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AN AUGMENTED KELLER–SEGEL MODEL FOR E. COLI
CHEMOTAXIS IN FAST-VARYING ENVIRONMENTS ∗

TONG LI† , MIN TANG‡ , AND XU YANG§

Abstract. This is a continuous study on E. coli chemotaxis under the framework of pathway-based
mean-field theory (PBMFT) proposed in [G. Si, M. Tang, and X. Yang, 12, 907–926, 2014], following
the physical studies in [G. Si, T. Wu, Q. Quyang, and Y. Tu, 109, 048101, 2012]. In this paper, we derive
an augmented Keller–Segel system with macroscopic intercellular signaling pathway dynamics. It can
explain the experimental observation of phase-shift between the maxima of ligand concentration and
density of E. coli in fast-varying environments at the population level. This is a necessary complement
to the original PBMFT where the phase-shift can only be modeled by moment systems. Formal
analysis are given for the system in the cases of fast and slow adaption rates. Numerical simulations
show the quantitative agreement of the augmented Keller–Segel model with the individual-based E.
coli chemotaxis simulator.

Key words. Chemotaxis, Keller–Segel equation, pathway-based mean field model, fast-varying
environments.
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1. Introduction

Bacterial chemotaxis was modeled by the Keller–Segel (K-S) equations at the pop-
ulation level in [7], where the drift velocity is given by the empirical functions of the
chemoeffector gradient. Modern experimental technologies can now quantitatively mea-
sure the dynamics of signaling pathways of E. coli ( [1, 2, 12, 15]), leading to successful
models of internal pathway dynamics [8,9,16]. These works provided possibilities of de-
veloping predictive agent-based models with the consideration of intracellular signaling
pathway dynamics.

In order to connect the microscopic agent-based models to the macroscopic popula-
tion level K-S model, run-and-tumble kinetic chemotaxis models are introduced, where
the tumbling frequency is heuristically depending on the chemical gradient [10]. In the
pioneering work of [3,4,17], the authors derived macroscopic K-S type models by study-
ing the kinetic chemotaxis models incorporating linear models for signaling pathways.
In [13, 14], the authors incorporated the most recent quantitatively measured signaling
pathway and recovered the logarithmic sensing property in the K-S model. The connec-
tion of these two classes of kinetic models, with and without the signaling pathways, is
revealed in [11], which indicates the influence of the molecular content.
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Although both types of kinetic models yield the macroscopic K-S model, when the
signaling pathways are taken into account, a pathway-based mean field theory (PBMFT)
[13, 14] is introduced, which can explain a counter-intuitive experimental observation
that in a spatial-temporal fast-varying environment, there exists a phase shift between
the maxima of ligand concentration and E. coli density [18]. Especially, when the time
scale of ligand concentration is comparable to the adaptation time scale of E. coli, the
phase shift becomes significant. This is a phenomenon that cannot be explained by the
K-S model [13, 14].

In this paper, we start from the pathway-based mean-field moment system on E. coli
chemotaxis proposed in [13], and develop an augmented K-S model that can explain the
phase shift of E. coli dynamics happening in fast-varying environments. The derivation
is based on non-dimensionalizing the moment system and noticing that the time scale
of average methylation level dynamics is the same as the one of environment variance.
The augmented K-S equation is composed by an equation for the bacteria density ρ
(1.1a) whose drift velocity and diffusion coefficient are determined by the macroscopic
average methylation level M and an additional dynamic equation for M (1.1b):
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Here v0 is the individual running speed of E. coli, κ is the ratio of environmental
variance time scale over the one for methylation adaptation. Z= z

(
a(M, [L])

)
, F =

f
(
a(M, [L])

)
are two functions depending on the intracellular methylation level M and

the extracellular chemoattractant concentration [L]. At the microscopic level, they
describe the tumbling frequency and the intracellular adaptation dynamics, respectively.
Their choice in [13, 14] relies on recent measurement in [2, 12]

F
(
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)
=kR(1−a/a0), Z

(
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)
= z0+τ−1

( a
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)H
, (1.2)

where the parameter kR is the methylation rate, a0 is the receptor preferred activity,
and z0, H, τ represent the rotational diffusion, the Hill coefficient of flagellar motors
response curve and the average run time, respectively. The receptor activity a(M, [L])
is

a=
(
1+exp(NE)

)−1
,

with E=−α(M−m0)+f0([L])=−α(M−m0)+ln

(
1+[L]/KI

1+[L]/KA

)
, (1.3)

where N , m0, KI , KA represent the number of tightly coupled receptors, basic methy-
lation level, and dissociation constant for inactive receptors and active receptors, re-
spectively.

Equation (1.1) can be formally understood as a K-S equation that incorporate
intracellular chemo-sensory dynamics. It takes into account the fact that, in fast-varying
environment, the environment changes at the time scale of adaptation, and not all E. coli
are fully adapted to the change of the environment. Compared to the BPMFT in [13,14],
the augmented K-S model has the advantage of being easily solved and analyzed. We
also remark that when the environment changes slowly, κ is large, and thus F ≈0 and
M ≈m0+f0([L])/α, and (1.1) becomes the standard K-S equation. Numerical results



T. LI, M. TANG, AND X. YANG 885

are presented to show the quantitative agreement of the augmented K-S model with
the individual-based E. coli chemotaxis simulator (SPECS, [5]) in both slow and fast
varying environment.

The rest of the paper is organized as follows: We derive the augmented K-S model
in Section 2. In Section 3, we analyze the system at the cases of fast and slow adaptive
rates, and give some formal understandings of the system. In Section 4, we verify its
validity by numerical comparison to SPECS. Conclusive remarks are made in Section 5.

2. Derivation of the augmented Keller–Segel model
We first summarize the pathway-based mean-field moment system on E. coli chemo-

taxis proposed in [13] for convenience. Under the assumption that the methylation
levels of right (left) oriented E. coli are locally concentrated near their average M±,
the moment system can be derived from the kinetic model that incorporate one single
additional variable m which represents the intracellular methylation level. Denote the
right (left)-traveling densities:

∫
p+dm and the right (left)-oriented moments of methy-

lation m:
∫
mp+dm as ρ+ (ρ−) and q+ (q−), respectively. They satisfy the following

four-equation hyperbolic system
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Here M±= q±/ρ± is the right (left) oriented average methylation level, and F±=
F
(
a(M±, [L])

)
, Z±=Z

(
a(M±, [L])

)
.

We nondimensionalize (2.1) by

t=T t̃, x=Lx̃, v0=s0ṽ0,

where T , L are temporal and spatial scales of the E. coli system, respectively. Then
(2.1) becomes, after dropping the “∼”,
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where T1, T2 are the average run and signaling adaptation time scales, respectively and
Tf is the time scale that the macroscopic methylation level changes which the same as
the time scale that the environment varies.
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For E. coli chemotaixs, the average run time is at the order of 1s, the signaling
adaptation time is approximately 10s∼100s, and the observation system time scale is
about 1000s. It is reasonable to consider the long time regime, where the tumbling
frequency becomes large (the so-called parabolic scaling). The main difference from the
derivation of the standard K-S equation is that we separate out the scale Tf , whose
scale is the same as the variation of the environment. We consider the following scaling

T1

L/s0
=ε,

T2

L/s0
=1,

T

L/s0
=

1

ε
, and

Tf

L/s0
=

1

κ
, (2.3)

where ε is small. Since Tf ranges from 100s to 800s in the experiment in [18], κ ranges
from O(ε) to O(1). Then (2.2) becomes
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We consider the following asymptotic expansion

ρ±=ρ±(0)+ερ±(1)+ · · · , q±= q±(0)+εq±(1)+ · · · , M±=M±(0)+εM±(1)+ · · · ,
F±=F±(0)+εF±(1)+ · · · , Z±=Z±(0)+εZ±(1)+ · · · .
Matching the O(1/ε) terms in (2.4a) and (2.4c) yields

Z+(0)ρ+(0)=Z−(0)ρ−(0) and M+(0)Z+(0)ρ+(0)=M−(0)Z−(0)ρ−(0),

which gives

M+(0)=M−(0)=M0, Z
+(0)=Z−(0)=Z0, F

+(0)=F−(0)=F0;

ρ+(0)=ρ−(0)=ρ0, q
+(0)= q−(0)= q0.

The O(1) terms in the sum of (2.4c) and (2.4d) yield

κ
∂M0

∂t
=F0. (2.5)
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Equating the O(ε) terms in the sum of (2.4a) and (2.4b) produces
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Together with (2.5), the O(1) terms in (2.4a)–(2.4b) and (2.4c)–(2.4d) bring
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Multiplying (2.8) by M0 and subtracting it from (2.9) yield
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Substituting the above equation into (2.7) yields the augmented K-S equation
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with M0 given by (2.6). The dependence on the outside signal is implicitly included
in the expression of a, since a is a function of M0 and [L], (2.6) depends on [L], so
are the diffusion and chemo-sensitivity coefficients in (2.10). It can be understood as
a K-S equation incorporated with macroscopic dynamics of methylation level whose
adaptation rate is given by the ratio of the microscopic adaptation time for each E. coli
over the one of environmental variance.

3. Formal understanding
The system (1.1) depends on the environment by the fact that a is a function

of both methylation level m and extracellular chemoattractant concentration [L]. The
complex nonlinear dependence of the coefficients on [L] makes it hard to have an intuitive
idea of the population behavior. In order to understand the population behavior, we
reformulate (1.1) into a system for the bacteria population density ρ and average activity
a.

Let
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(
1+[L]/KI

1+[L]/KA

)
. (3.1)
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we find

Z−2 ∂Z

∂M

∂M

∂x
=Z−2 ∂Z

∂a

(∂a
∂x

+Na(1−a)
∂S

∂x

)
,

∂a

∂t
=

kR
κ

∂a

∂M
(1−a/a0)−Na(1−a)

∂S

∂t
.

Therefore, the system (1.1) can be written into a system for ρ and a such that
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In (3.2), the first two terms on the right hand side of the equation for ρ is the same as
the standard K-S model. Particularly, since 0<a0<1, the first term on the right hand
side of the equation for a has the effect that let a converge to a0. When the environment
changes slow comparing to the adaptation time, i.e. kR/κ is large, the first term on the
right hand side of (3.2b) dominates, a≈a0 and the last term in (3.2a) for ρ vanishes.
The population behavior of (3.2) is the same as the standard K-S model.

The last terms on the right-hand side of (3.2) take into account the fast variation
in time. We introduce η= κ

kRNα , and rewrite (3.2b) as
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Proposition 3.1. For the system
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with D(a), χ(a), and C(a) as some positive decreasing functions in a. When η→0, a=
a0 is the unique stable steady state for (3.4b). Assume |∂tS| is bounded, (3.4) converges
to the K-S equation. When ∂tS>δ (δ is some positive constant) and η large, the stable
steady state is a=0 while the stable steady state switches to a=1 when ∂tS<−δ.

Proof. The proof is straight forward. When η→0, the limit equation for a is

∂a

∂t
=

1

η
a(1−a)

(
1−a/a0

)
,

it has three steady solutions, a=0,a0,1, but only a0 is stable, which implies that a→a0
as t→+∞. This yields the standard K-S equation. When η→+∞, (3.4b) becomes

∂a

∂t
=a(1−a)∂tS.

The two steady states are a=0,1. When ∂tS>δ>0, only a=0 is stable while when
∂tS<−δ<0, a=1 is stable.

Therefore, in the intermediate regime, when ∂tS>0, 0<a<a0, while when ∂tS<0,
a0<a<1. This can be verified in the numerical simulations as in Section 4.
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For η�1, if we consider the asymptotic expansions with respect to η, the first two
terms on the right-hand side of (3.3) is a0−ηa0N∂tS. Then, the equation for ρ becomes
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This is a modified K-S model with ∂tS dependent advection and diffusion. The equation
looks complex, but all coefficients are constants, except S being determined by the
outside signal. This linearized version is not well-posed when S decreases fast, however,
it provides the intuition that the diffusion and advection coefficients depends on ∂tS
instead of S itself. This is an important observation, since at the cell level, bacteria can
“feel” S while at the population level, only ∂xS or ∂tS.

Remark 3.1. Since the biologically measurable parameters KA�KI , when KI�
[L]�KA, S≈χ ln[L], we can simplify (3) further by replacing S by ln[L]. In the limit
η→0, this yields the spacial logarithm sensitivity of E. coli chemotaxis, which have been
proved experimentally [6]. The temporal logarithm sensitivity is indicated by (3).

4. Numerical results
We show the numerical comparison of SPECS to the augmented K-S model in this

section. SPECS is a cell based microscopic model that takes into account the evolution
of each cell intracellular methylation level by ∂tm=F (a(m, [L])). It is easy to run
a Monte Carlo simulation with particles whose tumbling frequency of each bacteria is
determined by Z(a(m, [L])) in (1.2). SPECS and the kinetic model with an incorporation
of intracellular chemo-sensory systems showed a quantitative match in [13, 14]. They
can both capture the behavior E. coli chemotaxis at the population level in fast varying
environments.

Following the setup in [13,14], we choose a periodic one-dimensional traveling wave
concentration [L](x,t)= [L]0+[L]A sin[ 2πλ (x−ut)] environment to show how the intra-
cellular signaling dynamics affects the behavior of E. coli at the population level. Here
the environment is spatial-temporal varying and the wavelength λ is the length of the
domain. The advantage of the periodic environment set up is that it is experimentally
realizable and u is experimentally tunable.

We compare the densities ρ and the macroscopic activities a(M0) in Figure 4.1. The
density is scaled at the order of 10−3. In SPECS, the density is defined as the ratio of
the actual E. coli number in a cell over the total number, and the macroscopic activity
a(M) is defined as the average of all E. coli activities in a cell. For different choices
traveling wave velocities u=0.4μm/s and u=8μm/s, quantitatively consistency can be
observed for the results of SPECS and the augmented K-S model. In Figure 4.1, the x
axis represents the remainder of x−ut mod 
, i.e. we keep tracking the wave front of
the periodic traveling wave.

When the environment changes slowly (i.e. u=0.4μm/s), a(M) is close to a0, in-
dicating that the methylation levels of most E. coli have been fully relaxed to the
stationary state, while in the fast-varying environment (i.e. u=8μm/s), a(M) is away
from a0, due to the slow signaling adaptation rate. This difference leads to the differ-
ence in the profiles of ρ that when u=0.4μm/s, the bacteria density is larger at where
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Fig. 4.1. Numerical comparison of the augmented K-S model to SPECS [5]. The steady state
profiles of ρ (top) and a(M) (bottom) are presented. Left: u=0.4μm/s; Right: u=8μm/s. In the
subfigures, histograms and dots are from SPECS, solid lines are from the classical K-S equation while
dash-star lines are calculated using the augmented K-S model. The solid lines can not be seen in the
left subfigures since they are overlapped with the dashed-star lines. Parameters for the environment
used here are [L]0=500μM , [L]A=100μM , λ=800μm. Parameters for E. coli chemotaxis are α=1.7,
m0=1, KI =18.2μM , KA=3mM , N =6, kR=0.01s−1, a0=0.5, z0=0.14s−1, τ =0.8s, and H=10.
20 000 cells are simulated in SPECS.
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Fig. 4.2. The difference between the three different K-S models are presented. The spacial temporal
varying environment evolves according to [L](x,t)= [L]0+[L]A sin[ 2π

λ
(x−ut)]. Solid lines, dashed and

dash-dotted lines are respectively from the classical K-S equation, the modified K-S equation coupled
with an ODE (2.10) (2.6) and the modified K-S equation taking into account the time derivatives of
the chemical signal (3). Left: u=0.8μm/s; Right: u=2μm/s. The bottom subplots are the zoom in
of the top subplots. All parameters are the same as Figure 4.2.

the concentration [L] is larger, while the case of u=8μm/s indicates the phase-shift
between the density and concentration profiles. More physical explanations are referred
to [5, 14].

Furthermore, the comparison of the three different K-S models are displayed in
Figure 4.2, we can see the difference in the population level behavior even in slow
varying environment. The model (3) is no longer accurate when u becomes large.

5. Conclusion

In this paper, we propose an augmented Keller–Segel model for the population
dynamics of E. coli in the fast-varying environments. The model is derived by rescal-
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ing the moment system proposed in [13] under the assumption that the time scale of
methylation level variation is comparable to the dynamics of the environment. Numer-
ical verification is provided by comparison to the individual-based E. coli chemotaxis
simulator [5]. The phase-shift between the maxima of ligand concentration and density
of E. coli in fast-varying environments can be observed, and thus makes it a neces-
sary complement to the original PBMFT where the phase-shift can only be modeled by
moment systems.

We would like to emphasis that all functions and parameters used in the model
derivation and numerical experiments are biologically measurable. The major interest of
this paper is not only the model derivation but also its applicability to real experimental
predictions.
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