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EMERGENCE OF FLOCKING FOR A MULTI-AGENT SYSTEM
MOVING WITH CONSTANT SPEED∗

SUN-HO CHOI† AND SEUNG-YEAL HA‡

Abstract. We present a Cucker–Smale-type flocking model for interacting multi-agents(or par-
ticles) moving with constant speed in arbitrary dimensions, and derive a sufficient condition for the
asymptotic flocking in terms of spatial and velocity diameters, coupling strength and a communication
weight. In literature, several Vicsek-type models with a unit speed constraint have been proposed in
the modeling of self-organization and planar models were extensively studied via the dynamics of the
heading angle. Our proposed model has a velocity coupling that is orthogonal to the velocity of the
test agent to ensure the constancy of speed of the test agent along the dynamic process. For a flocking
estimate, we derive a system of dissipative differential inequalities for spatial and velocity diameters,
and we also employ a robust Lyapunov functional approach.

Key words. Cucker–Smale model, flocking, Lyapunov functional, unit speed constraint, Vicsek
model.
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1. Introduction
Emergent collective motions such as flocking and synchronization have often been

observed in biological complex systems [4, 6–8, 21, 22, 25, 29–32], and has received
considerable attention in biology, engineering, and physics because of their applications
in the controlling of man-made systems and networks [13–15,18,23,24,26–28]. The sys-
tematic studies of such emergent phenomena were initially addressed by two innovators,
Winfree [32] and Kuramoto [16,17] several decades ago. Why does a complex biological
system exhibit flocking and synchronous behavior? Such a question has long concerned
ecologists. One possible answer is that the collective behaviors are a better strategy
than individual behaviors from the viewpoint of survival. Indeed, the mechanism that
leads to flocking and synchronization is not that simple. In fact, in order to understand
this mechanism, we need to identify environmental information and agent’s individual
motion. In this paper, we do not attempt to answer this intriguing question. However,
we instead try to model such ordered phenomena using a simple dynamical system
for possible applications in the control theory of multi-agent systems. More precisely,
we propose a second-order multi-agent model with constant speed constraint in any
dimensions. As aforementioned, there are some previous works [10, 14, 15, 23, 24, 28, 31]
on the flocking dynamics of two-dimensional models for multi-agent systems with
the unit-speed constraint. In this case, since agents have unit speeds, the velocity
lies on the S

1 so that the dynamics of velocity is completely determined by that of
the heading angle. This is the point where the two-dimensionality of the underlying
dynamics crucially surfaces up. In contrast, for high dimensions, we have to employ
more angles, which make the dynamical systems will be so complicated if we use the
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generalized spherical coordinate. Recently, several Vicsek-type particle models with a
unit speed constraint were proposed in [3, 5, 9] for the study of alignment (or flocking).
In this paper, motivated by the works [19, 20] on the quantum synchronization, we
present a new Cucker–Smale-type flocking model with a constant speed constraint so
that our proposed model generalizes the planar model introduced in [10], where the
two-dimensionality of the underlying physical space is crucially used. Before we move
on, we briefly discuss why constant speed constraint matters in the flocking modeling.
As far as the authors know, this is mainly due to the historical development of flocking
in physics literature. The modeling of flocking phenomena were first introduced
by Vicsek’s group [31] in the physics community and the unit speed constraint was
employed in relation with the phase models for synchronization, e.g., the Kuramoto
model [16, 17], and Vicsek’s work advanced further research [7, 14, 15, 18, 22–24, 28]
on the collective dynamics of interacting multi-agent systems in engineering and
physics. Unlike the Cucker–Smale model, where the constant speed constraint
was not imposed, the constant speed constraint will result in the shrinking of the set
of admissible initial configurations leading to the asymptotic flocking (see Theorem 3.1).

Let (xi,vi) denote the phase space coordinate of the ith agent. Then, the generalized
CS model reads as follows:
For i=1, . . . ,N ,

dxi
dt

=vi,
dvi
dt

=K

N∑
j=1

ψijΓ(vi,vj),

where K is the coupling strength and Γ(vi,vj) is the velocity coupling between vi and
vj . For a symmetric case in which

ψij =ψji, Γ(vi,vj)=Γ(vj ,vi), 1≤ i,j≤N, (1.1)

the total momentum
∑N

i=1vi is a conserved quantity, and therefore, if flocking occurs,
then the velocities of individual agents will tend to the average initial velocity such
that the speeds of agents are not invariant along the CS flow. Therefore, to incorporate
the constant speed constraint and the Cucker–Smale flocking mechanism, we need
to disregard one symmetry in (1.1). Here we disregard the latter case, i.e., we do
not require the velocity coupling to be symmetric in the exchange of vi and vj in
Γ. Recently, Ha, Jeong and Kang [10] attempted to combine these two mechanisms
and heuristically derived a simple planar model similar to the Vicsek [31] and the
Justh–Krishnaprasad models [14,15]. This derivation crucially uses the polar coordinate.

There are two main results of this paper. First, we derive a Cucker–Smale-type
flocking model by incorporating the CS flocking mechanism and constant speed assump-
tion together in arbitrary dimensions. As aforementioned, we take a velocity coupling
Γ(vi,vj) satisfying

Γ(vi,vj) �=Γ(vj ,vi) Γ(vi,vj) ·vi=0.

More precisely, let xi and vi be the spatial position and velocity of the ith particles,
respectively. For the Cucker–Smale flocking [4], the velocity coupling Γ(vi,vj) is simply
defined as the relative velocity vj−vi, and as mentioned before, this coupling does
not preserve the speed. Therefore, we instead employ the following velocity coupling
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motivated by [19,20] (see Section 2.1 for details):

Γ(vi,vj) :=vj−
〈vj ,vi〉
〈vi,vi〉

vi.

Second, we introduce the position and velocity diameters D(x) and D(v) (see Notation
at the end of Introduction), respectively, and show that these functionals satisfy a system
of dissipative differential inequalities for the metric dependent communication weights
ψij =ψ(||xi−xj ||):∣∣∣∣dD(x)

dt

∣∣∣∣≤D(v),
dD(v)

dt
≤−KC0ψ(D(x))A(v0)D(v), a.e. t>0.

Then we employ the Lyapunov functional approach for the above SDDI system to
derive the desired asymptotic flocking estimate (see Section 3.2 for more details).

The rest of the paper is organized as follows: In Section 2, we discuss our model
and present a key a priori estimates for the proposed model. In Section 3, we derive
the SDDI for the spatial and velocity diameters, and provide a flocking estimate using
the Lyapunov functional approach. Finally, Section 4 is devoted to the summary of our
main results. In Appendix A, we present an example leading to the nonexistence of a
global flocking in the absence of the geometric condition A(v0)>0.

Notation: Throughout the paper, we set

x := (x1, . . . ,xN ), v := (v1, . . . ,vN ),

and for configuration (x,v), we introduce the position and velocity diameters as follows.

D(x) := max
1≤i,j≤N

||xi−xj ||, D(v) := max
1≤i,j≤N

||vi−vj ||.

2. Preliminaries
In this section, we briefly discuss our model and present an a priori estimate

regarding the variation of angle between two distinct agent velocities.

2.1. Discussion of our model. First, we recall the Cucker–Smale flocking
model, before we discuss our proposed model. Let (xi,vi) be the position and velocity
pair of the ith agent and assume that the internal forcing from the neighboring field
agent j to the ith agent is given by the weighted relative velocity ψij(vj−vi). In this
setting, the Cucker–Smale (CS) model on the Euclidean configuration space R

d×R
d

reads as follows:

dxi
dt

=vi, t>0,

dvi
dt

=K
N∑

k=1

ψik(vk−vi).
(2.1)

Presently, we do not assume any specific ansatz for ψij . For the symmetric weight

ψij =ψji, the total momentum
∑N

i=1vi is a conserved quantity, and therefore, if flock-
ing occurs, the agent’s individual velocity should converge to the averaged velocity
1
N

∑N
i=1vi. Thus, the speed of agents is not preserved along the dynamics (2.1)
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(see [2, 4, 11, 12]), unless the agent speeds are that of averaged one. To guarantee con-
stant speed, we employ Lohe’s idea as follows. In [19,20], Lohe introduced the following
first-order model on the sphere from the quantum synchronization model:

ẋi=Ωi
xi

||xi||2
+
K

N

N∑
k=1

(
xk−

〈xi,xk〉xi
||xi||2

)
︸ ︷︷ ︸

�

, i=1, . . . ,N,

where xi is the position of the ith particle. Note that the term � represents an aggrega-
tion mechanism and make particle stay on the sphere. Following Lohe’s idea, we employ
the velocity coupling term Γ(vk,vi):

Γ(vk,vi) :=vk−
〈vk,vi〉
〈vi,vi〉

vi

which has the property:

〈vi,Γ(vk,vi)〉=0.

This leads to the conservation of modulus for vi in the time-evolution of (2.2) (see
Lemma 2.1). To obtain Cucker–Smale-type system, we insert a communication weight
ψij in front of each coupling term to incorporate the degree of interactions between i
and jth agents. Based on the above discussion, we introduce the following modified CS
model:

dxi
dt

=vi, t>0,

dvi
dt

=K
N∑

k=1

ψik

(
vk−

〈vk,vi〉
〈vi,vi〉

vi

)
,

(2.2)

where ψik is a non-negative metric dependent communication weight.
Note that even for the symmetric communication ψik=ψki, the velocity coupling

is not symmetric in i and k, i.e.,

vk−
〈vk,vi〉
〈vi,vi〉

vi �=vi−
〈vi,vk〉
〈vk,vk〉

vk.

Thus, the total momentum may not be conserved, i.e.,

N∑
i=1

vi(t) �=
N∑
i=1

vi(0), t≥0,

so that we may achieve a constancy of the speeds. Then, the following lemma guarantees
the constancy of speed.

Lemma 2.1. Let (xi,vi) be a solution to system (2.2). Then, the speed of agents is
constant along the flow (2.2):

||vi(t)||= ||vi0||, t>0.
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Proof. We take an inner product (2.2)2 with vi to determine

1

2

d||vi||2
dt

=K
N∑

k=1

ψik

(
〈vi,vk〉−

〈vk,vi〉
〈vi,vi〉

〈vi,vi〉
)
=0.

This implies that

d

dt
||vi||2=0, i.e., ||vi(t)||= ||vi0||, t>0.

Next, we discuss how the system (2.2) can be reduced to the model introduced
in [10] for the special case:

d=2 and ||vi0||=1, 1≤ i≤N.

In this case, it follows from Lemma 2.1 that

||vi(t)||=1 for all t>0 and i=1, . . . ,N.

Thus, we can rewrite vi as a polar form:

vi=(cosθi,sinθi). (2.3)

Then, we substitute the ansatz (2.3) into the equation (2.2)2 to obtain

(−sinθi,cosθi)θ̇i

=K

N∑
k=1

ψij

[
(cosθk,sinθk)−(cosθi cosθk+sinθi sinθk)(cosθi,sinθi)

]
.

We take an inner product with (−sinθi,cosθi) to obtain

dθi
dt

=K
N∑

k=1

ψik sin(θk−θi).

Thus, our proposed model (2.2) becomes the model in [10]:

dxi
dt

= e
√−1θi ,

dθi
dt

=K
N∑

k=1

ψki sin(θk−θi).

2.2. A priori estimates. In this part, we present a key a priori estimate for
the model (2.2). For later flocking estimates, we next introduce a functional A(v) to
measure the maximal angle between vis

A(v) :=min
i �=j
〈vi,vj〉.

Note that A(v(t)) measures a maximum angle between the velocities of distinct agents
in the sense that

〈vi,vj〉= r2 cosθij , where θij is the angle between ith and jth particles.
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Lemma 2.2. Let (x,v) be a solution to system (2.2) with initial configuration (x0,v0)
satisfying

||vi0||= r, 1≤ i≤N, A(v0)>0.

Then, the functional A(v(t)) is non-decreasing along the flow (2.2):

A(v(t))≥A(v0), t>0.

Proof. First, we note that Lemma 2.1 yields

||vi(t)||= r, t≥0, 1≤ i≤N.

We take an inner product with vj and v̇i to obtain

〈v̇i,vj〉=K
N∑

k=1

ψik

(
〈vk,vj〉−

〈vk,vi〉
r2

〈vi,vj〉
)
. (2.4)

On the other hand, we change the role of i and j to obtain

〈vi, v̇j〉=K
N∑

k=1

ψjk

(
〈vi,vk〉−

〈vk,vj〉
r2

〈vi,vj〉
)
. (2.5)

We combine (2.4) and (2.5) to obtain

d〈vi,vj〉
dt

=K
N∑

k=1

ψik

(
〈vk,vj〉−

〈vk,vi〉
r2

〈vi,vj〉
)
+K

N∑
k=1

ψjk

(
〈vi,vk〉−

〈vk,vj〉
r2

〈vi,vj〉
)
.

We define a set T as follows:

T :=
{
t∈R+ :A(v(t))>0

}
.

Since A(v0)>0, there exists some δ>0 such that

A(v(t))>0, t∈ (0,δ).

Thus, δ∈T , i.e., T is non-empty. We now claim

T∗ := supT =∞.

Suppose not, i.e., T∗<∞. Then it follows from the continuity of A(·) that

lim
t→T∗−

A(v(t))=0. (2.6)

For a fixed t, we take indices it and jt such that

〈vit ,vjt〉=min
i �=j
〈vi(t),vj(t)〉. (2.7)

For such it and jt, we have

d〈vit ,vjt〉
dt

=K
N∑

k=1

ψitk

(
〈vjt ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)
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+K
N∑

k=1

ψjtk

(
〈vit ,vk〉−

〈vjt ,vk〉
r2

〈vjt ,vit〉
)

=I11+I12, t∈ [0,T∗).

We use the minimality (2.7) of 〈vit ,vjt〉:

〈vit ,vk〉
r2

〈vjt ,vit〉≤
〈vit ,vk〉
r2

〈vjt ,vk〉

to obtain

I11=K
N∑

k=1

ψitk

(
〈vjt ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)

≥K
N∑

k=1

ψitk

(
1− 〈vit ,vk〉

r2

)
〈vjt ,vk〉

≥0.

By the same argument, we have

I12≥0.

Thus, A(v(t)) is a non-decreasing function on [0,T∗) such that

A(v(t))≥A(v0)>0.

This gives a contradiction to (2.6), and therefore, we have

T∗=∞, A(v(t))≥A(v0), t∈ [0,∞).

3. Asymptotic flocking estimates

In this section, we derive a system of dissipative differential inequalities (SDDI) for
diameters D(x) and D(v), and for the metric dependent communication weight ψik≥0,
we show that the flocking occurs asymptotically. Indeed, for the linear time dependent
weight ψ(t), the flocking estimate will be directly followed by the SDDI(see Remark
3.2). First, we recall the definition of asymptotic flocking as follows.

Definition 3.1. Let (x,v) be the solution to system (2.2). Then, the system
(x(t),v(t)) exhibits asymptotic flocking if and only if the following conditions hold.

sup
0≤t<∞

||xi(t)−xj(t)||<∞, lim
t→∞ ||vi(t)−vj(t)||=0, 1≤ i,j≤N.

Remark 3.1. Note that the asymptotic flocking is equivalent to

sup
t≥0

D(x(t))<∞, lim
t→∞D(v(t))=0.



960 FLOCKING FOR A SYSTEM MOVING WITH CONSTANT SPEED

3.1. Derivation of SDDI. In this part, we derive the SDDI for D(v) and D(x).
Lemma 3.2. For a given T ∈ (0,∞], let (x(t),v(t)) be a solution to system (2.2)
satisfying

||vi(t)||= r and D(x(t))D(v(t))A((t))>0, t∈ (0,T ).

Then, D(x) and D(v) satisfy

∣∣∣∣dD(x)

dt

∣∣∣∣≤D(v),
dD(v)

dt
≤−KNψm

2r2
A(v)D(v), a.e. t∈ (0,T ), (3.1)

where ψm=mini,jψij.

Proof.
• (Derivation of the first inequality): It follows from (2.2)2 that we have

d

dt
(xi−xj)=vi−vj . (3.2)

We take an inner product (3.2) with (xi−xj) to obtain

1

2

d

dt
||xi−xj ||2= 〈vi−vj ,xi−xj〉.

Now, we use Young’s inequality to obtain∣∣∣∣||xi−xj || ddt ||xi−xj ||
∣∣∣∣= |〈vi−vj ,xi−xj〉|≤ ||vi−vj || ||xi−xj ||,

Thus, we have ∣∣∣∣ ddt ||xi−xj ||
∣∣∣∣≤||vi−vj ||≤D(v), for all i and j.

• (Derivation of the second inequality): By assumption, we have

||vi(t)||= r, 〈vi(t),vj(t)〉>0, t∈ (0,T ), 1≤ i,j≤N.

These yield

r2−〈vi,vj〉=
1

2
||vi−vj ||2. (3.3)

Now, we use the relation (3.3) to obtain

r2−A(v)= r2−min
i �=j
〈vi,vj〉=

1

2
max
i �=j

||vi−vj ||2=
1

2
D(v)2. (3.4)

On the other hand, note that

1

2

d

dt
||vi−vj ||2=−

d

dt
〈vi,vj〉=−〈v̇i,vj〉−〈vi, v̇j〉

=−K
N∑

k=1

ψik

(
〈vj ,vk〉−

〈vi,vk〉
r2

〈vj ,vi〉
)
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−K
N∑

k=1

ψjk

(
〈vi,vk〉−

〈vj ,vk〉
r2

〈vj ,vi〉
)
. (3.5)

For a given t, we take indices it and jt such that

D(v(t))= ||vit−vjt ||.

Then for such it and jt, we use (3.4) and (3.5) to obtain

1

2

d

dt
D(v(t))2=−K

N∑
k=1

ψitk

(
〈vjt ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)

−K
N∑

k=1

ψjtk

(
〈vit ,vk〉−

〈vjt ,vk〉
r2

〈vjt ,vit〉
)
. (3.6)

We use the minimality of 〈vit ,vjt〉 and

r2≥〈vi,vj〉>0, 1≤ i,j≤N

to obtain

〈vjt ,vk〉−
〈vit ,vk〉
r2

〈vjt ,vit〉>0, 〈vit ,vk〉−
〈vjt ,vk〉
r2

〈vjt ,vit〉>0. (3.7)

Now, we use (3.6) and (3.7) to obtain

1

2

d

dt
D(v(t))2≤−Kψm(t)

N∑
k=1

(
〈vjt ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)

−Kψm(t)

N∑
k=1

(
〈vit ,vk〉−

〈vjt ,vk〉
r2

〈vjt ,vit〉
)
, (3.8)

where we used the notation ψm(t) :=min
i �=j

ψij .

To obtain the desired estimate, we rearrange the terms in R.H.S. of (3.8) as follows:

1

2

d

dt
D(v(t))2≤−Kψm(t)

N∑
k=1

(
〈vjt ,vk〉−

〈vjt ,vk〉
r2

〈vjt ,vit〉
)

−Kψm(t)

N∑
k=1

(
〈vit ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)

:=−
(
I21+I22

)
.

Next, we estimate I21 and I22 separately.
We use

〈vjt ,vk〉≥〈vjt ,vit〉=A(v(t)), 1≤k≤N,
1− 〈vit ,vjt〉

r2
=

1

2
||vit−vjt ||2

to obtain

I21=Kψm(t)

N∑
k=1

(
〈vjt ,vk〉−

〈vjt ,vk〉
r2

〈vjt ,vit〉
)
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=Kψm(t)

N∑
k=1

(
1− 〈vjt ,vit〉

r2

)
〈vjt ,vk〉

=
Kψm(t)

2r2
||vit−vjt ||2

N∑
k=1

〈vjt ,vk〉

≥ KNA(v)ψm(t)

2r2
||vit−vjt ||2

and

I22=Kψm(t)

N∑
k=1

(
〈vit ,vk〉−

〈vit ,vk〉
r2

〈vjt ,vit〉
)

=Kψm(t)

N∑
k=1

(
1− 〈vjt ,vk〉

r2

)
〈vit ,vk〉

=
Kψm(t)

2r2
||vit−vjt ||2

N∑
k=1

〈vit ,vk〉

≥ KNA(v)ψm(t)

2r2
||vit−vjt ||2.

Thus, we have

d

dt
(D(v))2≤−KNA(v)ψm(t)

r2
||vit−vjt ||2=−

KNA(v)ψm(t)

r2
D(v)2.

This yields the desired result.

Remark 3.2. For a linear communication weight with the property

min
i,j

ψij(t)≥
C

(1+ t)α
, 0≤α<1,

it follows from the second inequality in (3.1) and Lemma 2.2 that

D(x(t))<∞, lim
t→∞D(x(t))=0.

3.2. Asymptotic flocking estimate. In this part, we present an asymptotic
flocking estimate for system (2.2) with metric dependent ψ introduced in [4,11,21]. For
this, we set ψ to be non-increasing in the argument and bounded:

ψ(r)>0, (ψ(r1)−ψ(r2))(r1−r2)≤0, sup
r≥0

ψ(r)≤ψM <∞,

ψij :=: Either
ψ(||xi−xj ||)

N
, or

ψ(||xj−xi||)
N∑

k=1

ψ(||xk−xi||)
. (3.9)

Then, it is easy to see that

min
i,j

ψij≥
min

{
1

ψM
,1
}

N
ψ(D(x)). (3.10)



S.-H. CHOI AND S.-Y. HA 963

It follows from lemmas 3.2 and (3.10) that∣∣∣∣dD(x)

dt

∣∣∣∣≤D(v), a.e. t∈ (0,T ),

dD(v)

dt
≤−KC0ψ(D(x))D(v),

(3.11)

where the constant C0 is a positive constant defined by

C0(K,r,ψM ,v0) :=
1

2r2
min

{ 1

ψM
,1
}
A(v0). (3.12)

Following [11], we introduce the Lyapunov-type functionals:

H±(t) :=D(v(t))±KC0

∫ D(x(t))

0

ψ(s)ds, t∈ (0,T ). (3.13)

Note that the Lyapunov functional (3.13) looks like the same as the functionals
[11,12,21] for the CS models with symmetric and non-symmetric communication weights
[4, 21]. However, in our case, the constant C0 in (3.12) has a geometric factor A(v0)
measuring the maximal angle between agent’s initial velocities. This is simply due to
the nature of nonlinear velocity couplings to make the unit modulus of velocities.

Lemma 3.3. For a given T ∈ (0,∞], let (x(t),v(t)) be a solution to system (2.2) and
(3.9) satisfying

||vi(t)||= r and D(x(t))D(v(t))A(v(t))>0, t∈ (0,T ).

Then, for any solution to system (2.2) with communication weight (3.9), we have

D(v(t))+KC0

∣∣∣∣
∫ D(x(t))

D(x0)

ψ(s)ds

∣∣∣∣≤D(v0), t∈ (0,T ).

Proof. It follows from (3.11) that

dH±
dt

=
dD(v)

dt
±C0ψ(D(x))

dD(x)

dt

≤−KC0ψ(D(x))D(v)±C0Kψ(D(x))
dD(x)

dt

=−KC0ψ(D(x))
(
D(v)∓ dD(x)

dt

)
≤0.

Thus, we have

H±(t)≤H±(0), t≥0.

This and (3.13) yield the desired estimate.

We are now ready to present our main result for system (2.2).

Theorem 3.4. Suppose that the communication weight ψ and initial configuration
(x0,v0) satisfy (3.9) and

(i) ||vi(0)||= r, 1≤ i≤N, A(v0)>0,
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(ii) 0<D(v0)<KC0min
{∫ ∞

D(x0)

ψ(s)ds,

∫ D(x0)

0

ψ(s)ds
}
.

Then, there exist a unique solution (x(t),v(t)) to system (2.2) satisfying the asymptotic
flocking conditions.

(i) sup
t≥0

D(x(t))<D∞,

(ii) D(v(t))≤D(v0)exp
(
−KC0ψ(D

∞)t
)
, t≥0,

(3.14)

where D∞ is a positive constant implicitly defined by the following relation:

D(v0) :=KC0

∫ D∞

D(x0)

ψ(s)ds. (3.15)

Proof. Since R.H.S. of (2.2) is linear and Lipschitz continuous, the standard
Cauchy-Lipschitz theory yields the global solution (x(t),v(t)) to system (2.2). Hence,
we focus on the flocking estimate (3.14). In order to use Lemma 3.3, we have to show
that

||xi(t)||= r, D(x(t))D(v(t))A(v(t))>0, t∈ (0,∞).

It follows from Lemma 2.1 and 2.2 that

||xi(t)||= r, A(v(t))≥A(v0)>0. (3.16)

Thus, it suffices to verify that the diameters D(x(t)) and D(v(t)) cannot be zero in
a finite-time. First, we show that the velocity diameter D(v(t)) cannot be zero in
finite-time. Suppose not, i.e., there exists the smallest time T∗∈ (0,∞) such that

D(v(T∗))=0, vi(T∗)=vj(T∗), 1≤ i,j≤N.

Then, it follows from (2.2) that

dvi(T∗)
dt

=0, 1≤ i≤N.

On the other hand, by differentiating the equation (2.2), we also have

dkvi(T∗)
dtk

=0, k≥2.

Then, there exists δ>0 such that

vi(t)=vj(t), T∗−δ<t<T∗+δ.

This contradicts to the minimality of T∗ and we obtain

D(v(t))>0, t∈ (0,∞). (3.17)

Since ψ is strictly decreasing and non-negative in its argument,

F (δ) :=KC0

∫ D(x0)

δ

ψ(s)ds is a non-increasing continuous function in δ.
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Thus, there exists a unique Dm>0 such that

D(v0)=KC0

∫ D(x0)

Dm

ψ(s)ds, Dm<D(x0),

since

0<D(v0)<KC0

∫ D(x0)

0

ψ(s)ds=F (0), F (D(x0))=0,

We now claim

D(x(t))≥Dm>0, t∈ (0,∞).

Suppose not, i.e., there exists T1∈ (0,∞) such that

D(x(T1))<Dm.

Then, by the continuity of D(x(·)), there exists δ1>0 such that

D(x(t))<Dm, t∈ (T1−δ,T1+δ).

This yields

D(v0)<KC0

∫ D(x0)

D(x(T1))

ψ(s)ds. (3.18)

On the other hand, it follows from Lemma 3.3 that

KC0

∣∣∣∣
∫ D(x(t))

D(x0)

ψ(s)ds

∣∣∣∣≤D(v0), t≥0.

which is contradictory to (3.18). Therefore, we have

D(x(t))≥Dm, t≥0. (3.19)

Finally, we combine (3.16), (3.17), and (3.19) to obtain

||xi(t)||= r, D(x(t))D(v(t))A(v(t))>0, t∈ [0,∞).

Therefore, we can use Lemma 3.3 for all t>0.

• Part A (Uniform boundedness of D(x(t))): Since ψ is strictly decreasing in its argu-
ment, we can choose a unique D∞ satisfying the implicit relation (3.15). We now claim:

D(x(t))≤D∞, t≥0. (3.20)

Suppose not, i.e., there exists a T∗∈ (0,∞) such that

D(x(T∗))>D∞.

Then, it follows from Lemma 3.3 that

D(v0)≥KC0

∫ D(x(T∗))

D(x0)

ψ(s)ds>KC0

∫ D∞

D(x0)

ψ(s)ds=D(v0).
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This is a contradiction. Thus, we have the desired claim (3.20).

• Part B (Exponential decay of D(v(t))): It follows from the second equation in (3.11)
that

dD(v)

dt
≤−KC0ψ(D

∞)D(v).

This yields the desired exponential decay.

Remark 3.3. In [1, 11, 21], similar Lyapunov functional approach has been applied
to the Cucker–Smale-type models without constant speed constraint. Due to the con-
stant speed constraint, we have to restrict admissible initial configurations to satisfy a
geometric condition:

A(v0)>0, (3.21)

which is not present the classical Cucker–Smale-type models. This geometric constraint
(3.21) is crucial in the flocking estimate. Once the condition (3.21) is violated, we can
find an explicit example for the nonexistence of a global flocking, see Appendix A.

4. Conclusion
In this paper, we introduced a Cucker–Smale-type flocking model with a unit speed

constraint in any arbitrary dimension. Since the original CS flocking model is not
compatible with the constant speed constraint, we introduced a new non-symmetric
velocity coupling leading to the constancy of speed. Previously, several Vicsek-type
flocking models with the unit speed constraint have been proposed in [3,5,9,10,14,15,31]
and a flocking estimate has been studied for the planar model in [10]. Our new velocity
coupling is motivated by the study of the quantum synchronization [19, 20]. For the
flocking estimate, we introduced the position and velocity diameters and derived a
system of dissipative differential inequalities. Using the Lyapunov functional approach,
we showed that the flocking occurs exponentially fast for some restricted class of initial
configurations.

Appendix A. Nonexistence of global flocking. In this appendix, we provide
an explicit three particle configuration leading to the nonexistence of a global flocking.

Consider a symmetric initial configuration {(xi,vi)}3i=1 on the planar domain R
2

for system (2.2) for three particles

x1(0)=(0,M), x2(0)=(0,0), x3(0)=(0,0),

v1(0)=(0,1), v2(0)=(1−ε,−
√

1−(1−ε)2),
v3(0)=(−(1−ε),−

√
1−(1−ε)2), 0<ε<1.

(A.1)

In the sequel, we assume the Cucker–Smale communication weight:

ψ(s)=
1

(1+s2)
β
2

, 0<β<1.

Below, we use the notation vji to denote the jth component of vi∈R2, i.e., we set
vi=(v1i ,v

2
i ).

Lemma A.1. For a fixed ε∈ (0,1), there exists a large positive constant M =M(ε)
such that system (2.2) admits a solution (x,v) with initial data (A.1) satisfying

sup
t≥0
|v12(t)−v13(t)|≤ |v12(0)−v13(0)|.
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v1

v2

v1

v2v3

O 1

−1

||v||=1

Fig. A.1. Configuration for particles of velocity.

Proof. Note that by symmetry, the solution (x,v) satisfies the following relations:

v1(t)=(0,1), v12(t)=−v13(t), v22(t)=v
2
3(t),

x1(t)=(0,M+ t), x2(t)=

∫ t

0

v2(s)ds, x3(t)=

∫ t

0

v3(s)ds, t≥0.

This implies

ψ(|x2−x1|)=ψ(|x3−x1|), 〈v2,v1〉= 〈v3,v1〉,
〈v2,v3〉=v12v13+v22v23 =−v12v12+v22v22 .

(A.2)

We next claim:

d

dt
|v12−v13 |≤0, a.e., t∈ [0,∞).

Proof of claim: It follows from system (2.2) that

dv2
dt

=
K

3
(ψ(|x2−x1|)(v1−〈v2,v1〉v2)+ψ(|x2−x3|)(v3−〈v2,v3〉v2)),

dv3
dt

=
K

3
(ψ(|x3−x1|)(v1−〈v3,v1〉v3)+ψ(|x3−x2|)(v2−〈v2,v3〉v3)).

(A.3)

Then, we use (A.2) and (A.3) to obtain
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d

dt
(v2−v3)

=
K

3

(
ψ(|x2−x1|)(v1−〈v2,v1〉v2)+ψ(|x2−x3|)(v3−〈v2,v3〉v2)

)

−K

3

(
ψ(|x3−x1|)(v1−〈v3,v1〉v3)+ψ(|x3−x2|)(v2−〈v2,v3〉v3)

)

=
K

3

(
ψ(|x2−x1|)(−〈v2,v1〉v2+〈v3,v1〉v3)

+ψ(|x2−x3|)(v3−〈v2,v3〉v2−v2+〈v2,v3〉v3)
)

=
K

3

(
−ψ(|x2−x1|)〈v2,v1〉(v2−v3)+(1+〈v2,v3〉)ψ(|x2−x3|)(v3−v2)

)
. (A.4)

We now take the first component of the above relation (A.4) to obtain

d

dt
(v12−v13)

=
K

3

(
−ψ(|x2−x1|)〈v2,v1〉(v12−v13)+(1+〈v2,v3〉)ψ(|x2−x3|)(v13−v12)

)
. (A.5)

If we multiply both sides of (A.5) by (v12−v13), we obtain

1

2

d

dt
|v12−v13 |2

=
K

3

(
−ψ(|x2−x1|)〈v2,v1〉|v12−v13 |2−(1+〈v2,v3〉)ψ(|x2−x3|)|v12−v13 |2

)
.

We define a set Tc:

Tc :=
{
T ≤ (0,∞] :

d

dt
|v12(t)−v13(t)|≤0, a.e., t∈ [0,T )

}
, T ∗ := supT .

Since

ψ(|x2(0)−x1(0)|)=ψ(M)→0 as M→∞,

〈v2(0),v1(0)〉=−
√
1−(1−ε)2, |v12(0)−v13(0)|=2(1−ε),

we have

1

2

d

dt
|v12−v13 |2

∣∣∣
t=0+

=
K

3

[
4ψ(M)

√
1−(1−ε)2(1−ε)2−8ψ(|x2(0)−x3(0)|)(1−ε)2

]
≤0, by choosing M sufficiently large.

Thus, there exists δ>0 such that

d

dt
|v12(t)−v13(t)|≤0, a.e., t∈ [0,δ), i.e., δ∈T .
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Hence, the set Tc is not empty and T ∗ is well defined. Next, we show that

T ∗=∞.

Suppose not, i.e., T ∗<∞. Then for t∈ [0,T ∗), we have

d

dt
|v12−v13 |≤0, v22 =v

2
3<0, t∈ [0,T ∗). (A.6)

The relation (A.6), ||vi||=1 and v1(t)=(0,1) imply

|x2−x1|>M+ t, |x2−x3|<2t.

and

〈v2,v3〉=v12v13+v22v23 =−v12v12+v22v22
≥−v12(0)v12(0)+v22(0)v22(0)

=1−2(1−ε)2=1−2(1−2ε+ε2).

Thus, we have

1

2

d

dt
|v12−v13 |2

≤ K

3

(
ψ(|x2−x1|)|v12−v13 |2−(1+〈v2,v3〉)ψ(|x2−x3|)|v12−v13 |2

)

≤ K

3

(
ψ(M+ t)|v12−v13 |2−(1+〈v2,v3〉)ψ(2t)|v12−v13 |2

)

≤ K

3

(
ψ(M+ t)|v12−v13 |2−2εψ(2t)|v12−v13 |2

)

=
K

3

(
ψ(M+ t)−2εψ(2t)

)
|v12−v13 |2.

Note that follows the relation

ψ(M+ t)−εψ(2t)=
(

1

1+(M+ t)2

) β
2

−ε
(

1

1+4t2

) β
2

<0

is equivalent to

1+(M+ t)2− 1+4t2

ε
2
β

=1− 1

ε
2
β

+M2+2Mt+

(
1− 4

ε
2
β

)
t2>0.

Thus, if we assume

0<t<t+ :=
−M−

√
M2−(1− 1

ε
2
β
)(1− 1

ε
2
β
+M2)

(1− 4

ε
2
β
)

,

then we have

ψ(M+ t)−εψ(2t)=
(

1

1+(M+ t)2

) β
2

−ε
(

1

1+4t2

) β
2

<0.
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In conclusion, for t∈ [0,min{T ∗,t+}), the following inequality holds:

d

dt
|v12−v13 |≤−

Kε

3
ψ(2t)|v12−v13 |.

This yields

|v12(t)−v13(t)|≤e−
Kε
3

∫ t
0
ψ(2s)ds|v12(0)−v13(0)|, t<min{T ∗,t+}.

Note that

lim
M→∞

t+
M

= lim
M→∞

−M−
√
M2−

(
1− 1

ε
2
β

)(
1− 1

ε
2
β
+M2

)

M
(
1− 4

ε
2
β

)

=

1

ε
1
β
+1

4

ε
2
β
−1

=
ε

1
β +ε

2
β

4−ε 2
β

>0.

If we take M>0 sufficiently large, then t+ satisfies

t+>
M

2

ε
1
β +ε

2
β

4−ε 2
β

>T ∗.

This leads to

d

dt
|v12−v13 |≤−

Kε

3
ψ(2t)|v12−v13 |, t∈ [0,T ∗).

Since we assumed |vx2 (t)−vx3 (t)|≥0 for t∈R+, by continuity we have

d

dt
|v12(T ∗)−v13(T ∗)|≤0.

This gives a contradiction. Thus, we have T ∗=∞.

Proposition A.2. For a fixed ε∈ (0,1), there exists a large positive constant M such
that system (2.2) admits a solution (x,v) with initial data (A.1) satisfying

v1(t)=(0,1), for all t≥0, lim
t→∞v2(t) �=(0,1), lim

t→∞v3(t) �=(0,1),

i.e., there is no flocking behavior.

Proof. To prove the nonexistence of flocking, it suffices to show that v2 and v3
cannot converge to v1 as t→∞. To do so, the relative difference |v12−v13 | should increase
from the initial distance for some time. However, it follows from Lemma A.1 that we
have

sup
t≥0
|v12(t)−v13(t)|≤ |v12(0)−v13(0)|.

Thus, we cannot have a flocking.



S.-H. CHOI AND S.-Y. HA 971

REFERENCES

[1] S.M. Ahn, H. Choi, S.-Y. Ha, and H. Lee, On collision-avoiding initial configurations to Cucker–
Smale type flocking models, Commun. Math. Sci., 10, 625–643, 2012.

[2] J.A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, Asymptotic flocking dynamics for the
kinetic Cucker–Smale model, SIAM. J. Math. Anal., 42, 218–236, 2010.
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