p*)~! with the inequality
()t <5p7t
e Whenever p*/2<pl<p', then both (p')~! and (p*)~! are controlled via
(p1) "1 <3p~ ! and (ph) "t <2p7
Case N >2. Since Jﬁlatercjﬁure Jwixed =y it is enough to prove that Cn C
JNlater - We start with a key lemma.

LEMMA 4.1.  For all M,N €N, it holds that Jy=%F = JR™ + Tyer.

Proof. (Proof of Lemma 4.1.) The case JN®F C JR™ + T/ is trivial: if
Rejﬁﬁtﬁf is represented by the Slater determinant #[®q,...® x4/, then, by denot-
ing by R; (resp. Ra) the spin-density 2x 2 matrix associated to the Slater determi-
nant . [®q,...,®y] (resp. L [Pni1,...,Pniar]), it holds that R=R; + Ry (see Equa-
tion (2.1) for instance), with R; € jSIater and Ry € Jypater,

The converse is more involving, and it requires an orthogonalization step. Let
Ry € JJ*" be represented by the Slater determinant .#[®1,...,®y] and Ry € Jyrater
be represented by the Slater determinant . [<I>1, <T> wm]. We cannot directly consider
the Slater determinant .7 [®,... <I>N,<I>1, <I>M] for (®1,...,Py) is not orthogonal to
(D1,..., D).

We use the following lemma, which is a smooth version of the Hobby—Rice theorem
in [4] (see also [10]) and was proven by Lazarev and Lieb in [8] (see also [9]).

LEMMA 4.2. For all N €N* and for all (f1,...,fn) € L*(R3,C), there exists a function
u € C*(R3), with bounded derivatives, such that

VI<E<N, / freit =
R3

Moreover, u can be chosen to vary in the r1 direction only.

We now modify the phases of E}I ,...,&E as follows. First, we choose uj as in
Lemma 4.2 such that

V1<k<N, / (@tqﬁ +¢,ﬁ¢{> S—)
]RS

and we set (I>N+1:<1716“71. Note that, by construction, ®y11 is normalized, in
HY(R3,C?), and orthogonal to (®1,...,®x). We then construct uz as in Lemma 4.2
such that

VI<k<N+1, / <¢T¢T+¢i¢i) 1u2_ 0,

and we set Py 4o = @eiﬂg. We continue this process for 3 <k < M and construct @y =
&eiﬁ. We thus obtain an orthonormal family (®q,...,o Py M) By noticing that the
spin-density 2 x 2 matrix of the Slater determinant . [(I>1, , P M] is the same as the
one of S [®n1,...,Pn1s] (the phases cancel out), we obtain that R= R; + Ry, where
R is the spin-density 2 X 2 matrix represented by .7 [®1,..., Py ps]. The result follows.

d
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We now prove that Cny C J E,latcr. We start with the case N =2.
T T
Case N=2. Let R=(" 7 )eCy. Wewrite VR=(" "), with TT,1ﬂ¢€(H1(R3))2
g pt 5 rt

and s in H'(R3,C). Let

12 ot 2 ol
+ o (IrT]F s L [1s]? s
R":= <srT |s|2> and R*:= (srl 2 ) (4.4)

It is easy to check that R=R"+ R¥, that R/* are hermitian, of null determinant, and
VR € Mayo (H'(R?,C)). However, it may hold that [y, trc2[R'] ¢ N*, so that R' is
not in CY, for some M € N*.

The cases RT=0 and R‘'=0 are trivial. Let us suppose that, for a€ {1,4},

m®:= [os pre #0. In this case, the matrices Ro=(m®)"1R* are in C) and hence
are representable by a single orbital, due to the first statement of Theorem 3.2. Let

=(¢1,¢1)T € HY(R?,C2?) and @, = (¢},65)T € HY(R3,C?) be normalized orbitals that
represent respectively RT and RY. It holds that

&8 =R =(m") 'R’ and 5= Rt=(m")"'R".

From the Lazarev—Lieb orthogonalization process (see Lemma 4.2), there exists a func-
tion uw € C*°(R) with bounded derivatives such that

(By|Doel) = /W (¢I¢g +¢{¢§) et =0. (4.5)

Once this function is chosen, there exists a function v € C*°(R) with bounded derivatives
such that

(B1]@1e™) = (@1 Boel )y = (Boel™|D1e”) = (By|Dae™) =0. (4.6)
We finally set

1 s &
ﬁ ( q)l + @Qe )

and

1 ~ ~ N
Byim — (\/mbe Vi e“‘) olv
2 \/5 1 2

From (4.5), we deduce |®1]|?=®2]|?=1, so that both ®; and ®, are normalized.
Also, from (4.6), we get (®4|®;)=0. Hence, {®,®,} is orthonormal. As ®; and ®,
are in H'(R3,C?), and u and v have bounded derivatives, ®; and ®, are in H!(R?,C?).
Finally, it holds that

1/ i~ ~ . I
107 + 2,05 =3 (mﬂbl@; Fmt B35+ 2vmTmiRe (<I>1<I>;e*1“)
+m 01t +mt 0y ®5 —2vVmImiRe (&)1:15;(3*1“))
:mTEMCI)T +mJ'(AIi)2(AI;; =R.

We deduce that the Slater determinant .7[®;,®,] represents R, so that Re& Jg'ater,
Altogether, Co C J5'%%" and therefore Co = J3'at.
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Case N >2. We proceed by induction. Let ReCyiq1 with N >2) and suppose
Cn =T We use the decomposition (4.4) and write R= RT 4+ R%, where R/+ are
two null-determinant hermitian matrices. For a€{7,]}, we note m®:= fRS PRe. Since
mb+mt=N+1>3, at least m' or m* is greater than 1. Let us suppose without loss
of generality that m'>1. We write R= Ry + Ry with

Ri:=(m")'R" and Ro:=((1—(m") ") RT+m'R").

It holds that Ry €C{=7P"" and Ry €Cy=JN*" (by induction). Together with
Lemma 4.1, we deduce that R€ J, ]%ljtfr. The result follows.

4.2. Proof of Lemma 3.5. Let ®=(¢T,¢%) € HY(R3,C?). For a€{1,]}, we

let 7 be the phase of ¢*, so that ¢®=./p%'"", and we suppose that 77 and 7+ are
in CY(R3). Let (R,j) be the associated spin-density 2x 2 matrix and paramagnetic

current. It holds
e (89)- (5205,
ap ProT |4
Setting 7 =71 — 7+, we obtain ¢ =|o|e'” = /pTptel™. The paramagnetic current is
j=p" VT 4+ oVt = pVrt 4+ pIVr = pVrT — ptvr
In particular, using (3.5),

'_Im(EVU):jprVT:vT¢ and i+Im(EVU)

j
p pp p p ppt

=vr'

are curl-free.

4.3. Proof of Theorem 3.8. We break the proof in several steps.

Step 1: Any ReCy can be written as R=Ri+ Ry+ Rs with R, €C} , Ny >4.
) T .

Let R= (" 7 )eCy, with N>12. We write VR=("_ ° ), with rT,rte (H'(R?))
G p* 5 rt

and s in H'(R3,C). We write R=R"+ R}, where R'/* were defined in (4.4). As in the

proof of Theorem 3.2 for the case N =2, R"/¥ are hermitian and of null determinant,

and VRT/* € Mayo (H'(R?,C)). However, it may hold that [trcz[R"]¢N*, so that R

is not in €Y, for some M € N*. In order to handle this difficulty, we will distribute the

mass of RT and RY into three spin-density 2 x 2 matrices.

More specifically, let us suppose without loss of generality that [tre2[RT]> [tre2[RY].

We set

Ri=(1-&)R"+&RY
Ry=&(1-&)R, (4.7)
Ry=(1-%&)R'+ &R,

where &1,£2,&3 are suitable non-decreasing functions in C°°(R?) that depend only on

(say) r1, such that, for 1 <k <3, 0<&, <1. We will choose them of the form & (r)=0
for r1 <ay, and & (r) =1 for 1 > B > ay, and such that

(1-&)6=(1-&2)8=(1-£1)&=0. (4.8)
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Finally, these functions are tuned so that [, tre2 (Rgx) € N* and [p, tre2 (Ry) >4 for all
1<k<3. We represent in Figure 4.1 a canonical example of such a triplet (£1,£2,£3).
In this figure, we clearly see how the non-overlapping condition (4.8) guarantees the
null-determinant condition everywhere. Note that such a spatial decomposition could
not have been performed with only two spin-density 2 x 2 matrices. Although it is not
difficult to convince oneself that such functions & exist, we provide a full proof of this
fact in the Appendix.

From (4.8), it holds, for all 1 <k <3, that Ry € CR,K and R+ Ry+R3=R'+ R'=R.

(a) (1-&) \ / &

AN

4 §i(1-&3) A

\.
© - \\ ya:

FIG. 4.1. Weights of the matrices RT (black) and RY (gray) in (a) Ri=(1—&)RT+&RY,
(b) Ro=¢1(1—€3)RT, and (c) Rs=(1—&)RT +&3RY.

In the sequel, we decompose the current j in a similar way to (4.7). In order to
simplify the notation, we introduce the total densities of RT and R*:

=4 and it s
Recall that p= T+ f+. We write j=j; +jo +jz with
f1 ft
ji=01-¢&) (ijm(sVs)) +& (pj+Im(sVs)> ,
0

=6(1-6) (L= vy, (19
. ft. _ /. _
jai=(1-¢&) (pJ—Hm(sVS)) +&3 (p'] —Im(sVs)) .

Step 2: The pair (Ry,j;) is representable by a Slater determinant.
Following [9], we introduce

1 [* 1
0= |

where § is the one in (3.6) and m is a constant chosen such that £(co)=1. We then
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introduce
2
ma(r)=&(r+a),

M .2(r) = %5(%1—&-@(1_”1@))’ (4.10)

M) = g E(ma+1) (11 (1) — m(r)),

mk(r)=——=1—=n(r) =m2(r) —n3(r)) for 4<k<N,

N-3
where «, 3,7 are tuned so that, if p; :=trc2 Ry denotes the total density of Ry, then

VlSkSNk, / 771,kp1=1- (411)
R3

It can be checked (see [9]) that 11 ;>0 and Zszl M,k =1. We seek orbitals of the form

T
(I)l,klz\/m< (1—61)<5)+ 52(7:1)) iU 1<I{i<N1,

and where the phases u; j will be chosen carefully later. From (4.8), we recall that
(1—£1)&2 =0, so that, by construction, ®; ; is normalized and

@1, P] =1 kR

Let us suppose for now that the phases u; j are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved, thanks to the Lazarev—Lieb orthogonalization process
(see Lemma 4.2). Then, ¥ :=8[®q 1,...,P1 n] represents the spin-density 2 x 2 matrix
Ry. According to (2.2), the paramagnetic current of ¥ is (we recall that rT and 7+ are
real-valued, and we write s =|s|e” for simplicity)

N1
Ju :an,k(l —&) (I PVur g +[sPV (=7 +u1 k)
k=1
Ny
+27]17k52 (|S|QV(T+U17]€) + |r¢|2Vu1,k)
k=1

=((1=&)fT+&f) <Z771 KV k>+(€2(1§1))52VT~

Since |s|?V7=Im(3Vs), this current is equal to the target current j; defined in (4.9) if
and only if

N1

pY=p > V.
At

In [9], Lieb and Schrader provided an explicit solution of this system when N; >4 !
(their proof uses Lemma 4.2 and in particular the fact that the phase may be chosen

! In the same article, the authors recall (see [12] for instance) that there exist pairs (p,j) for which
no smooth solution exists when N7 =2. The case Nj =3 is still open. Of course, should someone find
an explicit solution for N1 =3, the condition N >12 in Theorem 3.8 could be replaced by the weaker
condition N >9.
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to vary in one direction only). We do not repeat the proof, but we emphasize the fact
that, because condition (3.6) holds true, the phases u; j can be chosen to have bounded
derivatives, so that the functions ®; j are in H!(R3,C?). Also, as their proof relies on
the Lazarev—Lieb orthogonalization process, it is possible to choose the phases u; j so
that the functions ®, j are orthogonal, and orthogonal to a finite-dimensional subspace
of L?(R3,C?).

Altogether, we proved that the pair (Ry,j1) is representable by the Slater determi-
nant Y[@Ll,...,tbl’]\rl}.

Step 3: Representability of (Rs,j2) and (R3,j3), and finally of (R,j). In order
to represent the pair (R2,j2), we first construct the functions n, j for 1 <k <N of the
form (4.10) so that (4.11) holds for ps:=trc2 Ro. We then seek orbitals of the form

™ .
Dy = 772,1@51(1—53)(7;)61”2”‘“7 for 1<k<Ns.

Reasoning as above, the Slater determinant of these orbitals represents the pair (Ra,j2)
if and only if

. Na
J

P2 =po E M2,k VU2 k.
P k=1

Again, due to the fact that N5 >4, this equation admits a solution. Moreover, it is
possible to choose the phases ugj so that the functions ®s; are orthogonal to the
previously constructed ®; .

We repeat again this argument for the pair (Rs,j3). Once the new set of functions
13,5 is constructed, we seek orbitals of the form

{52} (1)

and construct the phases so that the functions ®3 j, are orthogonal to the functions ®4
and ®o 1.

Altogether, the pair (R,j) is represented by the (finite energy) Slater determinant
P11, PN, P21, Pa Ny, P31, ..., P3N, |, Which concludes the proof.

Appendix A. We explain in this section how to construct three functions
£1,6,63€ (C*(R))® like in Figure 4.1. In order to simplify the notation, we introduce

T) :// tree (Ri)(T,TQ,Tg) drodrs,
RxR
— || trea(B)(r.2) drads,
RxR

where R and R were defined in (4.4). We denote

F(a):/:of(m)dx and G(a):/a g(z)da,

— 00

and finally F=F(oc0)= [, f and G=G(00)= [pg. Note that F' and G are continuous
non-decreasing functlons going from 0 to .7-' (resp. G) and that it holds F+G=N. Let
us suppose without loss of generality that F <G, so that 0 < F<N/2<G<N. If F=0,
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then RY=0 and we can choose Ry =Ry =(4/N)R" €C? and R3=(N —8)/NR"€C% .
Since N >12, it holds that N —8 >4, so that this is the desired decomposition. We now
consider the case F #0.

In order to keep the notation simple, we will only study the case F <8 (the case
F > 8 is similar by replacing the integer 4 by a greater integer M such that F <2M <
N —4 in the sequel). We seek for o such that

[P f@)de<a and [ f(2)+ [ g(x)>4,
[Zf(@)dz<4 and [ g(x)dz+ [ f(z)dz >4,
or equivalently
F—4<F(a)<4 and F(a)+4—F<G(a)<F(a)+G—4. (A1)

Let a(r_4) be such that F(Oz(]:_4)) =F —4 (with QF_g)=—00 if F<4) and Q(4)
be such that F(a))=4 (with ay)=-+oo if F<4). As F is continuous and non-
decreasing, the first equation of (A.1) is satisfied whenever a(r_s) <a<a). The
function [or_4),04] > = m(a) := F(a)+4— F goes continuously and non-decreasingly
from 0 to 8 —F, and the function [a(r_4), 4] > arr M(a):=F(a)+G—4 goes contin-
uously and non-decreasingly from N —8 to G between o (r_4) and «a(4). In particular,
since G(«) goes continuously and non-decreasingly from 0 to G, only three cases may
happen:

e There exists ag € (a(r_a),4)) such that m(ag) < G(ag) < M(ap). In this case,
(A.1) holds for & =ayp. By continuity, there exists £ >0 such that

F(a+e)<A4,
F(a)+G—-G(a+e)>4,
Gla)+F—F(a+e)>4.

Let & € C*°(R) be a non-decreasing function such that () =0 for # <« and
& (x)=1 for 2 >a+e. Then, as 0<E& <1, it holds that

/(1—52)f§F(a+5)<4
R

and

/(1—52)f+/00 g>F(a)+G—G(a+e)>4.
R

a+e

We deduce that there exists an non-decreasing function & € C°°(R) such that
&3(z) =0 for x <+¢ and such that

/R(l—fz)f+§3g=4-
Note that (1 —£2)§3=0. On the other hand, from

fR€2f§]:_F(a)<4
Jelof+ [0 _g>F—F(a+e)+G(a)>4,
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we deduce that there exists a non-decreasing function & € C*°(R) such that
&1(x)=1 for z>a:

/(1—61)g+€2f=4-
R

and (1—¢&1)&=(1—¢&1)83=0. Finally, we set
Ri=(1-&)R"+&RY,
R2:€1(1_£3)RT7
Ry=(1—&)R* + &R

By construction, R=RT+R'=R;+Ry+R3, R, € CY, and Rz €Cl. We deduce
that Ry €C%_g, where N —8>4. This leads to the desire decomposition.

e For all a € (a(r_4),a4)), it holds that G(a) <m(a). Note that this may only
happen if m(a(4)) >0 or F <4, so that G > N —4>8. It holds that G(a(r_4)) =
0, so that g(r) is null for r <o(r_4). Let ag be such that o r_4) <o <.
As

/f:]—'>4 and / f=F—F(o) <4,
R [e 73}

there exists a non-decreasing function & € C*°(R) satisfying & (z) =1 for z > ayq

and such that
/51f=4~
R

Now, since G(a4)) <m(asy)=8—F, it holds that

{fR(lfl)fﬁF(goa@))ll
fR(l—fl)f+faoQZF(a(f_4))+g_G(a(4))>4.

There exists a non-decreasing function {3 € C'*°(R) satistying {3 () =0 for z < ay
and such that

/(1—51)f+§29=4~
R

Note that (1 —¢&1)62=0. Finally, we set

Rl :glRi,
Ry=(1-&)R",
Ry=&RT+(1-6)R".

By construction, it holds that R=R;+ Ro+ R3, R1€CY, and R3€C). We
deduce Ry €CY, g, and the result follows.

e For all a € (a(r_4y,a(4)), it holds that G(a) > M (). This case is similar to the
previous one.
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