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A STOCHASTIC EPIDEMIC MODEL INCORPORATING MEDIA
COVERAGE∗

YONGLI CAI† , YUN KANG‡ , MALAY BANERJEE§ , AND WEIMING WANG¶

Abstract. In this paper, we investigate the effects of environment fluctuations on disease dynamics
through studying the stochastic dynamics of an SIS model incorporating media coverage. The value
of this study lies in two aspects: Mathematically, we show that the disease dynamics the SDE model
can be governed by its related basic reproduction number RS

0 : if RS
0 ≤1, the disease will die out

stochastically, but if RS
0 >1, the disease will break out with probability one. Epidemiologically, we

partially provide the effects of the environment fluctuations affecting spread of the disease incorporating
media coverage. First, noise can suppress the disease outbreak. Notice that RS

0 <R0, and it is possible
that RS

0 <1<R0. This is the case when the deterministic model has an endemic while the SDE model
has disease extinction with probability one. Second, two stationary distribution governed by RS

0 : If
RS

0 <1, it has disease-free distribution which means that the disease will die out with probability one;
while RS

0 >1, it has endemic stationary distribution, which leads to the stochastically persistence of
the disease. In order to understand the role of media coverage on disease dynamics, we present some
numerical simulations to validate the analytical findings. It is interesting to note that although some
parameters have no role in determining Rs

0, however the strength of noise to the susceptible population
and the parameters characterizing media affect play crucial role in determining the long term dynamics
of the system.

Key words. Epidemic model, Lyapunov function, stochastic asymptotic stability, ergodic prop-
erty.
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1. Introduction

Infectious diseases are the second leading cause of death worldwide, after heart
disease, and are responsible for more deaths annually than cancer [31]. Understanding
the mechanism that underlies the spread of an infectious disease can give important
insights to help in the fight against the disease itself [4].

When an infectious disease appears and spreads in a region, the departments for
disease control and prevention will do everything possible to prevent the disease from
spreading. One of the measures is to tell people the correct preventive knowledge of the
disease as soon as possible through media and education [15, 16, 33, 36, 45, 54]. Mass
media (television, radio, newspapers, billboards, and booklets) have been used as a way
of delivering preventive health messages, as they have the potential to influence people’s
behavior, and deter them from risky behavior or from taking precautionary measures
in relation to a disease outbreak, as concurrent presentation of objective information
about the diseases can mitigate its severity [8, 11, 57].
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Media coverage of an infectious outbreak can be seen as following two major routes.
The first route is when the media report directly to the public on facts that they
(the media) observe; the second has public health authorities using mass media or the
Internet to communicate about the outbreak [3, 49]. The responsibilities of the media
are to disseminate health information and to frequently cover health-related topics, and
as such, the media are the leading source of information about important health issues
for many individuals [8], and the mass media have been used as a way of delivering
preventive health messages due to their potential influence on people’s behavior [11,
20, 55]. People’s response to the threat of disease is dependent on their perception
of risk, which is influenced by public and private information disseminated widely by
the media [41, 50]. For instance, mass media campaigns based on communication for
behavioral impact and social change have been shown to be an effective intervention for
smoking cessation in adults [8]. In the case of a vaccine-preventable disease, people may
opt to vaccinate more (and promptly), when the perceived risk from the disease is high,
and little (and later) otherwise [17]. Human behavior change consequently leads to a
reduction in the number of real susceptible individuals or effective contact rates. The
study showed that media coverage and education may reduce the contact rate of human
beings as we have observed during the spreading of severe acute respiratory syndrome
(SARS) in 2002 and 2004 [16, 35]. Another study showed that during the outbreak of
influenza A (H1N1) in 2009, media coverage played an important role in helping both
the government authority make interventions to contain the disease and people respond
to the disease [11, 55].

Media coverage is obviously not the most important factor responsible for the trans-
mission of the infectious disease, but it is a very important issue that has to be taken
care of seriously. In the case of a large number of infected cases, the media coverage may
cause the panic of the society, but it can certainly reduce the opportunity for and prob-
ability of contact transmission among the alerted susceptible populations, which in turn
helps to control and prevent the disease from spreading further [15]. To examine the
role of media coverage on disease outbreaks and curb the spread of infectious diseases,
mathematical modeling can therefore play an important role in helping understand the
potential effects of media coverage on infectious disease transmission. In [54], Xiao and
Ruan formulated an SIR (susceptible-infectious-recovered) model, proposed a non-linear
incidence rate to describe the effect of mass media coverage, and showed that media
coverage did not have any obvious effect on disease dynamics. Cui et al. [15, 16, 33, 45]
presented a series study on the epidemic models incorporating media coverage and con-
cluded that media coverage was critical in disease eradication. Sun et al. [49] formulated
an SIS epidemic model on two patches and found that media coverage can reduce the
burden of the epidemic and shorten the duration of the disease outbreak. In [41], the
authors formulated an SIS model to study the impact of awareness programs conducted
by a media campaign on the spread of an infectious disease and showed that the spread
of an infectious disease can be controlled by using awareness programs but the disease
remains endemic due to immigration.

On the other hand, in many instances, environmental variations have a critical in-
fluence on the development of an epidemic [42, 51]. For human disease, the nature of
epidemic growth and spread is inherently random due to the unpredictability of person-
to-person contacts [47] and because the population is subject to a continuous spectrum
of disturbances [2, 9]. Hence the variability and randomness of the environment is fed
through to the state of the epidemic [52]. And in epidemic dynamics, stochastic differ-
ential equation (SDE) models could be a more appropriate way of modeling epidemics
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in many circumstances, and many realistic stochastic epidemic models can be derived
based on their deterministic formulations [1, 2, 5, 6, 7, 10, 12, 13, 14, 18, 21, 22, 26, 27,
28, 30, 32, 34, 37, 38, 39, 40, 42, 43, 44, 51, 52, 53, 56].

And there comes a question: How do environmental fluctuations affect the spreading
of disease, when incorporating media coverage?

In this paper, we will focus on the effects of environment fluctuations on the disease’s
dynamics through studying the stochastic dynamics of an SIS model incorporating me-
dia coverage. The rest of this article is organized as follows: In Section 2, based on the
results of Cui et al. [16], we derive a stochastic differential SIS model incorporating me-
dia coverage. In Section 3, we give the conditions of stochastic extinction of the model.
In Section 4, following the method given by Khasminskii [29], we give the conditions of
the existence of a unique stationary distribution of the SDE model. In Section 5, we
provide one example to support our research results. In the last section, we provide a
brief discussion and summary of our main results.

2. Model derivation
Let S(t) and I(t) be the number of susceptible and infectious individuals at time

t, respectively. In the absence of media effect, we assume a classic standard (or pro-
portional) incidence, with the rate at which new infections arise given by βSI

S+I , β being
the infection coefficient. When media coverage is present, social distancing mechanisms
come into effect. Reporting by the media is assumed to be an increasing function of the
number of infectious cases present, and as a consequence, the contact rate between sus-
ceptible and infectious individuals is a decreasing function of the number of infectious
cases present. We take similar non-linear functions as in [16] and denote the effective
contact rate as

β(I)=β1−β2f(I),

where β1 is the usual contact rate without considering the infectious individuals and β2

is the maximum reduced contact rate due to the presence of the infected individuals.
But we know that everyone cannot avoid contact with others in any case, so we assume
that β1>β2. The function f(I) satisfies

(A1) f(0)=0, lim
I→∞

f(I)=1, 0<f ′(I)≤1 and f ′′(I)<0.

It follows from the work of Cui et al. [16] that an SIS epidemic model incorporating
media coverage takes the following form⎧⎪⎪⎨

⎪⎪⎩
dS

dt
=Λ−μS−(β1−β2f(I))

SI

S+I
+γI,

dI

dt
=(β1−β2f(I))

SI

S+I
−(μ+γ)I,

(2.1)

where Λ is the recruitment rate of the population, μ the natural death rate of the
population, and γ the recovery rate of infectious individuals.

For model (2.1), the basic reproduction number is defined as

R0=
β1

μ+γ
. (2.2)

It is easy to see that

lim
t→∞N(t)=S(t)+I(t)=

Λ

μ
.
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Hence, the plane S+I=
Λ

μ
is an invariant manifold of model (2.1). Throughout this

paper, we always assume that N is fixed.
A simple calculation shows that model (2.1) has two equilibrium points: one is

disease-free equilibrium E0=(Λ/μ,0) which exists for all parameter values and is glob-
ally stable when R0<1, and the other is the endemic equilibrium E∗=(S∗,I∗,) satis-
fying

S∗=
Λ

μ
−I∗,

μI∗

Λ
−
(
1− μ+γ

β1−β2f(I∗)

)
=0 (2.3)

if R0>1. The endemic equilibrium E∗=(S∗,I∗,) is global stable when it exists. For
more details, see [16].

There are different possible approaches to including random effects in the model,
from both a biological and a mathematical perspective [25]. In this article, we adopt the
approach by Beddington and May [9], which has been pursued in [2, 13, 26, 39, 52, 56].
Mathematically speaking, this approach is based on the assumption that the noise is
uniform over the state space and over time [19]. Thus, stochastic perturbation in our
model is a white noise type that is directly proportional to S(t), I(t), and R(t) and is

influenced on the dS(t)
dt , dI(t)

dt and dR(t)
dt , respectively. Following this approach, we obtain

the following SDE epidemic model (2.4) that is analog to its deterministic version (2.1)
by introducing stochastic perturbation terms to the growth equations of susceptible,
infectious, and recovered individuals to incorporate the effect of randomly fluctuating
environments:⎧⎪⎪⎨

⎪⎪⎩
dS(t)=

(
Λ−μS−(β1−β2f(I))

SI

S+I
+γI

)
dt+σ1SdB1(t),

dI(t)=

(
(β1−β2f(I))

SI

S+I
−(μ+γ)I

)
dt+σ2IdB2(t),

(2.4)

where σi (i=1,2) is a real constant, σ2
i (i=1,2) is known as the intensity of environmen-

tal fluctuations, and Bi(t) (i=1,2) independent standard Brownian motions.
Throughout this paper, let (R2

+,F ,P) be a complete probability space with a filtra-
tion {Ft}t∈R+ satisfying the usual conditions (i.e., it is right continuous and increasing
while F0 contains all P-null sets). We also denote R

2
+={(S,I)|S,I >0}.

For the existence of the positive global solution of model (2.4), one can obtain
following results.

Theorem 2.1. For any given initial value (S(0),I(0))∈R2
+, there is a unique solution

(S(t),I(t)) of model (2.4) on t≥0 that will remain in R
2
+ with probability one.

The proof of this theorem is rather standard and hence is omitted.

3. Stochastic disease-free dynamics
In this section, we focus on the stochastic disease-free dynamics as well as the feature

of the stochastic dynamics of S(t) of model (2.4) when the disease extinct. First, we
give the following theorem regarding the extinction of the disease.

Theorem 3.1. If either of the following conditions hold

σ2
2 <2β1 and Rs

0 :=
β1

μ+γ
− σ2

2

2(μ+γ)
=R0

(
1− σ2

2

2β1

)
<1, (3.1)

σ2
2≥2β1, (3.2)
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then, for any given initial value (S(0),I(0))=(S0,I0)∈R2
+, I(t) obeys

limsup
t→∞

1

t
logI(t)≤ (μ+γ)(RS

0 −1)<0 a.s.

Namely, I(t) tends to zero exponentially almost surely. In other words, the disease dies
out with probability one.

Proof. By the Itô formula, we have

d logI(t)=

(
(β1−β2f(I))

S

S+I
−(μ+γ)− σ2

2

2

)
dt+σ2dB2(t). (3.3)

Hence,

logI(t)=logI0+

∫ t

0

(
(β1−β2f(I))

S

S+I
−(μ+γ)− σ2

2

2

)
ds+

∫ t

0

σ2dB2(s)

≤ logI0+

∫ t

0

(
β1−β2f(0)−(μ+γ)− σ2

2

2

)
ds+

∫ t

0

σ2dB2(s)

=logI0+

(
β1−(μ+γ)− σ2

2

2

)
t+G(t), (3.4)

where G(t) is a martingale defined by

G(t)=

∫ t

0

σ2dB2(s).

This implies

〈G,G〉t=
∫ t

0

σ2
2ds=σ2

2t.

By the strong law of large numbers for martingales [39], we have

limsup
t→∞

G(t)

t
=0 a.s.

It finally follows from (3.4) by dividing t on the both sides and then letting t→∞ that

limsup
t→∞

1

t
logI(t)≤β1−(μ+γ)− σ2

2

2

=(μ+γ)
(
RS

0 −1
)
<0 a.s. (3.5)

which is the required assertion.

Remark 3.1. Notice that Rs
0=

β1

μ+γ
− σ2

2

2(μ+γ)
. Thus, according to Theorem 3.1,

the condition of the extinction of a disease is independent of the maximum reduced
contact rate β2.

Next, we will focus on the stochastic dynamics of S(t) of model (2.4) when RS
0 <1.
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Theorem 3.2. If Rs
0<1, for model (2.4), then distribution of the process ψ(t)= lnS(t)

converges weakly to the measure which has the density

g∗(ψ)=K1 exp

{
− 1

σ2
1

(2Λexp{−ψ}+2μψ+σ2
1ψ)

}
, (3.6)

where K1=

(∫ ∞

−∞
exp

{
− 1

σ2
1

(2Λexp{−ψ}+2μψ+σ2
1ψ)

}
dψ

)−1

.

Proof. According to Theorem 3.1, if Rs
0<1, we get lim

t→∞I(t)=0, a.s.. That is to say,

for ∀0<ε
1, there exists a constant T1=T1(ω) and a set Ωε such that P(Ωε)>1−ε,
0≤ I(t)≤ε for t>T1 and ω∈Ωε. Then

Λ−μS−β1ε+σ1SdB1(t)≤dS(t)≤Λ−μS+γε+σ1SdB1(t).

For arbitrary ε, we obtain

dS(t)=Λ−μS+σ1SdB1(t). (3.7)

By putting S(t)=exp{ψ(t)}, we have

dψ(t)=

(
Λexp{−ψ(t)}−μ− σ2

1

2

)
dt+σ1dB1(t).

Then the above equation has a unique stationary distribution which has a density g∗(ψ)
satisfying the Fokker–Planck equation

1

2
σ2
1

d2g∗(ψ)
dψ2

− d

dψ

((
Λexp{−ψ}−μ− σ2

1

2

)
g∗(ψ)

)
=0. (3.8)

The general solution to equation (3.8) is

g∗(ψ)=exp

{
− 1

σ2
1

(2Λexp{ψ}+2μψ+σ2
1ψ)

}

·
(
K1−K2

∫ r

0

exp

{
1

σ2
1

(2Λexp{ψ}+2μψ+σ2
1ψ)

}
dr

)
,

where K1,K2 are two constants. It follows easily from the conditions

g∗(ψ)≥0,

∫ ∞

−∞
g∗(ψ)dψ=1,

that K2=0 and

K1=

(∫ ∞

−∞
exp

{
− 1

σ2
1

(2μexp{−ψ}+2μψ+σ2
1ψ)

}
dψ

)−1

.

Therefore,

g∗(ψ)=K1 exp

{
− 1

σ2
1

(2Λexp{−ψ}+2μψ+σ2
1ψ)

}
.

By the existence of a stationary distribution [46], ψ(t)= lnS(t) converges to the measure
with the density g∗(ψ) as t→∞.
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4. Stochastic endemic dynamics
The deterministic SIS model (2.1) is globally stable at its endemic equilibrium E∗

whenever R0=
β1

μ+γ
>1 [16]. Since model (2.4) is the perturbed system of model (2.1),

it seems reasonable to consider that the disease will prevail if the solution of model (2.4)
has the ergodic property. In what follows, unless otherwise specified, we assume that
S∗ and I∗ satisfy condition (2.3).

4.1. Persistence of the disease. In the following, we will consider the persis-
tence of the stochastic model (2.4).

Theorem 4.1. If Rs
0 :=

β1

μ+γ
− σ2

2

2(μ+γ)
>1, then for any given initial values

I(0)∈ (0,Λ/μ), the solution of the stochastic differential equation (2.4) obeys

limsup
t→∞

I(t)≥ ξ, a.s. (4.1)

and

liminf
t→∞ I(t)≤ ξ, a.s., (4.2)

where ξ is the positive root of

g(I) :=(β1−β2f(I))

(
1− I

N

)
−(μ+γ)− σ2

2

2
=0.

Proof. In view of Rs
0>1, we have g(0)=(β1−(μ+γ)− σ2

2

2
=(μ+γ)(Rs

0−1)>0

and g(N)=−(μ+γ)− σ2
2

2
<0. Then g(I) admits a root ξ∈ (0,N). Moreover g(I) is

decreasing around ξ, so we can easily show that, for any sufficiently small ε>0, we have

g(ξ+ε)<0<g(ξ−ε). (4.3)

We now begin to prove assertion (4.1). If it is not true, then there is a sufficiently

small ε>0 such that P(Ω1)>0, where Ω1=

{
limsup
t→∞

I(t)≤ ξ−2ε

}
. Hence, for every

ω∈Ω1, there is a T (ω)>0 such that

0≤ I(t,ω)≤ ξ−ε, ∀t≥T (ω). (4.4)

It therefore follows from (4.3) and (4.4) that

g(I(t,ω)≥g(ξ−ε), ∀t≥T (ω). (4.5)

Moveover, by the strong law of large numbers for martingales [39], there is a Ω2⊂Ω
with P(Ω2)=1 such that for every ω∈Ω2,

limsup
t→∞

G(t)

t
=0 a.s.

Now, fix any ω∈Ω1∩Ω2. It then follows from (4.5), for t≥T (ω)

logI(t,ω)=logI0+

∫ T (ω)

0

(g(I(s)))ds+

∫ t

T (ω)

(g(I(s)))ds+G(t)
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≥ logI0+

∫ T (ω)

0

(g(I(s)))ds+g(ξ−ε)(t−T (ω))+G(t). (4.6)

This yields

liminf
t→∞

1

t
logI(t,ω)≥g(ξ−ε)>0,

whence, lim
t→∞I(t,ω)=∞. This contradicts (4.4). The required assertion, (4.1), must

therefore hold.
Similarly, if (4.2) were not true, we could then find an ε̃>0 sufficiently small such

that P(Ω3)>0, where Ω3=
{
liminf
t→∞ I(t)≥ ξ+2ε̃

}
. Hence, for every ω∈Ω3, there is a

τ(ω)>0 such that

I(t,ω)≥ ξ+ ε̃, ∀t≥ τ(ω). (4.7)

Now, fix any ω∈Ω3∩Ω2. It then follows from (4.5), for t≥T (ω)

logI(t,ω)≤ logI0+

∫ τ(ω)

0

(g(I(s)))ds+g(ξ+ ε̃)(t−T (ω))+G(t). (4.8)

This yields

limsup
t→∞

1

t
logI(t,ω)≤g(ξ+ε)<0,

whence, lim
t→∞I(t,ω)=0. This contradicts (4.7). This completes the proof of assertion

(4.2).

4.2. Stochastic asymptotic stability.
Theorem 4.2. If the following two conditions are satisfied,

(i) RS
0 >1;

(ii) σ2
1 <2μ, σ2

2 <2μ,
then for any initial value (S(0),I(0))∈R2

+, the solution (S(t),I(t)) of model (2.4) has
the property

limsup
t→∞

1

t
E

∫ t

0

((
S− 2μ

2μ−σ2
1

S∗
)2

−
(
I− 2μ

2μ−σ2
2

I∗
)2

)
dτ ≤ Ψ

Θ
.

where

Ψ=
μσ2

1

2μ−σ2
1

S∗2+
μσ2

2

2μ−σ2
2

I∗2+
2σ2

2μ(S
∗+I∗)

2(β1−β2f(I∗))
I∗,

Θ=min

{
μ− 1

2
σ2
1 ,μ−

1

2
σ2
2

}
.

Proof. Since RS
0 >1, hence R0=RS

0 +
σ2
2

2(μ+γ)
>1, there is an endemic equilibrium

E∗=(S∗,I∗) of model (2.1). Then we have

Λ=μS∗+(β1−β2f(I
∗))

S∗I∗

S∗+I∗
−γI∗, (β1−β2f(I

∗))
S∗I∗

S∗+I∗
=(μ+γ)I∗. (4.9)



Y. CAI, Y. KANG, M. BANERJEE, AND W. WANG 901

Set

V (S,I)=
1

2
(S−S∗+I−I∗)2+λ

(
I−I∗−I∗ ln

I

I∗

)
:=V1(S,I)+λV2(I), (4.10)

where λ is positive constants to be determined later. V is a nonnegative C2–function.
From (4.9), by the Itô formula, we have

dV1=

(
(S−S∗+I−I∗)(Λ−μS−(μ+ )I)+

1

2
(σ2

1S
2+σ2

2I
2)

)
dt

+(S−S∗+I−I∗)(σ1SdB1(t)+σ2IdB2(t))

=((S−S∗+I−I∗)(−μ(S−S∗)−(μ+ )(I−I∗))+
1

2
(σ2

1S
2+σ2

2I
2))dt

+(S−S∗+I−I∗)(σ1SdB1(t)+σ2IdB2(t))

=(−μ(S−S∗)2−μ(I−I∗)2−2μ(S−S∗)(I−I∗)+
1

2
(σ2

1S
2+σ2

2I
2))dt

+(S−S∗+I−I∗)(σ1SdB1(t)+σ2IdB2(t))

and

dV2=

(
(I−I∗)

(
(β1−β2f(I))

S

S+I
−(μ+γ)

)
+

1

2
σ2
2I

∗
)
dt+(I−I∗)σ2dB2(t)

=(I−I∗)
(
(β1−β2f(I))

S

S+I
−(β1−β2f(I

∗))
S∗

S∗+I∗

)
+

1

2
σ2
2I

∗

+(I−I∗)σ2dB2(t)

=− β2S

S+I
(I−I∗)(f(I)−f(I∗))+(I−I∗)

(β1−β2f(I
∗))S(S∗−S+I∗−I)

(S∗+I∗)(S+I)

+
(β1−β2f(I

∗))(S−S∗)(I−I∗)
S∗+I∗

+
1

2
σ2
2I

∗+(I−I∗)σ2dB2(t)

≤− (β1−β2f(I
∗))S

(S∗+I∗)(S+I)
(S∗−S)(I−I∗)+

(β1−β2f(I
∗))

S∗+I∗
(S−S∗)(I−I∗)+

1

2
σ2
2I

∗

+(I−I∗)σ2dB2(t)

≤ (β1−β2f(I
∗))

S∗+I∗
(S−S∗)(I−I∗)sign(S−S∗)(I−I∗)+

1

2
I∗σ2

2+(I−I∗)σ2dB2(t).

Here, we use the facet that f(I) is non-decreasing. Choose

λ=
2μ(S∗+I∗)
β1−β2f(I∗)

then

dV ≤
(
−μ(S−S∗)2−μ(I−I∗)2+

1

2
(σ2

1S
2+σ2

2I
2)+

λ

2
σ2
2I

∗
)
dt

+σ1S(S−S∗+I−I∗)dB1(t)+σ2(I(S−S∗+I−I∗)+λ(I−I∗))dB2(t)

:=LV dt+σ1S(S−S∗+I−I∗)dB1(t)+σ2(I(S−S∗+I−I∗)+λ(I−I∗))dB2(t),

where

LV =−μ(S−S∗)2−μ)(I−I∗)2+
1

2
(σ2

1S
2+σ2

2I
2)+

λ

2
σ2
2I

∗
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=−
(
μ− 1

2
σ2
1

)(
S− 2μ

2μ−σ2
1

S∗
)2

−
(
μ− 1

2
σ2
2

)(
I− 2μ

2μ−σ2
2

I∗
)2

+
μσ2

1

2μ−σ2
1

S∗2+
μσ2

2

2μ−σ2
2

I∗2+
λ

2
σ2
2I

∗.

Thus integrating both sides of the equality from 0 to t and taking expectations, yields

EṼ (S(t),I(t))−EṼ (S(0),I(0))

≤−E

∫ t

0

((
μ− 1

2
σ2
1

)(
S− 2μ

2μ−σ2
1

S∗
)2

−
(
μ− 1

2
σ2
2

)(
I− μ

2μ−σ2
2

I∗
)2

)
dτ

+

(
μσ2

1

2μ−σ2
1

S∗2+
μσ2

2

2μ−σ2
2

I∗2+
λ

2
σ2
2I

∗
)
t, (4.11)

Now take

Θ=min

{
μ− 1

2
σ2
1 ,μ−

1

2
σ2
2

}
.

Through dividing both sides of (4.11) by t and letting t→∞, we obtain

limsup
t→∞

1

t
E

∫ t

0

((
S− 2μ

2μ−σ2
1

S∗
)2

−
(
I− 2μ

2μ−σ2
2

I∗
)2

)
dτ ≤ Ψ

Θ
.

The proof is complete.

4.3. Stationary distribution and Ergodic property. Before giving the
main theorem about the endemic stationary distribution, we first give a definition about
stationary distribution [23] and some lemmas.

Definition 4.3 (Stationary distribution [23]). Let P (t,X0, ·) denote the probability
measure induced by X(t)=(S(t),I(t)) with initial value X0=(S(0),I(0)); that is,

PX0(X ∈B)=P{X(t))∈B :X(0)=X0} for any Borel setB⊂R
2
+.

If there is a probability measure π(·) on the measurable space (R2
+,B(R2

+)) such that

lim
t→∞PX0

(X ∈B)=π(B) for anyX0∈R2
+,

we then say that model (2.4) has a stationary distribution π(·).
Let X(t) be a regular temporally homogeneous Markov process in R

2
+ described by

the stochastic differential equation

dX(t)=F (X,t)dt+

2∑
r=1

σr(X)dBr(t)

and the diffusion matrix is defined as follows

A(x)=((aij(x))), aij(x)=
2∑

r=1

σi
r(x)σ

j
r(x).
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For model (2.4), the diffusion matrix is

A(x)=diag
(
σ2
1S

2, σ2
2I

2
)
.

Lemma 4.4 ([29]). We assume that there exists a bounded domain U ⊂R
2
+ with

regular boundary, which has the following properties:

(i) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(ii) If x∈R2
+ \U , the mean time τ at which a path issuing from x reaches the set U

is finite, and sup
x∈K

Exτ <∞ for every compact subset K⊂R
2
+.

Lemma 4.5 ([29]). Suppose that Lemma 4.4 holds. Then the Markov process X(t)
has a unique stationary distribution π(·). Moreover, if F (X,t) is a function integrable
with respect to the measure π, then

Px

{
lim

T→∞
1

T

∫ T

0

F (X(t))dt=

∫
R

2
+

F (t)π(dx)

}
=1

for all x∈R2
+.

We here omit the proof of the above lemmas, as the proofs can be found in [29].
Applying Theorem 4.2 and Lemmas 4.4 and 4.4, we can get the following result.

Theorem 4.6. Consider the stochastic model (2.4) with initial condition (S(0),I(0))∈
R

2
+. Suppose that the assumptions in Theorem 4.2 and

0<Ψ<min

{
2μ2

2μ−σ2
1

S∗2,
2μ+2

2μ−σ2
2

I∗2
}

hold, where Ψ has the same definitions as it does in Theorem 4.2. Then there exists
a unique stationary distribution π(·), and the solution ((S(t),I(t)) of model (2.4) is
ergodic.

Proof. To verify (i) of Lemma 4.4, with reference to Zhu and Yin [58], it is sufficient
to show that there exists some neighborhood U and a nonnegative C2–function V (x)
such that, for some constants C>0,

LV (x)<−C for any, x∈R2
+ \U.

To this end, we use the nonnegative C2–function V (S,I) as Theorem 4.2. Hence, it
follows from Theorem 4.2 that

LV ≤−
(
μ− 1

2
σ2
1

)(
S− 2μ

2μ−σ2
1

S∗
)2

−
(
μ− 1

2
σ2
2

)(
I− 2μ

2μ−σ2
2

I∗
)2

+Ψ.

Now since Ψ satisfies the following conditions,

0<Ψ<min

{
2μ2

2μ−σ2
1

S∗2,
2μ2

2μ−σ2
2

I∗2
}
,

the ellipsoid(
μ− 1

2
σ2
1

)(
S− 2μ

2μ−σ2
1

S∗
)2

+

(
μ− 1

2
σ2
2

)(
I− 2μ

2μ−σ2
2

I∗
)2

=Ψ
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lies entirely in R
2
+. One can then take U as any neighborhood of the ellipsoid such that

Ū ⊂R
2
+, where Ū is the closure of U . Thus, we have LV (S,I)<0 for (S,I)∈R2

+ \U ,
which implies that condition (ii) in Lemma 4.4 is satisfied.

On the other hand, there is M =min{σ2
1S

2,σ2
2I

2}>0 such that

diag
(
σ2
1S

2, σ2
2I

2
)
ξiξj =σ2

1S
2ξ21+σ2

2I
2ξ22 ≥M |ξ|2,

for all (S,I)∈ Ū , ξ∈R2
+. Thus, by Rayleigh’s principle (see [48], p.342), condition (i)

in Lemma 4.4 is verified for model (2.4). As a consequence, the stochastic model (2.4)
has a stationary distribution π(·) and is ergodic.

5. An application
In this section, we apply our results, obtained in Section 4, to a stochastic SIS

epidemic model, and we discuss the influence of noise intensity on disease transmission.
We fix the function f(I) as

f(I)=
I

b+I
, (5.1)

motivated by Cui et al. [16]. With this assumption the model (2.4) becomes

⎧⎪⎪⎨
⎪⎪⎩

dS(t)=

(
Λ−μS−

(
β1− β2I

b+I

)
SI

S+I
+γI

)
dt+σ1SdB1(t),

dI(t)=

((
β1− β2I

b+I

)
SI

S+I
−(μ+γ)I

)
dt+σ2IdB2(t).

(5.2)

It is easy to verify that the condition (A1) is satisfied for the chosen form of f(I).
Model (5.2) without noise intensity has the disease-free equilibrium E0=(Λ/μ,0) and
the endemic equilibrium E∗=(S∗,I∗) satisfying, if R0>1,

S∗=
Λ

μ
−I∗,

μI∗

Λ
−
(
1− (μ+γ)(b+I∗)

(β1−β2)I∗+bβ1

)
=0.

Now, we present some numerical simulation results to show the effect of noise on
the dynamics of SIS models by using the Milstein method mentioned in Higham [24].
For this purpose, the SDE model (5.2) can be rewritten as the following discretized
equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sk+1=Sk+

(
Λ−μS−

(
β1− β2I

b+I

)
SkIk
Sk+Ik

+γI

)
Δt+σ1Sk

√
Δtξk

+
σ2
1

2
Sk(ξ

2
k−1)Δt,

Ik+1= Ik+

((
β1− β2I

b+I

)
SkIk
Sk+Ik

−(μ+γ)I

)
Δt+σ2Ik

√
Δtηk+

σ2
2

2
Ik(η

2
k−1)Δt,

where ξk and ηk, k=1,2, · · · ,n, are the kth realization of two independent Gaussian
random normal variate N(0,1).

Throughout the rest of this manuscript, the choice for the following parameters
remain unaltered:

Λ=1, μ=0.05, β1=0.15, β2=0.1, γ=0.02,b=10. (5.3)
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For the stochastic model (5.2), we choose σ1=0.3, σ2=0.5, then we have

Rs
0=

β1

μ+γ
− σ2

2

2(μ+γ)
=0.357<1.

Thus according to Theorem 3.1, we can conclude that for any initial value (S(0),I(0))∈
R

2
+, I(t) obeys

limsup
t→∞

1

t
logI(t)≤−0.045 a.s.

That is, I(t) will tend to zero exponentially with probability one (see Figure 5.1).
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Fig. 5.1. The path S(t) and I(t)for the stochastic model (5.2) with initial values (S(0),I(0))=
(19,1). The parameters are taken as (5.3) and σ1=0.3,σ2=0.5.

For the stochastic model (5.2), the basic reproduction number is given by

Rs
0=

β1

μ+γ
− σ2

2

2(μ+γ)
,

hence the important parameters (namely β2, b, and σ1) have no role in determining
Rs

0. However, the strength of noise to the susceptible population and the parameters
characterizing media effect play a crucial role in determining the long-term dynamics of
the system. In order to understand the role, we can proceed step by step.

First we calculate the average time for extinction of I for three different values of
σ1 keeping other parameters fixed as mentioned earlier for which the condition Rs

0 < 1
is satisfied. We have noted the time for which I(t) is becoming zero for the first time
and then calculated the average over 1000 simulations. The average extinction times are
89.91, 83.79, 78.73 for σ1 = 0.1, 0.2, 0.3 respectively. It clearly shows that the extinction
of infected species accelerated with the increasing noise strength on the susceptible
population. Next we have collected the values of S at t= 200 from 1000 simulations for
three different values of σ1 and presented their distribution in Figure 5.2. Significant
change in distribution of S(200) with the variation of σ1 explains the role of noise
strength on the system dynamics.

To see the disease dynamics of (5.2) when Rs
0>1, we decrease the noise intensity σ2

of infectious I to be 0.25, i.e., σ2=0.25, and keeping the other parameters unchanged.
Then we have

Rs
0=

β1

μ+γ
− σ2

2

2(μ+γ)
=1.696>1.
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Fig. 5.2. Distribution of S(t) at t= 200 obtained from 1000 simulations and for three different
values of σ1, (a) σ1 = 0.1; (b) σ1 = 0.2; (c) σ1 = 0.3.

Therefore, the condition of Theorem 3.1 is not satisfied. In this case, our simulations
suggest that I(t) is stochastically persistent (see Figure 5.3).
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Fig. 5.3. The path S(t) and I(t)for the stochastic model (5.2) with initial values (S(0),I(0))=
(19,1). The parameters are taken as (5.3) and σ1=0.3,σ2=0.25.

Now we can check that how the magnitude of maximum reduced contact rate (β2)
due to coverage on media, change the system dynamics and in particular accelerate
the extinction of infectious individuals. The average time required for the extinction of
infectious individuals reduces with the increasing magnitude of β2 when the parameter
values and noise strengths satisfy the condition Rs

0 < 1. We have collected the values
of I(t) at t= 200 from 1000 simulation runs for different magnitudes of β2, with equal
noise strengths σ1 = 0.01 = σ2 and other parameter values kept unaltered. This choice
of σ2 satisfies the condition Rs

0 > 1 and hence both the susceptible and infected species
coexist at all future time. It is interesting to observe that the mean value of I(t=200)
decreases gradually with the increase in magnitude of β2, the distribution of I(t) ob-
tained from 1000 simulation runs, for each chosen values of β2, also changes significantly
(see Figure 5.4). The level of infectious individuals sometimes attains the magnitude
20–30 when β2 = 0 and 0.1, but they never cross the level I = 10 for β2 > 2.5. The
simulation results in favor of our claim can be verified from the range of horizontal axis
at Figure 5.4(c) and (d).

In order to verify the analytical conditions mentioned in Theorem 4.6, we choose
the parameter values as follows:

Λ=1, μ=0.05, β1=0.15, β2=0.5, b=10, γ=0.02, σ1=0.01, σ2=0.04. (5.4)
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Fig. 5.4. Distribution of I(t) at t= 200 obtained from 1000 simulations and for four different
values of β2, (a) β2 = 0.0; (b) β2 = 0.1; (c) β2 = 0.3; (d) β2 = 0.5.

16 17 18 19 20 21
0

50

100

150

200

250

300

350

S(500) →

D
is

tr
ib

ut
io

n 
→

1 1.5 2 2.5
0

50

100

150

200

250

300

I(500) →

D
is

tr
ib

ut
io

n 
→

(a) (b)

Fig. 5.5. Distribution of S(t) and I(t) at t= 500 obtained from 5000 simulations of model (5.2)
and for parameter values mentioned in (5.4).

With this choice of the parameters, we find Ψ=0.05508, 2μ2

2μ−σ2
1
S∗2=16.72308,

2μ2

2μ−σ2
2
I∗2=16.72308 and hence the desired condition for the existence of stationary

distribution is satisfied. We have run the numerical simulation 5000 times and collected
the values of S(t) and I(t) at t=500, and their distributions are presented in Figure 5.5.
The distributions presented at Figure 5.5 do not change with time and, hence they are
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stationary in nature. It is important to mention here that the distribution should change
a little bit with the variation of parameter values.

6. Discussion

Epidemic models of SIS type have received enormous attention in much research
during a long period of time, but recently the main focus of research in this direction
is to investigate the possible control mechanisms. As part of such an attempt here
we have reconsidered a stochastic SIS model with the degradation of rate of infection
due to media coverage. Recently Cui et al. [16] considered a model where the rate of
infection lowered due to the coverage in media about the disease. It is assumed that the
media coverage cannot eradicate the disease but possesses the capability to lower the
rate of infection. Keeping this idea in mind, the deterministic model is extended to a
stochastic differential equation model by incorporating multiplicative noise terms. Here
we have derived the conditions for stochastic extinction and the existence of stationary
distribution. In both the cases, the obtained conditions are expressions involving the
system parameters and intensities of noise terms.

In order to understand the role of media coverage towards the disease dynamics we
have presented some numerical simulation results in validating the analytical findings.
It is interesting to note that the expression for RS

0 does contain any parameter involved
with the functional form modeling the effect media coverage. However, the role of
media coverage for the extinction of infected species is explained here with the help of
numerical simulations with varying values of β2. In the case of an endemic situation,
the average value of infected individuals also decreases with the increasing magnitude
of β2.
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