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BOUNDARY LAYER SOLUTIONS OF CHARGE CONSERVING
POISSON–BOLTZMANN EQUATIONS: ONE-DIMENSIONAL CASE∗

CHIUN-CHANG LEE† , HIJIN LEE‡ , YUNKYONG HYON§ , TAI-CHIA LIN¶, AND CHUN LIU‖

Abstract. For multispecies ions, we study boundary layer solutions of charge conserving Poisson–
Boltzmann (CCPB) equations [L. Wan, S. Xu, M. Liao, C. Liu, and P. Sheng, Phys. Rev. X 4, 011042,
2014] (with a small parameter ε) over a finite one-dimensional (1D) spatial domain, subjected to Robin
type boundary conditions with variable coefficients. Hereafter, 1D boundary layer solutions mean that
as ε approaches zero, the profiles of solutions form boundary layers near boundary points and become
flat in the interior domain. These solutions are related to electric double layers with many applications
in biology and physics. We rigorously prove the asymptotic behaviors of 1D boundary layer solutions
at interior and boundary points. The asymptotic limits of the solution values (electric potentials) at
interior and boundary points with a potential gap (related to zeta potential) are uniquely determined
by explicit nonlinear formulas (cannot be found in classical Poisson–Boltzmann equations) which are
solvable by numerical computations.
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1. Introduction

Almost all biological activities involve transport in ionic solutions, which involves
various couplings and interactions of multiple species of ions. Many complicated types
of electrolytes involved in biological processes, such as those in ion channel proteins,
certain amino acids (movable side chain) are crucial to the functions of these ion chan-
nels. The electrostatic properties involving multispecies (at least three species) ions
can be fundamentally different to those with only one or two species [4, 33]. To see
such difference, we study charge conserving Poisson–Boltzmann (CCPB) equation for
multispecies ions which is derived from steady state Poisson–Nernst–Planck systems
with charge conservation law, and is the surface potential model for the generation of
a surface charge density layer related to electric double layers [30, 50]. For simplicity
of analysis, we consider a physical domain x∈ (−1,1) with the simplest geometry, and
represent CCPB equation as follows:

−ε2φ′′=
N∑
i=1

zie0mi∫ 1

−1
e
− zie0

kBT φ
e
− zie0

kBT φ
for x∈ (−1,1) , (1.1)

where mi is the total concentration of species i with valence zi, φ is the (electrical) po-
tential, e0 is the elementary charge, kB is the Boltzmann constant, and T is the absolute
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temperature. The parameter ε=
(
ε0UT /(d

2eS)
)1/2

>0, where ε0 is the dielectric con-
stant of the electrolyte, UT is the thermal voltage, d is the length of the domain (−1,1),
and S is the appropriate concentration scale (cf. [42]). Furthermore, εd is known as the
Debye length and ε is of order 10−2 for the physiological cases of interest (cf. [7]). Thus
we may assume ε as a small parameter tending to zero. Similar equations to (1.1) can
also be obtained by the other variational method [53].

Under suitable scales on φε and ε, we let −ai’s be the valences of anions, i.e.,
ak=−zk, k=1, . . . ,N1 and bj ’s be the valences of cations, i.e., bl= zl, l=1, . . . ,N2. Then
the total concentrations of anions and cations are approximately given as αk∼mk

(k=1, . . . ,N1) and βl∼ml (l=1, . . . ,N2), respectively. Hence equation (1.1) can be
transformed into

ε2φ′′ε (x)=
N1∑
k=1

akαk∫ 1

−1
eakφε(y)dy

eakφε(x)−
N2∑
l=1

blβl∫ 1

−1
e−blφε(y)dy

e−blφε(x)

for x∈ (−1,1), (1.2)

where ak’s and bl’s satisfy 1≤a1<a2< · · ·<aN1 and 1≤ b1<b2< · · ·<bN2 .

Most of the physical and biological systems possess the charge neutrality (zero net
charge). One may assume the pointwise charge neutrality, i.e., at all points the anion
and cation charges exactly cancel in order to make calculations easier in a free diffusion
system (cf. [19, p. 319]). Here we replace the pointwise charge neutrality by a weaker
hypothesis called the global electroneutrality being represented as

Global Electro-neutrality:

N1∑
k=1

akαk=

N2∑
l=1

blβl, (1.3)

which means that the total charges of anions and cations are equal, where −ak’s and
bl’s are the valences, and αk’s and βl’s are the concentrations of anions and cations,
respectively. Consequently, the CCPB equation (1.2) may satisfy (1.3).

Note that the equation (1.2) has nonlocal dependence on φε which is essentially
different from the classical Poisson–Boltzmann (PB) equation as follows:

ε2φ′′ε (x)=
N1∑
k=1

akαk

2
eakφε(x)−

N2∑
l=1

blβl

2
e−blφε(x) for x∈ (−1,1). (1.4)

Here αk

2 ’s and βl

2 ’s are bulk concentration of anions and cations, respectively. In equa-
tion (1.2), αk’s and βl’s are for total concentration of anions and cations, respectively.
For notation convenience, we use the same notations αk’s and βl’s in equations (1.2)
and (1.4), but with different physical meaning. In this paper, we shall show different
asymptotic behaviors of the CCPB equation (1.2) and the PB equation (1.4) for various
constants N1,N2,ak,αk,bl,βl satisfying (1.3). The main goal of this paper is to compare
the CCPB equation (1.2) and the PB equation (1.4) under the hypothesis (1.3). Such
a difference can be clarified in Theorems 1.1 and 1.3, see also, Remark 1.1.

Boundary effects are important in a wide range of applications and provide
formidable challenges [23, 25]. For CCPB equations, the main issue is how bound-
ary conditions effect the solution values (electric potentials) at interior and boundary
points. One may use the Neumann boundary condition for a given surface charge dis-
tribution and the Dirichlet boundary condition for a given surface potential (cf. [1]).
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Here we consider a Robin boundary condition [6,24,29,30,46–48,51] for the electrostatic
potential φ at x=±1 is given by

φε(1)+ηεφ
′
ε(1)=φ+

0 , φε(−1)−ηεφ
′
ε(−1)=φ−0 . (1.5)

where φ+
0 , φ

−
0 are extrachannel electrostatic potentials and ηε≥0 is the coefficient de-

pending on the dielectric constant [36, 37], and related to the surface capacitance. The
parameter ratio ηε= εS/CS can be viewed as a measure of the Stern layer thickness,
where εS and CS are the effective permittivity and the capacitance of the Stern layer,
respectively (cf. [6]). Thus we may regard ηε

ε as the ratio of the Stern-layer width to the
Debye screening length. Similar discussion can also be found in [13] and [41]. To see
the influence of ηε

ε on the asymptotic behavior of φε’s, we consider the limit limε↓0 ηε

ε
to be either a non-negative constant γ or infinity.

1
x position

φ
ε
(1)

Stern layer 
with thickness ≈ const.η

ε

Diffuse layer

charged 
wall

  t 

φ
ε

The electrostactic potential

φ
ε
(x)

c

Fig. 1.1. Schematic picture of Robin boundary condition, φε±ηε(φε)x=φ±
0 at x=±1, and

the limit values t=limε→0φε(1), c=limε→0φε(x), x∈ (−1,1) and ζ= t−c.

Suppose limε↓0 ηε

ε =γ (i.e., ηε∼γε), where γ is a non-negative constant. Then
we show that the solution φε of (1.2) with (1.5) satisfies limε↓0φε(±1)=±t and
limε↓0φε(x)= c for x∈ (−1,1), where c and t can be uniquely determined by (1.16)–
(1.18) which imply that the value c is changed with respect to t (see Figure 1.1). More-
over, the potential difference ζ= t−c is decreasing to γ (cf. Theorem 1.3). Note that
as the parameter ε goes to zero, the solution φε has a boundary layer producing the
potential gap ζ= t−c affected by Stern and Debye (diffuse) layers and related to zeta
potential (cf. [22]) which plays an important role in ionic fluids. However, for the PB
equation (1.4), the value c must be zero which is independent of t and γ (cf. Theo-
rem 1.1). This shows the difference of the CCPB equation (1.2) and the PB equation
(1.4) which can also be observed by numerical experiments (See Figure 5.1 and Table
5.1 in Section 5). Furthermore, numerical computations give several conditions to let
the profile of function c to γ become monotone decreasing and increasing (Figure 5.2
and 5.3 in Section 5) and non-monotone (Figure 5.4 in Section 5).

In [30], we studied the CCPB equation (1.2) for case of N1=N2=1, (a1,b1)=(1,1)
and (α1,β1)=(α,β), i.e., the case of one anion and one cation species with monovalence.
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In this case, equation (1.2) can be rewritten as

ε2φ′′ε (x)=nε(x)−pε(x) for x∈ (−1,1), (1.6)

nε(x)≡ αeφε(x)∫ 1

−1
eφε(y)dy

and pε(x)≡ βe−φε(x)∫ 1

−1
e−φε(y)dy

, (1.7)

where nε(x) and pε(x) represent (pointwise) concentrations of anion and cation species,
respectively. When α=β holds (the electroneutral case), we had shown previously that
limε↓0nε(x)= limε↓0pε(x)= α

2 for x∈ (−1,1). Moreover, the CCPB equation (1.6)–(1.7)

and the conventional PB equation ε2w′′ε (x)=
α
2

(
ewε(x)−e−wε(x)

)
have same asymptotic

behavior (cf. Theorem 1.4 of [30]). In order for the readers to compare those with
the results in the current paper, most results of [30] are summarized in Appendix. To
certain degrees, it also justifies why in many situations, PB equation provides more or
less expected solutions. On the other hand, we consider the non-electroneutral case, i.e.,

α �=β. Without loss of generality, we assume α<β, i.e.,
∫ 1

−1
nε(x)dx<

∫ 1

−1
pε(x)dx which

means that the total concentration of anion species is less than that of cation species.
Then we prove that limε↓0nε(x)= limε↓0pε(x)= α

2 for x∈ (−1,1), but limε↓0nε(±1)=
0< limε↓0 ε2pε(±1)= (α−β)2

8 (cf. (1.25)). This shows that electroneutrality holds true
in the interior of (−1,1), but non-electroneutrality occurs at the boundary points ±1.
Furthermore, the extra charges are accumulated near the boundary points ±1 (see
Theorem 1.5).

The mixture of monovalent and divalent ions such as Na+, K+, Cl−, and Ca2+ plays
the most important roles for vital biological processes. For instance, opening and closing
of ionic channels is accomplished by escape or entry of Ca2+ into the channels (cf. [18]).
The voltage may depend on [Ca2+] the concentration of Ca2+ (cf. [19]). Differences in
ionic concentrations create a potential gap across the cell membrane that drives ionic
currents (cf. [26, p. 34]). To see how the voltage, i.e.,(electrical) potential depends on
[Ca2+], we may use the equation (1.2) with N1=1, N2=2, a1= b1=1 and b2=2 to
describe the mixture of Na+ (or K+), Cl− and Ca2+ ions, where α1∼ [Cl−], β1∼ [Na+]
and β2∼ [Ca2+]. In Theorem 1.3(ii), we prove that when the electro-neutrality holds,
that is, α1=β1+2β2, the solution φε of (1.2) satisfies lim

ε→0
φε(x)= c for x∈ (−1,1) and

c∈ (c∗,0) is uniquely determined by (1.16) and

1−e3c cosht

ec sinhc
=

β1

β2
=

[Na+]

[Ca2+]
>0, (1.8)

where t= lim
ε→0

φε(1)>0, and c∗= 1
3 logsecht is a negative constant (see Remark 1.2). The

formula (1.8) shows that the interior potential (voltage) c is increased if the boundary
potential t is fixed and the ratio [Na+]/[Ca2+] is increased, e.g., [Ca2+] is decreased
and [Na+] is fixed. Furthermore, Theorem 1.3 is also applicable to the other cases with
multi-species ions including multivalent and polyvalent ions, so the formula (1.8) can
be generalized to

z−e(1+z)c( sinh(zt)sinht )

2ec sinhc
=

β1

β2
, (1.9)

for a1= b1=1 and b2= z≥2 (see Remark 1.2). Note that (1.9) shows how the value c
depends on the value t. Such a result cannot be found in the PB equation (1.4).
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1.1. Asymptotic behavior of the PB equations (1.4)–(1.5). The PB
equation (1.4) with the boundary condition (1.5) can be regarded as the Euler–Lagrange
equation of the energy functional

EPB
ε [u]=

1

2

∫ 1

−1

(
ε2|u′|2+f(u)

)
dx+

ε2

2ηε

[
(φ−0 −u(−1))2+(φ+

0 −u(1))2
]
, (1.10)

for u∈H1((−1,1)), where

f(s)=

N1∑
k=1

αke
aks+

N2∑
l=1

βle
−bls for s∈R. (1.11)

For the PB equation (1.4) with the boundary condition (1.5), we study the asymp-
totic behavior of the solution φε of (1.4) as ε approaches zero. The boundary con-
dition (1.5) plays a crucial role on the monotonicity of φε. Here we consider three
cases for the signs of φ+

0 and φ−0 : (a) min{φ+
0 ,φ

−
0 }>0, (b) max{φ+

0 ,φ
−
0 }<0 and

(c) min{φ+
0 ,φ

−
0 }≤0≤max{φ+

0 ,φ
−
0 }. Then the corresponding results are stated as fol-

lows:

Theorem 1.1. Assume
∑N1

k=1 akαk=
∑N2

l=1 blβl. Let φε∈C∞((−1,1))∩C2([−1,1]) be
the solution of equation (1.4) with the boundary condition (1.5). Then

(i) For x∈ (−1,1), |φε(x)| exponentially converges to zero as ε goes to zero.

(ii) If min{φ+
0 ,φ

−
0 }>0, then φε is convex on [−1,1] and 0≤φε(x)≤max{φ+

0 ,φ
−
0 }

for x∈ [−1,1]. Moreover, there exists ε∗>0 such that for 0<ε<ε∗, φε attains
the minimum at an interior point of (−1,1).

(iii) If max{φ+
0 ,φ

−
0 }<0, then φε is concave on [−1,1] and min{φ+

0 ,φ
−
0 }≤φε(x)≤0

for x∈ [−1,1]. Moreover, there exists ε∗>0 such that for 0<ε<ε∗, φε attains
the maximum at an interior point of (−1,1).

(iv) If min{φ+
0 ,φ

−
0 }≤0≤max{φ+

0 ,φ
−
0 }, then φε is monotone on [−1,1] and

min{φ+
0 ,φ

−
0 }≤φε≤max{φ+

0 ,φ
−
0 }.

(v) If lim
ε↓0

ηε
ε
=γ and 0≤γ <∞, then lim

ε↓0
φε(1)= t̂ uniquely determined by

|φ+
0 − t̂|=γ(f(t̂)−f(0))1/2 and min{0,φ+

0 }≤ t̂≤max{0,φ+
0 }, (1.12)

where f is defined by (1.11). Moreover, t̂≡ t̂(γ) is decreasing in γ if φ+
0 >0 and

increasing in γ if φ+
0 <0.

1.2. The main results. In this section we present the main results, which
are about the asymptotic behavior of the solution φε of (1.2) and (1.5) as ε goes to
zero, in our research of CCPB equation. The CCPB equation (1.2) with the boundary
condition (1.5) can be regarded as the Euler–Lagrange equation of the energy functional

Eε[u]=

∫ 1

−1

ε2

2
|u′|2dx+

N1∑
k=1

αk log

∫ 1

−1

eakudx+

N2∑
l=1

βl log

∫ 1

−1

e−bludx

+
ε2

2ηε

[
(φ−0 −u(−1))2+(φ+

0 −u(1))2
]
, (1.13)

for u∈H1((−1,1)). The existence and uniqueness for the solution of (1.2) and (1.5) is
the following proposition:
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Proposition 1.2. There exists a unique solution φε∈ C∞((−1,1))∩C2([−1,1]) of
the equation (1.2) with the boundary condition (1.5).

The proof of the above Proposition 1.2 can be easily obtained from the arguments of [30]
(see the appendix therein) and [31].

Suppose φ+
0 =φ−0 =A and

∑N1

k=1 akαk=
∑N2

l=1 blβl. Then Proposition 1.2 implies the
solution of (1.2) and (1.5) must be trivial and φε≡A. To study the nontrivial solution
of (1.2) and (1.5), it is sufficient to assume φ+

0 �=φ−0 . Replacing φε by φε+C for any
constant C, one may remark that the equation (1.2) is invariant. Consequently, without
loss of generality, we may assume −φ−0 =φ+

0 >0 hereafter.

When
∑N1

k=1 akαk=
∑N2

l=1 blβl, i.e., the global electroneutral case, Theorem 2.1
shows that maxx∈[−1,1] |φε(x)| is uniformly bounded to ε and that φ′ε exponentially
approaches zero in (−1,1) as ε tends to zero. Thus, it is expected that there exists a
constant c such that all interior values of φε tends to c as ε goes to zero. Along with
Lebesgue’s dominated convergence theorem, we have

lim
ε↓0

∫ 1

−1

eakφεdx=2eakc, lim
ε↓0

∫ 1

−1

e−blφεdx=2−blc, (1.14)

and then the energy functional (1.13) with u=φε approaches to the energy functional

Êε[φε] as follows (up to a constant independent of φε):

Êε[φε]=
1

2

∫ 1

−1

(ε2|φ′ε|2+f(φε−c))dx+
ε2

2ηε

[
(φ−0 −φε(−1))2+(φ+

0 −φε(1))
2
]
, (1.15)

where f is defined by (1.11). Here we have used limε↓0
(

1
2

∫ 1

−1
eak(φε−c)dx−1

)
=0 (by

(1.14)) and the approximation log(1+s)∼s with s= 1
2

∫ 1

−1
eak(φε−c)dx−1 to get

log

∫ 1

−1

eakφεdx∼ 1

2

∫ 1

−1

eak(φε−c)dx+log(2eakc)−1 as 0<ε
1.

Similarly, we have

log

∫ 1

−1

e−blφεdx∼ 1

2

∫ 1

−1

e−bl(φε−c)dx+log(2e−blc)−1 as 0<ε
1.

Therefore, we show that in the case of global electroneutrality (1.3), the energy func-
tional (1.13) approaches (1.15), which has the same form as the PB energy func-
tional (1.10).

The asymptotic behavior of φε’s at boundary x=±1 may depend on the scale of ηε.
Here we study two cases for the scale of ηε≥0: (i) limε↓0 ηε

ε =∞ and (ii) limε↓0 ηε

ε =γ,
where γ is a nonnegative constant. Then the relation between the boundary value limits
lim
ε→0

φε(±1) and the interior value limit c are demonstrated as follows:

Theorem 1.3. Assume −φ−0 =φ+
0 >0 and

N1∑
k=1

akαk=

N2∑
l=1

blβl. Let φε∈C∞((−1,1))∩

C2([−1,1]) be the solution of equation (1.2) with the boundary condition (1.5). Then

lim
ε↓0

φε(−1)=−t, lim
ε↓0

φε(1)= t and lim
ε↓0

φε(x)= c for x∈ (−1,1),

where t and c are determined as follows:
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(i) If lim
ε↓0

ηε
ε
=∞, then c= t=0.

(ii) If lim
ε↓0

ηε
ε
=γ and 0≤γ <∞, then (t,c) uniquely solves the following equations:

φ+
0 − t=γ(f(t−c)−f(0))1/2, (1.16)

f(t−c)=f(−t−c), (1.17)

|c|< t ≤ φ+
0 . (1.18)

Moreover, writing t= t(γ) and c= c(γ) in (ii), we have

(A) lim
γ→0

t(γ)=φ+
0 , lim

γ→0
c(γ)= c∗ and lim

γ→∞t(γ)= lim
γ→∞c(γ)=0, where |c∗|<φ+

0

is uniquely determined by f(φ+
0 −c∗)=f(−φ+

0 −c∗).
(B) t(γ) and t(γ)−c(γ) both are decreasing on (0,∞).

Formally, using φε→ c in (−1,1) as ε tends to zero, equation (1.2) may approach to
the following PB equation:

ε2φ′′ε (x)=
N1∑
k=1

akαk

2
eak(φε(x)−c)−

N2∑
l=1

blβl

2
e−bl(φε(x)−c) for x∈ (−1,1), (1.19)

which may give results of Theorem 1.3 by formal asymptotic analysis. However, in this
paper, we focus on rigorous mathematical analysis and provide the proof of Theorem 1.3
in Section 2.

Theorem 1.3(i) shows that there is no boundary layer and φε→0 uniformly in [−1,1]
as ε↓0 if limε↓0 ηε

ε =∞. Theorem 1.3(ii) assures the existence of boundary layers. Fur-
thermore, Theorem 1.3(ii-A) and (ii-B) represent the ratio of Stern screening length to
the Debye screening length affects the boundary and interior potentials: (a) The de-
crease of γ results in the increase of t−c (the potential difference between the boundary
and interior); (b) If γ→∞, the potential difference t−c may approach zero. Notice that
the formula (1.12) is quite different from (1.16)–(1.18). This may show the difference
between solutions of the CCPB equation (1.2) and the PB equation (1.4).

Remark 1.1.
(a) Theorem 1.1(ii) and (iii) show that as φ+

0 φ
−
0 >0, the solution φε of the PB

equation (1.4) may lose the monotonicity. However, the solution of the CCPB
equation (1.2) always keeps the monotonicity (see Remark 2.2(i)). This pro-
vides the difference between solutions of the CCPB equation (1.2) and the PB
equation (1.4).

(b) For equation (1.2), the values c (interior potential) and t (boundary poten-
tial) depend on each other and satisfy precise formulas (1.16)–(1.18). However,
for equation (1.4), interior potential and boundary potentials (determined by
(1.12)) are independent of each other.

Remark 1.2. When N1=1, N2=2, a1= b1=1, b2=2, and α1=β1+2β2, we may
get (1.8) from (1.16) and (1.17). Moreover, (1.9) can also be derived from (1.16) and
(1.17) for the case thatN1=1, N2=2, a1= b1=1, b2= z≥2, and α1=β1+zβ2. By (1.8)
and (1.9), it is easy to check that dc

dt <0 for t>0. Then c= c(t) can be regarded as an
decreasing function for t>0. Consequently, by Theorem 1.3(iv), c is increasing to γ.

When N1=1, N2=2, a1= b1=1, and b2=2, further asymptotic behavior of φε near
the boundary x=±1 describing the boundary layers is stated as follows:
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Theorem 1.4. Assume N1=1, N2=2, a1= b1=1 and b2=2. Under the same
hypotheses of Theorem 2.1 and Theorem 1.3(ii), the asymptotic behavior of φε near the
boundary x=±1 can be represented by

φ+
1,ε(x)≤ φε(x)≤ φ+

2,ε(x) for x∈ (y+ε ,1), (1.20)

φ−1,ε(x)≤ φε(x)≤ φ−2,ε(x) for x∈ (−1,y−ε ), (1.21)

where −1<y−ε <y+ε <1 satisfy lim
ε↓0

v(y±ε )=0, and

φ+
i,ε(x)= c+log

{
A+

i,ε+B+
i,εcsch

2

[
C+

i,ε

ε
(1−x)+logD+

i,ε

]}
, (1.22)

φ−i,ε(x)= c+log

{
A−i,ε−B−i,εsech

2

[
C−i,ε
ε

(1+x)+logD−i,ε

]}
, i=1,2. (1.23)

Here A±i,ε, B
±
i,ε, C

±
i,ε and D±i,ε, i=1,2, are constants depending on ε such that A±i,ε→1,

B±i,ε→1+ β2

α1
, C±i,ε→

√
α1+β2 and D±i,ε→

√
α1e±t−c+β2+

√
α1+β2√

α1e±t−c+β2−
√
α1+β2

as ε goes to zero.

In the case of N1=1, N2=2, a1= b1=1 and b2=2, we may solve equation (1.19) pre-
cisely and get the form of (1.22) and (1.23) near x=1 and x=−1, respectively. One
may remark how the values c, t, α1, and β2 affect the asymptotic behavior of φε near
the boundary x=±1.

When α �=β (the non-electroneutral case), the asymptotic behavior for the solution
φε, nε, and pε of the equation (1.6)–(1.7) with the boundary condition (1.5) is stated as
follows:

Theorem 1.5. Assume 0<α<β and φ−0 =φ+
0 . Let φε∈C∞((−1,1))∩C2([−1,1]) be

the solution of the equations (1.6)–(1.7) with the boundary condition (1.5) and ηε≥0.
Then

(i) When 0<ε<1 and 0<κ<1, there exists a positive constant λε(κ) depending
on ε and κ such that limε↓0λε(κ)=0 and

α

2
−λε(κ)≤nε(x)≤pε(x)≤ β

2
+λε(κ), for x∈ [−1+εκ,1−εκ]. (1.24)

Moreover, we have

lim
ε↓0

nε(±1)=0 and lim
ε↓0

ε2pε(±1)= (α−β)2

8
, (1.25)

lim
ε↓0

sup
x∈[−1+εκ,1−εκ]

∣∣∣nε(x)− α

2

∣∣∣=lim
ε↓0

sup
x∈[−1+εκ,1−εκ]

∣∣∣pε(x)− α

2

∣∣∣=0, (1.26)

lim
ε↓0

∫ −1+εκ

−1

nε(x)dx=lim
ε↓0

∫ 1

1−εκ
nε(x)dx=0, (1.27)

lim
ε↓0

∫ −1+εκ

−1

pε(x)dx=lim
ε↓0

∫ 1

1−εκ
pε(x)dx=

β−α

2
. (1.28)

(ii) Let K be any compact subset of (−1,1). When 0<ε
1 is sufficiently small, the
asymptotic expansion of φε(x)−φε(±1) in ε with the exact leading-order term
log 1

ε2 and second-order term O(1) is given as follows:

φε(x)−φε(±1)= log
1

ε2
+log

(α−β)2

4α
+oε(1), for x∈K, (1.29)
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where oε(1) denotes as a small quantity tending to zero as ε goes to zero.

Similar results also hold for 0<β<α.

Remark 1.3.
(i) To exclude the boundary layer of φε with thickness ε2 (cf. Theorem 1.6 of [30]),

we consider integrals of nε and pε over the interval [−1+εκ,1−εκ], where 0<κ<
1 is independent of ε. Note that nε and pε can be represented by φε (see (1.7)),

and that Theorem 1.5(ii) implies limε↓0
∫ 1−εκ

−1+εκ
nε(x)dx=

∫ 1−εκ

−1+εκ
pε(x)dx=α>0,

limε↓0
(∫ −1+εκ

−1
+
∫ 1

1−εκ

)
nε(x)dx=0 and limε↓0

(∫ −1+εκ

−1
+
∫ 1

1−εκ

)
pε(x)dx=β−

α>0. This shows that as ε approaches zero, both the total concentrations
of anion and cation species in the bulk [−1+εκ,1−εκ] tend to the same posi-
tive constant α, while the total concentrations of anion and cation species in the
region [−1,−1+εκ)∪(1−εκ,1] (which is next to the boundary with thickness
2εκ) tend to zero and positive constant β−α, respectively.

(ii) We want to emphasize that Theorem 1.5(ii) improves the asymptotic behavior
of φε(x)−φε(±1) shown in Theorem 1.5 of our previous paper [30].

Following results play important roles throughout this paper.

(a) Multiplying the equation (1.2) by φ′ε , (1.2) may be transformed into

ε2

2
φ′2ε (x)=

N1∑
k=1

αk∫ 1

−1
eakφε(y)dy

eakφε(x)+

N2∑
l=1

βl∫ 1

−1
e−blφε(y)dy

e−blφε(x)

+Cε,

(1.30)

where Cε is a constant depending on ε.

(b) Differentiating (1.2) w.r.t. x and multiplying it by φ′ε,

ε2φ′′′ε (x)φ′ε(x)

=

(
N1∑
k=1

a2kαk∫ 1

−1
eakφε(y)dy

eakφε(x)+

N2∑
l=1

b2l βl∫ 1

−1
e−blφε(y)dy

e−blφε(x)

)
φ′2ε (x).

(1.31)

The rest of this paper is organized as follows: The proof of Theorems 1.3 and
1.4 are shown in Section 2. In Section 3, we compare the CCPB equation (1.2) and
the PB equation (1.4), and give the proof of Theorem 1.1. In Section 4, we consider
the non-electroneutral case and give the proof of Theorem 1.5. In Section 5, several
numerical experiments results of the CCPB equation (1.2) and the PB equation (1.4)
are presented. The numerical computations are basically preformed using finite element
discretizations. In the final section, we state the conclusion.

2. Electroneutral cases: Proof of Theorems 1.3 and 1.4
Let φε be the solution of the equation (1.2) with the boundary condition (1.5). A

crucial property of φε is given as follows:

Proposition 2.1. Let φε∈C∞((−1,1))∩C2([−1,1]) be the solution of the equation
(1.2) with the boundary condition (1.5). Then the following properties hold.

(i) Either φ′ε has at most one zero in [−1,1], or φ′ε≡0 on [−1,1].
(ii) If φε is nontrivial (i.e., nonzero solution), then

φ′′ε (x2)φ
′
ε(x2)>φ′′ε (x1)φ

′
ε(x1) for −1≤x1<x2≤1. (2.1)
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Proof. We prove (i) by contradiction. Suppose there exist y1, y2∈ [−1,1] such
that y1<y2 and φ′ε(y1)=φ′ε(y2)=0. Then integrating (1.31) from y1 to y2 and using
integration by parts, we may get∫ y2

y1

ε2 (φ′′ε )
2 +

(
N1∑
k=1

a2kαk∫ 1

−1
eakφε(y)dy

eakφε(x)+

N2∑
l=1

b2l βl∫ 1

−1
e−blφε(y)dy

e−blφε(x)

)
φ′2ε (x)dx=0,

which implies φ′ε≡φ′′ε ≡0 on [y1,y2]. Here we have used the hypothesis φ′ε(y1)=φ′ε(y2)=
0 and each αk,βl>0. On the other hand, the CCPB equation (1.2) has the following
form

ε2φ′′ε (x)=
N1∑
k=1

Ak,εe
akφε(x)−

N2∑
l=1

Bl,εe
−blφε(x) for x∈ (−1,1),

where Ak,ε’s and Bl,ε’s are constants, therefore φε satisfies the unique continuation
property. Therefore, φ′ε has to be identically zero on [−1,1]. This completes the proof
of Proposition 2.1(i).

To prove (ii), we assume that φε is a nonzero solution of (1.2). Thus, for any
subinterval (x1,x2)⊂ (−1,1), Proposition 2.1(i) immediately implies∫ x2

x1

(
N1∑
k=1

a2kαk∫ 1

−1
eakφε(y)dy

eakφε(x)+

N2∑
l=1

b2l βl∫ 1

−1
e−blφε(y)dy

e−blφε(x)

)
φ′2ε (x)dx>0. (2.2)

Integrating (1.31) over the interval (x1,x2) and using (2.2), we obtain (2.1) and complete
the proof of Proposition 2.1.

The following interior estimate of φε is a key step for the proof of Theorem 1.3.

Theorem 2.1. Under the same hypotheses of Theorem 1.3, we have

(i) −φε(−1)=φε(1)>0 and φ′ε(1)=φ′ε(−1). The solution φε is monotone increas-
ing on [−1,1], concave on (−1,x∗ε ) and convex on (x∗ε ,1), where x∗ε ∈ (−1,1).
Moreover, we have

max
x∈[−1,1]

|φε(x)|≤φε(1)≤φ+
0 . (2.3)

(ii) There are positive constants C1 and M1 independent of ε such that for x∈ [−1,1]
and 0<ε
1,

0≤φ′ε(x)≤
C1

ε

(
e−

M1(1+x)
ε +e−

M1(1−x)
ε

)
. (2.4)

Remark 2.2.
(i) Replacing φε by φε+C for any constant C, the equation (1.2) is invariant.

Hence Theorem 2.1(i) implies that for any φ+
0 and φ−0 , φε is monotonic on

[−1,1].
(ii) When N1=N2, αk=βk and ak= bk for k=1, ...,N1, as for Theorem 1.2 in [30],

the solution φε of (1.2) and (1.5) is an odd function on [−1,1], and all denomi-
nator terms of (1.2) become equal. Then one may follow the argument of [30] to
get the asymptotic behavior of φε’s. However, if N1 �=N2, αk �=βk or ak �= bk for
some k, the solution φε may not be odd on [−1,1] so the argument of [30] may
fail for this case and we have to develop a new argument to prove Theorem 2.1.
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2.1. Proof of Theorem 2.1.

Proof. Integrating (1.2) over (−1,1) gives ∫ 1

−1
φ′′ε (x)dx=

∑N1

k=1 akαk−
∑N2

l=1 blβl=
0. This implies φ′ε(1)=φ′ε(−1) and there exists x∗ε ∈ (−1,1) such that φ′′ε (x

∗
ε )=0. Along

with the boundary condition (1.5), we find −φε(1)=φε(−1). Setting x1=x∗ε and x2=x∗ε
in (2.1), respectively, we get

φ′′ε (x)φ
′
ε(x)>0 for x∈ (x∗ε ,1], and φ′′ε (x)φ

′
ε(x)<0 for x∈ [−1,x∗ε ), (2.5)

which implies: (a) Both φ′ε and φ′′ε never change sign and share the same sign on (x∗ε ,1];
(b) φ′ε and φ′′ε never change sign and have opposite signs on [−1,x∗ε ). Consequently, φ′ε
never changes sign on [−1,1] due to (a), (b) and φ′ε(1)=φ′ε(−1). Now we claim φ′ε≥0
on [−1,1]. We state the proof using contradiction. Suppose φ′ε≤0 on [−1,1], then the
boundary condition (1.5) implies φ−0 =φε(−1)−ηεφ

′
ε(−1)≥φε(1)+ηεφ

′
ε(1)=φ+

0 , which
gives a contradiction.

Therefore, we get φ′ε≥0 on [−1,1]. Along with the boundary condition (1.5), we
prove (2.3).

Furthermore, by (2.5) and φ′ε(x)≥0, we have φ′′ε (x)≤0 for x∈ (−1,x∗ε ) and φ′′ε (x)≥0
for x∈ (x∗ε ,1). Hence we complete the proof of Theorem 2.1(i).

By (2.3) and (1.31), we obtain

ε2(φ′2ε (x))
′′≥2ε2φ′′′ε (x)φ′ε(x)≥ 4M2

1φ
′2
ε (x) (2.6)

for x∈ (−1,1) and ε>0, where M1=
1
2

(∑N1

k=1 a
2
kαke

2akφ
−
0 +
∑N2

l=1 b
2
l βle

2blφ
−
0

)1/2
.

Note that φ′ε(1)=φ′ε(−1)>0. By (2.6) and the standard comparison theorem, we
get

0≤φ′ε(x)≤φ′ε(1)
(
e−

M1(1+x)
ε +e−

M1(1−x)
ε

)
. (2.7)

It remains to deal with φ′ε(1). By (2.3), there exists xε∈ (−1,1) such that 0≤φ′ε(xε)=
φε(1)−φε(−1)

2 ≤φ+
0 . Subtracting (1.30) at x=xε from that at x=1 and using (2.3), it is

easy to get φ′ε(1)≤ C1

ε as 0<ε
1, where C1 is a positive constant independent of ε.
Along with (2.7), we get (2.4) and prove Theorem 2.1(ii).

Therefore, we complete the proof of Theorem 2.1.

Note that (1.30) plays a crucial role on the asymptotic behavior of φε as ε↓0. The
estimate of the constant Cε in (1.30) is given as follows:

Lemma 2.3. Under the same hypotheses of Theorem 2.1, we have

(i) For any x,y∈ (−1,1), φε(x)−φε(y) converges exponentially to zero as ε goes to
zero.

(ii) lim
ε↓0

Cε=−1

2

(
N1∑
k=1

αk+

N2∑
l=1

βl

)
, where Cε is the constant defined in (1.30).

Proof. (2.4) implies that for any x, y∈ (−1,1),

lim
ε↓0

φ′ε(x)=0 and

|φε(x)−φε(y)|≤ C1

M1

(∣∣∣e−M1(1+x)
ε +e−

M1(1−x)
ε

∣∣∣+∣∣∣e−M1(1+y)
ε +e−

M1(1−y)
ε

∣∣∣) . (2.8)



922 BOUNDARY LAYER SOLUTIONS OF CCPB EQUATIONS

This may complete the proof of Lemma 2.3(i). Note that (2.8) gives
supx,y∈(−1,1) |φε(x)−φε(y)|≤4C1/M1 and limε↓0 |φε(x)−φε(y)|=0 for x, y∈ (−1,1).
Applying Lebesgue’s dominated convergence theorem, we obtain

lim
ε↓0

αke
akφε(x)∫ 1

−1
eakφε(y)dy

=
αk

2
and lim

ε↓0
βle

−blφε(x)∫ 1

−1
e−blφε(y)dy

=
βl

2
, (2.9)

for k=1, . . . ,N1 and l=1, . . . ,N2.
Therefore, by (1.30), (2.8) and (2.9), we prove Lemma 2.3(ii) and complete the

proof of Lemma 2.3.

2.2. Proof of Theorem 1.3. To prove Theorem 1.3, we need the following
lemma:

Lemma 2.4.
(i) Under the same hypotheses of Theorem 2.1, we have

N1∑
k=1

αk

(
eakφε(1)−e−akφε(1)

)∫ 1

−1
eakφε(y)dy

=

N2∑
l=1

βl

(
eblφε(1)−e−blφε(1)

)∫ 1

−1
e−blφε(y)dy

. (2.10)

(ii) If ηε �=0, then

ε2

2η2ε
(φ+

0 −φε(1))
2=

N1∑
k=1

αke
akφε(1)∫ 1

−1
eakφε(y)dy

+

N2∑
l=1

βle
−blφε(1)∫ 1

−1
e−blφε(y)dy

+Cε. (2.11)

Proof. To get (2.10), we subtract the equation (1.30) at x=−1 from that at x=1.
Here we have used the facts that φ′ε(1)=φ′ε(−1) and φε(−1)=−φε(1) which come from
Theorem 2.1(i). Setting x=1 in (1.30), we use (1.5) to get (2.11), and complete the
proof of Lemma 2.4.

To uniquely determine the values c and t, we need the following lemma.

Lemma 2.5. Assume
∑N1

k=1 akαk=
∑N2

l=1 blβl. Then

(i) f is strictly increasing on (0,∞) and strictly decreasing on (−∞,0).

(ii) There exists a unique solution (t,c) of the equations (1.16)–(1.18).

Proof. By (1.11) and
∑N1

k=1 akαk=
∑N2

l=1 blβl, it is easy to check that f ′(s)>0 if
s>0 and f ′(s)<0 if s<0. This shows (i). To prove (ii), we need

Claim 1. There exists 0<s<2φ+
0 −2γ(f(s)−f(0))1/2 such that

f(s)=f
(
s−2φ+

0 +2γ(f(s)−f(0))1/2
)
.

Proof. (Proof of Claim 1.) Let k(s)=s−2φ+
0 +2γ(f(s)−f(0))1/2 for s∈R. Then

k(0)=−2φ+
0 <0, k(2φ+

0 )>0, and k′(s)=1+γ(f(s)−f(0))−1/2f ′(s)>0 for s∈ (0,∞).
Hence, there exists s1∈ (0,2φ+

0 ) such that k(s1)=0 and

k(s)<0 for s∈ (0,s1). (2.12)

Let h(s)=f(s)−f(k(s)) for s∈R. Then h(0)=f(0)−f(−2φ+
0 )<0 and h(s1)=f(s1)−

f(0)>0. Hence there exists s2∈ (0,s1) such that h(s2)=0. On the other hand, (2.12)
implies k(s2)<0, i.e., s2<2φ+

0 −2γ(f(s2)−f(0))1/2.
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Therefore, we complete the proof of Claim 1.

Now we want to prove Lemma 2.5(ii). By Claim 1,

(t,c)=
(
φ+
0 −γ(f(s)−f(0))1/2,φ+

0 −s−γ(f(s)−f(0))1/2
)

is a solution of (1.16) and (1.17). Moreover, 0<s<2φ+
0 −2γ(f(s)−f(0))1/2 gives |c|<

t≤φ+
0 . Hence (1.16)–(1.18) have a solution. The uniqueness of (ii) can be proved by

contradiction. Suppose (t1,c1) and (t2,c2) solve (1.16)–(1.18) and t1>t2. If f(t1−c1)≥
f(t2−c2), then φ+

0 − t2>φ+
0 − t1=γ(f(t1−c1)−f(0))1/2≥γ(f(t2−c2)−f(0))1/2, i.e.,

φ+
0 − t2>γ(f(t2−c2)−f(0))1/2 contradicts (t2,c2) as a solution of (1.16)–(1.18). Thus

f(t1−c1)<f(t2−c2) and then (1.17) gives f(−t1−c1)<f(−t2−c2). Furthermore, by
Lemma 2.5(i), we obtain t1−c1<t2−c2 and −t1−c1>−t2−c2 which implies t1<t2 a
contradiction to the hypothesis t1>t2. Hence, t1= t2 := t∗. Here we have used the facts
that t1−c1,t2−c2>0 and −t1−c1,−t2−c2<0.

To prove c1= c2, we set g(s) :=f(t∗−s)−f(−t∗−s). Note that Lemma 2.5(i) im-
plies g′(s)=−f ′(t∗−s)+f ′(−t∗−s)<0 for |s|<t∗, i.e., g(s) is strictly decreasing on
(−t∗,t∗). Therefore, we have c1= c2 and complete the proof of Lemma 2.5(ii).

Now we shall give the proof of Theorem 1.3.

Proof of Theorem 1.3.
Proof. By Lemma 2.3(i), it suffices to prove lim

ε↓0
φε(0)= c. By Theorem 2.1,

{|φε(0)|}ε>0 has an upper bound. Then we set limsup
ε↓0

φε(0)= cs and liminf
ε↓0

φε(0)= ci.

Hence there exist sequences {εj}j∈N and {ε̃j}j∈N tending to zero such that lim
j→∞

φεj (0)=

cs and lim
j→∞

φε̃j (0)= ci. We may rewrite (2.10) and (2.11) as follows:

N1∑
k=1

αk

(
eak(φε(1)−φε(0))−e−ak(φε(1)+φε(0))

)∫ 1

−1
eak(φε(y)−φε(0))dy

=

N2∑
l=1

βl

(
ebl(φε(1)+φε(0))−e−bl(φε(1)−φε(0))

)∫ 1

−1
e−bl(φε(y)−φε(0))dy

(2.13)

and

ε2

2η2ε
(φ+

0 −φε(1))
2=

N1∑
k=1

αke
ak(φε(1)−φε(0))∫ 1

−1
eak(φε(y)−φε(0))dy

+

N2∑
l=1

βle
−bl(φε(1)−φε(0))∫ 1

−1
e−bl(φε(y)−φε(0))dy

+Cε. (2.14)

We divide the proof into two cases.

Case 1. limε↓0 ηε

ε =∞.

Note that |φ+
0 −φε(1)|≤2φ+

0 . By (2.9), (1.11), (2.14) and Lemma 2.3(ii), we have
f(limsupε↓0(φε(1)−φε(0)))=f(liminfε↓0(φε(1)−φε(0)))=f(0). Then by Lemma 2.5(i),
limε↓0(φε(1)−φε(0))=0. Along with (2.13), we find f(− limε↓0(φε(1)+φε(0)))=f(0),
this gives limε↓0(φε(1)+φε(0))=0. Consequently, we have limε↓0φε(1)= limε↓0φε(0)=0.
Hence, we obtain c= t=0 and complete the proof of Theorem 1.3(i).

Case 2. limε↓0 ηε

ε =γ <∞.
By Theorem 2.1,

{|φεj (1)|
}
j∈N has an upper bound. Then there is a constant ts and

a subsequence of {εj} (for notation convenience, we still denote it by {εj}) such that
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limj→∞φεj (1)= ts. Putting ε= εj in (2.13) and (2.14) and using Lemma 2.3(ii), one
may check that (ts,cs) satisfies

(φ+
0 − ts)

2=γ2(f(ts−cs)−f(0)) and f(ts−cs)=f(−ts−cs). (2.15)

Now we claim |cs|<ts≤φ+
0 . Since |φε(0)|≤φ(1)≤φ+

0 �=0, then we have |cs|≤ ts≤
φ+
0 �=0. If |cs|= ts, then by the second equation of (2.15) and Lemma 2.5(i), we have

ts−cs=−ts−cs=0, i.e., ts= cs=0. Along with the first equation of (2.15) we find
φ+
0 =0, which is contrary to φ+

0 �=0. Hence |cs|<ts≤φ+
0 . Along with (2.15), (ts,cs)

satisfies (1.16)–(1.18).

Similarly, there is a positive constant ti such that (ti,ci) satisfies (1.16)–(1.18). By
Lemma 2.5(ii), we get cs= ci= c and ts= ti= t, where limε↓0φε(0)= c, limε↓0φε(1)= t
and (t,c) satisfies (1.16)–(1.18). Therefore, we may complete the proof of Theorem
1.3(ii).

By (1.11) and |t−c|≤2φ+
0 , f(t−c)−f(0) is uniformly bounded for all γ >0. Conse-

quently, by (1.16)–(1.18), we have limγ→0 t(γ)=φ+
0 and limγ→0 c(γ)= c∗, where |c∗|<φ+

0

is uniquely determined by f(φ+
0 −c∗)=f(−φ+

0 −c∗). By (1.16) we have f(t−c)−f(0)=(
φ+
0 −t
γ

)2
, which and (1.17) give limγ→∞f(t−c)= limγ→∞f(−t−c)=f(0). By Lemma

2.5(i) and the continuity of f , we find limγ→∞(t−c)= limγ→∞(−t−c)=0. Hence,
limγ→∞ t=limγ→∞ c=0 and complete the proof of Theorem 1.3(ii-A).

It remains to prove Theorem 1.3(ii-B). By (1.16)–(1.18), t and c are uniquely de-
termined by γ. Hence we can consider t= t(γ) and c= c(γ) as functions of γ. Due
to f(t(γ)−c(γ))−f(0) �=0 on (0,∞) (by (1.18) and Lemma 2.5(i)), t(γ), c(γ) : (0,∞)→
(−φ+

0 ,φ
+
0 ) are continuously differentiable. Differentiating (1.16) and (1.17) to γ, one

may check that[
1−γ(f(t−c)−f(0))−1/2 f ′2(t−c)

f ′(t−c)−f ′(−t−c)

]
dt

dγ
=−(f(t−c)−f(0))1/2 (2.16)

and

d

dγ
(t−c)=− 2f ′(−t−c)

f ′(t−c)−f ′(−t−c)

dt

dγ
. (2.17)

If dt
dγ changes the sign on (0,∞), then there is a γ∗∈ (0,∞) such that dt

dγ (γ
∗)=0. By

(2.16) and Lemma 2.5(i), we have t(γ∗)= c(γ∗) contradicting to (1.18). Hence dt
dγ keeps

the same sign on (0,∞), and then Theorem 1.3(iii) gives dt
dγ <0 on (0,∞). On the other

hand, Lemma 2.5(i) and (1.18) imply that both f ′(t−c) and −f ′(−t−c) are positive.
Consequently, by (2.17), we obtain that d

dγ (t−c) and dt
dγ share the same sign. Therefore,

we prove Theorem 1.3(ii-B) and complete the proof of Theorem 1.3.

Remark 2.6. Suppose limε↓0 ε
ηε

=0. Then Theorem 2.1(i) and Theorem 1.3(i) give

φε→0 uniformly in [−1,1] as ε↓0.
2.3. Proof of Theorem 1.4.

Proof. For convenience, setting v(x)=φε(x)−c, By (1.30), we find

ε2

2
v′2(x)=

N1∑
k=1

αk∫ 1

−1
eakv(y)dy

eakv(x)+

N2∑
l=1

βl∫ 1

−1
e−blv(y)dy

e−blv(x)+Cε. (2.18)
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Note that by Theorem 2.1(i) and Theorem 1.3, we have |v(x)|≤φ+
0 + |c| and

lim
ε↓0

∫ 1

−1

eakv(y)dy=lim
ε↓0

∫ 1

−1

e−blv(y)dy=2.

Hence by Lemma 2.3(ii), it is easy to check that∣∣ε2v′2(x)− [f(v(x))−f(0)]
∣∣≤ δ(ε), (2.19)

for all x∈ [−1,1], where δ(ε) is a positive quantity tending to zero as ε goes to zero. By
Theorem 2.1(i) and Theorem 1.3(ii), we have v′=φ′ε≥0 on (−1,1) and

lim
ε↓0

v(1)= t−c>0>−t−c=lim
ε↓0

v(−1). (2.20)

Thus there exist ε∗>0 and y+ε ∈ (−1,1), such that

v(y+ε )=− log
{
1−[δ(ε)/(α1+β2)

2
]1/4}

>0

for 0<ε<ε∗. Note that limε↓0v(y+ε )=0 and

v(x)≥v(y+ε )=− log
{
1−[δ(ε)/(α1+β2)

2
]1/4}

>0, ∀x∈ (y+ε ,1). (2.21)

Now we begin to deal with (2.19) when N1=1, N2=2, a1= b1=1 and b2=2. Here
we have α1=β1+2β2 and f(v(x))−f(0)=(1−e−v(x))2(α1e

v(x)+β2). Note that such a
formula is valid only when N1=1, N2=2, a1= b1=1 and b2=2. Along with (2.21), we
have

K(ε)(1−e−v(x))2(α1e
v(x)+β2)+δ(ε)≤f(v(x))−f(0)

≤(tε−e−v(x))2(α1e
v(x)+β2)−δ(ε),

(2.22)

for x∈ (y+ε ,1) and 0<ε<ε∗, where K(ε)=1−√δ(ε) and tε=1+
√
δ(ε)/(α1+β2). Con-

sequently, (2.19)–(2.22) give

v′(x)

(tε−e−v(x))
√
α1ev(x)+β2

≤ 1

ε
≤ 1√

K(ε)
· v′(x)

(1−e−v(x))
√
α1ev(x)+β2

, (2.23)

for x∈ (y+ε ,1).
Integrate (2.23) over (y,1) for y∈ (y+ε ,1), we obtain∫ 1

y

v′(x)

(a−e−v(x))
√
α1ev(x)+β2

dx

= 1√
α1a+β2a2

log

(√
(α1ev(1)+β2)a−

√
α1+β2a

)(√
(α1ev(y)+β2)a+

√
α1+β2a

)
(√

(α1ev(1)+β2)a+
√
α1+β2a

)(√
(α1ev(y)+β2)a−

√
α1+β2a

) ,
(2.24)

for a>0. Hence, (2.23) and (2.24) imply

tε+

(
tε+

β2

α1

)
csch2

[
C+

1,ε

ε
(1−x)+logD+

1,ε

]
≤ev(x)

≤1+
(
1+

β2

α1

)
csch2

[
C+

2,ε

ε
(1−x)+logD+

2,ε

]
,

(2.25)
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for x∈ (y+ε ,1), where C+
1,ε=

√
α1tε+β2, C

+
2,ε=K(ε)

√
α1+β2,

D+
1,ε=

√
α1ev(1)+β2+

√
α1tε+β2√

α1ev(1)+β2−
√
α1tε+β2

, and D+
2,ε=

√
α1ev(1)+β2+

√
α1+β2√

α1ev(1)+β2−
√
α1+β2

. By (2.20), (2.25), and

limε↓0 tε=limε↓0K(ε)=1, we get (1.20).
Similarly, we also have (1.21).
Therefore, we complete the proof of Theorem 1.4.

When N1=N2=2, ai= bi= i, i=1,2, and α1+2α2=β1+2β2, we may follow the
similar proof of Theorem 1.4 and obtain the following result.

Corollary 2.7. Under the same hypotheses of Theorem 2.1, suppose N1=N2=2,
ai= bi= i, i=1,2, and α1+2α2=β1+2β2. Then

φ+
1,ε(x) ≤ φε(x)≤φ+

2,ε(x), ∀x∈ (xε,1), (2.26)

φ−1,ε(x)≤ φε(x)≤φ−2,ε(x), ∀x∈ (−1,xε), (2.27)

where

φ±i,ε(x)= c+log
coshh±i,ε(x)± A2−B2+A

B

coshh±i,ε(x)∓ A+1
B

, h±i,ε(x)=
C̃±i,ε
ε

(1∓ x)+logH±
i,ε, i=1,2.

Here A=1+ α1

2α2
, B=

√(
1+ α1

2α2

)2
− β2

α2
, and C̃±i,ε’s, H±

i,ε’s, i=1,2, are positive con-

stants depending on ε such that

lim
ε↓0

C̃±i,ε=
√

α2[(A+1)2−B2],

lim
ε↓0

H±
i,ε=

(√
A−B+e±t−c

A+B+e±t−c
+

√
A−B+1

A+B+1

)(
±
√

A−B+e±t−c

A+B+e±t−c
∓
√

A−B+1

A+B+1

)−1

.

3. Proof of Theorem 1.1
In this section, we study the asymptotic behavior of solution φε of the PB equation

(1.4) with the boundary condition (1.5) and give the proof of Theorem 1.1. Surely, the
PB equation (1.4) can be transformed into

ε2φ′′ε (x)=
1

2
f ′(φε(x)), (3.1)

where f(s)=
∑N1

k=1αke
aks+

∑N2

l=1βle
−bls is defined by (1.11). It is well-known that the

equation (1.4) has the unique solution φε∈ C∞((−1,1))∩C2([−1,1]). As for (1.30), we
use (3.1) to derive the following identity

ε2

2
φ′2ε (x)=

1

2
f(φε(x))+C ′ε. (3.2)

Moreover, we use the similar argument to that of (1.31)–(2.1) to get

φ′′ε (x2)φ
′
ε(x2)>φ′′ε (x1)φ

′
ε(x1) for−1<x1<x2<1. (3.3)

Applying the standard maximum principle to (1.4) and (1.5), we obtain

min{0,φ+
0 ,φ

−
0 }≤φε(x)≤max{0,φ+

0 ,φ
−
0 }, (3.4)
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for x∈ [−1,1].
Now we state the proof of Theorem 1.1.

Proof of Theorem 1.1.
Proof. Multiplying equation (1.4) by φε, we obtain

ε2(φ2
ε(x))

′′≥2ε2φ′′ε (x)φε(x)=

(
N1∑
k=1

akαke
akφε(x)−

N2∑
l=1

blβle
−blφε(x)

)
φε(x)

≥C5φ
2
ε(x)

(3.5)

where C5= inf
s∈R,s 
=0

s−1

(
N1∑
k=1

akαke
ak s−

N2∑
l=1

blβle
−bl s

)
>0. Here we have used the hy-

pothesis
∑N1

k=1akαk=
∑N2

l=1 blβl to assure C5 as a positive constant. Thus by (3.4), (3.5)
and the standard comparison theorem, we get

|φε(x)|≤max{|φ+
0 |, |φ−0 |}

(
e−
√

C5
2ε (1+x)+e−

√
C5
2ε (1−x)

)
, ∀x∈ (−1,1), (3.6)

which completes the proof of Theorem 1.1(i).

Suppose min{φ+
0 ,φ

−
0 }>0. Then (3.4) gives 0≤φε(x)≤max{φ+

0 ,φ
−
0 }, together with

(3.1) and Lemma 2.5(i), we may find φ′′ε ≥0 on [−1,1]. Here we have used the hypothesis

that
∑N1

k=1akαk=
∑N2

l=1 blβl. To complete the proof of Theorem 1.1(i), we need to claim:

Claim 2. There exist ε∗>0 and x∗ε ∈ (−1,1) such that φε(x
∗
ε )= min

x∈[−1,1]
φε(x) for

0<ε<ε∗.

Proof. We state the proof of Claim 2 by contradiction. Suppose φ′ε preserves the
same sign on (−1,1), for all ε>0. Without loss of generality, we may assume φ′ε(x)>0
for x∈ (−1,1). Then by (1.5), one may get φε(x)≥φε(−1)≥φ−0 ≥min{φ+

0 ,φ
−
0 }. Along

with (3.6), we obtain 0= limε↓0φε(0)≥min{φ+
0 ,φ

−
0 }, which is contrary to the assumption

min{φ+
0 ,φ

−
0 }>0. Consequently, there exist ε∗>0 and x∗ε ∈ (−1,1) such that φ′ε(x

∗
ε )=0

as 0<ε<ε∗. As for the proof of Theorem 2.1(i), we may use (3.3) and the fact that
φ′′ε ≥0 on [−1,1] to get φ′ε(x1)<0<φ′ε(x2) for x1∈ (−1,x∗ε ) and x2∈ (x∗ε ,1). Hence, φε

attains the minimum value at an interior point x∗ε ∈ (−1,1). This completes the proof
of Claim 2.

By Claim 2, we complete the proof of Theorem 1.1(ii). Similarly, Theorem 1.1(iii)
can also be proved.

We prove Theorem 1.1(iv) in two cases: (I) φ′′ε never changes sign on [−1,1]; (II)
φ′′ε changes sign on [−1,1]. For the case (I), without loss of generality, we may as-
sume φ′′ε ≥0 on [−1,1]. Then by (3.1), φε≥0 on [−1,1] and the maximum value of
φε occurs at the boundary x=±1. Suppose φε(1)=maxx∈[−1,1]φε(x). Then φ′ε(1)≥0.

Moreover, by the boundary condition (1.5), we get φ+
0 =φε(1)+ηεφ

′
ε(1)≥0, which gives

φ−0 ≤0, since min{φ+
0 ,φ

−
0 }≤0. Consequently, ηεφ

′
ε(−1)=φε(−1)−φ−0 ≥0. Hence by

the assumption of φ′′ε ≥0 on [−1,1], we have φ′ε(x)≥φ′ε(−1)≥0 for x∈ [−1,1], i.e., φε

is monotone increasing on [−1,1]. Along with the boundary condition (1.5), we have
φ−0 ≤φε(−1)≤φε(x)≤φε(1)≤φ+

0 for x∈ [−1,1]. Similarly, if φε(−1)=maxx∈[−1,1]φε(x),

then we obtain φ′ε≤0 on [−1,1] and φ+
0 ≤φε(x)≤φ−0 ,which proves (iii). For the case

(II) there exists x̂ε∈ (−1,1) such that φ′′ε (x̂ε)=0. Then we may use (3.3) and the same
argument as in Theorem 2.1(i) to get Theorem 1.1(iv).
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It remains to prove Theorem 1.1(v). Using (3.2), Theorem 1.1(i) and the similar
argument of Lemma 2.3, we may obtain limε↓0C ′ε=− 1

2f(0) which implies

lim
ε↓0
[
(φ+

0 −φε(1))
2−γ2(f(φε(1))−f(0))

]
=0, (3.7)

by setting x=1 in (3.2) and using boundary condition (1.5) with limε↓0 ηε

ε =γ. There-
fore, as for the proof of Theorem 1.3(iv), we may use Theorem 1.1(i)–(iii) and (3.7) to
get Theorem 1.1(v) and complete the proof of Theorem 1.1.

Remark 3.1. If
∑N1

k=1akαk �=
∑N2

l=1 blβl, we have limε↓0w(x)= r for all x∈ (−1,1),
where r is uniquely determined by f ′(r)=0. The proof is similar to the proof of Theorem
4.2 of [30].

4. Non-electroneutral cases: Proof of Theorem 1.5
In this section, we assume 0<α<β and φ−0 =φ+

0 . To prove Theorem 1.5, we need
the following properties, which can be obtained from [30].

(P1) Gradient estimates of φε (cf. Theorem 3.1, [30]): The unique solution φε is
even and satisfies φ′′ε ≤0 on [−1,1], and φ′ε(x1)≥0≥φ′ε(x2) for x1∈ [−1,0) and
x2∈ (0,1]. Moreover, φ′ε satisfies

−φ′ε(−1)=φ′ε(1)=
α−β

2ε2
<0, (4.1)

and

|φ′ε(x)|≤
β−α

ε2

(
e−

√
2α(1+x)

2ε +e−
√

2α(1−x)
2ε

)
, ∀x∈ (−1,1). (4.2)

(P2) Interior asymptotic behavior of φε (cf. Theorem 1.5, [30]): For any compact
subset K of (−1,1), there holds

sup
0<ε<1

∣∣∣∣φε(x)−φε(±1)− log
1

ε2

∣∣∣∣<∞, ∀x∈K. (4.3)

(P3) Estimates of nε and pε: In [30], we have established the following estimates
(see (3.9), (3.15), and (3.37) of [30]):

4≤
∫ 1

−1

eφε(y)dy

∫ 1

−1

e−φε(y)dy≤ 4β

α
, (4.4)

αeφε(0)∫ 1

−1
eφε(y)dy

+
βe−φε(0)∫ 1

−1
e−φε(y)dy

+
ε2

4

∫ 1

−1

φ′2ε (y)dy=
α+β

2
(4.5)

and,

(α−β)2

8ε2
≤ βe−φε(1)∫ 1

−1
e−φε(y)dy

≤ (α−β)2

8ε2
+

α+β

2
. (4.6)

Using (1.7) and the fact that φε(1)=φε(−1) and φ′ε(0)=0 (by (P1)), we can
transform (4.4)–(4.6) into

α2

4
≤nε(x)pε(x)≤ αβ

4
, ∀x∈ [−1,1], (4.7)

nε(0)+pε(0)+
ε2

4

∫ 1

−1

φ′2ε (y)dy=
α+β

2
, (4.8)

(α−β)2

8ε2
≤pε(1)=pε(−1)≤ (α−β)2

8ε2
+

α+β

2
, (4.9)
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respectively.
Having (P1)–(P3) at hand, we are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5.
Proof. Let Iεκ =[−1+εκ,1−εκ], where 0<ε, κ<1. For any y∈ Iεκ , we may use

(4.2) to get

|φε(y)−φε(0)|≤ β−α

ε2

∣∣∣∣∫ y

0

(
e−

√
2α(1+x)

2ε +e−
√

2α(1−x)
2ε

)
dx

∣∣∣∣≤ 2
√
2(β−α)√
αε

e−
√

2α

ε1−κ . (4.10)

As a consequence, we have

|φε(x)−φε(y)|≤ |φε(x)−φε(0)|+ |φε(0)−φε(y)|≤ 2
√
2(β−α)√
αε

e−
√

2α

ε1−κ , (4.11)

for x,y∈ Iεκ . Note that limε↓0
2
√
2(β−α)√

αε
e−

√
2α

ε1−κ =0 for 0<κ<1. Thus (4.11) gives

lim
ε↓0

sup
x,y∈Iεκ

|φε(x)−φε(y)|=0. (4.12)

For 0<ε<1, we may set x=0 in (4.3) and combine the result with (4.10) to get

sup
0<ε<1

∣∣∣∣φ(y)−φ(±1)− log
1

ε2

∣∣∣∣<∞, ∀y∈ Iεκ . (4.13)

To prove (1.24)–(1.26), we need the following claim:

Claim 3.

(i) At the boundary x=±1, we have

lim
ε↓0

nε(±1)
ε2−τ

=0 and lim
ε↓0

ε2pε(±1)= (α−β)2

8
, (4.14)

for any τ >0.

(ii) Assume 0<ε<1. Then there exists λε(κ)>0 such that limε↓0λε(κ)=0,

α

2
−λε(κ)≤nε(x)≤

√
αβ

2
, and

α

2
≤pε(x)≤ β

2
+λε(κ), (4.15)

for x∈ Iεκ . Moreover,

lim
ε↓0

sup
x∈Iεκ

|nε(x)−nε(0)|=lim
ε↓0

sup
x∈Iεκ

|pε(x)−pε(0)|=0. (4.16)

Proof. (4.7) and (4.9) give 2α2ε2

(α−β)2+4(α+β)ε2 ≤nε(−1)=nε(1)≤ 2αβε2

(α−β)2 . This shows

limε↓0
nε(±1)
ε2−τ =0 for any τ >0. Along with (4.9), we prove (4.14).

By (P1) and (1.6), we have

φε(0)= max
x∈[−1,1]

φε(x) (4.17)

and

nε(x)−pε(x)= ε2φ′′ε (x)≤0, ∀x∈ [−1,1]. (4.18)
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Along with (4.7), we obtain

pε(x)≥ α

2
and nε(x)≤

√
αβ

2
, ∀x∈ [−1,1]. (4.19)

By (1.7), (4.8), and (4.17), one may check that

0≤nε(0)−nε(x)=nε(0)
(
1−eφε(x)−φε(0)

)
≤ α+β

2

(
1−eφε(x)−φε(0)

)
, (4.20)

and

0≤pε(x)−pε(0)=pε(0)
(
e−φε(x)+φε(0)−1

)
≤ α+β

2

(
e−φε(x)+φε(0)−1

)
. (4.21)

Consequently, by (4.12), (4.20), and (4.21), we get (4.16).
It remains to prove (4.15). Let

λε(κ)=max

{
sup
x∈Iεκ

|nε(x)−nε(0)|, sup
x∈Iεκ

|pε(x)−pε(0)|
}
>0. (4.22)

By (4.16), we have limε↓0λε(κ)=0. Using (4.17), one may find

nε(0)≡ αeφε(0)∫ 1

−1
eφε(y)dy

=
α∫ 1

−1
eφε(y)−φε(0)dy

≥ α

2
, (4.23)

and

pε(0)≡ βe−φε(0)∫ 1

−1
e−φε(y)dy

=
β∫ 1

−1
e−φε(y)+φε(0)dy

≤ β

2
. (4.24)

Hence, (4.19) and (4.23) immediately give
√
αβ
2 ≥nε(x)≥nε(0)−λε(κ)≥ α

2 −λε(κ), for
x∈ Iεκ . On the other hand, by (4.19) and (4.24) we obtain α

2 ≤pε(x)≤pε(0)+λε(κ)≤
β
2 +λε(κ), for x∈ Iεκ . Therefore, we get (4.15) and complete the proof of Claim 3.

(1.24) immediately follows from (4.18) and (4.15), and (1.25) follows from (4.14).

To prove (1.26), we rewrite nε(0)=
αeφε(0)∫ 1
−1

eφε(y)dy
as

nε(0)=
α(∫ −1+εκ

−1
+
∫ 1−εκ

−1+εκ
+
∫ 1

1−εκ

)
eφε(y)−φε(0)dy

. (4.25)

By (4.17), we have

0≤
(∫ −1+εκ

−1

+

∫ 1

1−εκ

)
eφε(y)−φε(0)dy≤2εκ. (4.26)

On the other hand, by (4.12) we get

lim
ε↓0

∫ 1−εκ

−1+εκ
eφε(y)−φε(0)dy=2. (4.27)

Combining (4.25)–(4.27), we conclude that

lim
ε↓0

nε(0)=
α

2
. (4.28)
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To deal with the limit of value pε(0) as ε tends to zero, we need the following
estimate: ∣∣∣pε(0)− α

2

∣∣∣≤|nε(0)−pε(0)|+
∣∣∣nε(0)− α

2

∣∣∣
≤|nε(x)−pε(x)|+

∣∣∣nε(0)− α

2

∣∣∣+2λε(κ), ∀x∈ Iεκ . (4.29)

Here we have used (4.16) and (4.22) to get the second line of (4.29). On the other hand,
by integrating (1.6) over Iεκ and using (1.7) and (4.2), we obtain

0≤
∫ 1−εκ

−1+εκ
(pε(x)−nε(x))dx= ε2 (φ′ε(−1+εκ)−φ′ε(1−εκ))≤4(β−α)e−

√
2α

2ε1−κ . (4.30)

Note that 0<κ<1. As a consequence, by (4.28)–(4.30) we find

lim
ε↓0

pε(0)=
α

2
. (4.31)

Then (1.26) follows from (4.16), (4.28), and (4.31).
By (4.19), we immediately get (1.27). Now we shall prove (1.28). Let g(x)∈

C1([−1,1]). Multiplying (1.6) by g(x) and integrating the result over (−1,1), we have∫ 1

−1

(nε(x)−pε(x))g(x)dx= ε2
∫ 1

−1

φ′′ε (x)g(x)dx

=
α−β

2
(g(−1)+g(1))−ε2

∫ 1

−1

φ′ε(x)g
′(x)dx. (4.32)

Here we have used the integration by parts and (4.1) to get (4.32). On the other hand,
by using (4.2), one may check that∣∣∣∣ε2∫ 1

−1

φ′ε(x)g
′(x)dx

∣∣∣∣≤ (β−α) max
x∈[−1,1]

|g(x)|
∫ 1

−1

(
e−

√
2α(1+x)

2ε +e−
√

2α(1−x)
2ε

)
dx

≤2(β−α)

√
2

α

(
max

x∈[−1,1]
|g(x)|

)
ε. (4.33)

By (1.27), (4.18), (4.19), (4.30), (4.32) and (4.33), we have∣∣∣∣∣
(∫ −1+εκ

−1

+

∫ 1

1−εκ

)
pε(x)g(x)dx− β−α

2
(g(−1)+g(1))

∣∣∣∣∣
=

∣∣∣∣∣
(∫ −1+εκ

−1

+

∫ 1

1−εκ

)
nε(x)g(x)dx+

∫ 1−εκ

−1+εκ
(nε(x)−pε(x))g(x)dx+ε2

∫ 1

−1

φ′ε(x)g
′(x)dx

∣∣∣∣∣
≤ max

x∈[−1,1]
|g(x)| ·

[√
αβεκ+4(β−α)e−

√
2α

2ε1−κ +2(β−α)

√
2

α
ε

]
.

Note that 0<κ<1. Consequently,

lim
ε↓0

(∫ −1+εκ

−1

+

∫ 1

1−εκ

)
pε(x)g(x)dx=

β−α

2
(g(−1)+g(1)) . (4.34)
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In particular, let g∈C1([−1,1]) satisfy g(x)=1 for x∈ [−1,0], g(x)∈ [0,1] for x∈ [0,1/2],
and g(x)=0 for x∈ [1/2,1]. Then (4.34) gives limε↓0

∫ −1+εκ

−1
pε(x)dx=

β−α
2 . Similarly,

we have limε↓0
∫ 1

1−εκ
pε(x)dx=

β−α
2 . Therefore, we get (1.28) and complete the proof of

Theorem 1.5(i).
It remains to prove (1.29). By (1.7), we have

φε(x)−φε(1)− log
1

ε2
=log

ε2pε(1)

pε(x)
. (4.35)

Note that for any compact subsetK of (−1,1), we haveK⊂ Iεκ as 0<ε
1 is sufficiently
small. Hence, by (1.26), (4.14), and (4.35), we conclude that,

lim
ε↓0

(
φε(x)−φε(1)− log

1

ε2

)
=log

limε↓0 ε2pε(1)
limε↓0pε(x)

= log
(α−β)2

4α

uniformly in K. Therefore, we get (1.29) and complete the proof of Theorem 1.5.

5. Numerical experiments
In this section, we do numerical computations to compare solutions of the CCPB

and PB equations. All numerical results are obtained using the convex iteration method
[30, 46–48] and the finite element methods with piecewise linear space which is used to
solve the linearized equations. The computational domain and the mesh size h are
fixed with is [−1,1], h=2−11, respectively, throughout the numerical experiments. The
values of ε are set by ε=2−j ,j=1,3,5, in order to observe the tendency of the associated
solutions φε’s as ε goes to zero.

As for [30], the numerical scheme can be extended to the CCPB equation (1.2) with
the boundary condition (1.5) and it can be presented as follows:

ε2φ′′m+ 1
2
=

N1∑
k=1

akαk∫ 1

−1
eakφm dx

eakφm−
N2∑
l=1

blβl∫ 1

−1
e−blφm dx

e−blφm , (5.1)

φm+1=sφm+ 1
2
+(1−s)φm, (5.2)

for m=1,2, · · · , where s is a positive constant satisfying 0<s<1 with boundary condi-
tions

φm+ 1
2
(−1)−ηεφ

′
m+ 1

2
(−1)=φ−0 , φm+ 1

2
(1)+ηεφ

′
m+ 1

2
(1)=φ+

0 . (5.3)

Let φm+ 1
2
=φm+δm with the correction term δm which satisfies

δm(−1)−ηεδ
′
m(−1)=0, δm(1)+ηεδ

′
m(1)=0 (5.4)

so that φm+1=φm+sδm=φ1+s
∑m

i=1 δi. If limm→∞ |δm|=0, then the iterative scheme
converges.

Define the residual function R(φm) as

R(φm)=

N1∑
k=1

akαk∫ 1

−1
eakφm dx

eakφm−
N2∑
l=1

blβl∫ 1

−1
e−blφm dx

e−blφm−ε2φ′′m. (5.5)

Then we obtain

ε2φ′′m+1−ε2φ′′m=sε2δ′′m=sR(φm). (5.6)
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Integrating R(φm+1)−R(φm), we may use (5.5) and (5.6) to get∫ 1

−1

R(φm+1)dx=(1−s)

∫ 1

−1

R(φm)dx. (5.7)

In case of s=1 in (5.7), numerical scheme may not converge and oscillate during the
iteration procedure. When 0<s<1, we have empirically observed that the value of
s should be compatible to Cε2 in order to let the iteration converge. Moreover, the
value of C is chosen in the interval (0,1) so that the convergence of the scheme can be
guaranteed. In the iteration procedure, the value 10−6 is applied for stopping criterion
with ||δm||∞= ||(φm+1−φm)/s||∞.

For the PB equation (1.4), we replace the denominators of the right hand side of
the equation (5.1) by the value 2. Then as for the scheme of (5.1)–(5.3), we have a sim-
ilar way to solve the PB equation (1.4) with the boundary condition (1.5), numerically.
To compare solutions of the PB and CCPB equations, we firstly set the parameters
as N1=1, N2=2, a1= b1=1, b2=2, and α1=1.2, β1=β2=0.4 so that the electroneu-
tral condition a1α1= b1β1+b2β2 holds. The numerical computations also impose the
boundary data as φ+

0 =−φ−0 =1 and the values ηε’s for the boundary conditions (1.5) as
ηε=0.5ε2 and 0.5ε which include the cases of limε↓0 ηε

ε =0 and 0.5. The corresponding
results are presented in Figure 5.1 and Table 5.1 consistent with Theorem 1.3 and 1.1.

In Figure 5.1, one may see the difference between the solutions of (1.2) and (1.4)
with the same boundary condition (1.5) and the valence zi=−1 for the anion, i=1, and
zj =1,2 for the cations, j=1,2, respectively. The solution profiles of the PB equation
(1.4) are plotted as (red) dash-dotted curves and those of the CCPB equation (1.2)
are sketched as (blue) solid curves. Here the index numbers, 1,2,3 are associated with
various values of ε’s, and a (black) dotted line is represented as the axes for a reference.
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1
I. Comparison of φε of PB and CCPB, ηε = 0.5ε2, γ = 0

x

φ
ε
(x
)
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CCPB

1: ε = 2−1

2: ε = 2−3

3: ε = 2−5
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II. Comparison of φε of PB and CCPB, ηε = 0.5ε, γ = 0.5

x

φ
ε
(x
)

 1

 2  3

 

 

PB

CCPB

1: ε = 2−1

2: ε = 2−3

3: ε = 2−5

Fig. 5.1. Comparison of φε of PB and CCPB equation with the electroneutral condition.
φε of PB equation are in (red) dash-dotted curves and φε of CCPB equation are in (blue) solid
curves. The label of curves in each picture depends on the dielectric constant ε=2−1,2−3,2−5.
I. ηε=0.5ε2 and γ=0. II. ηε=0.5ε and γ=0.5. In this computations, three ion species are
used, one anion with valence −1, α1=1.2 and two cations with valences 1,2, β1=β2=0.4.

Table 5.1 shows the numerical results of φε(0) and c for the CCPB and PB equations
where the value c is defined in Theorem 1.3 can be computed by Newton’s method. One
can easily see that for the PB equation, the value c is always equal to zero but for the
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CCPB equation, the value c may not be equal to zero. The ratio β1/β2 may affect
the value c and t. As β1/β2 varies, the numerical values of φε(0), φε(1), c, and t
are presented in Table 5.2 for the case of a1= b1=1, b2=2, and ε=2−5. Note that
the numerical values of φε(0) and φε(1) are quite close to those of c∈ (c∗,0) and t,
respectively. This is consistent with the results of Theorem 1.3. We remark that if t is
fixed and β1/β2 is decreasing, then the value c is decreasing.

ε 2−1 2−3 2−5 c

I PB 0.0106 0.0000 0.0000 0
CCPB -0.0459 -0.0964 -0.1081 -0.1126

II PB 0.0079 0.0000 0.0000 0
CCPB -0.0311 -0.0442 -0.0442 -0.0441

Table 5.1. The numerical results of φε(0) and its limit value c of PB and CCPB equation in
Figure 5.1.

ηε β1/β2 φε(1) t φε(0) c c∗
1 1.0000 1.0000 -0.1124 -0.1126 -0.1446

0 1/2 1.0000 1.0000 -0.1265 -0.1265 -0.1446
1/3 1.0000 1.0000 -0.1320 -0.1320 -0.1446
1 0.9679 1.0000 -0.1059 -0.1126 -0.1446

0.5ε2 1/2 0.9581 1.0000 -0.1171 -0.1265 -0.1446
1/3 0.9504 1.0000 -0.1206 -0.1320 -0.1446
1 0.4962 0.4960 -0.0299 -0.0299 -0.0394

0.5ε 1/2 0.4278 0.4277 -0.0255 -0.0255 -0.0296
1/3 0.3853 0.3853 -0.0218 -0.0218 -0.0242

Table 5.2. The numerical results of φε(1), φε(0) of CCPB equation and their limit values t, c,
c∗ in (1.8) where α1=β1+2β2, β1∼ [Na+] is fixed to 1, and ε is fixed to 2−5.

From Theorem 1.3(ii)–(iv), both t and t−c are decreasing functions to γ. Surely,
c can be regarded as a function to γ. Under some specific conditions, c may become
a increasing function to γ (see Remark 1.2 and the graph 1 in each panel in Figure
5.2). However, it is not clear if the function c has monotonicity generically. Using
the Newton’s method, we solve the system of equations (1.16) and (1.17) and obtain
the graph of c and t, respectively. We first consider three ion species with coefficients
satisfying b1=1, b2=2, and b1β1+b2β2=a1α1=1.2. Specific values of β1 and β2 can
be chosen as follows:

I. (β1,β2)=(1.199,0.0005),

II. (β1,β2)=(0.002,0.599).

For each (β1,β2), graphs of c and t corresponding to the cases of (a1,α1)=(1,1.2),
(2,0.6) and (3,0.4) are plotted in Figure 5.2, respectively. As for Theorem 1.3(ii)–(iii),
our numerical results indicate that |c(γ)|<t(γ) for all γ >0; both c(γ) and t(γ) tend to
zero as γ goes to infinity. For each fixed γ >0, the value t(γ) increases but the value
c(γ) decreases as α1 increases. Similar results can also be observed for four ion species
with coefficients satisfying the following conditions:

Case 1. a1α1=β1+2β2+3β3=1.5, (β1,β2,β3)=(0.25,0.25,0.25),
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a1=1,2,3,4, i.e., α1=1.5,0.75,0.5,0.375,
Case 2. α1+2α2=β1+2β2=1.5, (β1,β2)=(0.75,0.375),

(α1,α2)=(0.3,0.6),(0.5,0.5),(0.75,0.375),
Case 3. α1+2α2=β1+2β2=1.5, (β1,β2)=(0.5,0.5),

(α1,α2)=(0.3,0.6),(0.5,0.5),(0.75,0.375),
Case 4. α1+2α2=β1+2β2=1.5, (β1,β2)=(0.3,0.6),

(α1,α2)=(0.3,0.6),(0.5,0.5),(0.75,0.375).

The profiles of c and t associated with Case 1–4 are sketched in Figure 5.3, I–IV,
respectively. As for Figure 5.2, various αj ’s may result in different profiles of function
c= c(γ). However, until now, all our results only show that the function c is of monotone
increasing or decreasing. This motivates us to see if the function c becomes a non-
monotone function under the other conditions of αi’s and βj ’s.
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I. (β1, β2) = (1.198, 0.001)
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II. (β1, β2) = (0.002, 0.599)
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1
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Fig. 5.2. Comparison of c(γ), t(γ) with three species; one negative charge, two positive
charges where α1=1.2,0.6,0.4 for 1, 2, 3, respectively. I. (β1,β2)=(1.199,0.0005). II. (β1,β2)=
(0.002,0.599).

As shown in both Figure 5.2 and 5.3, we observe that c(γ) converges to zero as
γ goes to infinity. This is consistent with the results of Theorem 1.3. Moreover, the
profile of function c can be changed from monotone decreasing to increasing. Such a
behavior of c and the nonlinearity of equations (1.16) and (1.17) let us believe that
the non-monotone profile of function c may exist. To get the non-monotone profile of
function c, we consider the following conditions:

A. 2α1=β1+2β2+3β3=1.5, (β1,β2,β3)=(0.9,0.12,0.12),

B. 2α1=β1+2β2+3β3+4β4=1.5, (β1,β2,β3,β4)=(1.23,0.03,0.03,0.03),

C. 3α1=β1+2β2+3β3+4β4=1.5, (β1,β2,β3,β4)=(0.6,0.1,0.1,0.1),

D. 3α1=β1+2β2+3β3+4β4=1.5, (β1,β2,β3,β4)=(0.1,0.35,0.1,0.1).

The non-monotonic profiles of function c with respect to conditions A–D are pro-
vided in Figure 5.4, 1–4, respectively. However, the profiles of functions t and t−c are
still monotonically decreasing.

6. Conclusion
For the binary mixture of monovalent anions and cations, although CCPB and

PB can have very different solutions with different boundary conditions and other con-
straints, the solutions of CCPB equations have very similar asymptotic behavior as
those of PB equations when the global electroneutrality (1.3) holds (cf. [30]).
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Fig. 5.3. Comparison of c(γ), t(γ) with four ion species; one negative charges, three positive
charges (I), and two negative charge, two positive charges (II, III, IV). I. α1=1.5,0.75,0.5,0.375
for 1, 2, 3, 4, respectively, and (β1,β2,β3)=(0.25,0.25,0.25). II. (β1,β2)=(0.75,0.375).
III. (β1,β2)=(0.5,0.5). IV. (β1,β2)=(0.3,0.6). (1.(α1,α2)=(0.3,0.6), 2.(α1,α2)=(0.5,0.5),
3.(α1,α2)=(0.75,0.375) for II, III, IV.)
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Fig. 5.4. Non-monotone profiles of c(γ).
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Situation becomes more complicated in the presence of mixtures of multiple (more
than three) species with multivalences. In this paper, we again consider the situa-
tions under global electroneutrality, but the general mixture of multi-species ions. The
(more rigorous) CCPB shows very different asymptotic behaviors to PB equations under
Robin-type boundary conditions with various coefficients ηε’s.

In particular, the solution φε of CCPB equation may tend to a constant c at interior
points, and ±t at boundary points as ε goes to zero. As ηε∼γε, both t and t−c
are monotone decreasing functions of γ. Physically, γ can be regarded as the ratio
of the Stern-layer width to the Debye screening length. Various conditions can be
found theoretically and numerically such that the function c of γ becomes monotone
decreasing, increasing and non-monotonic. While for PB equation, the solution φε only
tend to zero at interior points which is independent to γ. This constitutes one of the
main differences of PB and CCPB equations.

This work is one of our first attempts in systematically studying the ionic fluids.
Much works are needed in the future. In particular, the theoretical justification of the
interesting behavior of c(γ) with respect to γ under different physical conditions. The
problems involving multiple spatial dimension domains are for certain to provide more
interesting phenomena of the solutions and also more technical challenges. Overall, our
results again demonstrate that the CCPB equation being a more physical and suitable
model for future applications involving the mixture of multi-species ions.

Appendix A.
For the convenience of the readers, we will list out our previous results for 2 mono-

valence species with charges of opposite signs situations [30].
Considering CCPB equation (1.2) with N1=N2=1, a1= b1=1, in [30], we had

established the following results:

(a). In the electroneutral case (α1=β1):
(a1) If limε↓0 ε

ηε
=0, the solution φε approaches zero in [−1,1] as ε↓0. However, φε

has slope of order O(1/ηε) on the boundary.

(a2) When ε
ηε
≥ C for some positive constant C independent of ε, the solution φε

possesses boundary layers with thickness ε.

(b). In the non-electroneutral case (α1 �=β1):
The solution φε has boundary layers with thickness ε2 and φε(x)−φε(±1) tends to
infinity with the leading order term log(ε−2) as ε↓0 for x∈ (−1,1). The values φε(±1)
can be estimated as follows:

(b1) If ηε

ε2 ≤C, φε(1) and φε(−1) converge to different finite values as ε↓0, where C
is a positive constant independent of ε.

(b2) If limε↓0 ηε

ε2 =∞, both φε(1) and φε(−1) diverge to∞, but |φε(1)−φε(−1)| con-
verges to zero as ε↓0.

(c) The difference between the solutions to the CCPB equation (1.2) and the PB equa-
tion (1.4) can be stated as follows:

(c1) When α1=β1, the solution of the CCPB equation (1.2) may converge to the
solution of the PB equation (1.4). Namely, in the case of α1=β1, the solution
of the CCPB equation (1.2) has the same asymptotic behavior as that of the
PB equation (1.4).

(c2) When α1 �=β1, the solution of the PB equation (1.4) remain bounded for ε>0.
However, as α1 �=β1, the solution of the CCPB equation (1.2) may tend to
infinity as ε goes to zero (see (b)). This may provide the difference between
the solutions to the CCPB equation (1.2) and the PB equation (1.4).
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