
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 4, pp. 973–985

POPULATION STABILIZATION IN BRANCHING BROWNIAN
MOTION WITH ABSORPTION AND DRIFT∗

CHRISTOPHER HENDERSON†

Abstract. We consider, through PDE methods, branching Brownian motion with drift and ab-
sorption. It is well known that there exists a critical drift which separates those processes which die out
almost surely from those which survive with positive probability. In this work, we consider lower-order
corrections to the critical drift which ensures a nonnegative, bounded expected number of particles
and convergence of this expectation to a limiting nonnegative number which is positive for some initial
data. In particular, we show that the average number of particles stabilizes at the convergence rate
O(log(t)/t) if and only if the multiplicative factor of the O(t−1/2) correction term is 3

√
πt−1/2. Oth-

erwise, the convergence rate is O(1/
√
t). We point out some connections between this work and recent

work investigating the expansion of the front location for the initial value problem in Fisher–KPP.
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1. Introduction
In this paper, we consider a probabilistic model, branching Brownian motion,

through analytic means. In this process, each particle currently alive moves as an
independent Brownian motion and independently splits at a constant rate into two par-
ticles, each of which then evolves as the parent. In addition, we are interested in this
model where the particles are pushed by a given deterministic drift −Ẋ and where
particles are killed upon reaching the origin.

This connection to the Fisher–KPP equation and its use as a model for populations
undergoing selection have made branching Brownian motion the subject of intense inter-
est in recent years; see [1,2,4,5,9,11,15,16,18–21,25,26,31]. Early work by McKean, [27],
focused on understanding the statistics of the rightmost particle of branching Brown-
ian motion with neither drift nor absorption in order to understand solutions to the
Fisher–KPP equation. We describe in more detail the connection between this work
and Fisher–KPP at the conclusion of this section. In 1978, Kesten introduced drift and
absorption at the origin into the model in [21]. In this work, he showed that Ẋ=2 is
the critical drift, separating systems which die out with probability one from systems
with positive survival probability. Recently, more precise results have been obtained
regarding the distribution of particles at or near the critical drift and the convergence
of the statistics of the rightmost particle; see [1, 4, 5, 9, 18–20, 25]. The preceding is
an incomplete bibliography, and the interested reader should investigate the references
within the works referenced above.

Our perspective is slightly different. We wish to understand the effect of lower-order
terms in expansion of the drift on the average number of surviving particles. To be more
explicit, let Nt be the number of particles at time t with the position of the ith particle
given by Y i

t , and define

v(t,x)=E
x

[
Nt∑
i=1

v0
(
Y i
t

)]
,
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for some compactly supported function v0. Then, for x≥X(t), v solves the equation⎧⎪⎨
⎪⎩
vt=vxx+v,

v(t,X(t))=0,

v(0,x)=v0(x);

(1.1)

see the “many-to-one” lemma of [17,19]. In particular, if v0 is the indicator function of
[a,b], this is simply the expected number of particles in [a,b]. In [15, 16], the authors,
using (1.1) as an approximation for Fisher–KPP, show that, letting

Ẋ=2+
r

t
,

the only choice for r which yields non-trivial long-time behavior is −3/2. We obtain
a correction of order t−3/2, which gives us more precise information on the average
number of particles by a refinement of their methods and using a connection between
the mass of the solution of (1.1), v, with the normal derivative at the origin, vx(0). This
allows us to find an expansion for Ẋ, independent of initial data, which yields faster
convergence to the limiting mass. We now state this precisely.

Statement of results. Before we state the main theorem, we give a bit of notation
and recast our problem. For ease of exposition, we use the following notation in order
to omit tracking multiplicative constants that arise.

Notation 1.1. For two values a and b which may depend on time and various other
data, we write

a� b

if there is some multiplicative constant, C>0, that is independent of time such that

a≤Cb.

Such a constant may depend on initial data or various other constants.

We note that, despite this notation, we occasionally need to introduce an arbitrary
constant into our equations. Whenever we do, we denote by C such an arbitrary constant
which may change line by line but which is independent of time.

In addition, in order to avoid the complications inherent in a moving boundary, we
shift to a moving frame to obtain the equation⎧⎪⎨

⎪⎩
vt−Ẋ(t)vx=vxx+v, for x≥0

v(t,0)=0,

v(0,x)=v0(x).

(1.2)

Theorem 1.2. Let v satisfy (1.2) with X(t) given by

X(t)=2(t+1)− 3

2
log(t+1)− c√

t+1
(1.3)

and where v0(x) is a compactly supported function on [0,∞]. Then there exists α0≥0
such that, for any p∈ [1,∞], we have

lim
t→∞‖v(t,x)−α0xe

−x‖Lp([0,∞])=0. (1.4)
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In addition, we have that, if c=3
√
π, then∣∣∣∣α0−
∫ ∞

0

v(t,x)dx

∣∣∣∣� log(t)

t
. (1.5)

Otherwise, we have that

1√
t
�

∣∣∣∣α0−
∫ ∞

0

v(t,x)dx

∣∣∣∣� 1√
t
. (1.6)

Finally, for certain initial data, we have α0>0.

The main focus of this paper is in obtaining the mass stabilization rates in (1.5) and
(1.6). We state the convergence in Lp and the positivity of α0 in order to reassure the
skeptical reader that these rates have meaning. The Lp convergence and the positivity
of α0 arise naturally in our work, and we make note when they become apparent.

Our proof of (1.5) in Theorem 1.2 involves no direct estimates on the mass of the
solution. In systems such as (1.2), there is a close relationship between the derivative of
the solution at x=0 and its total mass. Hence, we focus on obtaining estimates on the
derivative of the solution at the origin. To this end, the main ingredient of the proof of
Theorem 1.2 is the following lemma.

Lemma 1.3. Let v satisfy (1.2) with X(t) and c given by (1.3) and where the initial
data v0 is compactly supported on [0,∞]. Then there exists a nonnegative constant α0

such that vx(t,0) converges to α0. If c=3
√
π, then we have

|vx(t,0)−α0|� log(t)

t
.

On the other hand, if c �=3
√
π, then we have that, for sufficiently large t,

1√
t
� |vx(t,0)−α0|� 1√

t
.

Connection with front speeds in Fisher–KPP. Much of the renewed interest
in understanding system (1.1) and its probabilistic counterpart, branching Brownian
motion with drift and absorption, lies in its connection to the Fisher–KPP equation{

ut=uxx+u(1−u),

u(0,x)=u0(x),
(1.7)

where u0 is some localized smooth function on R taking values in [0,1]. This equation
usually arises as a model for population dynamics; see [12, 13,28,32].

Equation (1.7) was originally studied in the early twentieth century in [13,22], and
it was observed that traveling wave solutions to the system exist. To be more explicit,
there are global-in-time solutions of the form u(t,x)=φc(x−ct) for profiles φc and
speeds c≥2. Later, in [3], Aronson and Weinberger showed that solutions with more
general initial data spread at the speed of the critical traveling wave and admit the
same behavior, in that the steady state u≡1 invades the unsteady state u≡0. Namely,
given a solution to (1.7) where u0 is compactly supported, nonnegative, and nonzero,
we have

min
|x|≤ct

u(x)=1, for all c<2,
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and

max
|x|≥ct

u(x)=0, for all c>2.

In this case, as in Kesten’s paper [21], the critical speed is 2.
In the celebrated papers [7, 8], Bramson obtained more precise asymptotics of the

front location with probabilistic methods. More specifically, he showed that, for any
m∈ (0,1), there exists a shift xm, depending on the initial conditions and m, such that

{x∈R :u(t,x)=m}⊂
[
2t− 3

2
log(t)−xm−o(1),2t− 3

2
log(t)−xm+o(1)

]
.

Recently, Roberts simplified the proofs of these results in [31]. Ebert and van Saarloos, in
[10], obtained, through non-rigorous methods, the next term in the expansion. Namely,
using matched asymptotics, they argue that the front speed is given by

2t− 3

2
log(t)−xm− 3

√
π√
t
+O(t−1). (1.8)

Interestingly, though the constant term has dependence on the initial data, the lower-
order term is believed to be universal. We point out that the expansion obtained
by Ebert and van Saarloos is the same as the expansion we obtain in (1.3) through
Theorem 1.2. In fact, part of the motivation of our work has been to provide some
understanding of the 3

√
π term, as the Ebert and van Saarloos paper does not provide

any interpretation beyond the matched asymptotics in the formal derivation. The most
recent works regarding the front location in Fisher–KPP are [15,16] by Hamel et al. In
these papers, the authors used PDE methods, which we have borrowed and expanded
on here, in order to obtain results similar to those of Bramson at the expense of the
precision in the constant term. In addition, we mention a work in preparation, [6],
in which the authors, through probabilistic methods, investigate the value of c given
in (1.8) in the Fisher–KPP context.

That our expansion for the critical drift in (1.1) is the same as Ebert and van
Saarloos’s expansion for the front location for (1.7) is not a surprise. Solutions to (1.1)
provide a convenient family of sub- and supersolutions to (1.7) which are exceptionally
faithful approximations of the tail of solutions to (1.7) provided that X(t) is chosen
carefully. As we mentioned above, the authors in [15,16,29], use equations such as (1.1)
in order to obtain precise results about the front position in Fisher–KPP. In addition,
we remind the reader that solutions of (1.1) and (1.7) are connected through their in-
terpretation as statistics of branching Brownian motion; see [27]. The close relationship
between these two probabilistic models has been leveraged to transfer understanding
from one system to the other; see [11,15,26] and many of the papers mentioned above.

Outline of the paper. This paper is organized as follows. In Section 2, we show
how the mass stabilization rates given in Theorem 1.2 follow from Lemma 1.3. This
boils down to leveraging a connection between the total mass of a solution to (1.2) and
its derivative as x=0 to obtain an ODE governing the total mass. Then, we apply the
estimates provided by Lemma 1.3 to conclude.

In Section 3, we switch to self-similar variables in order to reduce the equation to
a simple parabolic PDE with a decaying forcing term. This change of variables is also
used in [15,16] and is convenient because it changes (1.2) into a PDE that has a discrete
spectrum which we know explicitly. This allows us to decompose our solution into three
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parts: a steady state, a slowly decaying function with vanishing normal derivative, and
a rapidly decaying remainder. This reduces Lemma 1.3 to proving this decomposition.
We note that the convergence of v to α0xe

−x is an easy consequence of this, and, as
such, we omit the proof of it.

Finally, in Section 4, we give the proof of this decomposition by explicitly solving
for the steady state and the slowly decaying function and by obtaining estimates for the
quickly decaying remainder. At some point in the analysis, the positivity of α0 becomes
obvious; we share when this happens.

Acknowledgements. The author would like to thank Lenya Ryzhik for suggesting
the project and Éric Brunet for his lectures at the Banff workshop on deterministic and
stochastic front propagation in 2010.

2. Deducing population stabilization rates from Lemma 1.3
Proof. (Proof of (1.5) and (1.6):) We first cover the case where c=3

√
π. Let α0 be

the constant from Lemma 1.3. Integrating equation (1.2) and defining

P (t)=

∫ ∞

0

v(t,x)dx−α0,

we obtain

P ′(t)−P =−vx(t,0)+α0.

To see this, notice that parabolic regularity theory gives us that v is smooth in time
and space and that v and v′ will decay exponentially as x tends to infinity. Hence, the
boundary terms at infinity vanish, and we are justified in pulling the time derivative
outside of the integral that defines P .

We point out that P (t) is bounded above uniformly in time. We may see this by,
for instance, re-proving the bound (20) from [15] in our setting1. We note that this
bound follows directly from the analysis in this paper.

Define E(t)= e−tM(t). Notice that E′(t)=(M ′−M)e−t and that

lim
t→∞E(t)=0

since M(t) is bounded above. Hence, we have that

E′(t)=(α0−vx(t,0))e
−t.

Integrating both sides of this and applying Lemma 1.3, we get

|M(t)|e−t=

∣∣∣∣
∫ ∞

t

E′(s)ds
∣∣∣∣=

∣∣∣∣
∫ ∞

t

(α0−vx(s,0))e
−sds

∣∣∣∣
�

∫ ∞

t

log(s)

s
e−sds≤ log(t)

t

∫ ∞

t

e−sds=
log(t)

t
e−t.

Multiplying both sides by the exponential finishes the upper bound for this choice of c.
If c �=3

√
π, we may apply Lemma 1.3 in the same manner to get the desired upper

bound in the statement of the proof. In order to obtain the lower bound, let M and E

1Actually, their bound may be used out-of-the-box in our setting by creating a super-solution with
well-chosen initial data. Since this is a minor point, we do not go into detail.
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be as above. For sufficiently large t, we may apply Lemma 1.3 to obtain that

|M(t)|e−t=

∣∣∣∣
∫ ∞

t

E′(s)ds
∣∣∣∣�

∫ ∞

t

e−s

√
s
ds

≥ 1√
2t

∫ 2t

t

e−sds� e−t−e−2t

√
t

.

Multiplying both sides by et and taking sufficiently large t, we obtain the desired lower
bound. This finishes the proof.

3. Self-similar variables
In order to understand the solutions to (1.2) where X(t) is given by (1.3), we change

variables a number of times following the development in [15, 16]. First, we remove an
exponential to obtain the function v= exv satisfying

vt+

(
3

2(t+1)
− c

2(t+1)3/2

)
vx=vxx+

(
3

2(t+1)
− c

2(t+1)3/2

)
v. (3.1)

Changing to self-similar variables τ =log(1+ t) and y=x(1+ t)−1/2, we obtain

wτ − y

2
wy−wyy− 3

2
w=

(
c

2eτ
− 3

2eτ/2

)
wy− c

2eτ/2
w, (3.2)

where we have defined w(τ,y)=v(eτ −1,ye−τ/2). Let W (τ,y)= eτ/2ey
2/8w(τ,y), and we

get

Wτ +MW =

(
c

2eτ
− 3

2eτ/2

)(
Wy− y

4
W

)
− c

2eτ/2
W, (3.3)

where

M =−∂2
y+

(
y2

16
− 3

4

)
.

The initial data and the boundary conditions for W are given by{
W (τ,0)=0,

W (0,y)=ey
2/8eyv0(y).

We work mainly with W in the sequel. Notice that the operator on the left-hand
side of (3.3) is the equation of a simple harmonic oscillator with a decaying forcing term.
We use the fact that we understand the eigenvalues and eigenfunctions of this operator
in the analysis that follows.

In these coordinates, Lemma 1.3 is easily reduced to proving the following decom-
position, as the following gives complete information about vx(t,0).

Lemma 3.1. Let W satisfy (3.3) with smooth, compactly supported initial data. Then
there exist α, g, and R such that

W (τ,y)=αye−y2/8+e−τ/2g(y)+R(τ,y). (3.4)

In addition, |Ry(0)|� (1+τ)e−τ . Finally, gy(0)=0 if and only if c=3
√
π

We prove this lemma in the sequel by decomposing W into three functions: one
part is the steady solution of the equation, one is a slowly decaying function with zero
derivative at y=0, and one is a quickly decaying function. First, we show that W is
bounded in L2 and converges to the steady state at the rate e−τ/2. This also shows the
existence of α above. Then, we prove the existence of g and use the fact that we may
solve for it explicitly. Finally, we leverage these facts to prove the existence of R.
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4. Proof of Lemma 3.1
Before we begin the proof, notice that M defines a nonnegative, definite, symmetric

quadratic form on the space

X :={φ∈L2 :yφ∈L2,φy ∈L2}, (4.1)

which we call Q. Namely, for all φ∈X, we define

Q(φ) :=

∫
φ(Mφ)dy. (4.2)

Note that Q satisfies the following inequality:∫
y

4
φ2dy≤Q(φ)+‖φ‖22. (4.3)

We use this inequality often in the sequel.
Let e0,e1, . . . denote the eigenfunctions of M . We know by [16] that the first

two eigenvalues are 0 and 1. Hence, Q is nonnegative on X and Q(φ)≥‖φ‖22 on
Span{e1,e2, . . .}. Moreover, we know that

e0(y)=
1√
2
√
π
ye−y2/8.

First, we show that W converges in L2 to the steady state at the rate e−τ/2. In
addition, this shows the existence of α in Lemma 3.1, since e0 is the steady state of
(3.3). We remark that the potential positivity of the total mass in Theorem 1.2 follows
from the work below. We comment further on this following the proof.

Lemma 4.1. Suppose that W satisfies (3.3). Then there exists α such that

‖W −αye−y2/8‖2� e−τ/2.

Proof. First, we show that W is bounded in L2. To this end, multiplying (3.3) by
W and integrating by parts, we get

1

2

d

dτ

∫
|W |2dy+Q(W )=

∫ [(
c

2eτ
− 3

2eτ/2

)
yW 2− c

2eτ/2
W 2

]
dy

≤4e−τ/2

(
c

2eτ/2
− 3

2

)[
Q(W )+‖W‖22

]
+e−τ/2 c

2
‖W‖22

� e−τ/2
[
Q(W )+‖W‖22

]
,

where we used (4.3) to obtain the second inequality. We may then rewrite this as

1

2

d

dτ
‖W‖22+

(
1−Ce−τ/2

)
Q(W )� e−τ/2‖W‖22.

We may choose τ0 such that, for τ ≥ τ0, we have 1−Ce−τ/2≥0. We note that, by
working in the original Euclidean coordinates (t,x), we may easily check that W remains
in L2 for τ ∈ [0,τ0]. Since Q is nonnegative, we have that

d

dτ
‖W‖22� e−τ/2‖W‖22.
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Solving this differential inequality gives us that W is uniformly bounded in L2.
Now, we finish the proof in two steps. First, we look at the projection of W onto

e0. This gives us the steady state. Then, we look at the component of W orthogonal
to e0. To be explicit, we decompose W as

W (τ,y)=W1(τ)e0(y)+W̃ (τ,y), (4.4)

where W̃ is an element of Span{e1,e2, . . .}.
In order to understand W1, we multiply (3.3) by e0 and integrate by parts to obtain

(W1)τ =

∫
Wτ (τ,y)e0(y)dy+

∫
MW (τ,y)e0(y)dy

=

∫ (
c

2eτ
− 3

2eτ/2

)(
Wy(τ,y)− y

4
W (τ,y)

)
e0(y)dy−

∫
c

2eτ/2
W (τ,y)e0(y)dy

� e−τ/2

∫
W (τ,y)

[
|(e0)y|+ye0(y)

]
dy+e−τ/2|W1(τ)|

� e−τ/2‖W‖22.
We used here that M is symmetric and that Me0=0. We may obtain the same inequal-
ity for −(W1)τ by multiplying by −e0 instead. Hence, we obtain

|(W1)τ |� e−τ/2‖W‖2� e−τ/2. (4.5)

Hence, there exists α′ such that W1 tends to α′ as τ tends to infinity. Moreover, we
have that |α′−W1|� e−τ/2. Hence, we need only show that W̃ decays fast enough in
order to finish the proof.

To obtain the decay of W̃ , we use (4.4) in (3.3) to obtain

W̃τ +MW̃ = e−τ/2

[(
c

2eτ/2
− 3

2

)(
W̃y− y

4
W̃

)
− c

2
W̃

]

+e−τ/2

[(
c

2eτ
− 3

2eτ/2

)(
W1(e0)y− y

4
W1e0

)
− c

2eτ/2
W1e0

]
−(W1)τe0.

Noting that W̃ lives in the span of e1,e2, . . . , we have that Q(W̃ )≥‖W̃‖22. Hence, when
we multiply the equation above by W̃ , integrate by parts, and use our inequality on Q,
we obtain

1

2

d

dτ
‖W̃‖22+

(
1−Ce−τ/2

)
‖W̃‖22� e−τ/2‖W̃‖2. (4.6)

Solving this differential inequality yields

‖W̃‖2� e−τ/2,

finishing the proof.

Remark 4.2. By changing coordinates, we see that

W0(y)=ey
2/8eyv0(y),

which gives us that

〈W0,ye
−y2/8〉=

∫ ∞

0

yeyv0(y)dy.
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Hence, if
∫
ξv0(ξ)dξ is large enough, then α0 must be positive. Indeed, (4.6) implies

that, if W̃ is small initially, it stays small, and then (4.5) implies that, if W1 is large
initially ,it remains large. When equation (1.2) is used to approximate Fisher–KPP, this
may be overcome by either choosing a larger initial condition or running the system for
sufficiently long that this integral is large, depending on whether one is looking for a
supersolution or a subsolution.

Now, we investigate g and R in (3.4). The ansatz implicit in (3.4) gives us the
following equation

− e−τ/2

2
g+e−τ/2Mg+Rτ +MR

=e−τ/2

[
3α

4
y2e−y2/8− αc

2
ye−y2/8− 3α

2
e−y2/8

]

+e−τ

[
αc

2
e−y2/8− αc

4
y2e−y2/8− 3

2
gy+

3y

8
g− c

2
g+

ce−τ/2

2

(
gy− y

4
g
)]

+e−τ/2

[(
ce−τ/2

2
− 3

2

)(
Ry− y

4
R
)
− c

2
R

]
,

where α is as in Lemma 4.1. We separate this into equations for g and R by associating
the terms on the right of order e−τ/2 with g and the rest with R. This yields

Mg− g

2
=αe−y2/8

[
3

4
y2− c

2
y− 3

2

]
(4.7)

and

Rτ +MR= e−τf(y,τ)+e−τ/2

[(
ce−τ/2

2
− 3

2

)(
Ry− y

4
R
)
− c

2
R

]
, (4.8)

where f is given by

f(τ,y)=

[
αc

2
e−y2/8− αc

4
y2e−y2/8− 3

2
gy+

3y

8
g− c

2
g+

ce−τ/2

2

(
gy− y

4
g
)]

. (4.9)

We first show that (4.7) is well-defined and that g has the property that gy(0)=0 if and
only if c=3

√
π. Then, we show (4.8) is well-defined as well.

Lemma 4.3. There exists a smooth solution g∈X of (4.7) which is locally bounded
in C1. In addition, gy(0)=0 if and only if c=3

√
π.

Proof. First we show, abstractly, that such a solution exists. Then, we write down
an explicit solution to the equation. This explicit solution allow us to understand gy(0).

In order to show the existence of a solution g∈X, we proceed as in Lemma 4.1.
Namely, we write

g=g1e0+ g̃, (4.10)

where g̃ is in the span of e1,e2, . . . . To bound g1, we multiply (4.7) by e0 and integrate.
This gives an explicit formula for g1 independent of g̃. Namely,

g1=−2α
∫ [

3

4
y2− c

2
− 3

2

]
e0(0)e

−y2/8dy. (4.11)
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Then, fixing g1 as this value, we simply write down the equation for g̃ given by

Mg̃− g̃

2
=α

[
3

4
y2− c

2
y− 3

2

]
+

g1
2
e0. (4.12)

On Span{e1,e2, . . .} with the norm of X, the operator M−1/2 is coercive, i.e. its
spectrum is bounded below by a positive constant. Here, we are using that, for φ∈
X∩Span{e1,e2, . . .}, we have Q(φ)≥‖φ‖22. Hence, the Lax–Milgram theorem implies
that (4.12) is uniquely solvable in Span{e1,e2, . . .}. This, along with (4.11), gives us that
(4.7) is uniquely solvable in X. The standard elliptic theory, as in [14], then, implies
that g is in fact in Hk

loc for every k. This, in addition, implies that g is smooth and
locally bounded in C1.

We now solve (4.7) explicitly. By changing variables to z=y2/4 and letting G=
ez/2g, we obtain the equation:

−zGzz−
(
1

2
−z

)
Gz−G=α

[
3z−c

√
z− 3

2

]
.

Following the work of Ebert and van Saarloos in [10] shows us that the explicit solution
is of the form

G(z)=α

[
3

2
+2c

√
z− 3

2
F2(z)+a1(1−2z)+a2H(z)

]
,

where F2 and H are given by

F2(z)=
√
π

∞∑
n=2

zn

n(n−1)Γ(1/2+n)
and H(z)=−

√
z

4

∞∑
n=0

zn

n!

Γ(−1/2+n)

Γ(3/2+n)
. (4.13)

As in [10], we may check that

lim
z→∞

H(z)

z−3/2ez
=−1

4
, and lim

z→∞
F2(z)

z−3/2ez
=
√
π.

Hence, H and F2 are clearly not in L2 in our original variables, even with the additional
e−z/2 factor. Thus, we must choose a2 such that these terms cancel at z=∞. In
addition, we must choose a1 such that G(0)=0. Hence, we obtain

G(z)=α

[
3

2
+2c

√
z− 3

2
G2(z)+

−3
2

(1−2z)−6
√
zH(z)

]

=α

[
2c
√
z− 3

2
G2(z)+3z−6

√
πH(z)

]
.

By uniqueness, we may return to the original variables to obtain an explicit formula for
gy(0). Namely, we have that

g(y)=αe−y2/8

[
cy− 3

2
G2(y

2/4)− 3y2

4
−6
√
πH(y2/4)

]
.

With this formula and with the first term in the sequence for H, we can easily see that
gy(0)=0 if and only if c=3

√
π, finishing the proof.

Lemma 4.1 and Lemma 4.3 tell us that R must decay to zero in L2 as τ tends to
infinity. This is a key fact that we use in the following lemma, which finishes the proof
of Lemma 3.1.
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Lemma 4.4. Let R satisfy (4.8) with α and g given above. Then we have the following
bounds:

‖R‖2� τe−τ and |Ry(0)|� τe−τ .

Proof. We proceed by decomposing R as we did W and g in the proofs of lemmas
4.1 and 4.3. Namely, let

R(τ,y)=R1(τ)e0(y)+R̃(τ,y), (4.14)

where R̃ is orthogonal to e0. To obtain a bound on R1, we first note that lemmas 4.1
and 4.3 imply that R decays to zero in L2 at least at the rate e−τ/2. Then, we multiply
(4.8) by e0 and integrate to obtain

(R1)τ = e−τ 〈f,e0〉−e−τ/2〈R,

(
ce−τ/2

2
− 3

2

)(
(e0)y+

y

4
e0

)
+

c

2
e0〉.

Using the formula for f given in (4.9), we see that 〈f,e0〉 is bounded in X uniformly
in time. In addition, we know that e0∈X does not depend on time. Hence, applying
Cauchy–Schwarz, we obtain

|(R1)τ |� e−τ +e−τ/2‖R‖. (4.15)

Since we know that ‖R‖2� e−τ/2, it follows that

|(R1)τ |� e−τ .

This gives us that

|R1(τ)|= |R1(∞)−R1(τ)|=
∣∣∣∣
∫ ∞

τ

(R1)τ (s)ds

∣∣∣∣�
∫ ∞

τ

e−sds= e−τ .

This is the desired bound on R1.
In order to finish the proof of the L2 bound on R, we need to bound R̃ in L2. To

this end, we use the decomposition (4.14) along with (4.8) to note that R̃ satisfies

R̃τ +MR̃= e−τf(y,τ)+e−τ/2

[(
ce−τ/2

2
− 3

2

)(
R̃y− y

4
R̃
)
− c

2
R̃

]

+R1e
−τ/2

[(
ce−τ/2

2
− 3

2

)(
(e0)y− y

4
e0

)
− c

2
e0

]
−(R1)τe0.

Multiplying this by R̃ and integrating by parts yields

1

2

d

dτ
‖R̃‖22+Q(R̃)

�e−τ‖R̃‖2+e−τ/2

(∫
(y+1)R̃2dy

)
+e−τ/2R1‖R̃‖2+ |(R1)τ |‖R̃‖2.

Again using the inequality (4.3) along with the inequality on R1 and (R1)τ that we just
obtained, we note that

d

dτ
‖R̃‖22+(2−Ce−τ/2)‖R̃‖22� e−τ‖R̃‖2, (4.16)
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where C is some universal constant.
We will now solve this differential inequality. We do this in two steps. First, we

obtain a rough bound on the decay of R̃, and then we leverage this to get the correct
decay. To start, we may set τ0 to be the time when 2−Ce−τ/2≥7/4 for all τ ≥ τ0.
Then, we see that, for τ ≥ τ0, we have

d

dτ
‖R̃‖22+

7

4
‖R̃‖22� e−τ‖R̃‖2.

This gives us that

d

dτ

(
e

7τ
4 ‖R̃‖22

)
� e−τ/8

(
e

7τ
4 ‖R̃‖22

)1/2

.

Integrating this in τ implies that ‖R̃‖2� e−7τ/8.
Call ψ(τ)=eτ‖R̃‖2, and we have that

ψτ −Ce−τ/2ψ�1.

From above, we have that ψ(τ)� eτ/8. The combination of these implies that

ψτ �1,

which in turn implies that ψ(τ)�1+τ . This gives us the desired inequality

‖R̃‖2� (τ+1)e−τ ,

which finishes the proof of the initial bound of R.
To finish the proof, we need to bound Ry(0). This, however, is a simple consequence

of our bounds on the L2 norm of R and the right-hand side of (4.8). Indeed, with these
the standard parabolic regularity theory, which may be found in [23, 24], give us the
desired bound on Ry(0), finishing the proof.
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