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THE ADAPTIVE PATCHED CUBATURE FILTER AND ITS
IMPLEMENTATION∗

WONJUNG LEE† AND TERRY LYONS‡

Abstract. There are numerous contexts where one wishes to describe the state of a randomly
evolving system. Effective solutions combine models that quantify the underlying uncertainty with
available observational data to form scientifically reasonable estimates for the uncertainty in the system
state. Stochastic differential equations are often used to mathematically model the underlying system.

The Kusuoka–Lyons–Victoir (KLV) approach is a higher-order particle method for approximating
the weak solution of a stochastic differential equation that uses a weighted set of scenarios to approxi-
mate the evolving probability distribution to a high-order of accuracy. The algorithm can be performed
by integrating along a number of carefully selected bounded variation paths. The iterated application
of the KLV method has a tendency for the number of particles to increase. This can be addressed and,
together with local dynamic recombination, which simplifies the support of discrete measure without
harming the accuracy of the approximation, the KLV method becomes eligible to solve the filtering
problem in contexts where one desires to maintain an accurate description of the ever-evolving condi-
tioned measure.

In addition to the alternate application of the KLV method and recombination, we make use of the
smooth nature of the likelihood function and high order accuracy of the approximations to lead some
of the particles immediately to the next observation time and to build into the algorithm a form of
automatic high order adaptive importance sampling.

We perform numerical simulations to evaluate the efficiency and accuracy of the proposed ap-
proaches in the example of the linear stochastic differential equation driven by three-dimensional Brow-
nian motion. Our numerical simulations show that, even when the sequential Monte-Carlo methods
poorly perform, the KLV method and recombination can together be used to approximate higher-order
moments of the filtering solution in a moderate dimension with high accuracy and efficiency.
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1. Introduction

Filtering is an approach for calculating the probability distribution of an evolving
system in the presence of noisy observations. The problem has many significant and
practical applications in science and engineering, such as satellite and airplane orbit
determination, the spread of hazardous plumes or pollutants, and prediction of weather
and climate in atmosphere-ocean dynamics [1, 15–17,19–21,23]. If both the underlying
system and the observation process satisfy linear equations, the solution of the filtering
problem can be obtained from the Kalman filter [20,21]. For nonlinear filtering problems
in finite dimension, there occasionally exist analytic solutions but the results are too
narrow in applicability [2]. As a result, a number of numerical schemes have been
developed with an aim to accurately describe the fundamental object of interest in
filtering, i.e. the conditioned measure, in terms of collection of weighted Dirac masses
[12, 15, 17].

When the underlying dynamics is a continuous process and the available observa-
tions are intermittent in time, the standard approach of filtering is to perform a forward
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uncertainty quantification and then to incorporate data into this predicted measure
using Bayes’ rule in a sequential fashion. The former prediction step corresponds to
solving the Kolmogorov forward equation when the system is driven by Brownian mo-
tions. For the numerical integration of a stochastic differential equation, the sequential
Monte-Carlo method uses sampling from random variables whose distribution agrees
with the law of the truncated strong Taylor expansion of the solution of an Ito dif-
fusion. The algorithm usually gives lower-order strong convergence of the probability
distribution [22].

Instead of randomly simulating Wiener measure as in the sequential Monte-Carlo
method, the KLV (Kusuoka–Lyons–Victoir) method at the path level replaces Brownian
motion by a weighted combination of bounded variation paths while making sure that
expectations of the iterated integrals with respect to these two measures onWiener space
agree up to a certain degree. Then the particles are pushed forward along the determin-
istically chosen paths to yield a weighted discrete measure. The KLV method is of higher
order with effective and transparent error bounds obtained from the Stratonovich–Taylor
expansion of the solution of a stochastic differential equation [31].

It is intrinsic to the KLV method that the number of particles increases when the
algorithm is iterated. Therefore its successive application without an efficient suppres-
sion of the growth of the number of particles cannot be used to filter the ever-evolving
dynamics. Given a family of test functions, one can replace the original discrete mea-
sure by a simpler measure with smaller support whose integrations against these test
functions agree with those against the original measure. Recombination achieves the
reduction of particles in this way using the polynomials as test functions [29]. One ad-
vantage of recombination is its local applicability in space. Therefore one can divide the
set of particles into a number of disjoint subsets and recombine each subset of discrete
measure separately, a process which we call patched recombination. The dynamic prop-
erty of patched recombination, if an efficient classification method is provided, leads to
a competitive high-order reduction algorithm whose error bound can be obtained from
the Taylor expansion of the test function.

One can use the alternate application of the KLV method and patched recombi-
nation as an algorithm for the prediction step in filtering. However the cost of this
non-adaptive method would become extremely high, particularly in high dimension.
Therefore we further modify the algorithm so that it can significantly reduce the com-
putational efforts. More precisely, we exploit the internal smoothness of the likelihood to
allow some particles to immediately leap to the next observation time provided certain
conditions are fulfilled. The bootstrap reweighting is subsequently applied to obtain our
non-Monte-Carlo particle approximation of the optimal filter.

The paper is organised as follows. Section 2 introduces the filtering problem and
the Bayesian filter as its formal solution. In Section 3, a prototypical sequential Monte-
Carlo filtering algorithm and one of its clever variants that adapts importance sampling
are described. The rest of the paper is devoted to developing two non-Monte-Carlo
particle filtering algorithms that retain the strengths and mitigate the weaknesses of
existing Monte-Carlo methods. In order to do that, two essential building blocks, cuba-
ture measure on (infinite dimensional) Wiener space and cubature measure on a finite
dimensional space, are introduced in sections 4 and 5, respectively. In Section 6, we de-
fine the main algorithms, and in Section 7 we perform numerical simulations to validate
the algorithms. Concluding discussions are in Section 8.

2. Bayesian filter

Suppose that the N -dimensional underlying Markov process X(t), t∈R+∪{0} and
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the N ′-dimensional observation process Yn, n∈N associated with Xn=X(nT ) are given
for some inter-observation time T > 0. Let Y1:n′ ≡{Y1, . . . ,Yn′} be the path of the obser-
vation process and y1:n′ ≡{y1, · · · ,yn′} be a generic point in the space of paths. We de-
fine the measure of the conditioned variableXn|Y1:n′ by πn|n′(dxn)=P(Xn∈dxn|Y1:n′ =
y1:n′). Assuming the law of X(0) is given, filtering is to find πn|n for all n≥ 1.

This intermittent data assimilation problem can in principle be solved by the alter-
nate application of the prediction, to obtain the prior measure πn|n−1 from πn−1|n−1,
and the updating, to obtain the posterior measure πn|n from πn|n−1. If the transition
kernel K(dxn|xn−1) and the likelihood function g(yn|xn) satisfying

P(Xn∈A|Xn−1=xn−1)=

∫
A

K(dxn|xn−1),

P(Yn∈B|Xn=xn)=

∫
B

g(yn|xn)dyn

for all A∈B(RN), the Borel σ-algebra, and B∈B(RN ′

), are given, the prediction and
the updating are achieved by

πn|n−1(dxn)=

∫
K(dxn|xn−1)πn−1|n−1(dxn−1), (2.1)

πn|n(dxn)=
g (yn|xn)πn|n−1(dxn)∫
g (yn|xn)πn|n−1(dxn)

, (2.2)

respectively. Equation (2.2) is Bayes’ rule, and the recursive scheme (2.1), (2.2) is called
a Bayesian filter.

3. Particle filtering

3.1. Weak approximation. The closed form of πn|n′ is in general not available.
In many cases the essential properties of a probability measure we are interested in
can accurately be described by the expectation of test functions. If the class of test
functions is specified, we can replace the original measure with a simpler measure that
integrates the test functions correctly and hence still keeps the right properties of the
original measure. Therefore efforts have been devoted to weakly approximating πn|n′

by finding an efficient way to compute E(f(Xn)|Y1:n′)=
∫
f(xn)πn|n′(dxn) accurately

for a sufficiently large class of f :RN →R. We mention that the class of test functions is
not given in the filtering problem. However their choice is quite critical as it affects the
notion of an optimal algorithm and controls the detailed description of the conditioned
measure.

One of the methodologies for the weak approximation is to employ particles whose
locations and weights characterise the approximation of the conditioned measure. More
precisely, a particle filter is a recursive algorithm that produces

πPF
n|n′ =

Mn|n′∑
i=1

λi
n|n′δxi

n|n′
(3.1)

approximating πn|n′ , where δx denotes the Dirac mass centred at x. One approximates

(πn|n′ ,f) by (πPF
n|n′ ,f)=

∑Mn|n′

i=1 λi
n|n′f(xi

n|n′), where the notation (π,f)=
∫
f(x)π(dx) is

used.
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3.2. Sequential Monte-Carlo methods. Particle approximation is widely
used in Monte-Carlo frameworks. We here introduce two representative algorithms, the
sampling importance resampling (SIR) suggested in [17] and the sequential importance
sampling and resampling (SISR) algorithm [13, 30, 35]. The number of particles does
not have to be equal in each step, but it is here fixed by Mn|n′ =M for simplicity [10].

3.2.1. Sampling importance resampling (SIR). The prediction step is
achieved by using (πn|n−1,f)= (πn−1|n−1,Kf) from equation (2.1). Given the empirical

measure πSIR
n−1|n−1=

1
M

∑M
i=1δxi

n−1|n−1

approximating πn−1|n−1, one performs indepen-

dent and identically distributed (i.i.d.) sampling x̄i
n|n−1 drawn from K(dxn|xi

n−1|n−1).

Then πSIR
n|n−1=

1
M

∑M
i=1δx̄i

n|n−1

is an empirical measure with respect to πn|n−1.

For the updating step, equation (2.2) implies

(πn|n,f)= (πn|n−1,fg
yn)/(πn|n−1,g

yn),

where the notation gyn(·)≡ g(yn|·) is used. Define the bootstrap reweighting operator

REW

(
n∑

i=1

κiδxi ,gyn

)
≡

∑n
i=1κig

yn(xi)δxi∑n
i=1κigyn(xi)

(3.2)

and π̄SIR
n|n =REW

(
πSIR
n|n−1,g

yn

)
is an approximation of πn|n.

In order to prevent degeneracy in the weights caused by a successive application
of equation (3.2), one approximates the weighted discrete measure π̄SIR

n|n by an equally

weighted discrete measure [12]. Random resampling performs M independent samples
{xi

n|n}Mi=1 from π̄SIR
n|n . This process might introduce a large Monte-Carlo variation and

work has been done to reduce the variance [4,7]. The resulting one πSIR
n|n = 1

M

∑M
i=1 δxi

n|n

is an empirical measure with respect to πn|n.

The SIR algorithm can be displayed by

πSIR
n−1|n−1 �→πSIR

n|n−1⇒ π̄SIR
n|n →πSIR

n|n (3.3)

where the notation �→ is used for moving particles forward in time, ⇒ for reweighting
and → for random resampling. The algorithm is very intuitive and straightforward to
implement. Furthermore, it produces an approximation that converges toward to the
truth posterior measure as the number of particles increases [5]. However, SIR might be
inaccurate when πSIR

n|n−1 is far from πn|n in the sense that bootstrap reweighting generates
importance weights distributed with a high variance. The following algorithm modifies
SIR to get over this degeneracy problem to some extent.

3.2.2. Sequential importance sampling and resampling (SISR). Given

the unweighted measure πSISR
n−1|n−1=

1
M

∑M
i=1 δxi

n−1|n−1

that approximates πn−1|n−1,

one performs i.i.d. sampling x̃i
n|n−1∼ K̃(dxn|xi

n−1|n−1,yn) instead of x̄i
n|n−1∼

K(dxn|xi
n−1|n−1). Here the new transition kernel K̃ can depend on the instance yn

and should be chosen in such a way that the distribution of πSISR
n|n−1=

1
M

∑M
i=1 δx̃i

n|n−1

is

closer to πn|n than πSIR
n|n−1 in the above-mentioned sense [13].

Note that πSISR
n|n−1 is not distributed according to πn|n−1. To account for the effect
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of this discrepancy, the expression

P(Xn−1∈dxn−1,Xn∈dxn|Y1:n= y1:n)

=
w(xn−1,xn,yn)K̃(dxn|xn−1,yn)πn−1|n−1(dxn−1)∫
w(xn−1,xn,yn)K̃(dxn|xn−1,yn)πn−1|n−1(dxn−1)

,
(3.4)

where

w(xn−1,xn,yn)∝
g(yn|xn)K(dxn|xn−1)

K̃(dxn|xn−1,yn)

is used. Replacing K̃(dxn|xn−1,yn)πn−1|n−1(dxn−1) in equation (3.4) by its empirical

approximation and integrating over xn−1, one obtains π̃SISR
n|n =

∑M
i=1w

iδx̃i
n|n−1

where

wi∝w(xi
n−1|n−1, x̃

i
n|n−1,yn). A random resampling from π̃SISR

n|n yields the empirical

measure with respect to πn|n, denoted by πSISR
n|n .

If K̃(dxn|xn−1,yn) and w(xn−1,xn,yn) have better theoretical properties than

K(dxn|xn−1) and g(yn|xn) such as better mixing properties of K̃(dxn|xn−1,yn) or flat-
ter likelihood, then the algorithm can produce a better approximation. Because one
needs to integrate an evolution equation of a Markov process with transition kernel K̃
in any practical implementation, designing efficient particle filtering methods is equiv-
alent to building an appropriate dynamic model that has good theoretical properties
while keeping the same filtering distributions. The SISR algorithm

πSISR
n−1|n−1 �→πSISR

n|n−1⇒ π̃SISR
n|n →πSISR

n|n (3.5)

might use fewer particles than SIR to achieve a similar accuracy [40]. One can find
a considerable study illustrating the difference in performance of SISR using different
proposal distributions in [11].

4. Kusuoka–Lyons–Victoir (KLV) method
Suppose that a random vector X(t)∈RN evolves according to a Stratonovich

stochastic differential equation (SDE)

dX(t)=V0(X(t))dt+

d∑
i=1

Vi(X(t))◦dWi(t), (4.1)

where {Vi∈C∞
b (RN ,RN )}di=0 is a family of smooth vector fields from RN to RN with

bounded derivatives of all orders, and W =(W1, · · · ,Wd) denotes a set of Brownian
motions, independent of one another. The KLV method enables us to deterministically
approximate the law of X(T ) in terms of discrete measure.

4.1. Cubature on Wiener space on path level. Let us use the notations
W0(t)= t, ωT,0(t)= t and I=(i1, . . . ,il)∈{0, . . .,d}l. Consider the iterated integral with
respect to W =(W1, . . . ,Wd),

J I
0,T (◦W )≡

∫
0<t1<···<tl<T

◦dWi1(t1)· · ·◦dWil(tl),

and the iterated integral with respect to a continuous path of bounded variation ωT =
(ωT,1, . . .,ωT,d) : [0,T ]→Rd,

J I
0,T (ωT )≡

∫
0<t1<···<tl<T

dωT,i1(t1)· · ·dωT,il(tl).
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Recall that Wiener space C0
0

(
[0,T ],Rd

)
is the set of continuous functions starting at

zero. We define a discrete measure Qm
T =

∑nm

j=1λjδωj

T
supported on continuous paths

of bounded variation to be a cubature on Wiener space on path level of degree m with
respect to the Wiener measure P, provided the equation

EP

(
J I
0,T (◦W )

)
=EQm

T

(
J I
0,T (◦W )

)
=

nm∑
j=1

λjJ I
0,T (ω

j
T ) (4.2)

holds for all I satisfying ||I||≡ l+card{j,ij =0}≤m. Note that Qm
T is obtained from

Qm
1 via a suitable rescaling and that the existence of Qm

1 with nm≤ card{I :‖I‖≤m}
is proved in [31].

The cubature measure on Wiener space can be used to approximate EP(f(X
x
T )) for

the random process Xx
t in N dimension satisfying

dXx
t =V0(X

x
t )dt+

d∑
i=1

Vi(X
x
t )◦dWi(t) (4.3)

and Xx
0 =x. The expectation of f(Xx

T ) against Wiener measure can be viewed as an
integral with respect to infinite dimensional Wiener space.

Let t �→X
x,ωj

Δ

t for t∈ [0,Δ] be the deterministic process satisfying

dX
x,ωj

Δ

t =
d∑

i=0

Vi(X
x,ωj

Δ

t )dωj
Δ,i(t) (4.4)

and X
x,ωj

Δ

0 =x. The ordinary differential equations (ODEs) of equation (4.4) are ob-
tained from replacing the Brownian motions W in equation (4.3) by the bounded varia-
tion path ωj

Δ. The measure
∑nm

j=1λjδ
X

x,ω
j
T

T

on RN is called the cubature approximation

of the law of Xx
T at the path level.

An error estimate for the weak approximation of this particle method can be derived
from the Stratonovich–Taylor expansion of a smooth function f ,

f(Xx
T )=

∑
||I||≤m

VIf(x)J I
0,T (◦W )+Rm(x,T,f), (4.5)

where the remainder Rm(x,T,f) satisfies

sup
x∈RN

√
EP(Rm(x,T,f)2)≤C

m+2∑
i=m+1

T i/2 sup
‖I‖=i

‖VIf ‖∞ (4.6)

for a constant C depending on d and m [22]. Here the vector field Vi=(Vi,1, . . . ,Vi,N ) is

used as the differential operator Vi≡
∑N

j=1Vi,j∂xj and VI denotes Vi1 · · ·Vik .
The process Rm(x,T,f) further satisfies

sup
x∈RN

EQm
T
(|Rm(x,T,f)|)≤C

m+2∑
i=m+1

T i/2 sup
‖I‖=i

‖VIf ‖∞ (4.7)
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for a constant C depending on d, m, and Qm
1 [31]. Let the operators PT and Qm

T be
defined by PT f(x)≡EP(f(X

x
T )) and Qm

T f(x)≡EQm
T
(f(Xx

T )). Then the error bound of
the cubature approximation at the path level is given by

sup
x∈RN

∣∣∣∣∣∣EP(f(X
x
T ))−

nm∑
j=1

λjf(X
x,ωj

T

T )

∣∣∣∣∣∣=‖ (PT −Qm
T )f ‖∞

≤C

m+2∑
i=m+1

T i/2 sup
‖I‖=i

‖VIf ‖∞ (4.8)

for smooth f , from equation (4.2) and equations (4.5), (4.6), and (4.7).
The algorithm was developed by Lyons, and Victoir [31] following the work of

Kusuoka [24, 26], so it is referred to as the KLV method. Equation (4.8) leads us to
define

KLV(m)

(
n∑

i=1

κiδxi ,Δ

)
≡

n∑
i=1

nm∑
j=1

κiλjδ
X

xi,ω
j
Δ

Δ

(4.9)

that may be interpreted as a Markov operator acting on discrete measure on RN .
In the following, assume T ∈ (0,1) for simplicity. One may take a higher degree

m to achieve a given degree of accuracy in equation (4.8). An alternative method to
improve the accuracy of the particle approximation is a successive application of the KLV
operator. Let D= {0= t0<t1< · · ·<tk=T } be a partition of [0,T ] with sj = tj− tj−1.

Instead of Qm
T f(x)= (KLV(m) (δx,T ),f), the value of PT f(x)=Ps1Ps2 · · ·Pskf(x) can

accurately be approximated by a multiple-step algorithm Qm
s1Q

m
s2 · · ·Qm

skf(x).
Given a discrete measure μ0, we define a sequence of discrete measure by

Φm,0
D (μ0)=μ0,

Φm,j
D (μ0)=KLV(m)(Φm,j−1

D (μ0),sj) 1≤ j≤k
(4.10)

that can be viewed as a Markov chain. The inequality

∣∣∣PT f(x)−(Φm,k
D (δx),f)

∣∣∣=
∣∣∣∣∣∣

k∑
j=1

(
Φm,j−1

D (δx),PT−tj−1
f
)
−
(
Φm,j

D (δx),PT−tjf
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
k∑

j=1

(
Φm,j−1

D (δx),(Psj −Qm
sj )PT−tjf

)∣∣∣∣∣∣
≤

k∑
j=1

‖ (Psj −Qm
sj )PT−tjf ‖∞ (4.11)

obtained from the Markovian property of the KLV operator shows that the total error
of the repeated KLV application is bounded above by the sum of the errors over the
subintervals in the partition. Applying equation (4.8) to estimate the upper bound of
equation (4.11), we need PT−tjf to be smooth. When f is smooth, this is true and the
error bound

sup
x∈RN

∣∣∣PT f(x)−(Φm,k
D (δx),f)

∣∣∣≤C

m+2∑
i=m+1

k∑
j=1

s
i/2
j sup

‖I‖=i

‖VIPT−tjf ‖∞
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is obtained from equations (4.8), and (4.11).

The case of Lipschitz continuous f is of particular interest because Ptf is indeed
smooth in the direction of {Vi}di=0 with additional conditions for these vector fields [6].
In this case, the regularity estimate

‖VIPtf ‖∞≤ C

t(‖I‖−1)/2
‖∇f ‖∞ (4.12)

holds for all t∈ (0,1], where C is a constant independent of f [25, 27]. Combining
equations (4.8), (4.11), and equation (4.12), we obtain an error estimate for the KLV
method in terms of the gradient of the Lipschitz continuous f :

sup
x∈RN

∣∣∣PT f(x)−(Φm,k
D (δx),f)

∣∣∣≤C ‖∇f ‖∞

⎛⎝s
1/2
k +

m+2∑
i=m+1

k−1∑
j=1

s
i/2
j

(T − tj)(i−1)/2

⎞⎠, (4.13)

where C is a constant independent of k. Here the final term in the upper bound
of equation (4.11) is estimated by ‖ (Psk −Qm

sk
)f ‖∞≤‖Pskf−f ‖∞+ ‖ f−Qm

sk
f ‖∞≤

Cs
1/2
k ‖∇f ‖∞ using the boundedness of {Vi}di=0.

Let D(γ)= {tj}kj=0 be the Kusuoka partition [24] given by

tj =T

(
1−

(
1− j

k

)γ)
. (4.14)

Then the error estimate

sup
x∈RN

∣∣∣PT f(x)−(Φm,k
D(γ)(δx),f)

∣∣∣≤C ‖∇f ‖∞ T 1/2k−(m−1)/2 (4.15)

is satisfied for a Lipschitz continuous f when γ>m−1.
Equation (4.15) is obtained from substituting the non-equidistant time discretisa-

tion D(γ) into equation (4.13). Using this particular choice of partition ensures that
the bound of the KLV error is of high order in the number of iterations k.

Before concluding this subsection, we here mention that u(x,t)≡EP(f(X
x
T−t)) sat-

isfies the partial differential equation (PDE)

∂

∂t
u(x,t)=−

(
V0+

1

2

d∑
i=1

V 2
i

)
u(x,t),

u(x,T )= f(x).

(4.16)

where {Vi}di=0 are used as differential operators [41]. Therefore PT f(x), the heat kernel
applied to f , is equal to the solution u(x,0) of equation (4.16). Due to this inherent
relationship between parabolic PDEs and SDEs, one can apply any well-known algo-
rithm for the solution of equation (4.16) to the prediction step of the filtering problem
where the underlying system is given by equation (4.1). However it is very important
to understand the critical difference between these two problems. One needs to weakly
approximate the law of X(T ), when X(0) is given by δx, that accurately integrate the
test function f for the PDE problem while the filtering problem requires one to approx-
imate the conditioned measure of Xn|Y1:n for all n≥ 1, in which the test function is not
at all specified.
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4.2. Cubature on Wiener space on flow level. We here study the con-
struction of cubature formula Qm

T . Meanwhile cubature on Wiener space on flow level
is defined in terms of Lie polynomial and used to develop an approximation based on
the autonomous ODEs at flow level.

Let {ei}di=0 be the standard basis of R⊕Rd. Let T denote the associative and non-
commutative tensor algebra of polynomials generated by {ei}di=0. The exponential and
logarithm on T are defined by

exp(a)≡
∞∑
i=0

a⊗i

i!
,

log(a)≡ log(a0)+

∞∑
i=1

(−1)i−1

i

(
a

a0
−1

)⊗i

,

(4.17)

where a=
∑

I aIeI and eI = ei1 ⊗···⊗eil for a multi-index I=(i1, . . . ,il)∈{0, . . .,d}l.
Here ⊗ denotes the tensor product. Let the operators exp(m)(·) and log(m)(·) be defined
by the truncation of equation (4.17) leaving the case ‖ I ‖≤m.

The signature of a continuous path of bounded variation ωT : [0,T ]→Rd is defined
by

S0,T (ωT )≡
∞∑
l=0

∫
0<t1<···<tl<T

dωT (t1)⊗···⊗dωT (tl)

=
∑
I

J I
0,T (ωT )eI

and similarly the signature of a Brownian motion W by

S0,T (◦W )≡
∑
I

J I
0,T (◦W )eI .

In view of equation (4.2), the definition of cubature on Wiener space of degree m can
be rephrased by

EP

(
S(m)
0,T (◦W )

)
=EQm

T

(
S(m)
0,T (◦W )

)
, (4.18)

where S(m)
0,T (·) is the truncation of S0,T (·) to the case ‖ I ‖≤m.

Define L to be the space of Lie polynomials, i.e. linear combinations of finite se-
quences of Lie brackets [ei,ej]= ei⊗ej−ej⊗ei. Because Chen’s theorem ensures that
the logarithm of signature is a Lie series [37], its truncation

Lj
T ≡ log(m)(S0,T (ω

j
T )) (4.19)

is a Lie polynomial and an element of L. Then the measure Q̃m
T =

∑nm

j=1λjδLj

T
supported

on Lie polynomials satisfies

EP

(
S
(m)
0,T (◦W )

)
=E

Q̃m
T

(
exp(m)(L)

)
=

nm∑
j=1

λjexp
(m)(Lj

T ). (4.20)
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Conversely, for any Lie polynomials Lj
T , there exist continuous bounded variation

paths ωj
T whose truncated logarithmic signature is Lj

T . Moreover if Q̃m
T satisfies equa-

tion (4.20), then Qm
T satisfies equation (4.18). Therefore equation (4.18) and equa-

tion (4.20) are equivalent. The discrete measure Q̃m
T is defined as cubature on Wiener

space on flow level.
The expectation of the truncated Brownian signature is

EP

(
S(m)
0,1 (◦W )

)
=exp(m)

(
e0+

1

2

d∑
i=1

ei⊗ei

)
, (4.21)

which is proved in [31]. It is immediate from equation (4.21) that cubature formulae on
Wiener space form=2n−1 andm=2n are equal to one another. A formula {λj ,Lj

1}nm

j=1

satisfying equation (4.20) is found when m=3 and m=5 for any d [31]. In some cases
of m≥ 7, cubature formula of Lie polynomial is available when d=1,2 [18].

From this Q̃m
1 and equation (4.19), one can construct Qm

1 . It follows from the scaling
property of the Brownian motion that ωj

T,0(t)=ωj
1,0(t) and ωj

T,i(t)=
√
Tωj

1,i(t/T ) for 1≤
i≤d. The paths define a cubature formula Q̃m

T . Using J I
0,T (◦W )�T ‖I‖/2J I

0,1(◦W ) and

equation (4.19), the scaling of the Lie polynomial is Lj
T = 〈T,Lj

1〉 where 〈t,∑I aIeI〉≡∑
I t

‖I‖/2aIeI . The Lie polynomials define a cubature formula Qm
T .

Next, we study the approximation based on the flows of autonomous ODEs. It is in
fact corresponds to a version of Kusuoka’s algorithm [24]. Let Γ denote the algebra ho-
momorphism generated by Γ(ei)=Vi for i=0, . . .,d. For a vector field V ∈C∞

b (RN ,RN ),
we define the flow Exp(tV )(x)≡ ξxt to be the solution of the ODE dξxt =V (ξxt )dt with
ξx0 =x. By interchanging the algebra homomorphism Γ with the exponentiation (so
far taken in the tensor algebra), we arrive at an approximation operator in which the
exponentiation is understood as taking the flow of autonomous ODEs. More precisely,
one has

EP

(
Γ
(
S
(m)
0,T (◦W )

))
f(x)=

nm∑
j=1

λjΓ
(
exp(m)(Lj

T )
)
f(x)

�
nm∑
j=1

λjf
(
Exp

(
Γ(Lj

T )
)
(x)

)
using equation (4.20). The error introduced while interchanging exp and Γ operators
turns out to be of the similar order with the error in the cubature approximation of the
path level, as shown below.

Formally the cubature approximation at the flow level is defined as follows. Let

t �→X
x,Lj

Δ

t for t∈ [0,1] be the deterministic process satisfying

dX
x,Lj

Δ

t =Γ(Lj
Δ)(X

x,Lj

Δ

t )dt (4.22)

and X
x,Lj

Δ

0 =x. Define the operator

K̃LV
(m)

(
n∑

i=1

κiδxi ,Δ

)
≡

n∑
i=1

nm∑
j=1

κiλjδ
X

xi,L
j
Δ

1

(4.23)

and a sequence of discrete measure

Φ̃m,0
D (μ0)=μ0,

Φ̃m,j
D (μ0)= K̃LV

(m)
(Φ̃m,j−1

D (μ0),sj)



W. LEE AND T. LYONS 809

for 1≤ j≤k.

Let Q̃m
T f(x)≡ (K̃LV

(m)
(δx,T ),f) be a flow level cubature approximation. Then the

Taylor expansions of equation (4.4) and equation (4.22) lead to

‖ (Qm
T −Q̃m

T )f ‖∞≤C
∑

m+1≤‖I‖≤2m

T ‖I‖/2 ‖VIf ‖∞ (4.24)

for a smooth f , where C is a constant depending on m, d, Qm
1 , and Q̃m

1 [24].

The error estimate

sup
x∈RN

∣∣∣PT f(x)−(Φ̃m,k
D(γ)(δx),f)

∣∣∣≤C ‖∇f ‖∞ T 1/2k−(m−1)/2 (4.25)

is satisfied for a Lipschitz continuous f when γ>m−1.
Equation (4.25) is obtained using equation (4.24) and demonstrates that for a suit-

able partition the bounds for the approximation at flow and path level have the same
rate of convergence in view of equation (4.15).

5. Simplification of particle approximation
A successive application of the KLV operator gives rise to geometric growth of the

number of particles in view of equations (4.9) and (4.23). Except some cases of PDE
problems in which the KLV method can produce an accurate approximation with small
number of iterations, this geometric growth of particle number prohibits an application
of the KLV method, particularly to the filtering problem where, to maintain an accurate
description of the ever-evolving measure with reasonable computational, cost is the
key requirement. It is therefore necessary to add a simplification algorithm between
two consecutive iterations, which suppresses the growth of the number of particles in
the KLV framework. Though it is possible to achieve the simplification through one
of several Monte-Carlo methods, we here make use of cubature measure on a finite-
dimensional space to efficiently reduce the support of discrete measure. This will let the
entire algorithm consistently step outside of the Monte-Carlo paradigm. Furthermore,
its proper applications never harm the accuracy of the KLV approximation, as we shall
see.

5.1. Cubature on a finite-dimensional space. Let ν be a (possibly un-
normalised) positive measure on RN . A discrete measure ν̂(r)=

∑nr

j=1wjδyj is called a

cubature (quadrature when N =1) of degree r with respect to ν provided supp(ν̂(r))⊆
supp(ν) and (ν,q) equals (ν̂(r),q)=

∑nr

j=1wjq(y
j) for all polynomials q whose total de-

gree is less than or equal to r. It is proved that a cubature ν̂(r) with respect to an
arbitrary positive measure ν satisfying nr≤

(
N+r
r

)
exists [36]. As a result, one can

adopt a cubature measure on RN with respect to the original measure as the reduced
measure.

Importantly an error bound of (ν,F )−(ν̂(r),F )≡ (ν− ν̂(r),F ) for a smooth func-
tion F :RN →R can be obtained from the Taylor expansion. The value of F at
x=(x1, . . . ,xN ) is written as

F (x)=
∑
|α|≤r

DαF (x0)

α!
(x−x0)

α+Rr(x,x0,F ) (5.1)

where α≡ (α1, · · · ,αN ), |α|≡α1+ · · ·+αN , α!≡α1! · · ·αN !, Dα≡∂xα1

1 · · ·∂xαN

N , xα≡
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xα1

1 · · ·xαN

N and

Rr(x,x0,F )=
∑

|α|=r+1

DαF (x∗)

α!
(x−x0)

α (5.2)

for some x∗∈RN . If the support of ν is in a closed ball of centre x0 and radius u,
denoted by B(x0,u), then we have

|(ν− ν̂(r),F )|= |(ν− ν̂(r),Rr)|≤ 2(ν,1)‖Rr ‖L∞(B(x0,u))

≤ Cur+1

(r+1)!
sup

|α|=r+1

‖DαF ‖L∞(B(x0,u)). (5.3)

Equation (5.3) reveals that cubature on a finite-dimensional space is an approach for the
numerical integration of functions on finite-dimensional space with a clear error bound.

5.2. Local dynamic recombination. Instead of using a cubature of higher
degree to reduce the entire family of particles all at once, we improve the performance
by dividing a given discrete measure into locally supported unnormalised positive mea-
sures and replacing each separated measure by the cubature of lower degree [29]. This
so-called local dynamic recombination can be a competitive algorithm because each re-
duction can be performed in a parallel manner to save computational time and because
the error bound from the Taylor approximation remains of higher order.

Let U =(Ui)
R
i=1 be a collection of balls of radius u that covers the support of discrete

measure μ on RN . Then one can find unnormalised measures (μi)
R
i=1 such that μ=⊔R

i=1μi (μi and μj have disjoint support for i �= j) and supp(μi)⊆Ui∩supp(μ). In this
case, we define the patched recombination operator by

REC(u,r) (μ)≡
R⊔
i=1

μ̂
(r)
i , (5.4)

where μ̂
(r)
i denotes a cubature of degree r with respect to μi.

Given a discrete measure μ0, we define a sequence of discrete measure by

Φm,0
D,(u,r)(μ

0)=μ0,

Φ̂m,j−1
D,(u,r)(μ

0)=REC(uj−1,rj−1)
(
Φm,j−1

D,(u,r)(μ
0)
)
,

Φm,j
D,(u,r)(μ

0)=KLV(m)
(
Φ̂m,j−1

D,(u,r)(μ
0),sj

)
,

(5.5)

for 1≤ j≤k. An application of equation (5.5) with initial condition δx yields a weak
approximation for the law of Xx

T . One obtains the estimate∣∣∣PT f(x)−(Φm,k
D,(u,r)(δx),f)

∣∣∣
=

∣∣∣∣∣
k∑

j=1

(
Φ̂m,j−1

D,(u,r)(δx),PT−tj−1
f
)
−
(
Φm,j

D,(u,r)(δx),PT−tjf
)

+
(
Φm,j−1

D,(u,r)(δx),PT−tj−1
f
)
−
(
Φ̂m,j−1

D,(u,r)(δx),PT−tj−1
f
)∣∣∣∣∣
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=

∣∣∣∣∣
k∑

j=1

(
Φ̂m,j−1

D,(u,r)(δx),(Psj −Qm
sj )PT−tjf

)
+
(
Φm,j−1

D,(u,r)(δx)− Φ̂m,j−1
D,(u,r)(δx),PT−tj−1

f
)∣∣∣∣∣

≤
k∑

j=1

‖ (Psj −Qm
sj )PT−tjf ‖∞+

k−1∑
j=0

∣∣∣(Φm,j
D,(u,r)(δx)− Φ̂m,j

D,(u,r)(δx),PT−tjf
)∣∣∣, (5.6)

where the first sum of the upper bound is due to the KLV approximation. The second
sum is the error caused by the recombination.

Suppose that f is Lipschitz continuous. The smoothness of Ptf leads to

sup
x∈RN

∣∣∣(Φm,j
D,(u,r)(δx)− Φ̂m,j

D,(u,r)(δx),PT−tjf
)∣∣∣≤Cu

rj+1
j sup

|α|=rj+1

‖DαPT−tjf ‖∞ (5.7)

for 0≤ j≤k−1, where equation (5.3) and the triangle inequality are used. Like the
case of equation (4.12), a suitable condition on {Vi}di=0 ensures there exists a positive
integer p∈N such that

sup
|α|=r+1

‖DαPtf ‖∞≤Ct−rp/2 ‖∇f ‖∞ (5.8)

for all t∈ (0,1]. When equations (4.12) and (5.8) are satisfied [6, 25, 29], one obtains

sup
x∈RN

∣∣∣PT f(x)−
(
Φm,k

D,(u,r)(δx),f
)∣∣∣

≤
(
C1

(
s
1/2
k +

m+2∑
i=m+1

k−1∑
j=1

s
i/2
j

(T − tj)(i−1)/2

)
+C2

k−1∑
j=1

u
rj+1
j

(T − tj)rjp/2

)
‖∇f ‖∞ (5.9)

from equations (4.13) and (5.7). Here C1 and C2 are constants.
The recombination error can be controlled by the radius of the ball uj and the

cubature on RN degree rj . By choosing an appropriate pair (uj ,rj), one can make
the order of the recombination error bound not dominant over the order of the error
bound in the KLV method. For example, in the case of (uj,rj)= (s

p/2−a
j ,�m/p�) where

a=(p−1)/(2(�m/p�+1)) (�x� denotes the smallest integer greater than or equal to x)
or (uj,rj)= ((sm+1

j /(T − tj)
m−rp)1/2(r+1),m), the error estimate

sup
x∈RN

∣∣∣PT f(x)−
(
Φm,k

D(γ),(u,r)(δx),f
)∣∣∣≤C ‖∇f ‖∞ T 1/2k−(m−1)/2 (5.10)

is satisfied for a Lipschitz continuous f when γ >m−1. Equation (5.10) is obtained
from substituting the partition defined in equation (4.14) into equation (5.9) and shows
the same convergence rate as the ones without recombination, equations (4.15) and
(4.25).

6. Patched cubature filter and adaptive patched cubature filter
Recall that X(t)∈RN is governed by

dX(t)=V0(X(t))dt+

d∑
i=1

Vi(X(t))◦dWi(t). (6.1)

Let the noisy observations Yn associated with Xn=X(nT ) satisfy

Yn=ϕ(Xn)+ηn, ηn∼N (0,Rn), (6.2)
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where ϕ∈C∞
b (RN ,RN ′

) and realisations of the noise ηn are i.i.d. random vectors in

RN ′

.
For a deterministic particle approximation of the optimal filtering solution of equa-

tions (6.1) and (6.2), we employ the KLV method and recombination to define the
patched cubature filter (PCF) in Subsection 6.1 and and the adaptive patched cubature
filter (APCF) in Subsection 6.2. We address several issues encountered during their
practical implementations in Subsection 6.3.

6.1. Patched cubature filter (PCF). Let πn|n′ be the law of the conditioned
variable Xn|Y1:n′ and πPCF

0|0 be a discrete measure approximation of the law of X(0).

We define the patched cubature filter (PCF) at the path level by the recursive algorithm

πPCF
n|n−1=Φm,k

D,(u,r)(π
PCF
n−1|n−1),

πPCF
n|n =REW

(
πPCF
n|n−1,g

yn

)
,

(6.3)

for n≥ 1. The algorithm can be stated as the following.

1. One breaks the measure into patches and performs individual recombination
for each one.

2. One moves the given discrete measure forward in time using the KLV method.

3. One performs data assimilation via bootstrap reweighting at every inter-
observation time which might differ from the time step for the numerical inte-
gration.

4. One again applies the patched recombination.

Using πPCF
n−1|n−1 in place of δx in equation (5.6), an error bound of the prior approx-

imation of the PCF is given by∣∣∣(πn|n−1−πPCF
n|n−1,f)

∣∣∣≤∣∣∣(πn−1|n−1,PT f)−(πPCF
n−1|n−1,PT f)

∣∣∣
+
∣∣∣(πPCF

n−1|n−1,PT f)−(Φm,k
D,(u,r)(π

PCF
n−1|n−1),f)

∣∣∣
≤
∣∣∣(πn−1|n−1−πPCF

n−1|n−1,PT f)
∣∣∣+ k∑

j=1

‖ (Psj −Qm
sj )PT−tjf ‖∞

+

k−1∑
j=0

∣∣∣(Φm,j
D,(u,r)(π

PCF
n−1|n−1)− Φ̂m,j

D,(u,r)(π
PCF
n−1|n−1),PT−tjf

)∣∣∣.
(6.4)

One can use the same argument with the case of the PDE problem to obtain a higher
order estimate of the PCF. An error bound of the posterior approximation∣∣∣(πn|n−πPCF

n|n ,f)
∣∣∣

=

∣∣∣∣∣ (πn|n−1,fg
yn)

(πn|n−1,gyn)
−
(πPCF

n|n−1,fg
yn)

(πn|n−1,gyn)
+

(πPCF
n|n−1,fg

yn)

(πn|n−1,gyn)
−
(πPCF

n|n−1,fg
yn)

(πPCF
n|n−1,g

yn)

∣∣∣∣∣
≤ 1

(πn|n−1,gyn)

∣∣∣(πn|n−1−πPCF
n|n−1,fg

yn)
∣∣∣+ ‖ f ‖∞

(πn|n−1,gyn)

∣∣∣(πn|n−1−πPCF
n|n−1,g

yn)
∣∣∣ (6.5)
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is given in terms of an error estimate of the prior approximation. We stress that PCF
does not include any Monte-Carlo subroutine and therefore its error estimate for the
weak approximation can be of high order with respect to the number of iterations k in
view of equations (6.4) and (6.5).

Recall that the path level operator KLV(m) can be replaced by the flow level operator

K̃LV
(m)

without harming the order of accuracy. By doing this in the PCF at the path
level, we define the PCF at the flow level by the successive algorithm that produces
π̃PCF
n|n−1 and π̃PCF

n|n .

6.2. Adaptive patched cubature filter (APCF). It would be worthwhile
to mention that PCF (6.3), like SIR (3.3), performs the prior approximation without
using the next time observational data. This naturally leads us to develop a variant of
PCF that will share the common essential feature with SISR (3.5) in the aspect that
the observation process is involved in moving particles forward in time.

In order to do that, we first consider a modification of the standard KLV scheme in
which some particles are adaptively accelerated when it causes no significant difference
in the integration of the test function. If the smoothness of the test function is not known
in advance, the accuracy requirement of the KLV numerical approach leaves no choice
other than to let the family of particles forward following the pre-specified partition until
the next observation time. This is because, for truly irregular test functions, accurate
integration would require exploration of the irregularities. However if the test function is
smooth enough and the less regular set is of significantly lower dimension than the main
part of the smoothness, then we are allowed to let the particles go straight to the next
observation time from some considerable distance back instead of the step predicted in
the worst case which we would otherwise have used to terminate the algorithm.

We build this insight into the practical algorithm. At each application of the KLV
operator, the algorithm evaluates the test function using a one step prediction straight
to the next observation time and compares this with the evaluation using a two step
(one next step and the rest step to the next observation time) prediction. If two evalu-
ations agree within the error tolerance, then the particles immediately leap to the next
observation time. Otherwise the prediction will follow the original partition.

In terms of accuracy, the approach is pragmatically rather successful because the
opportunities for two (or three to break certain pathological symmetries) step prediction
to produce consistent answers by chance are essentially negligible. Furthermore, the
adaptive switch for which the KLV is employed to move the prediction measure forward
but move a part of it straight to the observation time whenever the relevant part of the
test function is smooth enough has a very significant effect of pruning the computation
and speeding up the algorithm due to the reduction of particles to be recombined at
each iteration.

This adaptive KLV method of course cannot be applied without a test function.
Differently from the PDE problem, the test function is not specified in the filtering
problem. Therefore in practice we take the smooth likelihood as test function to lead
the adaptation.

Recall, D= {0= t0<t1< · · ·<tk=T } is a partition of [0,T ] with sj = tj− tj−1. We
use the likelihood gyn to define the splitting operator acting on a discrete measure μj−1=∑n

i=1κiδxi at time tj−1. Let μ
j−1
i,21 =KLV(δxi ,tj− tj−1), μ

j−1
i,22 =KLV(μi,21,tk− tj), and

μj−1
i,1 =KLV(δxi ,tk− tj−1). Let Iτ be the collection of index i satisfying |(μj−1

i,1 −
μj−1
i,22 ,g

yn)|<τ . Then the discrete measure μj−1 is the union of two discrete measure

μj−1=μj−1,<τ �μj−1,≥τ where μj−1,<τ =
∑

i∈Iτ
κiδxi . For simplicity, μk−1,≥τ is defined
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to be the null set. The process defines the splitting operator

SPL(τ)
(
μj−1,gyn

)
≡μj−1,<τ (6.6)

for 1≤ j≤k.
Define a sequence of discrete measures as follows:

Φm,0
D,(u,r),τ(μ

0)=μ0,

Φ̂m,j−1
D,(u,r),τ(μ

0)=REC(uj−1,rj−1)
(
Φm,j−1

D,(u,r),τ(μ
0)
)
,

Φ̂m,j−1,<τ
D,(u,r),τ (μ0)=SPL(τ)

(
Φ̂m,j−1

D,(u,r),τ(μ
0),gyn

)
,

Φm,j
D,(u,r),τ(μ

0)=KLV(m)
(
Φ̂m,j−1,<τ

D,(u,r),τ (μ0),sj

)
,

(6.7)

for 1≤ j≤k. Let Φ̂m,j−1
D,(u,r),τ(μ

0)= Φ̂m,j−1,<τ
D,(u,r),τ (μ0)�Φ̂m,j−1,≥τ

D,(u,r),τ (μ0) and

Ψm,j−1,k
D,(u,r),τ(μ

0)=KLV(m)
(
KLV(m)

(
Φ̂m,j−1,≥τ

D,(u,r),τ (μ0),tj− tj−1

)
,T − tj

)
, (6.8)

for 1≤ j≤k−1.
We define the adaptive patched cubature filter (APCF) at the path level by

πAPCF
n|n−1=

⎛⎝k−1⊔
j=1

Ψm,j−1,k
D,(u,r),τ(π

APCF
n−1|n−1)

⎞⎠�Φm,k
D,(u,r),τ(π

APCF
n−1|n−1),

πAPCF
n|n =REW

(
πAPCF
n|n−1,g

yn

)
,

(6.9)

for n≥ 1. The algorithm can be stated as the following.

1. One breaks the measure into patches and performs individual recombination
for each one.

2. One splits given discrete measure to lead some of the particles to the next
observation time and the rest of the particles to the next iteration time using
the KLV method.

3. One performs data assimilation via bootstrap reweighting at every inter-
observation time which might differ from the time step for the numerical inte-
gration.

4. One again applies the patched recombination.

By replacing KLV(m) by K̃LV
(m)

, we define the APCF at the flow level that produces
π̃APCF
n|n−1 and π̃APCF

n|n instead of πAPCF
n|n−1 and πAPCF

n|n .

In view of equation (6.5), the likelihood is indeed a natural choice for the filtering
problem in which the posterior measure is of primary interest. One can apply gyn and
fgyn simultaneously as the test function for the SPL operator in equation (6.7) if one
would like to obtain a posterior approximation that accurately integrates f .

Note that both SISR (3.5) and APCF (6.9) are built upon the same philosophy –
making use of the observational information to lead the particles for a more accurate
approximation of the posterior possibly at the expense of the accuracy of the corre-
sponding prior approximation. However the way of modifying the basis algorithm is
different from each other. In particular, while SISR leads the particles only using the
instance of the observation yn, APCF fully uses the likelihood gyn to achieve the adap-
tation. Furthermore APCF cares about the domain of importance without introducing
a new dynamics.
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6.3. Practical implementation. One has to specify the time partition and
the way of patched recombination for the implementation of PCF and APCF. We here
present adaptive partition and adaptive recombination as alternatives to the Kusuoka
partition and the covering with fixed-size balls, respectively. Differently from prior
suggestions, ours are subject to the test function and thus called adaptive.

Before doing that, we at this point mention that the work in [8] also employs
cubature on Wiener space to solve the nonlinear filtering problem. Comparing these
two kinds of cubature filters, one major difference is how to simplify the support of
discrete measure between successive KLV applications to control computational cost.
The one developed in [8] makes use of the Monte-Carlo scheme based on a branching and
pruning mechanism. The algorithm looks for a reduced measure whose distance from
the original measure is minimised in some sense. Therefore the simplification procedure
should be applied to the whole discrete measure all at once. On the contrary, PCF and
APCF take the deterministic moment-matching recombination strategy, which can be
applied locally in the support of measure for an enhanced efficiency.

In addition to the algorithm characteristics, the problem setting in [8] is rather dif-
ferent from the current paper as the observation process is assumed to be not discrete
but continuous (for more details, we refer the reader to [28]). In this case, the time
integration of the KLV method is performed along with even partition of small inter-
vals. However, in case of sparse observations, the numerical integration until the next
observation time requires multiple steps, preferably with uneven partition of decreasing
intervals rather than even partition. For PCF and APCF, the likelihood can serve as the
test function, and we can further utilise the presence of this test function to determine
time partition. This is clearly one additional degree of freedom allowed in the cubature
filter under the scenario of intermittent observations.

6.3.1. Adaptive partition. For a given test function f , one can make use of
the heat kernel Pt as well as f to evolve the set of particles so that one step error is
within a given degree of accuracy, i.e.,

‖ (Psj −Qm
sj )PT−tjf ‖∞<ε (6.10)

for some ε> 0. We define an adaptive partition D(ε,f)= {tj}kj=0 to be a time dis-
cretisation for which each sj = tj− tj−1 is the supremum among the ones satisfying
equation (6.10). Because Ptf becomes smoother as t increases, the sequence {sj}kj=1

tends to decrease monotonically, i.e. s1≥ s2≥···≥ sk. The upper bound of the total
error along with the adaptive partition is given by

sup
x

∣∣∣PT f(x)−(Φm,k
D (δx),f)

∣∣∣<kε (6.11)

from equation (4.11).

6.3.2. Adaptive recombination. Consider the condition∣∣∣(Φm,j
D,(u,r)(μ

0)− Φ̂m,j
D,(u,r)(μ

0),PT−tjf
)∣∣∣<θ (6.12)

given some θ> 0. We define the adaptive recombination by the algorithm that uses as
large of a value of u as possible among the ones satisfying equation (6.12) for a fixed
recombination degree r. The algorithm again makes use of the heat kernel Pt as well as
the test function f . When the adaptive partition and the adaptive recombination are
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simultaneously used, the combination of equations (6.10) and (6.12) yields

sup
x

∣∣∣PT f(x)−(Φm,k
D,(u,r)(δx),f)

∣∣∣<k(ε+θ) (6.13)

from equation (5.6). Notice, unlike the case of equation (5.10) where the constant C is
not specified, the upper bound of equation (6.13) is explicitly under the control.

It deserves to be mentioned that the application of the adaptive recombination
does not require us to determine the size (and even topology) of patches in advance.
Given the recombination degree, it suffices to keep shrinking the size of patches until
equation (6.12) is met. Due to this feature, the adaptive recombination can practically
be useful in achieving the error bound of equation (6.13) when it is accompanied with
an efficient algorithm that divides the support of discrete measure into local disjoint
subsets. Because the detailed algorithm of the recombination can be found in [29], we
conclude this section with one way to achieve the adaptive recombination utilising the
Morton ordering [32]. The methodology adopts boxes, instead of balls, as patches to
locally cover the particles. The algorithm is advantageous particularly in the case of
high dimension.

Given a number of particles in N dimension, we perform an affine transformation
to map the particles into the ones in the box [0.5,1)N . In the following, we evenly
divide each edge of the box by 2n to get 2nN sub-boxes and assign the particles to these
sub-boxes. We use the double-precision floating-point format in scientific computing:
any number zi∈ [0.5,1) is saved in terms of {bij}52j=1, where bij is either 0 or 1 in a

way that zi=(1/2)×(1+
∑52

j=1 b
i
j2

−j), (almost all numbers in [0.5,1) have a binary
expansion of more than 52 digits, but this reduced information is quite enough for
our purpose). In this way, the point (z1, . . . ,zN) in N -dimension can be expressed by
52×N binary numbers. Interleaving the binary coordinate values yields binary values.
Connecting the binary values in their numerical order produces the Morton ordering.
Then an appropriate coarse-graining leads to the subdivision of a box. For example,
when N =2, the binary value corresponding (z1,z2) is b11b

2
1b

1
2b

2
2 · · ·b152b252. The point is in

first quadrant if (b11,b
2
1)= (1,1), in second quadrant if (b11,b

2
1)= (0,1), in third quadrant

if (b11,b
2
1)= (0,0) and in fourth quadrant if (b11,b

2
1)= (1,0). Applying this classification to

a number of particles produces 22 disjoint subsets of classified particles. Similarly, using
b11b

2
1b

1
2b

2
2 and ignoring the remaining subgrid scales gives 42 subsets when N =2. Taking

the inverse affine transformation, a classification of the particles has been achieved.
The crucial point is that, by sorting the one dimensional transformed points, one

keeps points in a box together without ever needing to introduce the boxes, and par-
ticularly empty boxes. The complexity of the clustering is no worse than MN logM in
the number of points. Here M is number of particles, N is dimension, and MN logM
is the cost of patching. Note N logM is the cost of getting those points in a patch.

7. Numerical simulations
We perform numerical simulations to examine the efficiency and accuracy of the

proposed filtering approaches. We introduce the test model in Subsection 7.1 and obtain
the reference solutions in Subsection 7.2. We implement the PCF and APCF with
cubature on Wiener space of degree m=5 in Subsection 7.3. Finally, in Subsection 7.4,
we investigate the prospective performance of PCF and APCF with cubature on Wiener
space of degree m=7.

7.1. Test model. It is very important to select a good example to examine the
performance of the algorithms we have developed. Here we choose a forward model and
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observation process for which the analytic solution of the filtering problem is known
and can be used to measure the accuracy of the various particle approximations.

Our test model is the Ornstein–Uhlenbeck process [39] in three dimension:

dX=−ΛXdt+gI3dW, (7.1)

where X=(x1 x2 x3)t, Λ=

⎛⎝ σ −σ 0
−ρ 1 0
0 0 β

⎞⎠, dW =(dW1 dW2 dW3)
t, and I3 denotes the

3×3 identity matrix. Here the superscript t denotes the transpose. The parameter
values σ=1, ρ=0.28, β=8/3, and g=0.5 are chosen. The observations

Yn=Xn+ηn, ηn∼N (0,Rn) (7.2)

are available at every inter-observation time T =0.5. We study the cases in which the
covariance of observation noise is Rn=R×I3 for the values R=10−1,10−2, and 10−3.

7.2. Reference Solutions.

7.2.1. Kalman filter. The conditioned measure for equations (7.1), (7.2) is
Gaussian and πn|n′ =N (Mn|n′,Cn|n′) can be obtained from the Kalman filter. In this
case, the prior covariance Cn|n−1 satisfies the Riccati difference equation and its solution
converges as n increases [3]. We take the covariance of the initial condition X(0) as the
one step prediction from the limit of the Riccati equation solution so that Cn|n−1 and
Cn|n do not depend on n (but Mn|n−1 and Mn|n depend on n). We see that the diagonal
elements of Cn|n−1 are about 10−1 for all cases of R=10−1,10−2,10−3. The diagonal
elements of Cn|n are about 10−1 when R=10−1, about 10−2 when R=10−2 and about
10−3 when R=10−3.

In this filtering problem, we first investigate where are the observations. We apply
the Kalman filter for 1≤n≤ 108 and calculate the values of D1, D2, and D3 satisfying
yn=Mn|n−1+(D1D2D3)

t ·
√

diag(Cn|n−1), where yn is determined by one trajectory
of the dynamics (7.1) together with a realisation of the observation noise ηn. The
histograms in Figure 7.1 show the distribution of these normalised distances between
the observation and the prior mean when R=10−2 (the cases of R=10−1 and R=10−3

are similar and not shown). One can see that most of the observations are within two
standard deviations from the prior mean in each coordinate. Among the cases of 108,
there are 4592208 cases for which |Di|> 1 for all i=1,2,3 at the same time. There are
37574 cases for which |Di|> 2 for all i at the same time, and 60 cases for which |Di|> 3
for all i at the same time. From the simulation, we understand the three cases in which
the parameter value of D≡D1=D2=D3 is 1, 2, and 3, are normal, exceptional, and
rare event, respectively.

7.2.2. L2 norm of the higher-order central moments. Here we aim to in-
vestigate the parameter regimes under which our cubature filters are likely (or unlikely)
to outperform. In order to evaluate the computational error, one needs to define an error
criterion relevant to the approximations. We realise that unfortunately a comparison
between the evolving single trajectory and the corresponding posterior mean approxi-
mation, which is commonly used in the filtering context, is highly inappropriate for our
purpose. This is because the cubature approximation is basically superior within ap-
proximating the tail behaviour or higher-order moments of the probability distribution.
Therefore we instead use the L2 norm of the central moment to quantify the accuracy
of the approximation obtained in the form of discrete measure.
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Fig. 7.1. The distribution of normalised distances between the observation and the prior mean
when the noise covariance is Rn=10−2

×I3.

Let Cp be the pth central moment of X=(x1 x2 x3)t, i.e.

Cp
i1,···,ip

=E

⎛⎝ p∏
j=1

(
xij −E(xij )

)⎞⎠
where ij =1,2,3. The L2 norm of Cp is defined by

‖Cp ‖2≡

⎛⎝ 3∑
i1,···,ip=1

|Cp
i1,···,ip

|2
⎞⎠1/2

. (7.3)

When p=1, equation (7.3) is the Euclidean norm of the vector. When p=2, it is

equivalent with the Frobenius norm of the matrix. Let Ĉp be the pth central moment
of a particle approximation. Then the relative root mean square error (RMSE)

RMSE%≡‖Cp−Ĉp ‖2 / ‖Cp ‖2 (7.4)

will be calculated to measure the accuracy of the moment approximations.

7.2.3. Monte-Carlo Gaussian samples. In our problem setting, the RMSE
errors are insensitive to the specific time interval between successive observations. Tak-
ing one arbitrary time interval, we study the cases of D=1,2,3, which correspond to a
normal, an exceptional, and a rare event. The scenario initially may look somewhat ar-
tificial because, unlike the filtering in practice, the observational data is not generated
from realisations. However, we emphasise that it has been carefully designed, while
keeping the practical relevance, in order to find the parameter regimes under which our
approaches outperform Monte-Carlo methods, and this will eventually turn out to be
extremely helpful for a deeper understanding of the filtering problem.

We perform Gaussian sampling to obtain three different Monte-Carlo approxima-
tions of the posterior measure. For the first one, we draw samples from the prior
measure and subsequently apply the bootstrap reweighting to obtain the posterior ap-
proximation. One can regard these bootstrap reweighted samples from the prior as the
SIR result. The second one is from the SISR algorithm under the transition kernel
K̃(dxn|xn−1,yn)=P(dxn|xn−1,yn), which is the optimal proposal in the sense of min-
imising the variance of the importance weights [14]. Finally, we draw samples directly
from the posterior measures as the third one. Note, in all Monte-Carlo approximations,
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ε=10−2 ε=10−3 ε=10−4 ε=10−5

R=10−1 7 31 102 344

R=10−2 10 29 101 330

R=10−3 20 48 120 329

Table 7.1. The number of adaptive partition k for KLV with m=5

neither truncation error due to numerical integration nor resampling error is induced
for a fair comparison. The RMSE errors (7.4) of these Gaussian samples are depicted in
Figure 7.4 when R=10−2, D=1,2,3 and in Figure 7.5 whenD=1, R=10−1,10−2,10−3.
These results will be compared with the cubature filters.

10−510−410−310−210−3

10−2

10−1

100

ε

k
×

ε

R=10−1

R=10−2

R=10−3

Fig. 7.2. The upper bound of the total error along with the adaptive partition when m=5.

100 110 120 130
−4

−3

−2

−1

0

n

lo
g(

rm
se

 %
)

Xn|Y1:n (m=5, R=10−1, D=1, ε = 10−2)

PCF p=1
PCF p=2
PCF p=4
PCF p=6
PCF p=8
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Fig. 7.3. The relative L2 errors for the pth moments of the evolutionary posterior.
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7.3. PCF and APCF with cubature on Wiener space of degree 5.

7.3.1. Choice of parameters. Here, we implement the PCF and APCF at
the flow level. In the case of d=3, i.e. when the system is driven by three independent
white noises, cubature on Wiener space of degree m=3 and m=5 (with support size
nm=6 and nm=28 respectively) are available. We apply the KLV operator with degree
m=5.

Using the likelihood gyn as the test function f , the adaptive partition D(ε,gyn)

satisfying equation (6.10) with Q̃m
sj in place of Qm

sj is analytically obtained for the system
of equations (7.1). Note that the likelihood gyn is the density function of N (yn,Rn) and
that the adaptive partition does not depend on yn but on Rn. The number of iterations
k as a function of ε and R is listed in Table 7.1. In this case, Figure 7.2 reveals the
upper bound of equation (6.11) tends to decrease as ε becomes smaller. Therefore, by
choosing θ to be the same order of ε, one can combine the adaptive partition and the
adaptive recombination to achieve a desired degree of accuracy to some extent.

For the recombination of the PCF, equation (6.12) with f = gyn for all yn∈RN , i.e.

sup
yn

∣∣∣(Φm,j
D,(u,r)(μ

0)− Φ̂m,j
D,(u,r)(μ

0),PT−tjg
yn

)∣∣∣<θ, (7.5)

is met such that the recombination does not depend on yn but on Rn. We choose the
recombination degree r=5 and simulate the PCF for the cases of ε=10−2,10−3 with
θ=0.3×ε.

For the APCF, the tolerance τ has to be chosen in addition to the parameters
{ε,θ}. The value of τ varies in each case, but we choose it so that the SPL operator in
equation (6.7) allows 1/4∼ 1/3 part of particles leap to the next observation time for
all iterations except the first and last few steps. The remaining particles are reduced
by the adaptive recombination, i.e., the recombination satisfies∣∣∣(Φm,j

D,(u,r),τ(μ
0)− Φ̂m,j

D,(u,r),τ(μ
0),PT−tjg

yn

)∣∣∣<θ (7.6)

where μ0= π̃APCF
n−1|n−1. We again choose the recombination degree r=5 and simulate the

APCF for the cases of ε=10−2,10−3 with θ=0.3×ε.
With the value of D being fixed, we apply the PCF and APCF to obtain the values

of equation (7.4) for the evolving posterior measure. Figure 7.3 shows that the perfor-
mances of the two filtering algorithms are stable and that the numerical error estimates
of high-order moments are insensitive to n (the remaining cases produce similar plots
and are not shown).

In our numerical simulations, the number of patches needed to satisfy equation (7.5)
in the PCF increases as the time partition approaches to the next observation time,
eventually about 83∼ 163. On the contrary, equation (7.6) in the APCF is satisfied
with 23 (< 10) patches in most cases. As a result, APCF saves computation time
significantly compared with PCF.

7.3.2. Dependence on the observation location. When R=10−2 is fixed
and D=1,2,3 varies, the relative L2 errors of the pth moments of PCF and APCF are
shown in figures 7.4(b), 7.4(i), 7.4(j), and 7.4(k). We have implemented two cases of
ε=10−2 and ε=10−3. The recombination times are measured using Visual Studio with
Intel 2.53 GHz processor (the autonomous ODEs are solved analytically). Figure 7.4
reveals the following.
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• The prior approximation of PCF with ε=10−3 shows similar accuracy with 104

Monte-Carlo sampling (figures 7.4(a) and 7.4(b)).

• The accuracy of the APCF prior approximation is in general worse than PCF
especially for higher order moments (Figure 7.4(b)).

• As the observation is located further far from the prior mean, i.e., asD increases,
the posterior approximation obtained from Monte-Carlo bootstrap reweighting
(SIR) becomes less accurate (figures 7.4(c), 7.4(d), and 7.4(e)). As the number
of samples M increases, the error reduction asymptotically scales as M−1/2 in
all cases.

• Unlike the case of SIR, the accuracy of the importance samples (SISR) is not
significantly influenced by the observation location as well as the number of sam-
ples (figures 7.4(f), 7.4(g), and 7.4(h)). This sample size insensitivity is presum-
ably because SISR duplicates the samples in this parameter regime (compare
with Figure 7.5(i)).

• The accuracy of the APCF posterior approximation is similar to PCF but
APCF significantly reduces the recombination time which is insensitive to D
(figures 7.4(i), 7.4(j), and 7.4(k)).

• The accuracy of the PCF and APCF posterior approximations with ε=10−2

is similar to 104 Monte-Carlo reweighted samples (SIR) when D=1,2 (fig-
ures 7.4(c), 7.4(i), 7.4(d), and 7.4(j)) and to 105 reweighted samples (SIR)
when D=3 (figures 7.4(e) and 7.4(k)).

• The accuracy of the PCF and APCF posterior approximations with ε=10−3 is
similar to 105 Monte-Carlo reweighted samples when D=1 (figures 7.4(c) and
7.4(i)), to 106 reweighted samples when D=2 (figures 7.4(d) and 7.4(j)) and to
107 reweighted samples when D=3 (figures 7.4(e) and 7.4(k)).

• The accuracy of the PCF and APCF posterior approximations with ε=10−3

is superior to 106 importance samples (SISR) when D=1 (figures 7.4(f) and
7.4(i)), comparable to SISR when D=2 (figures 7.4(g) and 7.4(j)), and inferior
to SISR when D=3 (figures 7.4(h) and 7.4(k)), in approximating higher-order
moments.

There is an important insight to be gained from this experimental analysis. Though
PCF produces a more accurate description of the prior measure than APCF, the one
from this naive approximation of the prior is not better at approximating the posterior.
The point is that one needs an extremely accurate representation of the prior in certain
localities. While APCF delivers this without undue cost, the PCF method would have
to deliver this accuracy uniformly and well out into the tail of the prior. As a result, for
the posterior approximation, APCF can achieve a similar accuracy to PCF while using
significantly less computational cost.

In this example, the computational cost (recombination time) of PCF and APCF
is uniform and irrespective of D for given ε=10−2,10−3. However, when one uses SIR
to achieve the accuracy due to APCF with ε=10−3 in approximating higher-order mo-
ments, one needs more computational resources (large number of particles) asD becomes
bigger. One also cannot expect an accuracy improvement from SISR except the rare
event case (D=3). Therefore, in the reliability aspect, APCF is clearly advantageous
over sequential Monte-Carlo methods.

7.3.3. Dependence on the observation noise error. When D=1 is fixed
and R=10−1,10−2,10−3 varies, the values of equation (7.4) for PCF and APCF are
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Fig. 7.4. The prior and posterior approximations when R=10−2 is fixed and D=1,2,3 varies.
The top row is for the prior, and the other three rows are for the posterior. The second row (SIR)
and the third row (SISR) are from Monte-Carlo samples. The last row is from cubature approximation
when ε=10−2,10−3.
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(j) cubature approximation of
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(l) cubature approximation of
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Fig. 7.5. The posterior approximations when D=1 is fixed and R=10−1,10−2,10−3 varies.
The top three rows are from Monte-Carlo samples. The first row is from direct sampling of posterior,
the second is from SIR, and the third is from SISR. The last row is from cubature approximation when
ε=10−2,10−3. In Figure 7.5(l), the PCF with ε=10−3 is not shown.
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shown in figures 7.5(j), 7.5(k), and 7.5(l). We have implemented two cases of ε=10−2

and ε=10−3. Figure 7.5 reveals the following.

• The high-order moment approximations errors due to Monte-Carlo Gaussian
samples (direct sampling of the posterior) are insensitive to its covariance (re-
call the diagonal elements of Cn|n are of the same order with the value of R)
(figures 7.5(a), 7.5(b), and 7.5(c)).

• As the likelihood becomes narrower, i.e. as R decreases, the posterior approx-
imation obtained from Monte-Carlo bootstrap reweighting (SIR) becomes less
accurate (figures 7.5(d), 7.5(e), and 7.5(f)).

• The accuracy of importance samples (SISR) tends to increase as R decreases
(figures 7.5(g), 7.5(h), and 7.5(i)). In particular, when R=10−3, the moment
approximations of SISR is comparable with those from direct sampling of the
posterior except the mean (figures 7.5(c) and 7.5(i)).

• As R decreases, the recombination time needed to achieve a given degree of
accuracy becomes bigger for PCF, but this is not the case for APCF, i.e. the
recombination time for APCF is insensitive to R (figures 7.5(j), 7.5(k), and
7.5(l)).

The simulation shows that APCF again achieves a similar accuracy with PCF in all
cases but, as the observation noise error decreases, APCF becomes more competitive
than PCF for the solution of the intermittent data assimilation problem. It further
shows that APCF is of higher order with respect to the recombination time and can
achieve the given degree of accuracy with lower computational cost.

Although Yn is there and measurable, it is sometimes the case that it is actually
computationally very expensive to compute and that the thing one can compute is ac-
tually the evaluation of likelihood for a number of locations. For example, consider a
tracking problem for an object of moderate intensity and diameter that does a random
walk, is moving against a slightly noisy background, and is observed relatively infre-
quently. Its influence is entirely local. The likelihood function will be something like the
Gaussian centred at the position of the object but completely uninformative elsewhere
in the space. The smaller the object, the tighter or narrower the Gaussian, the harder
the problem of finding the object becomes. One can compute the likelihood at any point
in the space, but only evaluations at the location of the particle are informative. In that
way, one sees the following:

1. The Yn is observable but only partially observed – and with low noise is very
expensive to observe accurately, as one has to find the particle.

2. The likelihood can be observed at points in the space.

In this sort of example, it would be quite wrong to assume that, if we know the prior
distribution of Xn, then just because Yn=Xn+ηn we know the posterior distribution
at zero cost. For sequential Monte-Carlo methods, bootstrap reweighting would seem
to give a much better approach.

7.4. Prospective performance PCF and APCF with cubature on Wiener
space of degree 7. A cubature formula on Wiener space of degree m≥ 7 is currently
not available when d=3. However, in our problem setting, we are able to emulate a
prospective performance of higher-order cubature formula using Gauss–Hermite quadra-
ture.

For the linear dynamics satisfying

X(Δ)=FΔX(0)+νΔ, νΔ∼N (0,QΔ),
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where FΔ∈R3×3 is a matrix, we define the forward operator

GHC(m)

(
n∑

i=1

κiδxi ,Δ

)
≡

n∑
i=1

nm∑
j=1

κiλjδFΔxi+zj , (7.7)

where {λj ,z
j}nm

j=1 is a Gauss–Hermite cubature of degree m with respect to the law
of νΔ. The authors have seen that the performance of GHC is similar to KLV on
the flow level when m=3,5 and that equation (7.7) can be used as an alternative to
equation (4.23) in the application of PCF and APCF to the test model.

ε=10−2 ε=10−3 ε=10−4 ε=10−5

R=10−1 2 4 6 10

R=10−2 5 9 16 28

R=10−3 9 17 30 54

Table 7.2. The number of adaptive partition k for GHC with m=7

10−510−410−310−210−5

10−4

10−3

10−2

10−1

100

ε

k
×

ε

R=10−1

R=10−2

R=10−3

Fig. 7.6. The upper bound of the total error along with the adaptive partition when m=7.

The number of iterations k in the adaptive partition, obtained from using GHC
with Gauss–Hermite cubature of degree m=7 whose support size is nm=64 in place
of Qm

sj , is shown in Table 7.2. Here Figure 7.6 corresponds to Figure 7.2 and shows an
enhanced accuracy. We apply GHC with degree m=7 to obtain a prior and posterior
approximation, where the recombination degree r=5 and θ=0.2×ε is used. Our choice
of τ is again such that 1/4∼ 1/3 of the particles are allowed to leap to the next observa-
tion time. The RMSE errors (7.4) in the case of R=10−2, D=2, and ε=10−2,10−3 are
shown in Figure 7.7(c), and this can be viewed as a result from PCF and APCF with
cubature on Wiener space of degree m=7. Its performance is in fact one higher-order
improvement for both accuracy and recombination time in view of figures 7.7(a) and
7.7(b). From the simulation, we expect APCF with higher order cubature formula can
outperform Monte-Carlo approximations in any parameter regimes including the ones
for which it used to be not so successful when it uses a low order cubature formula. This
further highlights the strong necessity to find out cubature formula on Wiener space
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(c) cubature approximation of
posterior

Fig. 7.7. The posterior approximations when R=10−2 and D=2. The left is from Monte-Carlo
samples and the middle and right is from cubature approximation when ε=10−2,10−3.

of degree m≥ 7 in order to solve the PDE or filtering problem with high accuracy in a
moderate dimension.

8. Discussion

In this paper, we introduced a hybrid methodology for the numerical resolution
of the filtering problem which we name the adaptive patched cubature filter (APCF).
We explore some of its properties and report on a first attempt at a practical imple-
mentation. The APCF combines many different methods, each of which addresses a
different part of the problem and has independent interest. At a fundamental level,
all of the methods use high-order approaches to quantify uncertainty (cubature) and
also to reduce the complexity of calculations (recombination based on heavy numerical
linear algebra), while retaining explicit thresholds for accuracy in the individual com-
putation. The thresholds for accuracy in a stage are normally achievable in a number
of ways (e.g. small time step with low order or large time step with high order) and
the determination of these choices depends on computational cost. Aside from this use
of the error threshold and choices based on computational efficiency, there are several
other points to observe in our development of this filter.

1. One feature is the surprising ease with which one can adapt the computations
to the observational data and so avoid performing unnecessary computations.
In even moderate dimensions (we work in 3+1), this has a huge impact for the
computation time while preserving the accuracy we achieve for the posterior
distribution (figures 7.4(i), 7.4(j), 7.4(k), 7.5(j), 7.5(k), and 7.5(l)). It is an
automated form of deterministic high-order importance sampling which has
wider application than the one explored in this paper. For instance, it is used
to deliver accurate answers to PDE problems with a piecewise smooth test
function in the example developed in [29].

2. Another innovation allowing a huge reduction in computation is the ability to
efficiently, patch the particles in the multiple-dimensional scenario. Although
the problem might at first glance seem elementary, it is in fact the problem of
data classification. To resolve this problem, we introduce an efficient algorithm
for data classification based on extending the Morton order to floating point
context. This method has now also been used effectively for efficient function
extrapolation [34].

3. The KLV algorithm is at the heart of a number of successful methods for solving
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PDEs in moderate dimension [33]. In each case, something has to be done
about the explosion of scenarios after each time step, which in turn has to rely
on an understanding of the errors. In this paper, we take a somewhat different
approach to the literature [31] in the way we use higher-order Lipschitz norms
systematically to understand how well functions have been smoothed and to
measure the scales on which they can be well-approximated by polynomials.
This has the consequence that one can be quite precise about the errors one
incurs at each stage in the calculation. In the end, this is actually quite crucial
to the logic of our approach since an efficient method requires optimisation over
several parameters – something that is only meaningful if there are (at least in
principle) uniform estimates on errors. As a result of this perspective, we do
not follow the time steps and analytic estimates introduced by Kusuoka in [26],
although we remain deeply influenced by balancing the smoothing properties
of the semigroup with the use of non-equidistant time steps.

4. The focus on Lipschitz norms makes it natural to apply an adaptive approach
to the recombination patches as well as to the prediction process. In both cases
we can be lead by the local smoothness of the likelihood function as sampled
on our high order high accuracy set of scenarios.

5. We have focussed our attention on the quality of the tail distribution of the
approximate posterior we construct. This is important in the filtering problem
because a failure to describe the tail behaviour of the tracked object implies
that one will lose the trajectory altogether at some point. These issues are
particularly relevant in high dimensions as the cost of increasing the frequency
of observation can be prohibitive. If one wishes to ensure reliability of the filter
in the setting where there is a significant discrepancy between the prior estimate
and the realised outcome over a time step, then our APCF with cubature on
Wiener space of degree 5 already shows in the three-dimensional example that
it can completely outperform sequential importance resampling Monte-Carlo
approach. The absence, at the current time, of higher-order cubature formulae
is in this sense very frustrating as the evidence we give suggests that higher-
degree methods will lead to substantial further benefits for both computation
and accuracy.

In putting this paper together, we have realised that there are many branches in this
algorithm that can be improved, in particular some parts of the adaptive process and
also the recombination (a theoretical improvement in the order of recombination has
recently been discovered [38]). There are also large parts that can clearly be parallelised.
We believe that there is ongoing scope for increasing the performance of the APCF.
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