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THE RESPONSE OF REDUCED MODELS OF MULTISCALE
DYNAMICS TO SMALL EXTERNAL PERTURBATIONS∗

RAFAIL V. ABRAMOV† AND MARC KJERLAND‡

Abstract. In real-world geophysical applications (such as predicting climate change), the reduced
models of real-world complex multiscale dynamics are used to predict the response of the actual mul-
tiscale climate to changes in various global atmospheric and oceanic parameters. However, while a
reduced model may be adjusted to match a particular dynamical regime of a multiscale process, it is
unclear why it should respond to external perturbations in the same way as the underlying multiscale
process itself. In the current work, the authors study the statistical behavior of a reduced model of the
linearly coupled multiscale Lorenz ’96 system in the vicinity of a chosen dynamical regime by perturb-
ing the reduced model via a set of forcing parameters and observing the response of the reduced model
to these external perturbations. Comparisons are made to the response of the underlying multiscale
dynamics to the same set of perturbations.
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1. Introduction

A reduced model for slow variables of multiscale dynamics is a lower-dimensional
dynamical system, which “resolves” (that is, qualitatively approximates in some ap-
propriate sense) major large scale slow variables of the underlying higher-dimensional
multiscale dynamics while at the same time being relatively simple and computationally
inexpensive to work with. This is important in real-world applications of contemporary
science, such as geophysical science and climate change prediction [14,15,19,22,25,29,37],
where the actual underlying physical process is impossible to model directly and its
reduced approximation has to be designed for such a purpose. Reduced dynamics
were used to model global circulation patterns [13, 18, 36, 48, 51] and large-scale fea-
tures of tropical convection [24, 31]. Typically, reduced models of multiscale dynam-
ics consist of simplified lower-dimensional dynamics of the original multiscale dynam-
ics for the resolved variables, with additional terms and parameters which serve as
replacements to the missing coupling terms with the unresolved variables of the un-
derlying physical process. These extra parameters in the reduced model are usually
computed to match a particular dynamical regime of the underlying multiscale dynam-
ics [4, 6, 7, 12, 16, 17, 23, 32–35, 49]. In particular, if the underlying multiscale process
changes its dynamical regime (for example, in response to changes in its own forcing
parameters), then the parameters of the corresponding reduced model have to be appro-
priately readjusted to match its dynamical regime to the new regime of the multiscale
dynamics.

In some real-world applications, such as climate change prediction, the reduced
models of complex multiscale climate dynamics are used to predict the response of the
actual multiscale climate to changes in various global atmospheric and oceanic parame-
ters. However, while a reduced model may be manually adjusted to match a particular
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dynamical regime of a multiscale process, it is unclear whether it should respond to iden-
tical external perturbations a priori in the same way as the multiscale process without
any extra readjustments. How do reduced models of multiscale dynamics, adjusted to
a particular dynamical regime, respond to external perturbations which force them out
of this regime? Is their response similar to the response of the underlying multiscale
dynamics to the same external perturbation? It is quite clear that the reduced dynamics
evolve on a set with lower dimension than that of the full multiscale dynamics. How do
the properties of this limiting set respond to changing the external forcing parameter
in comparison to the full multiscale attractor?

Here, we develop a set of criteria for similarity of the response to small external
perturbations between slow variables of multiscale dynamics and those of a reduced
model for slow variables only, determined through statistical properties of the unper-
turbed dynamics. We carry out a computational study of these criteria in the linearly
coupled rescaled Lorenz ’96 model from [4, 7] as well as the difference in responses of
the full multiscale and deterministic reduced dynamics of this system to identical exter-
nal perturbations. Two different types of forcing perturbations are used: a Heaviside
step forcing and a simple time-dependent ramp forcing. The manuscript is structured
as follows. In Section 2, we formulate the standard averaging formalism to obtain the
averaged slow dynamics from a general two-scale dynamical system. Section 3 describes
statistically tractable criteria to ensure similarity of responses between a two-scale sys-
tem and its averaged slow dynamics. In Section 4, we describe the first-order reduced
model approximation to a two-scale dynamics with linear coupling between the slow
and fast variables, previously developed in [4, 6, 7]. In Section 5, we introduce the two-
scale Lorenz ’96 toy model, which will be our testbed for this method. In Section 6,
we present comparisons of the large features of the multiscale and reduced systems,
including statistical comparisons as well as the ability of the reduced model to capture
perturbation response of the multiscale system. Section 7 summarizes the results and
suggests future work.

2. Averaged slow dynamics for a general two-scale system

A general two-scale dynamical system with slow variables x and fast variables y is
usually represented as

⎧⎪⎨
⎪⎩

dx

dt
= F (x,y),

dy

dt
= G(x,y),

(2.1)

where x(t)∈R
Nx are the slow variables of the system, y(t)∈R

Ny are the fast variables,
and F and G are nonlinear differentiable functions. The integer parameters Nx�Ny

are the dimensions of the slow and fast variable subspaces, respectively. Usually, a
time-scale separation parameter is used to denote the difference in time scales between
the slow and fast variables. However, we omit it here, as the framework for reduced
models from [4,6,7] which we use here does not require such a parameter to be explicitly
present.

Under the assumption of “infinitely fast” y-variables, one can use the averaging
formalism [38,39,46,47] to write the averaged system for slow variables alone:

dx

dt
= F̄ (x), F̄ (x)=

∫
F (x,y)dμx(y), (2.2)
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where μx is the invariant distribution measure of the fast limiting system

dz

dτ
=G(x,z), (2.3)

with x above in (2.3) being a constant parameter. We express the slow solutions of
the two-scale system in (2.1) and the averaged system in (2.2) in terms of differentiable
flows:

x(t)=φt(x0,y0) for the two-scale system, (2.4a)

xA(t)=φt
A(x0) for the averaged system. (2.4b)

It can be shown (see [38,39,46,47] and references therein) that if the time scale separation
between x and y is large enough, then, for the identical initial conditions x0 and generic
choice of y0, the solution xA(t) of the averaged system in (2.2) remains near the solution
x(t) of the original two-scale system in (2.1) for finitely long time.

3. Criteria of similarity of responses to small external perturbations for
general two-scale system and its averaged slow dynamics

Let μ and μA denote the invariant distribution measures for the two-scale system
in (2.1) and the averaged system in (2.2), respectively. Also, let h(x) be a differentiable
test function. Then, the statistically average values of h for both two-scale and averaged
systems are given via

〈h〉=
∫

h(x)dμ(x,y), (3.1a)

〈h〉A=

∫
h(x)dμA(x). (3.1b)

Now, consider the two-scale system in (2.1) and the averaged system in (2.2), perturbed
at the slow variables by a small time-dependent forcing δf(t):

⎧⎪⎨
⎪⎩

dx

dt
= F (x,y)+δf(t),

dy

dt
= G(x,y),

(3.2a)

dx

dt
= F̄ (x)+δf(t). (3.2b)

We similarly express the slow solutions of these perturbed systems in terms of differen-
tiable flows:

xp(t)= φ̂t−s(x0,y0,s), (3.3a)

xp
A(t)= φ̂t−s

A (x0,s). (3.3b)

Then, the average responses δ〈h〉(t) and δ〈h〉A(t) for the two-scale system in (2.1) and
the averaged system in (2.2), respectively, are defined as

δ〈h〉(t)=
∫

h(φ̂t(x,y,0))dμ(x,y)−〈h〉, (3.4a)
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δ〈h〉(t)=
∫

h(φ̂t
A(x,0))dμA(x)−〈h〉A, (3.4b)

where, without loss of generality, we take s=0. The functional dependence of the
responses δ〈h〉(t) and δ〈h〉A(t) on δf may be complicated, but, for sufficiently small δf ,
we expect the relationships to be linear. Then, the responses can be approximated by
the following linear response relations:

δ〈h〉(t)≈
∫ t

0

R(t−s)δf(s)ds, R(t)=

∫
∂h(φt(x,y))

∂x
dμ(x,y), (3.5a)

δ〈h〉A(t)≈
∫ t

0

RA(t−s)δf(s)ds, RA(t)=

∫
∂h(φt

A(x))

∂x
dμA(x). (3.5b)

For details, see Appendix A or [1–3, 8–11, 44]. Above, it is clear that any differences
between δ〈h〉(t) and δ〈h〉A(t) are due to differences between R(t) and RA(t), since δf is
identical in both cases. The differences between R(t) and RA(t) are, in turn, caused by
the differences between the flows φt and φt

A and the differences between the invariant
distribution measures μ and μA, which are difficult to quantify in practice. In what
follows, we express the differences between R(t) and RA(t) via statistically tractable
quantities. First, we assume that the invariant measures μ and μA are absolutely
continuous with respect to the Lebesgue measure, with distribution densities ρ(x,y)
and ρA(x), respectively:

R(t)=

∫
∂h(φt(x,y))

∂x
ρ(x,y)dxdy, (3.6a)

RA(t)=

∫
∂h(φt

A(x))

∂x
ρA(x)dx. (3.6b)

While it is known that purely deterministic processes may not have Lebesgue-continuity
of their invariant measures [42, 43, 50], even small amounts of random noise, which is
always present in real-world complex geophysical dynamics, usually ensure the existence
of the distribution density. Integration by parts yields

R(t)=−
∫

h(φt(x,y))
∂ρ(x,y)

∂x
dxdy, (3.7a)

RA(t)=−
∫

h(φt
A(x))

∂ρA(x)

∂x
dx. (3.7b)

At this point, let us express ρ(x,y) as the product of its marginal distribution ρ̄(x),
defined as

ρ̄(x)=

∫
ρ(x,y)dy, (3.8)

and conditional distribution ρ(y|x), given by

ρ(y|x)= ρ(x,y)

ρ̄(x)
. (3.9)

It is easy to check that the conditional distribution ρ(y|x) satisfies the identity∫
ρ(y|x)dy=1 for all x. (3.10)
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Now, the formula for the linear response operator R(t) above can be written as

R(t)=−
∫

h(φt(x,y))ρ(y|x)∂ρ̄(x)
∂x

dydx−
∫

h(φt(x,y))
∂ρ(y|x)

∂x
ρ̄(x)dydx. (3.11)

We now denote

εt(x,y)=φt(x,y)−φt
A(x), (3.12)

where εt(x,y) is small compared to either φt(x,y) or φt
A(x) for relevant values of t, x,

and y. Then, for the second integral in the right-hand side of (3.11) we write

−
∫

h(φt(x,y))
∂ρ(y|x)

∂x
ρ̄(x)dy−dx

=

∫ (∫
∂ρ(y|x)

∂x
dy

)
−h(φt

A(x))ρ̄(x)dx−
∫

∇h(φt
A(x))−εt(x,y)

∂ρ(y|x)
∂x

ρ̄(x)

−dydx=O(‖ε‖), (3.13)

where the first integral in the right-hand side is zero due to the condition in (3.10).
Neglecting the O(‖ε‖) terms in (3.7), we write

R(t)=−
∫

h(φt(x,y))ρ(y|x)∂ρ̄(x)
∂x

dydx, (3.14a)

RA(t)=−
∫

h(φt
A(x))

∂ρA(x)

∂x
dx. (3.14b)

At this point, we express ρ̄(x) and ρA(x) as exponentials:

ρ̄(x)=e−b̄(x), ρA(x)= e−bA(x), (3.15)

where b̄(x) and bA(x) are smooth functions, growing to infinity as x becomes infinite.
The latter yields

R(t)=

∫
h(φt(x,y))

∂b̄(x)

∂x
ρ(x,y)dydx, (3.16a)

RA(t)=

∫
h(φt

A(x))
∂bA(x)

∂x
ρA(x)dx. (3.16b)

Replacing invariant measure averages with long-term time averages yields the following
time-correlation functions:

R(t)= lim
r→∞

1

r

∫ r

0

h(x(s+ t))
∂b̄

∂x
(x(s))ds, (3.17a)

RA(t)= lim
r→∞

1

r

∫ r

0

h(xA(s+ t))
∂bA
∂x

(xA(s))ds. (3.17b)

Taking into account the arbitrariness of h, we conclude that, in order for RA(t) to
approximate R(t) (despite the fact that, for long times s, xA(s) diverges from x(s) even
for identical initial conditions), we generally need three conditions to be approximately
satisfied:
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1. For identical initial conditions, xA(t) should approximate x(t) (that is, εt(x,y)
in (3.12) should indeed be small) on the finite time scale of decay of the corre-
lation functions in (3.17).

2. bA(x) should approximate b̄(x), which means that the invariant distribution
ρA(x) of the averaged system in (2.2) should be similar to the x-marginal ρ̄(x)
of the invariant distribution of the two-scale dynamical system in (2.1).

3. The timeautocorrelation functions of the averaged system in (2.2) should be
similar to the time autocorrelation functions of the slow variables of the two-
scale system in (2.1).

As a side note, observe that the nature of dependence of the conditional distribution
ρ(y|x) on x does not play any role in the criteria for the similarity of responses. In
particular, the exact factorization of ρ(x,y) into its x- and y-marginals (which means
that ρ(y|x) is independent of x) is not required, unlike what was suggested in [30] for
the Gaussian invariant states.

4. Practical implementation of the reduced model for a two-scale process
with linear coupling

As formulated above in sections 2 and 3, the criteria of the response similarity
are applicable for a broad range of dynamical systems with general forms of coupling
and their averaged slow dynamics. However, the practical computation of the reduced
model approximation to averaged slow dynamics depends on the form of coupling in
the two-scale system [4,6, 7]. In this work, we consider the linear coupling between the
slow and fast variables in the two-scale system (2.1). The linear coupling is the most
basic form of coupling in physical processes, and for that it is probably also the most
common form of coupling. For the linear coupling, the reduced model is constructed
according to the method developed previously in [4], which we briefly sketch below.

We consider the special setting of (2.1) with linear coupling between x and y:

⎧⎪⎨
⎪⎩

dx

dt
= f(x)+Lyy,

dy

dt
= g(y)+Lxx,

(4.1)

where f and g are nonlinear differentiable functions and Lx and Ly are constant matri-
ces of appropriate sizes. The corresponding averaged dynamics for slow variables from
(2.2) simplifies to

dx

dt
=f(x)+Lyz̄(x), (4.2)

where z̄(x) is the statistical mean state of the fast limiting system

dz

dτ
=g(z)+Lxx, (4.3)

with x treated as constant parameter. In general, the exact dependence of z̄(x) on x is
unknown, except for a few special cases like the Ornstein–Uhlenbeck process [45]. Here,
like in [4, 7], we approximate z̄(x) via the linear expansion

z̄(x)≈ z̄∗+CLx(x−x∗), (4.4)
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where x∗ is the statistical average state of the full multiscale system in (4.1) or another
appropriate reference state, and where z̄∗= z̄(x∗). The constant matrix C is computed
as the time integral of the correlation function

C=

(∫ t

0

C(s)ds

)
C−1(0), C(s)= lim

r→∞
1

r

∫ r

0

z(t+s)zT (t)dt, (4.5)

where z(t) is the solution of (4.3) for x=x∗. For the details of this calculation, see
Appendix B. The above formula constitutes the quasi-Gaussian approximation to the
linear response of z̄ to small constant forcing perturbations in (4.3), and is a good
approximation when the dynamics in (4.3) are strongly chaotic and rapidly mixing
[1–3,8–11,28,40]. With (4.5), the reduced system in (4.2) becomes the explicitly defined
deterministic reduced model for slow variables alone:

dx

dt
=f(x)+Lyz̄

∗+LyCLx(x−x∗). (4.6)

In what follows, the “zero-order” model refers to (4.6) with the last term set to zero
(such that the coupling is parameterized only by the constant term Lyz̄

∗):

dx

dt
=f(x)+Lyz̄

∗. (4.7)

For details, see [4, 7] and references therein.

5. Testbed – the Lorenz ’96 system
In the current work, we test the statistical similarity criteria and response of the

reduced model for slow variables on a rescaled Lorenz ’96 system with linear coupling [4],
which is obtained from the two-scale Lorenz ’96 system [27] by appropriately rescaling
the dynamical variables to approximately set their mean states and variances to zero
and one, respectively. Below, we present a brief exposition of how the rescaled Lorenz
’96 model is derived.

5.1. The two-scale Lorenz ’96 system. In an exposition on predictability in
atmospheric-type systems [27], Lorenz proposed the system

ẋi=xi−1(xi+1−xi−2)−xi+F, i=1, . . . ,N, (5.1)

with periodic boundary conditions. This system has generic features of geophysical
flows, namely a nonlinear advection-like term, linearly unstable waves, damping, forcing,
mixing, and chaos [28]. The simple formulation, with invariance under index translation
and a uniform forcing term F , allows for straightforward analysis. In particular the long-
time statistics of each variable are identical and depend only on F . Additionally, the
chaos and mixing of the system are dictated by the forcing, with decaying solutions
for F near zero, periodic solutions for F slightly larger, weakly chaotic quasi-periodic
solutions around F =6, and chaotic and strongly mixing systems around F =16 and
higher.

To study predictability and Lyapunov exponents for systems with subgrid phenom-
ena operating on faster timescales, Lorenz proposed the two-time system given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋi=xi−1(xi+1−xi−2)−xi+Fx− λy

J

J∑
j=1

yi,j ,

ẏi,j =
1

ε
[yi,j+1(yi,j−1−yi,j+2)−yi,j+Fy+λxxi] ,

(5.2)
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referred to as the Lorenz ’96 system, where 1≤ i≤Nx,1≤ j≤J, with periodic boundary
conditions xi+Nx =xi, yi+Nx,j =yi,j , and yi,j+J =yi+1,j . Here, Fx and Fy are constant
forcing terms, λx and λy constant coupling parameters, and ε is the explicit time scale
separation parameter. In Lorenz’s original formulation, Fy ≡0, but here we take Fy �0
to force the fast system into a chaotic regime.

5.2. Rescaling the Lorenz ’96 system. To further simplify the analysis of
coupling trends for the two-time system, we will scale out the dependence of the mean
state and mean energy on the forcing term F . Due to the translational invariance, the
long-term mean x and standard deviation σ for the uncoupled system (5.1) are the same
for all xi. So, we rescale x and t as

xi=x+σx̂i, t=
τ

σ
, (5.3)

where the new variables x̂ have zero mean and unit standard deviation, while their time
autocorrelation functions have normalized scaling across different dynamical regimes
(that is, different forcings F ) for short correlation times. This rescaling was previously
used in [28]. In the rescaled variables, the uncoupled Lorenz model becomes

˙̂xi=

(
x̂i−1+

x

σ

)
(x̂i+1− x̂i−2)− x̂i

σ
+

F −x

σ2
, (5.4)

where x and σ are functions of F , determined numerically.
We similarly rescale the coupled two-scale Lorenz ’96 model:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dxi

dt
=

(
xi−1+

x

σx

)
(xi+1−xi−2)− xi

σx
+

Fx−x

σx
2

− λy

J

J∑
j=1

yi,j ,

ε
dyi,j
dt

=

(
yi,j+1+

y

σy

)
(yi,j−1−yi,j+2)− yi,j

σy
+

Fy−y

σy
2

+λxxi,

(5.5)

where {x, σx} and {y, σy} are the long-term means and standard deviations of the
uncoupled systems with Fx or Fy as constant forcing, respectively. It is this rescaled
coupled Lorenz ’96 system that we focus on for the closure approximation.

Before any numerical tests, one can already anticipate that the zero-order reduced
system will be inadequate for this model even with such simple coupling. Once the
reference state x∗ is determined and z∗ computed, the zero-order reduced system is
given, according to (4.6), by

˙̂xi=

(
x̂i−1+

x

σ

)
(x̂i+1− x̂i−2)− x̂i

σ
+

F −x

σ2
−λyz

∗. (5.6)

This is equivalent to perturbing Fx by −σ2
xλyz

∗, which we expect to be small since x̂ and
ŷ have zero mean in the uncoupled setting. In particular, we expect this perturbation
to have only a small effect on the dynamics. However, in the multiscale dynamics, it has
been shown that a chaotic regime in the fast system can suppress chaos when coupled
to the slow system [5], and this phenomenon is completely lost in the zero-order model.

6. Numerical experiments
In this part of the study, we compare the numerical results of the rescaled two-scale

Lorenz ’96 system with its corresponding reduced systems, with and without the linear
correction term. In particular, we look at the ability of the reduced system to capture
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some statistical quantities and how well it captures response to perturbations in the
slow variables.

In all parameter regimes considered, we have a slow system consisting of twenty
variables (Nx=20) coupled with a fast system of eighty variables (Ny =80). We use
a fourth-order Runge–Kutta method with timestep dt=ε/10 in the multiscale system
and dt=1/10 in the reduced system. To compute the mean response (h(x)=x in (3.4))
an ensemble of 104 points is generated by sampling from a single trajectory which has
been given sufficient time to settle onto the attractor. Using the translational symmetry
of the Lorenz ’96 system, for each member of the ensemble, we rotate the indices to
generate an ensemble twenty times larger.

On a modern laptop, the initial calculation to generate the reduced system for the
Lorenz ’96 system takes only a few minutes. Once computed, a numerical simulation of
the reduced system is faster than the multiscale system by a factor of ε−1. Computing
the mean response for a single forcing for five time units with a sufficiently large ensemble
size (105 trajectories) takes over an hour in the multiscale system with ε=10−2 but less
than three minutes for the corresponding reduced system.

6.1. Comparison of statistical properties of the two-scale and reduced
systems. In Section 3, we outlined the main requirements for correctly capturing
the response of the two-scale system by its reduced model. Those were the approx-
imation of joint distribution density functions (DDF) for slow variables and the time
autocorrelation functions of the time series. It is, of course, not computationally feasible
to directly compare the 20-dimensional DDFs and time autocorrelations for all possible
test functions. However, it is possible to compare the one-dimensional marginal DDFs
and simple time autocorrelations for individual slow variables, and thus have a rough
estimate on how the statistical properties of the multiscale dynamics are reproduced by
the reduced model.

In Figure 6.1, we compare the distribution density functions and autocorrelation
functions of the slow variables. The DDFs are computed using bin-counting, and the
autocorrelation function 〈xi(t)xi(t+s)〉, averaged over t, is normalized by the variance
〈x2

i 〉. Results from three parameter regimes are presented, and, in all three regimes, the
fast system is chaotic and weakly mixing (Fy =12) and the coupling strength is chosen
to be large enough (λx=λy =0.4) so that the multiscale dynamics are challenging to
approximate. Of particular interest are timescale separations of ε=10−1 and ε=10−2.

First, we consider a chaotic and strongly mixing slow regime (Fx=16). Figures are
presented for the timescale separation ε=10−1 only, because, in this regime, the situa-
tion is very similar for ε=10−2. We also consider a weakly chaotic and quasi-periodic
slow regime (Fx=8). In this regime, the coupled dynamics are more dependent on the
timescale separation, so we present results for both ε=10−1 and ε=10−2. Statisti-
cal quantities of other regimes, including those with less chaotic behavior, have been
presented in [4].

To more systematically compare DDFs for many parameter regimes, we introduce
two metrics on the space of distributions. First is the Jensen–Shannon metric, which is
derived from the information-theoretic Kullback–Leibler divergence [26] and given by

mJS(P,Q)=
1√
2

(∫ ∞

−∞
log

(
2p(x)

p(x)+q(x)

)
p(x)dx+

∫ ∞

−∞
log

(
2q(x)

p(x)+q(x)

)
q(x)dx

)1/2

,

(6.1)
where p and q are densities on distributions P and Q. This metric represents to some
extent the relative entropy of the distributions and provides a sense of the amount of
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Fig. 6.1. Distribution density and autocorrelation functions of slow variables.

information lost by using one distribution in place of the other. The next metric we
consider is the earth mover’s distance [41], also known as the first Wasserstein metric.
Motivated by transportation theory, this metric measures the minimum work needed
to move one distribution function to another as though they were piles of dirt, the
energy cost is the amount of ‘dirt’ times the Euclidean ground distance it moved. For
distribution functions of one-dimensional random variables, the earth mover’s distance
is the L1 norm of the difference of the cumulative distributions:

mEM(P,Q)=

∫ ∞

−∞

∣∣∣∣
∫ x

−∞
p(s)−q(s)ds

∣∣∣∣dx. (6.2)
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Fig. 6.2. Distances between DDFs of reduced and multiscale systems, with linear best fit for the
zero-order system (dashed line) and first-order system (solid line).
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This is has the particularly intuitive property that the earth mover’s distance between
two delta distributions δα and δβ is simply the distance between their centers |α−β|.

Figure 6.2 shows distances between reduced systems DDFs and the corresponding
multiscale slow variable DDFs. A variety of regimes is considered, with coupling pa-
rameters λx,λy ∈ [0.1,1], forcing parameters Fx∈{6,7,8,10,16} and Fy ∈{8,12,16}, and
timescale separations ε∈{10−1,10−2}. The data points are plotted with respect to cou-
pling parameter λx. For each regime considered, the corresponding distances are shown
for both zero-order and first-order reduced systems. As the coupling strength between
fast and slow systems increases, it is apparently more difficult for the reduced systems
to capture the correct slow dynamics of the multiscale system. It should be noted that
this correlation is slightly weaker when plotted against λy, the coupling parameter for
the fast system. However, the distribution densities of the first-order reduced system are
consistently closer in both metrics than the zero-order system to the multiscale system.

6.2. Mean state response to forcing perturbations. In this section we
examine the response of the mean state 〈x〉 of the slow variables δ〈x〉(t) (that is, h(x)=
x in (3.1)) in the Lorenz ’96 system to two simple types of external forcing:

1. Heaviside step forcing

δfH(t)=

{
v if t>0,

0 if t<0,
(6.3)
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Fig. 6.4. Snapshots of the mean response δ〈x〉(t) (h(x)=x in (3.4)) to small Heaviside forcing
δf =0.01 at time t=2 (left), and t=5 (right).

2. Ramp forcing

δfr(t)=

⎧⎪⎨
⎪⎩
v if t> tr,

vt/tr if 0<t<tr,

0 if t<0,

(6.4)

where v is a constant vector and tr is a fixed time when the ramp forcing reaches
its maximum. To compute the response of the mean state 〈x〉, we generate an initial
ensemble sampled from a trajectory that has been given sufficient time to settle onto
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Response to Heaviside forcing
δf =1, Fx=16, ε=0.1
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Fig. 6.5. Snapshots of the mean response δ〈x〉(t) (h(x)=x in (3.4)) to large Heaviside forcing
δf =1 at time t=2 (left) and t=5 (right).

the attractor. For each ensemble member, we compute a short trajectory under the
unperturbed dynamics as well as the under the perturbed dynamics, and then we take
the difference between these two trajectories and average over the entire ensemble. Here,
we consider forcing of the form v= δf · êj , where δf is a scalar constant and êj a standard
basis vector in R

Nx . For the translation-invariant Lorenz ’96 system, we only consider
forcing at a single node.

The plots in Figure 6.3 show the response of the slow variables mean state δ〈x〉
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Response to ramp forcing
δf =0.01, tr=3, Fx=16, ε=0.1
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Fig. 6.6. Snapshots of the mean response δ〈x〉(t) (h(x)=x in (3.4)) to small ramp forcing
δf =0.01, tr =3 at time t=2 (left) and t=5 (right).

to small Heaviside forcing of magnitudes δf =0.01 and δf =1 at node x11for five time
units, averaged over an ensemble of size 200,000. For comparison, the average magnitude
of the right-hand side for this parameter regime is 〈|dxdt |〉= 〈|F |〉=0.38. In these plots
we can see the primary response in the forced node as well as the propagation of the
response to the adjacent nodes in the direction of advection. Here, the large features
of the Heaviside forcing mean response are mostly developed after five time units and
provide a good indication of the infinite time response.

We now compare the mean response of the full and reduced systems. Figures 6.4 and
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Response to ramp forcing
δf =1, tr=3, Fx=16, ε=0.1
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Fig. 6.7. Snapshots of the mean response δ〈x〉(t) (h(x)=x in (3.4)) to large ramp forcing δf =
1, tr =3 at time t=2 (left) and t=5 (right).

6.5 show snapshots of the mean responses for the two-scale and reduced models at times
t=2 and t=5 with the Heaviside forcing of δf =0.01 and δf =1, respectively. Response
to ramp forcing is shown in figures 6.6 and 6.7, where the forcing increases linearly from
zero for tr=3 time units to a maximum of δf =0.01 and δf =1, respectively.

In all these plots, the reduced models capture quite closely the response of the node
which is directly perturbed, but they differ in their ability to capture the responses of
the remaining nodes. In the case of larger forcing δf =1, the first-order model responds
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Multiscale vs reduced response to Heaviside forcing
δf =0.01, Fx=16, ε=0.1
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Fig. 6.8. Comparison of multiscale and reduced system mean responses δ〈x〉(t) to Heaviside
forcing. Relative error (6.5) on the left, cosine similarity (6.6) on the right.

closely to the multiscale system, while the zero-order model tends to underrepresent
the response. When the forcing is small, the small oscillations that propagate in the
multiscale system are relatively large compared to the linear response, and this is a
purely multiscale phenomenon that the reduced models are unable to capture. Note that
this difference is less prominent as the timescale separation increases (ε→0), allowing
sufficient time for the oscillations to dissipate in the strongly mixing fast system.

For a quantitative comparison of these responses, we plot the relative error versus
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Multiscale vs reduced response to Heaviside forcing
δf =1, Fx=16, ε=0.1
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Fig. 6.9. Comparison of multiscale and reduced system mean responses δ〈x〉(t) to Heaviside
forcing. Relative error (6.5) on the left, cosine similarity (6.6) on the right.

time

E(t)=
‖δ〈x〉(t)−δ〈x〉A(t)‖

‖δ〈x〉(t)‖ (6.5)

and the cosine similarity

E(t)=
δ〈x〉(t) ·δ〈x〉A(t)

‖δ〈x〉(t)‖‖δ〈x〉A(t)‖ (6.6)
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Multiscale vs reduced response to ramp forcing
δf =0.01, tr=3, Fx=16, ε=0.1
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Fig. 6.10. Comparison of multiscale and reduced system mean responses δ〈x〉(t) to ramp forcing
with tr =3. Relative error (6.5) on the left, cosine similarity (6.6) on the right.

of the mean responses δ〈x〉(t) and δ〈x〉A(t) of the multiscale and reduced systems,
respectively. These plots are shown in figures 6.8–6.11 for first-order and zero-order
reduced systems.

We observe that the first-order reduced system response is a much closer approx-
imation to the multiscale response than the corresponding zero-order response in all
cases. In these regimes, the relative error of the first-order response is limited to about
30% for small forcings and about 20% for the ramp forcing, while, in the zero-order
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Multiscale vs reduced response to ramp forcing
δf =1, tr=3, Fx=16, ε=0.1
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Fig. 6.11. Comparison of multiscale and reduced system mean responses δ〈x〉(t) to ramp forcing
with tr =3. Relative error (6.5) on the left, cosine similarity (6.6) on the right.

system, the difference can exceed 50% at t=5 time units.

Note the plots for small ramp forcing in Figure 6.10, where we see a spike in the
response differences shortly after the onset of forcing in the weakly chaotic regime (Fx=
8,Fy =12) with large timescale separation (ε=0.01) in the multiscale system. In this
regime, the small nonlinear fluctuations of the multiscale system develop rapidly and
are relatively large compared to the ramp forcing for t near zero, so the relative error of
the reduced system responses is large. As the ramp forcing increases, the large features
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of the response become manifest and the above contribution becomes negligible.

7. Summary
In this work, we studied the statistical properties and response to small external

perturbations of multiscale dynamics and their reduced models for slow variables only.
We elucidated a set of criteria for statistical properties of the multiscale and reduced
systems which facilitated similarity of responses of both systems to small external per-
turbations. It was shown that the similarity of marginal distribution densities of slow
variables and their time autocorrelation functions controlled the similarity of responses
to small external perturbations of both systems.

As in [4], here we demonstrated that including a first-order correction term to a
standard closure approximation for a nonlinear chaotic two-time system offered distinct
improvements over the zero-order closure in capturing large-scale features of the slow
dynamics. In particular, this reduced system was able to accurately capture the distri-
bution density of solutions as well as the mean state response of the system to simple
forcing perturbations. This correction term was relatively easy to generate, requiring
only simple statistical calculations of the uncoupled fast system for an appropriate set
of fixed parameters, and the resulting reduced system required much less computational
resources than the underlying multiscale system.

Here, the linear response closure derivation and numerical results have been pre-
sented only for the special case of linear coupling between slow and fast systems, but this
derivation has been extended to systems with nonlinear and multiplicative coupling [6],
encompassing a much broader set of potential applications. In future work we hope to
extend similar results to these more general systems and to test the robustness of this
method in applications to a large variety of multiscale problems.

Appendix A. Linear response formula. Here, we derive the linear response
formula (3.5). Consider the dynamical system given by the ODE system

dx

dt
=F (x), x(t)=φtx, (A.1)

where F :RN →R
N is a differential vector field and φt the flow operator generated by

F . Let μ be an ergodic invariant probability measure for this system so that, for any
smooth function h(x) and any t,

〈h〉= 〈h◦φt〉, (A.2)

where

〈h〉=
∫

h(x)dμ(x). (A.3)

Now, suppose system (A.1) is perturbed by a small forcing term of the form

dx

dt
=F (x)+w(x)δf(t), x(t)= φ̂tx, (A.4)

where w is an N×K matrix and δf is a K-dimensional vector such that δf(t)=0

for t<0, and where φ̂t is the flow operator corresponding to this system with initial
condition at t=0. We are interested in the response of 〈h〉 following the onset of this
perturbation:

δ〈h〉(t)=
∫ (

h(φ̂tx)−h(φtx)
)
dμ(x). (A.5)
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This response will depend in some way on the forcing, δ〈h〉(t)=V(w,δf), which is a
priori unknown. However, when the forcing is small enough, we expect this dependence
to be approximately linear. Expanding with respect to δφtx= φ̂tx−φtx and discarding
higher-order terms, we have

δ〈h〉(t)≈
∫

∇h(φtx)δφtxdμ(x). (A.6)

Furthermore, we make a linear approximation to δφtx. Subtracting (A.1) from (A.4)
and linearizing this difference, we have

∂

∂t
δφtx≈J(φtx)δφtx+w(φtx)δf(t), δφ0x=0, (A.7)

where J = ∂F
∂x is the Jacobian of F . The solution to this linear ODE is given by

Duhamel’s principle:

δφtx=

∫ t

0

exp

(∫ t

τ

J(φsx)ds

)
w(φτx)δf(τ)dτ. (A.8)

Defining the tangent map as T t
x=

∂φtx
∂x and differentiating (A.1) with respect to x, we

have

∂

∂t
T t
x=J(φtx)T t

x, T 0
x=IdN . (A.9)

Since φt=φt−τ ◦φτ for all τ , by the chain rule of differentiation, we have T t
x=T t−τ

φτxT
τ
x .

Substituting this into (A.9) and multiplying both sides by T−τ
φτx, we have

∂

∂t
T t−τ
φτx =J(φtx)T t−τ

φτx , (A.10)

whose solution is given by

T t−τ
φτx =exp

(∫ t

τ

J(φsx)ds

)
. (A.11)

From (A.8), we have

δφtx=

∫ t

0

T t−τ
φτxw(φ

τx)δf(τ)dτ. (A.12)

Substituting this is into (A.6), we obtain

δ〈h〉(t)=
∫ t

0

[∫
∇h(φtx)T t−τ

φτxw(φ
τx)dμ(x)

]
δf(τ)dτ

=

∫ t

0

[∫
∇h(φt−τx)T t−τ

φt−τxw(x)dμ(x)

]
δf(τ)dτ,

(A.13)

where the second equality comes from the fact that μ is an invariant measure for the
system. Hence, we have the linear response relation

δ〈h〉(t)=
∫ t

0

R(t−τ)δf(τ)dτ,

R(t)=

∫
∇h(φtx)T t

xw(x)dμ(x)

=

∫
∂

∂x

(
h(φtx)

)
w(x)dμ(x).

(A.14)
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For more details, see [1–3,8–11,44].

Appendix B. Reduced model formula for slow variables of two-timescale
systems with linear coupling. Consider a two-timescale dynamical system given by
the following system of ODEs with linear coupling between the slow variables x∈R

Nx

and fast variables y∈R
Ny : ⎧⎪⎨

⎪⎩
dx

dt
= f(x)+Lyy,

dy

dt
= g(y)+Lxx,

(B.1)

where f and g are differentiable functions and Lx and Ly are constant matrices. If the
y-variables are sufficiently fast compared to the x-variables, one can use the averaging
formalism [38,39,46,47] to write an averaged system for slow variables alone:

dx

dt
=f(x)+Lyz̄(x), (B.2)

where z̄(x) is the statistical mean state of fast limiting system

dz

dt
= g(z)+Lxx, z(t)=ϕt(z), (B.3)

with x as a constant parameter. In general, the dependence of the mean state z̄(x) on
x is not explicitly known. We will approximate it with a linear expansion, as in [4, 7]:

z̄(x)≈ z̄∗+CLx(x−x∗), (B.4)

where x∗ is the statistical mean state of the slow variables in the multiscale system in
(B.1) or another appropriate reference state and where z̄∗= z̄(x∗), with the constant
matrix C to be computed as follows.

If we perturb the fast limiting system (B.3) at x=x∗ by adding the quantity Lx(x−
x∗) to the right-hand side, the linear response of z̄∗ is given by (A.14):

δz̄∗(t)=
∫ t

0

R(τ)dτ Lx(x−x∗),

R(t)=

∫
∂

∂z

(
ϕtz

)
dμx∗(z),

(B.5)

where μx∗ is an invariant measure of system (B.3) with x=x∗. If μx∗ is absolutely
continuous with respect to the Lebesgue measure with distribution density ρ(z;x∗), we
can write the response kernel as

R(t)=

∫
∂

∂z

(
ϕtz

)
ρ(z;x∗)dz. (B.6)

While deterministic processes may not have Lebesgue-continuity of their invariant mea-
sures [42,43,50], a small amount of random noise, which is always present in real-world
complex geophysical dynamics and numerical roundoff error, usually ensures the exis-
tence of the distribution density. Integration by parts yields

R(t)=−
∫

ϕtz
∂ρ(z;x∗)

∂z
dz. (B.7)
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Denoting by Σ the covariance matrix of the fast limiting system (B.3) with x=x∗, we
take a simplifying approximation of ρ(z;x∗) to be a Gaussian distribution:

ρ(z;x∗)=−
(√

2πdetΣ
)−Ny

exp

(
−1

2
(z−z∗)Σ−1(z−z∗)

)
. (B.8)

Then, we have

R(t)=

∫
ϕtz(z− z̄∗)T ρ(z;x∗)dz Σ−1

=

∫
ϕtz(z− z̄∗)Tdμx∗(z) Σ

−1.

(B.9)

This results in the quasi-Gaussian linear response operator, which is a good ap-
proximation when the dynamics in (B.3) are strongly chaotic and rapidly mixing
[1–3,8–11,28, 40]. Given time series data z(t) for the fast limiting system (B.3), this is
simply calculated as

R(t)=

∫ ∞

0

z(τ+ t)(z(τ)− z̄∗)Tdτ Σ−1, (B.10)

with sample mean and covariance

z̄∗=
∫ ∞

0

z(τ)dτ,

Σ=

∫ ∞

0

z(τ)(z(τ)− z̄∗)Tdτ,
(B.11)

respectively.
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