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PURE-STATE N-REPRESENTABILITY IN
CURRENT-SPIN-DENSITY FUNCTIONAL THEORY∗

DAVID GONTIER†

Abstract. This paper is concerned with the pure-state N -representability problem for systems
under a magnetic field. Necessary and sufficient conditions are given for a spin-density 2×2 matrix R
to be representable by a Slater determinant. We also provide sufficient conditions on the paramagnetic
current j for the pair (R,j) to be Slater-representable in the case where the number of electrons N is
greater than 12. The case N <12 is left open.
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1. Introduction
The density functional theory (DFT), first developed by Hohenberg and Kohn [5]

then further developed and formalized mathematically by Levy [6], Valone [14], and
Lieb [7], states that the ground state energy and density of a non-magnetic electronic
system can be obtained by minimizing some functional of the density alone over the
set of all admissible densities. Characterizing this set is called the N-representability
problem. More precisely, as the so-called constrained search method leading to DFT
can be performed either with N -electron wave functions [6, 7] or with N -body density
matrices [7,14], the N -representability problems can be recast in the pure-state setting
resp. in the mixed-state setting as follows: What is the set of electronic densities that
come from an admissible N -electron wave function, resp. an admissible N -body density
matrix? This question was answered by Gilbert [1], Harriman [3], and Lieb [7] (see also
Remark 3.3).

For a system subjected to a magnetic field, the energy of the ground state can be
obtained by a minimization over the set of admissible pairs (R,j), where R denotes the
spin-density 2×2 matrix [2] (from which we recover the standard electronic density ρ and
the spin angular momentum density m) and j the paramagnetic current [16]. This has
lead to several density-based theories that come from several different approximations.
In spin-density functional theory (SDFT), one is only interested in spin effects. Hence
the paramagnetic term is neglected. The SDFT energy functional of the system therefore
only depends on the spin-density 2×2 matrix R. The N -representability problems in
SDFT are therefore: What is the set of spin-densities that come from an admissible N -
electron wave function, resp. an admissible N -body density matrix? (pure-state resp.
mixed-state representability). These questions were left open in the pioneering work
by von Barth and Hedin [17]. The mixed-state problem was answered recently in the
mixed-case setting [2]. In parallel, in current-density functional theory (CDFT), one
is only interested in magnetic orbital effects, and spin effects are neglected [15]. In
this case, the CDFT energy functional of the system only depends on ρ and j, and we
need a characterization of the set of pure-state and mixed-state N -representable pairs
(ρ,j). Such a characterization was given recently by Hellgren, Kvaal, and Helgaker in
the mixed-state setting [13] and by Lieb and Schrader in the pure-state setting when
the number of electrons is greater than 4 [9]. In the latter article, the authors rely on
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the so-called Lazarev–Lieb orthogonalization process [8] (see also Lemma 4.2) in order
to orthogonalize the Slater orbitals.

The purpose of this article is to give some answers to the N -representability prob-
lems in the current-spin-density functional theory (CSDFT): What is the set of pairs
(R,j) that come from an admissible N -electron wave-function, resp. an admissible N -
body density matrix? (pure-state resp. mixed-state representability). We will answer
the question in the mixed-state setting for all N ∈N∗ and in the pure-state setting when
N ≥12 by combining the results in [2] and in [9]. In the process, we will answer the
N -representability problem for SDFT for all N ∈N∗ in the pure-state setting. The proof
relies on the Lazarev–Lieb orthogonalization process. In particular, our method does
not give an upper-bound for the kinetic energy of the wave-function in terms of the
previous quantities (we refer to [8,11] for more details). We leave open the case N <12
for pure-state CSDFT representability.

The article is organized as follows. In Section 2, we recall briefly what the sets of
interest are. We present our main results in Section 3, the proofs of which are given in
Section 4.

2. The different Slater-state, pure-state and mixed-state sets
We recall in this section the definition of Slater-states, pure-states and mixed-states.

We denote by Lp(R3), H1(R3), C∞(R3), ... the spaces of real-valued Lp, H1, C∞, ...
functions on R3 and by Lp(R3,Cd), H1(R3,Cd), C∞(R3,Cd), ... the spaces of Cd-valued
Lp, H1, C∞ functions on R3. We also make the identification Lp(R3,Cd)≡ (Lp(R3,C))d

(and similarly for H1(R3,Cd), ...). The one-electron state space is

L2(R3,C2)≡
{
Φ=(φ↑,φ↓)T , ‖Φ‖2L2 :=

∫
R3

|φ↑|2+ |φ↓|2<∞
}
,

endowed with the natural scalar product 〈Φ1|Φ2〉 :=
∫
R3

(
φ↑
1φ

↑
2+φ↓

1φ
↓
2

)
. The Hilbert

space for N -electrons is the fermionic space
∧N

i=1L
2(R3,C2), which is the set of wave-

functions Ψ∈L2((R3,C2)N ) satisfying the Pauli-principle: for all permutations p of
{1, . . . ,N},

Ψ(rp(1),sp(1), . . . ,rp(N),sp(N))=ε(p)Ψ(r1,s1, . . . ,rN ,sN ),

where ε(p) denotes the parity of the permutation p, rk ∈R3 the position of the k-th
electron, and sk ∈{↑,↓} its spin. The set of admissible wave-functions, also called the
set of pure-states, is the set of normalized wave-functions with finite kinetic energy

Wpure
N :=

{
Ψ∈

N∧
i=1

L2(R3,C2),‖∇Ψ‖2L2 <∞,‖Ψ‖2L2(R3N )=1

}
,

where ∇ is the gradient with respect to the 3N position variables. A special case
of wave-functions is given by Slater determinants: letting Φ1,Φ2, . . . ,ΦN be a set of
orthonormal functions in L2(R3,C2), the Slater determinant generated by (Φ1, . . . ,ΦN )
is (we denote by xk := (rk,sk) the k-th spatial-spin component)

S [Φ1, . . . ,ΦN ](x1, . . . ,xN ) :=
1√
N !

det(Φi(xj))1≤i,j≤N .

The subset of Wpure
N consisting of all finite energy Slater determinants is noted WSlater

N .
It holds that WSlater

1 =Wpure
1 and WSlater

N �Wpure
N for N ≥2.
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For a wave-function Ψ∈Wpure
N , we define the corresponding N -body density matrix

ΓΨ := |Ψ〉〈Ψ|, which corresponds to the projection on {CΨ} in
∧N

i=1L
2(R3,C2). The set

of pure-state (resp. Slater-state) N -body density matrices is

Gpure
N :={ΓΨ,Ψ∈Wpure

N } resp. GSlater
N :=

{
ΓΨ,Ψ∈WSlater

N

}
.

It holds that GSlater
1 =Gpure

1 and that GSlater
N �Gpure

N for N ≥2. The set of mixed-state
N -body density matrices Gmixed

N is defined as the convex hull of Gpure
N :

Gmixed
N =

{ ∞∑
k=1

nk|Ψk〉〈Ψk|,0≤nk≤1,

∞∑
k=1

nk=1,Ψk ∈Wpure
N

}
.

It is also the convex hull of GSlater
N . The kernel of an operator Γ∈Gmixed

N will be denoted
by

Γ(r1,s1, . . . ,rN ,sN ;r′1,s
′
1, . . . ,r

′
N ,s′N ).

The quantities of interest in DFT are the spin-density 2×2 matrix and the
paramagnetic-current. For Γ∈Gmixed

N , the associated spin-density 2×2 matrix is the
2×2 hermitian function-valued matrix

RΓ(r) :=

(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)
(r),

where, for α,β∈{↑,↓}2,

ραβΓ (r) :=N
∑

�s∈{↑,↓}(N−1)

∫
R3(N−1)

Γ(r,α,�z,�s;r,β,�z,�s) d�z.

In the case where Γ comes from a Slater determinant S [Φ1, . . . ,ΦN ], we get

RΓ(r)=

N∑
k=1

(
|φ↑

k|2 φ↑
kφ

↓
k

φ↑
kφ

↓
k |φ↓

k|2

)
. (2.1)

In order to lighten the notation, we will denote by ρ↑Γ :=ρ↑↑Γ , ρ↓Γ :=ρ↓↓Γ , and σΓ :=ρ↑↓Γ
the elements of such a matrix R so that

RΓ=

(
ρ↑Γ σΓ

σΓ ρ↓Γ

)
.

The total electronic density is ρΓ=ρ↑Γ+ρ↓Γ, and the spin angular momentum density is
mΓ=trC2 [σRΓ], where

σ := (σx,σy,σz) :=

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
contains the Pauli matrices. As ρΓ only depends on Γ through RΓ, we will sometimes use
the notation ρRΓ :=ρΓ or simply ρR when no confusion is possible. Note that the pair
(ρΓ,mΓ) contains the same information as RΓ. Hence, the N -representability problem
for the matrix R is the same as the one for the pair (ρ,m). However, as noticed in [2], it
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is more natural mathematicaly speaking to work with RΓ. The Slater-state, pure-state
and mixed-state sets of spin-density 2×2 matrices are respectively defined by

J Slater
N :=

{
RΓ, Γ∈GSlater

N

}
,

J pure
N :={RΓ, Γ∈Gpure

N } ,
Jmixed
N :=

{
RΓ, Γ∈Gmixed

N

}
.

Since the map Γ �→RΓ is linear, it holds that J Slater
N ⊂J pure

N ⊂Jmixed
N and that Jmixed

N

is convex and is the convex hull of both J Slater
N and J pure

N .

For an N -body density matrix Γ∈Gmixed
N , we define the associated paramagnetic

current jΓ= j↑Γ+ j↓Γ where

jαΓ =Im

⎛⎝N
∑

�s∈{↑,↓}N−1

∫
R3(N−1)

∇r′Γ(r,α,�z,�s;r
′,α,�z,�s)

∣∣∣
r′=r

d�z

⎞⎠ .

In the case where Γ comes from a Slater determinant S[Φ1, . . . ,ΦN ], we get

jΓ=

N∑
k=1

Im
(
φ↑
k∇φ↑

k+φ↓
k∇φ↓

k

)
. (2.2)

Note that, while only the total paramagnetic current j appears in C(S)DFT, the pair
(j↑,j↓) is sometimes used to design accurate current-density functionals (see [16] for
instance). In this article, however, we will only focus on the representability of j.

3. Main results

3.1. Representability in SDFT. Our first result concerns the characterization
of J Slater

N , J pure
N , and Jmixed

N . For this purpose, we introduce

CN :=
{
R∈M2×2(L

1(R3,C)), R∗=R, R≥0,∫
R3

trC2 [R]=N,
√
R∈M2×2(H

1(R3,C))
} (3.1)

and C0
N :={R∈CN , detR≡0}, where M2×2(E) denotes the set of 2×2 matrices with

elements in the Banach space E.
The following characterization of CN was proved in [2].

Lemma 3.1. A function-valued matrix R=

(
ρ↑ σ
σ ρ↓

)
is in CN if and only if its coeffi-

cients satisfy ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ↑/↓≥0, ρ↑ρ↓−|σ|2≥0,

∫
R3

ρ↑+
∫
R3

ρ↓=N,√
ρ↑/↓∈H1(R3), σ,

√
det(R)∈W 1,3/2(R3),

|∇σ|2ρ−1∈L1(R3),∣∣∣∇√
det(R)

∣∣∣2ρ−1∈L1(R3).



D. GONTIER 991

The complete answer for N -representability in SDFT is given by the following the-
orem, whose proof is given in Section 4.1.

Theorem 3.2.

Case N =1: It holds that

J Slater
1 =J pure

1 =C0
1 and Jmixed

1 =C1.

Case N ≥2: For all N ≥2, it holds that

J Slater
N =J pure

N =Jmixed
N =CN .

The equality Jmixed
N =CN for all N ∈N∗ was already proven in [2].

Remark 3.3. Gilbert [1], Harriman [3], and Lieb [7] proved that the N -
representability set for the total electronic density ρ is the same for Slater-states, pure-
states, and mixed-states and is characterized by

IN :=

{
ρ∈L1(R3), ρ≥0,

∫
R3

ρ=N,
√
ρ∈H1(R3)

}
. (3.2)

Comparing (3.2) and (3.1), we see that our theorem is a natural extension of the previous
result.

3.2. Representability in CSDFT. We first recall some classical necessary
conditions for a pair (R,j) to be N -representable (we refer to [9, 13] for the proofs).

Lemma 3.4. If a pair (R,j) is representable by a mixed-state N -body density matrix,
then {

R∈CN
|j|2/ρ∈L1(R3).

(3.3)

From the second condition of (3.3), it must hold that the support of j is contained
in the support of ρ. The vector v :=ρ−1j is called the velocity field, and w :=curl(v)
is the vorticity.

Let us first consider the pure-state setting. Recall that, in the spin-less setting, in
the case N =1, a pair (ρ,j) representable by a single orbital φ generally satisfies the
curl-free condition curl(ρ−1j)=0 (this is the case for instance when φ is of the form
φ= |φ|e−iu, where the phase u is in C1(R3); see [9,13]). This is no longer the case when
spin is considered, as is shown in the following lemma (see Section 4.2 for the proof).

Lemma 3.5 (CSDFT, case N =1). Let Φ=(φ↑,φ↓)T ∈WSlater
1 be such that both φ↑

and φ↓ have phases in C1(R3). Then the associated pair (R,j) satisfies R∈C0
1 , |j|2/ρ∈

L1(R3), and the two curl-free conditions

curl

(
j

ρ
− Im(σ∇σ)

ρρ↓

)
=0, curl

(
j

ρ
+

Im(σ∇σ)

ρρ↑

)
=0. (3.4)

Remark 3.6. If we write σ= |σ|eiτ , then |σ|2=ρ↑ρ↓ and

Im (σ∇σ)= |σ|2∇τ =ρ↑ρ↓∇τ. (3.5)
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In particular, it holds that

curl

(
Im(σ∇σ)

ρρ↓
+

Im(σ∇σ)

ρρ↑

)
=curl (∇τ)=0,

so that one of the equalities in (3.4) implies the other one.

Remark 3.7. We recover the traditional result in the collinear-spin setting, where
σ≡0.

In the case N >1, things are very different. In [9], the authors gave a rigorous proof
for the representability of a pair (ρ,j) by a Slater determinant whenever N ≥4 under a
mild condition (see equation (3.6) below). By adapting their proof to our case, we are
able to ensure representability of a pair (R,j) by a Slater determinant for N ≥12 under
the same mild condition (see Section 4.3 for the proof).

Theorem 3.8 (CSDFT, case N ≥12). A sufficient set of conditions for a pair
(R,j) to be representable by a Slater determinant is:

• R∈CN with N ≥12 and j satisfies |j|2/ρ∈L1(R3).

• There exists δ>0 such that

sup
r∈R3

f(r)(1+δ)/2
(|w(r)|+ |∇w(r)|)<∞, (3.6)

where w :=curl (ρ−1j) is the vorticity, and

f(r) :=(1+(r1)
2)(1+(r2)

2)(1+(r3)
2).

Remark 3.9. The condition (3.6) is the one found in [9]. The authors conjectured
that this condition “can be considerably loosened.”

Let us finally turn to the mixed-state case. We notice that, if (R,j) is representable
by a Slater determinant S [Φ1, . . . ,ΦN ], then, for all k∈N∗, the pair (k/N)(R,j) is
mixed-state representable, where N is the number of orbitals (simply take the uniform
convex combination of the pairs represented by S [Φ1], S [Φ2], etc.). In particular, from
Theorem 3.8, we deduce the following corollary.

Corollary 3.10 (CSDFT, case mixed-state). A sufficient set of conditions for a
pair (R,j) to be mixed-state representable is that R∈CN for some N ∈N∗, j satisfies
|j|2/ρ∈L1(R3), and (3.6) holds for some δ>0.

In [13], the authors provide different sufficient conditions than (3.6) for a pair (ρ,j)
to be mixed-state representable, where ρ is the electronic density. They proved that, if

(1+ | · |2)ρ∣∣∇(ρ−1j)
∣∣2∈L1(R3),

then the pair (ρ,j) is mixed-state representable. Their proof can be straightforwardly
adapted for the representability of the pair (R,j), so that similar results hold. The
details are omitted here for the sake of brevity.
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4. Proofs

4.1. Proof of Theorem 3.2. The mixed-state case was already proved in [2].
We focus on the pure-state representability.

Case N =1. The fact that J Slater
1 =J pure

1 simply comes from the fact that GSlater
1 =

Gpure
1 . To prove J Slater

1 ⊂C0
1 , we let R∈J Slater

1 be represented by Φ=(φ↑,φ↓)T ∈
H1(R3,C2), so that

R=

(
|φ↑|2 φ↑φ↓

φ↓φ↑ |φ↓|2
)
.

Since R∈J Slater
1 ⊂Jmixed

1 =C1 and detR≡0, we deduce R∈C0
1 .

We now prove that C0
1 ⊂J Slater

1 . Let R=

(
ρ↑ σ
σ ρ↓

)
∈C0

1 . From detR≡0 and

Lemma 3.1, we get ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ↑/↓≥0, ρ↑ρ↓= |σ|2,

∫
R3

ρ↑+
∫
R3

ρ↓=1,√
ρ↑/↓∈H1(R3), σ∈W 1,3/2(R3),

|∇σ|2/ρ∈L1(R3).

(4.1)

There are two natural choices that we would like to make for a representing orbital,
namely

Φ1=

(√
ρ↑,

σ√
ρ↑

)T

and Φ2=

( σ√
ρ↓

,
√
ρ↓

)T

. (4.2)

Unfortunately, it is not guaranteed that these orbitals are indeed in H1(R3,C2). It
is the case only if |∇σ|2/ρ↓ is in L1(R3) for Φ1 and if |∇σ|2/ρ↑ is in L1(R3) for Φ2.
Due to (4.1), we only know that |∇σ|2/ρ∈L1(R3). The idea is therefore to interpolate
between these two orbitals, taking Φ1 in regions where ρ↑�ρ↓ and Φ2 in regions where
ρ↓�ρ↑. This is done via the following process.

Let χ∈C∞(R) be a non-decreasing function such that 0≤χ≤1, χ(x)=0 if x≤1/2,
and χ(x)=1 if x≥1. We write σ=α+iβ, where α is the real-part of σ and β is its
imaginary part. We introduce

λ1 :=

√
α2+χ2(ρ↑/ρ↓)β2√

ρ↓
, μ1 :=

√
1−χ2(ρ↑/ρ↓)

β√
ρ↓

,

λ2 :=
αλ1+βμ1

ρ↑
, μ2 :=

βλ1−αμ1

ρ↑
,

and we set

φ↑ :=λ1+iμ1 and φ↓ :=λ2+iμ2.

Let us prove that Φ :=(φ↑,φ↓) represents R and that Φ∈WSlater
1 . First, an easy calcu-

lation shows that

|φ↑|2=λ2
1+μ2

1=
α2+χ2β2+(1−χ2)β2

ρ↓
=

|σ|2
ρ↓

=ρ↑,

|φ↓|2= (α2+β2)(λ2
1+μ2

1)

(ρ↑)2
=

|σ|2
ρ↑

=ρ↓,
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Re
(
φ↑φ↓

)
=λ1λ2−μ1μ2=

α(λ2
1+μ2

1)

ρ↑
=α,

Im
(
φ↑φ↓

)
=λ1μ2+λ2μ1=

β(λ2
1+μ2

1)√
ρ↑

=β,

so that Φ∈L2(R3,C2) with ‖Φ‖=1, and Φ represents R. To prove that Φ∈WSlater
1 ,

we need to check that λ1, λ2, μ1, and μ2 are in H1(R3). For λ1, we choose another
non-increasing function ξ∈C∞(R) such that 0≤ ξ≤1, ξ(x)=0 for x≤1, and ξ(x)=1
for x≥2. Note that (1−χ)ξ≡0. It holds that

∇λ1=(1−ξ2(ρ↑/ρ↓))∇λ1+ξ2(ρ↑/ρ↓)∇λ1. (4.3)

The second term in the right-hand side of (4.3) is non-null only if ρ↑≥ρ↓, so that
χ(ρ↑/ρ↓)=1 on this part. In particular, from the equality ρ↑ρ↓= |σ|2, we get

ξ2(ρ↑/ρ↓)λ1= ξ2(ρ↑/ρ↓)
|σ|√
ρ↓

= ξ2(ρ↑/ρ↓)
√
ρ↑,

and similarly,

ξ2(ρ↑/ρ↓)∇λ1= ξ2(ρ↑/ρ↓)∇
√
ρ↑,

which is in L2(R3) according to (4.1). On the other hand, the first term in the right-hand
side of (4.3) is non-null only if ρ↑≤2ρ↓, so that (1/3)ρ≤ρ↓ on this part. In particular,
from the following pointwise estimate

|∇
√
f+g|≤ |∇

√
f |+ |∇√

g|,

which is valid almost everywhere whenever f,g≥0, the inequality (a+b)2≤2(a2+b2),
and the fact that α2+χ2β2≤|σ|2, we get (we write χ for χ(ρ↑/ρ↓))

|∇λ1|2=
∣∣∣∣∣
√

ρ↓∇
√
α2+χ2β2−

√
α2+χ2β2∇

√
ρ↓

ρ↓

∣∣∣∣∣
2

≤2

(
|∇

√
α2+χ2β2|2
ρ↓

+
(α2+χ2β2)

(ρ↓)2
|∇

√
ρ↓|2

)

≤2

⎛⎜⎝ |∇α|2
ρ↓

+
2
∣∣∣∇χρ↓∇ρ↑−ρ↑∇ρ↓

(ρ↓)2

∣∣∣2β2

ρ↓
+

2χ2|∇β|2
ρ↓

+
2|σ|2
(ρ↓)2

|∇
√
ρ↓|2

⎞⎟⎠ .

Finally, we use the inequality (ρ↓)−1≤ (3/ρ), and the inequality |σ|2/(ρ↓)2=ρ↑/ρ↓≤2
and get

|∇λ1|2≤C

( |∇α|2
ρ

+‖∇χ‖2L∞
( |∇ρ↑|2

ρ↑
+

|∇ρ↓|2
ρ↓

)
+

|∇β|2
ρ

+ |∇
√
ρ↓|2

)
.

The right-hand side is in L1(R3) according to (4.1). Hence, (1−ξ2(ρ↑/ρ↓)) |∇λ1|∈
L2(R3), and finally λ1∈H1(R3). The other cases are treated similarly, observing the
following:
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• Whenever ρ↑≥ρ↓, then χ=1, and Φ=Φ1, where Φ1 was defined in (4.2). We
then control (ρ↑)−1 with the inequality (ρ↑)−1≤2ρ−1.

• Whenever ρ↑≤ρ↓/2, then χ=0, Φ=Φ2. We control (ρ↓)−1 with the inequality
(ρ↓)−1≤ 3

2ρ
−1.

• Whenever ρ↓/2≤ρ↑≤ρ↓, then both (ρ↑)−1 and (ρ↓)−1 are controlled via
(ρ↑)−1≤3ρ−1 and (ρ↓)−1≤2ρ−1.

Case N ≥2. Since J Slater
N ⊂J pure

N ⊂Jmixed
N =CN , it is enough to prove that CN ⊂

J Slater
N . We start with a key lemma.

Lemma 4.1. For all M,N ∈N, it holds that J Slater
N+M =J Slater

N +J Slater
M .

Proof. (Proof of Lemma 4.1.) The case J Slater
N+M ⊂J Slater

N +J Slater
M is trivial: if

R∈J Slater
N+M is represented by the Slater determinant S [Φ1, . . .ΦN+M ], then, by denot-

ing by R1 (resp. R2) the spin-density 2×2 matrix associated to the Slater determi-
nant S [Φ1, . . . ,ΦN ] (resp. S [ΦN+1, . . . ,ΦN+M ]), it holds that R=R1+R2 (see Equa-
tion (2.1) for instance), with R1∈J Slater

N and R2∈J Slater
M .

The converse is more involving, and it requires an orthogonalization step. Let
R1∈J Slater

N be represented by the Slater determinant S [Φ1, . . . ,ΦN ] and R2∈J Slater
M

be represented by the Slater determinant S [Φ̃1, . . . ,Φ̃M ]. We cannot directly consider

the Slater determinant S [Φ1, . . . ,ΦN ,Φ̃1, . . . ,Φ̃M ], for (Φ1, . . . ,ΦN ) is not orthogonal to

(Φ̃1, . . . ,Φ̃M ).
We use the following lemma, which is a smooth version of the Hobby–Rice theorem

in [4] (see also [10]) and was proven by Lazarev and Lieb in [8] (see also [9]).

Lemma 4.2. For all N ∈N∗ and for all (f1, . . . ,fN )∈L1(R3,C), there exists a function
u∈C∞(R3), with bounded derivatives, such that

∀1≤k≤N,

∫
R3

fke
iu=0.

Moreover, u can be chosen to vary in the r1 direction only.

We now modify the phases of Φ̃1, . . . ,Φ̃M as follows. First, we choose ũ1 as in
Lemma 4.2 such that

∀1≤k≤N,

∫
R3

(
φ↑
kφ̃

↑
1+φ↓

kφ̃
↓
1

)
eiũ1 =0,

and we set ΦN+1=Φ̃1e
iũ1 . Note that, by construction, ΦN+1 is normalized, in

H1(R3,C2), and orthogonal to (Φ1, . . . ,ΦN ). We then construct ũ2 as in Lemma 4.2
such that

∀1≤k≤N+1,

∫
R3

(
φ↑
kφ̃

↑
2+φ↓

kφ̃
↓
2

)
eiũ2 =0,

and we set ΦN+2=Φ̃2e
iũ2 . We continue this process for 3≤k≤M and construct ΦN+k=

Φ̃ke
iũk . We thus obtain an orthonormal family (Φ1, . . . ,ΦN+M ). By noticing that the

spin-density 2×2 matrix of the Slater determinant S [Φ̃1, . . . ,Φ̃M ] is the same as the
one of S [ΦN+1, . . . ,ΦN+M ] (the phases cancel out), we obtain that R=R1+R2, where
R is the spin-density 2×2 matrix represented by S [Φ1, . . . ,ΦN+M ]. The result follows.
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We now prove that CN ⊂J Slater
N . We start with the case N =2.

Case N =2. Let R=

(
ρ↑ σ
σ ρ↓

)
∈C2. We write

√
R=

(
r↑ s
s r↓

)
, with r↑,r↓∈ (

H1(R3)
)2

and s in H1(R3,C). Let

R↑ :=
(|r↑|2 sr↑

sr↑ |s|2
)

and R↓ :=
(|s|2 sr↓

sr↓ |r↓|2
)
. (4.4)

It is easy to check that R=R↑+R↓, that R↑/↓ are hermitian, of null determinant, and√
R↑/↓∈M2×2

(
H1(R3,C)

)
. However, it may hold that

∫
R3 trC2 [R↑] /∈N∗, so that R↑ is

not in C0
M for some M ∈N∗.

The cases R↑=0 and R↓=0 are trivial. Let us suppose that, for α∈{↑,↓},
mα :=

∫
R3 ρRα �=0. In this case, the matrices R̃α=(mα)−1Rα are in C0

1 and hence
are representable by a single orbital, due to the first statement of Theorem 3.2. Let

Φ̃=(φ̃↑
1,φ̃

↓
1)

T ∈H1(R3,C2) and Φ̃2=(φ̃↑
2,φ̃

↓
2)

T ∈H1(R3,C2) be normalized orbitals that

represent respectively R̃↑ and R̃↓. It holds that

Φ̃1Φ̃
∗
1= R̃↑=(m↑)−1R↑ and Φ̃2Φ̃

∗
2= R̃↓=(m↓)−1R↓.

From the Lazarev–Lieb orthogonalization process (see Lemma 4.2), there exists a func-
tion u∈C∞(R) with bounded derivatives such that

〈Φ̃1|Φ̃2e
iu〉=

∫
R3

(
φ̃↑
1φ̃

↑
2+ φ̃↓

1φ̃
↓
2

)
eiu=0. (4.5)

Once this function is chosen, there exists a function v∈C∞(R) with bounded derivatives
such that

〈Φ̃1|Φ̃1e
iv〉= 〈Φ̃1|Φ̃2e

i(u+v)〉= 〈Φ̃2e
iu|Φ̃1e

iv〉= 〈Φ̃2|Φ̃2e
iv〉=0. (4.6)

We finally set

Φ1 :=
1√
2

(√
m↑Φ̃1+

√
m↓Φ̃2e

iu
)

and

Φ2 :=
1√
2

(√
m↑Φ̃1−

√
m↓Φ̃2e

iu
)
eiv.

From (4.5), we deduce ‖Φ1‖2=‖Φ2‖2=1, so that both Φ1 and Φ2 are normalized.

Also, from (4.6), we get 〈Φ1|Φ2〉=0. Hence, {Φ1,Φ2} is orthonormal. As Φ̃1 and Φ̃2

are in H1(R3,C2), and u and v have bounded derivatives, Φ1 and Φ2 are in H1(R3,C2).
Finally, it holds that

Φ1Φ
∗
1+Φ2Φ

∗
2=

1

2

(
m↑Φ̃1Φ̃

∗
1+m↓Φ̃2Φ̃

∗
2+2

√
m↑m↓Re

(
Φ̃1Φ̃

∗
2e

−iu
)

+m↑Φ̃1Φ̃
∗
1+m↓Φ̃2Φ̃

∗
2−2

√
m↑m↓Re

(
Φ̃1Φ̃

∗
2e

−iu
))

=m↑Φ̃1Φ̃
∗
1+m↓Φ̃2Φ̃

∗
2=R.

We deduce that the Slater determinant S [Φ1,Φ2] represents R, so that R∈J Slater
2 .

Altogether, C2⊂J Slater
2 , and therefore C2=J Slater

2 .
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Case N >2. We proceed by induction. Let R∈CN+1 with N ≥2, and suppose
CN =J Slater

N . We use the decomposition (4.4) and write R=R↑+R↓, where R↑/↓ are
two null-determinant hermitian matrices. For α∈{↑,↓}, we note mα :=

∫
R3 ρRα . Since

m↑+m↓=N+1≥3, at least m↑ or m↓ is greater than 1. Let us suppose without loss
of generality that m↑≥1. We write R=R1+R2 with

R1 := (m↑)−1R↑ and R2 :=
((
1−(m↑)−1

)
R↑+m↓R↓) .

It holds that R1∈C0
1 =J Slater

1 and R2∈CN =J Slater
N (by induction). Together with

Lemma 4.1, we deduce that R∈J Slater
N+1 . The result follows.

4.2. Proof of Lemma 3.5. Let Φ=(φ↑,φ↓)∈H1(R3,C2). For α∈{↑,↓}, we
let τα be the phase of φα, so that φα=

√
ραeiτ

α

, and we suppose that τ↑ and τ↓ are
in C1(R3). Let (R,j) be the associated spin-density 2×2 matrix and paramagnetic
current. It holds

R=

(
ρ↑ σ
σ ρ↓

)
=

(
|φ↑|2 φ↑φ↓

φ↓φ↑ |φ↓|2
)
.

Setting τ = τ↑−τ↓, we obtain σ= |σ|eiτ =
√
ρ↑ρ↓eiτ . The paramagnetic current is

j=ρ↑∇τ↑+ρ↓∇τ↓=ρ∇τ↓+ρ↑∇τ =ρ∇τ↑−ρ↓∇τ.

In particular, using (3.5),

j

ρ
− Im(σ∇σ)

ρρ↓
=

j−ρ↑∇τ

ρ
=∇τ↓ and

j

ρ
+

Im(σ∇σ)

ρρ↑
=∇τ↑

are curl-free.

4.3. Proof of Theorem 3.8. We break the proof in several steps.

Step 1: Any R∈CN can be written as R=R1+R2+R3 with Rk ∈C0
Nk

, Nk≥4.

Let R=

(
ρ↑ σ
σ ρ↓

)
∈CN , with N ≥12. We write

√
R=

(
r↑ s
s r↓

)
, with r↑,r↓∈ (

H1(R3)
)2

and s in H1(R3,C). We write R=R↑+R↓, where R↑/↓ were defined in (4.4). As in the
proof of Theorem 3.2 for the case N =2, R↑/↓ are hermitian and of null determinant,
and

√
R↑/↓∈M2×2

(
H1(R3,C)

)
. However, it may hold that

∫
trC2 [R↑] /∈N∗, so that R↑

is not in C0
M for some M ∈N∗. In order to handle this difficulty, we will distribute the

mass of R↑ and R↓ into three spin-density 2×2 matrices.
More specifically, let us suppose without loss of generality that

∫
trC2 [R↑]≥∫

trC2 [R↓].
We set

R1=(1−ξ1)R
↑+ξ2R

↓,

R2= ξ1(1−ξ3)R
↑,

R3=(1−ξ2)R
↓+ξ3R

↑,

(4.7)

where ξ1,ξ2,ξ3 are suitable non-decreasing functions in C∞(R3) that depend only on
(say) r1, such that, for 1≤k≤3, 0≤ ξk≤1. We will choose them of the form ξk(r)=0
for r1<αk and ξk(r)=1 for r1≥βk>αk, and such that

(1−ξ1)ξ2=(1−ξ2)ξ3=(1−ξ1)ξ3=0. (4.8)
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Finally, these functions are tuned so that
∫
R3 trC2(Rk)∈N∗ and

∫
R3 trC2(Rk)≥4 for all

1≤k≤3. We represent in Figure 4.1 a canonical example of such a triplet (ξ1,ξ2,ξ3).
In this figure, we clearly see how the non-overlapping condition (4.8) guarantees the
null-determinant condition everywhere. Note that such a spatial decomposition could
not have been performed with only two spin-density 2×2 matrices. Although it is not
difficult to convince oneself that such functions ξk exist, we provide a full proof of this
fact in the Appendix.

From (4.8), it holds, for all 1≤k≤3, that Rk ∈C0
NK

and R1+R2+R3=R↑+R↓=R.

(1−ξ1) ξ2

ξ1(1−ξ3)

(1−ξ2) ξ3

(a)

(b)

(c)

Fig. 4.1. Weights of the matrices R↑ (black) and R↓ (gray) in (a) R1=(1−ξ1)R↑+ξ2R↓,
(b) R2= ξ1(1−ξ3)R↑, and (c) R3=(1−ξ2)R↑+ξ3R↓.

In the sequel, we decompose the current j in a similar way to (4.7). In order to
simplify the notation, we introduce the total densities of R↑ and R↓:

f↑ := |r↑|2+ |s|2 and f↓ := |r↓|2+ |s|2.

Recall that ρ=f↑+f↓. We write j= j1+ j2+ j3 with

j1 := (1−ξ1)

(
f↑

ρ
j− Im(s∇s)

)
+ξ2

(
f↓

ρ
j+Im(s∇s)

)
,

j2 := ξ1(1−ξ3)

(
f↑

ρ
j− Im(s∇s)

)
,

j3 := (1−ξ2)

(
f↓

ρ
j+Im(s∇s)

)
+ξ3

(
f↑

ρ
j− Im(s∇s)

)
.

(4.9)

Step 2: The pair (R1,j1) is representable by a Slater determinant.

Following [9], we introduce

ξ(x)=
1

m

∫ x

−∞

1

(1+y2)(1+δ)/2
dy,

where δ is the one in (3.6) and m is a constant chosen such that ξ(∞)=1. We then
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introduce

η1,1(r)=
2

N
ξ(r+α),

η1,2(r)=
2

N−1
ξ(x1+β)(1−η1(r)),

η1,3(r)=
2

N−2
ξ(x2+γ)(1−η1(r)−η2(r)),

η1,k(r)=
1

N−3
(1−η1(r)−η2(r)−η3(r)) for 4≤k≤N,

(4.10)

where α,β,γ are tuned so that, if ρ1 := trC2R1 denotes the total density of R1, then

∀1≤k≤Nk,

∫
R3

η1,kρ1=1. (4.11)

It can be checked (see [9]) that η1,k≥0 and
∑N

k=1η1,k=1. We seek orbitals of the form

Φ1,k :=
√
η1,k

(√
(1−ξ1)

(
r↑

s

)
+
√
ξ2

(
s
r↓

))
eiu1,k , 1≤k≤N1,

and where the phases u1,k will be chosen carefully later. From (4.8), we recall that
(1−ξ1)ξ2=0, so that, by construction, Φ1,k is normalized and

Φ1,kΦ
∗
1,k=η1,kR1.

Let us suppose for now that the phases u1,k are chosen so that the orbitals are orthogo-
nal. This will indeed be achieved, thanks to the Lazarev–Lieb orthogonalization process
(see Lemma 4.2). Then, Ψ1 :=S[Φ1,1, . . . ,Φ1,N ] represents the spin-density 2×2 matrix
R1. According to (2.2), the paramagnetic current of Ψ is (we recall that r↑ and r↓ are
real-valued, and we write s= |s|eiτ for simplicity)

jΨ=

N1∑
k=1

η1,k(1−ξ1)
(|r↑|2∇u1,k+ |s|2∇(−τ+u1,k)

)
+

N1∑
k=1

η1,kξ2
(|s|2∇(τ+u1,k)+ |r↓|2∇u1,k

)
=

(
(1−ξ1)f

↑+ξ2f
↓)( N1∑

k=1

η1,k∇u1,k

)
+(ξ2−(1−ξ1)) |s|2∇τ.

Since |s|2∇τ =Im(s∇s), this current is equal to the target current j1 defined in (4.9) if
and only if

ρ1
j

ρ
=ρ1

N1∑
k=1

ηk∇u1,k.

In [9], Lieb and Schrader provided an explicit solution of this system when N1≥4 1

(their proof uses Lemma 4.2 and in particular the fact that the phase may be chosen

1 In the same article, the authors recall (see [12] for instance) that there exist pairs (ρ,j) for which
no smooth solution exists when N1=2. The case N1=3 is still open. Of course, should someone find
an explicit solution for N1=3, the condition N ≥12 in Theorem 3.8 could be replaced by the weaker
condition N ≥9.
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to vary in one direction only). We do not repeat the proof, but we emphasize the fact
that, because condition (3.6) holds true, the phases u1,k can be chosen to have bounded
derivatives, so that the functions Φ1,k are in H1(R3,C2). Also, as their proof relies on
the Lazarev–Lieb orthogonalization process, it is possible to choose the phases u1,k so
that the functions Φ1,k are orthogonal, and orthogonal to a finite-dimensional subspace
of L2(R3,C2).

Altogether, we proved that the pair (R1,j1) is representable by the Slater determi-
nant S [Φ1,1, . . . ,Φ1,N1

].

Step 3: Representability of (R2,j2) and (R3,j3), and finally of (R,j). In order
to represent the pair (R2,j2), we first construct the functions η2,k for 1≤k≤N2 of the
form (4.10) so that (4.11) holds for ρ2 := trC2R2. We then seek orbitals of the form

Φ2,k :=
√
η2,kξ1(1−ξ3)

(
r↑

s

)
eiu2,k , for 1≤k≤N2.

Reasoning as above, the Slater determinant of these orbitals represents the pair (R2,j2)
if and only if

ρ2
j2
ρ
=ρ2

N2∑
k=1

η2,k∇u2,k.

Again, due to the fact that N2≥4, this equation admits a solution. Moreover, it is
possible to choose the phases u2,k so that the functions Φ2,k are orthogonal to the
previously constructed Φ1,k.

We repeat again this argument for the pair (R3,j3). Once the new set of functions
η3,k is constructed, we seek orbitals of the form

Φ3,k :=
√
η3,k

(√
(1−ξ2)

(
s
r↓

)
+
√
ξ3

(
r↑

s

))
eiu3,k

and construct the phases so that the functions Φ3,k are orthogonal to the functions Φ1,k

and Φ2,k.
Altogether, the pair (R,j) is represented by the (finite energy) Slater determinant

S [Φ1,1, . . . ,Φ1,N1 ,Φ2,1, . . . ,Φ2,N2 ,Φ3,1, . . . ,Φ3,N3 ], which concludes the proof.

Appendix A. We explain in this section how to construct three functions
ξ1,ξ2,ξ3∈ (C∞(R))

3
like in Figure 4.1. In order to simplify the notation, we introduce

f(r) :=

∫∫
R×R

trC2(R↓)(r,r2,r3) dr2dr3,

g(r) :=

∫∫
R×R

trC2(R↑)(r,y,z) dr2dr3,

where R↑ and R↓ were defined in (4.4). We denote

F (α)=

∫ α

−∞
f(x)dx and G(α)=

∫ α

−∞
g(x)dx,

and finally F =F (∞)=
∫
R
f and G=G(∞)=

∫
R
g. Note that F and G are continuous

non-decreasing functions going from 0 to F (resp. G) and that it holds F+G=N . Let
us suppose without loss of generality that F ≤G, so that 0≤F ≤N/2≤G≤N . If F =0,
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then R↓=0 and we can choose R1=R2=(4/N)R↑∈C0
4 and R3=(N−8)/NR↑∈C0

N−8.
Since N ≥12, it holds that N−8≥4, so that this is the desired decomposition. We now
consider the case F �=0.

In order to keep the notation simple, we will only study the case F <8 (the case
F >8 is similar by replacing the integer 4 by a greater integer M such that F <2M<
N−4 in the sequel). We seek for α such that⎧⎨⎩

∫ α

−∞f(x)dx<4 and
∫ α

−∞f(x)+
∫∞
α

g(x)>4,∫∞
α

f(x)dx<4 and
∫ α

−∞g(x)dx+
∫∞
α

f(x)dx>4,

or equivalently

F−4<F (α)<4 and F (α)+4−F <G(α)<F (α)+G−4. (A.1)

Let α(F−4) be such that F (α(F−4))=F−4 (with α(F−4)=−∞ if F ≤4) and α(4)

be such that F (α(4))=4 (with α(4)=+∞ if F ≤4). As F is continuous and non-
decreasing, the first equation of (A.1) is satisfied whenever α(F−4)<α<α(4). The
function [α(F−4),α4]�α �→m(α) :=F (α)+4−F goes continuously and non-decreasingly
from 0 to 8−F , and the function [α(F−4),α4]�α �→M(α) :=F (α)+G−4 goes contin-
uously and non-decreasingly from N−8 to G between α(F−4) and α(4). In particular,
since G(α) goes continuously and non-decreasingly from 0 to G, only three cases may
happen:

• There exists α0∈ (α(F−4),α(4)) such that m(α0)<G(α0)<M(α0). In this case,
(A.1) holds for α=α0. By continuity, there exists ε>0 such that⎧⎨⎩

F (α+ε)<4,
F (α)+G−G(α+ε)>4,
G(α)+F−F (α+ε)>4.

Let ξ2∈C∞(R) be a non-decreasing function such that ξ2(x)=0 for x<α and
ξ2(x)=1 for x>α+ε. Then, as 0≤ ξ2≤1, it holds that∫

R

(1−ξ2)f ≤F (α+ε)<4

and ∫
R

(1−ξ2)f+

∫ ∞

α+ε

g≥F (α)+G−G(α+ε)>4.

We deduce that there exists an non-decreasing function ξ3∈C∞(R) such that
ξ3(x)=0 for x<α+ε and such that∫

R

(1−ξ2)f+ξ3g=4.

Note that (1−ξ2)ξ3=0. On the other hand, from{∫
R
ξ2f ≤F−F (α)<4∫

R
ξ2f+

∫ α

−∞g≥F−F (α+ε)+G(α)>4,
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we deduce that there exists a non-decreasing function ξ1∈C∞(R) such that
ξ1(x)=1 for x>α: ∫

R

(1−ξ1)g+ξ2f =4.

and (1−ξ1)ξ2=(1−ξ1)ξ3=0. Finally, we set

R1=(1−ξ1)R
↑+ξ2R

↓,

R2= ξ1(1−ξ3)R
↑,

R3=(1−ξ2)R
↓+ξ3R

↑.

By construction, R=R↑+R↓=R1+R2+R3, R1∈C0
4 , and R3∈C0

4 . We deduce
that R4∈C0

N−8, where N−8≥4. This leads to the desire decomposition.

• For all α∈ (α(F−4),α(4)), it holds that G(α)<m(α). Note that this may only
happen if m(α(4))>0 or F <4, so that G>N−4≥8. It holds that G(α(F−4))=
0, so that g(r) is null for r<α(F−4). Let α0 be such that α(F−4)<α0<α(4).
As ∫

R

f =F >4 and

∫ ∞

α0

f =F−F (α0)<4,

there exists a non-decreasing function ξ1∈C∞(R) satisfying ξ1(x)=1 for x≥α0

and such that ∫
R

ξ1f =4.

Now, since G(α(4))<m(α(4))=8−F , it holds that{∫
R
(1−ξ1)f ≤F (α(4))=4∫

R
(1−ξ1)f+

∫∞
α0

g≥F (α(F−4))+G−G(α(4))>4.

There exists a non-decreasing function ξ2∈C∞(R) satisfying ξ2(x)=0 for x≤α0

and such that ∫
R

(1−ξ1)f+ξ2g=4.

Note that (1−ξ1)ξ2=0. Finally, we set

R1= ξ1R
↓,

R2=(1−ξ2)R
↑,

R3= ξ2R
↑+(1−ξ1)R

↓.

By construction, it holds that R=R1+R2+R3, R1∈C0
4 , and R3∈C0

4 . We
deduce R2∈C0

N−8, and the result follows.

• For all α∈ (α(F−4),α(4)), it holds that G(α)>M(α). This case is similar to the
previous one.
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