
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 3, pp. 777–797

SPECTRAL RESULTS FOR PERTURBED VARIATIONAL
EIGENVALUE PROBLEMS AND THEIR APPLICATIONS TO

COMPRESSED PDES∗

ÖMER FARUK TEKİN† , KE YIN‡ , AND FARZIN BAREKAT§

Abstract. We consider the solutions to a modification of the Courant’s minimax characterization
of the Dirichlet eigenfunctions of second-order linear symmetric elliptic operators in a bounded domain
Ω in Rd. In particular, we perturb the objective functional by an arbitrary bounded penalty term.
Without perturbation, it is well known that the Courant minimax principle yields the eigenfunctions,
which form an orthonormal basis for L2(Ω). We prove that the solutions of the perturbed problem still
form an orthonormal basis in the case of d = 1 and d = 2, provided that the perturbation is sufficiently
small in the latter case. As an application, we prove completeness results for compressed plane waves
and compressed modes, which are the solutions to analogous variational problems with perturbations
being an L1-regularization term. The completeness theory for these functions sets a foundation for
finding a computationally efficient basis for the representation of the solution of differential equations.
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1. Introduction
For a second-order symmetric elliptic operator L on a bounded domain Ω ⊂ R

d,
consider the following Dirichlet eigenvalue problem:

Lu = λu in Ω,

u = 0 on ∂Ω.

The spectral theorem for the second-order elliptic operators asserts that the Dirich-
let eigenfunctions of L form an orthonormal basis for L2(Ω). Furthermore, the eigen-
values and eigenfunctions can be characterized via a hierarchical variational procedure
involving the minimization of the functional B[u, u] = 〈Lu, u〉L2 , known as the Courant
variational method (see e.g. [6, 8]).

In this paper, we consider the Courant variational problem under a non-negative
perturbation and prove for it an analogue of the spectral theorem. We treat this problem
in a general Hilbert space setting, where we consider an arbitrary self-adjoint operator
T whose inverse is compact. Namely, we rather minimize the functional

J (u) := P (u) + 〈Tu, u〉,

in the domain of definition for T , where P is a non-negative penalty term. We verify
that the spectral theorem still holds, as long as the eigenvalues of the original problem
grow sufficiently fast. In particular, the growth condition holds when T is the weak
realization of an elliptic operator on a bounded domain Ω lying inside R or R2.

∗Received: June 29, 2014; accepted (in revised form): July 7, 2015. Communicated by Lexing Ying.
This research was supported by NSF DMS 0914561 and 1118971. Research of Barekat was also sup-
ported by an NSERC PGS-D award.

†Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095-1555
USA(omerftekin@math.ucla.edu).

‡Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095-1555
USA (kyin@math.ucla.edu).

§Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095-1555
USA (fbarekat@math.ucla.edu).

777



778 COMPLETENESS THEORY FOR COMPRESSED PDES

As an application, we consider the spatially localized (“sparse”) modes introduced in
[9,10]. In [5,7], it was proven that perturbing the variational quantity of certain elliptic
and parabolic PDEs would result in compact support. In [9, 10], the authors consider
variational problems corresponding to Schrödinger’s equation or Laplace’s equation,
whose functional is modified by an L1-regularization term. Namely, their construction
involves the minimization of the functional

J (u) :=
1

μ
||u||1 + 〈Lu, u〉L2 ,

where L = − 1
2Δ, or L = − 1

2Δ+ V (x). By minimizing the above functional subject to
the orthogonality constraint, so-called “compressed modes” are obtained by the authors
in [9]. In a different formulation, where shift-orthogonality is imposed in addition to
orthogonality, the minimizers are called the “compressed plane waves” [10]. Numerical
experiments suggest that the regularization parameter μ for the L1 term is used to bal-
ance between the consistency with the original problem and the sparsity of the solution.
The consistency and the sparsity of compressed modes as μ varies have been verified
in [1–3].

Our results yield further consistency results for compressed modes and compressed
plane waves, as we conclude that the analogous spectral properties are preserved under
perturbation. Such “completeness” conjectures are proposed in [9, 10]. In [9], the
authors predicted that the compressed modes approximate the true eigenstates with
high precision, whereas in [10], they conjectured that the compressed plane waves form
a basis in L2(Ω), where Ω is some bounded rectangular domain in R

d. We will provide an
affirmative answer to these conjectures in dimensions one and two, and we will propose
Conjecture 2.2, which is phrased in a general Hilbert space setting. We note that this
conjecture implies the above-mentioned conjectures.

This paper is organized as follows. In Section 2, we study the theory of complete-
ness for the solutions of the perturbed Courant–Fisher variational problem for arbitrary
linear operators defined on a Hilbert space. We prove the completeness in theorems 2.7
and 2.8 under linear and super-linear growth conditions on the eigenvalues of the orig-
inal operator. Without the completeness, we still have Theorem 2.9, which yields an
estimation of the deviation from the true solutions. Lemma 2.5 is the essential tool
in the proof of these results. In sections 3 and 4, we apply the theory developed in
Section 2 to the second-order linear symmetric elliptic operators.

2. Perturbed variational problems associated to linear operators
The proof of the spectral theorem for elliptic operators relies on the fact that the

“inverse” of the elliptic differential operator is compact, hence the following spectral
theorem for symmetric compact operators holds:

Theorem 2.1 (Spectral Theorem for Compact Operators). Let H be a Hilbert
space and K : H → H be a linear symmetric compact operator. Then,

1. K has real eigenvalues νk, and νk → 0 as k → ∞ and

2. The (normalized) eigenvectors {φk}∞k=1, with Kφk = νkφk, form a complete
orthonormal system in H.

As a consequence of this version of the spectral theorem, the inverse T , of a positive
compact operator K satisfies the following spectral theorem:

Theorem 2.2 (Spectral theorem for inverse-compact operators). Let H be a
Hilbert space and K : H → H be a linear bijective symmetric compact operator that is
also bounded below. Then, T = K−1 satisfies the following properties:
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1. T has real eigenvalues λk, with {λk}∞k=1 in increasing order, and λk → +∞ as
k → ∞,

2. The (normalized) eigenvectors {φk}∞k=1, with Tφk = λkφk, form a complete
orthonormal system.

Remark 2.1. Notice that the operator T defined in Theorem 2.2 is unbounded, so
T must have a domain of definition, D(T ), for which it is self-adjoint. We consider the
following natural choice of the domain of definition:

D(T ) = {α =
∑
n∈N

α̂nφn ∈ H|
∑
n∈N

λnα̂nφn ∈ H, or equivalently,
∑
n∈N

λ2
n|α̂n|2 < ∞},

in which there will be no ambiguity of the definition of T .

We will now work with the operators T that can be represented as the inverse of
some bijective symmetric compact operator. The eigenvalues and eigenvectors of T can
be characterized via the following Courant–Fisher variational formulae (see e.g. [6]):

λ1 = min
u∈D(T )
||u||=1

〈Tu, u〉,

φ1 = argmin
u∈D(T )
||u||=1

〈Tu, u〉,

λk = min
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉,

φk = argmin
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉.

We consider a similar variational problem, where we perturb the objective functional
〈Tu, u〉. Strictly speaking, we define

J [u] = 〈Tu, u〉+ P (u),

where P : H → R is a non-negative penalty term. We view the term J [u] as the
“energy” of the element u, and we run a progressive energy-minimization procedure as
in the Courant–Fisher formulae. In other words, we define

ζ1 = argmin
u∈D(T )
||u||=1

J [u],

(2.1)
ζk = argmin

u∈D(T )

u∈{ζ1,...,ζk−1}⊥
||u||=1

J [u].

In case of a non-uniqueness in the minimization above, we define ζk to be one
of the solutions to the corresponding minimization problem. To ensure the existence
of ζk’s, we impose that P is bounded and lower semi-continuous with respect to the
norm-convergence, in the sense that

P (u) ≤ C||u||,
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||un − u|| → 0 =⇒ P (u)≤ lim inf P (un). (2.2)

The smallest constant C satisfying the boundedness of P is the functional norm of
P and is denoted by ||P ||.

We require that the eigenvectors of T , i.e. {φn}n∈N, form a complete orthonormal
system in H. We conjecture that as long as the perturbation satisfies the existence
criteria (2.2), such a spectral result still holds:

Conjecture 2.2. The set {ζn}n∈N obtained via the variational procedure (2.1) forms
a complete orthonormal system in H.

This section mainly focuses on verifying Conjecture 2.2 under certain growth as-
sumptions on the eigenvalues λn. In order to verify this conjecture, one needs to show
that

φk ∈ span{ζn}n∈N ∀k ∈ N, (2.3)

where spanE denotes the space consisting of the finite linear combinations of the ele-
ments in E. The following Hilbert theoretic result quantifies the relation (2.3).

Lemma 2.3. Let {en}n∈N be a maximal orthonormal system in a Hilbert space H. Let
{fn}n∈N be some orthonormal system in H. Assume that each fn has the expansion

fn =
∑
k∈N

an,kek, an,k ∈ C.

Then, for each k ∈ N,

d(ek, span{fn})2 = 1−
∑
n∈N

|an,k|2,

where d(e,M) denotes the distance between some e ∈ H and some linear subspace M of
H.

Proof. Let w be the projection of ek onto span{fn}n∈N. Then, since {fn}n∈N is
an orthonormal system, w is given by

w =
∑
n∈N

〈ek, fn〉fn

=
∑
n∈N

〈ek,
∑
j

an,jej〉fn

=
∑
n∈N

an,kfn.

Hence, we can compute the size of w:

||w||2 =
∑
n∈N

|an,k|2. (2.4)

Note by the property of the projection that ek−w ⊥ w. Therefore, by the Pythagorean
identity, we have

||ek||2 = ||ek − w||2 + ||w||2. (2.5)
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Notice also that w, being the projection of ek onto span{fn}n∈N, is the closest point to
ek inside span{fn}n∈N, so that

d(ek, span{fn})2 = ||ek − w||2. (2.6)

Combining (2.4)–(2.6), we get

d(ek, span{fn})2 = ||ek||2 − ||w||2 = 1−
∑
n∈N

|an,k|2,

as desired.

Corollary 2.4. Let {en}n∈N, {fn}n∈N, an,k be as in Lemma 2.3. Then, for each
k ∈ N, ∑

n∈N

|an,k|2 ≤ 1 (2.7)

and

ek ∈ span{fn} ⇐⇒
∑
n∈N

|an,k|2 = 1.

The following lemma yields an estimate for the elements that are lying inside the
orthogonal complement of any arbitrary orthonormal system, in terms of the deviation
of their functional values from the sum of the eigenvalues corresponding to the true
eigenstates. We denote the deviation of the first N elements by F (N).

Lemma 2.5. Let φn be the eigenvectors of the operator T , with the corresponding
eigenvalues {λn}n∈N being in increasing order. Let {en}n∈N be an orthonormal system
satisfying

N∑
n=1

〈Ten, en〉 ≤ F (N) +

N∑
n=1

λn ∀N ∈ N. (2.8)

Suppose that there exists f ∈ {en}⊥n∈N
, ||f || = 1, with the expansion

f =
∑
n∈N

fnφn, fn ∈ C.

Then, we have

N∑
n=1

|fn|2(λN+1 − λn) ≤ F (N), ∀N ∈ N. (2.9)

Proof. Let the {an,k}n,k∈N denote the coefficients with en expanded in the basis
{φk}k∈N, i.e.

en =
∑
k∈N

an,kφk.

Applying the result (2.7) of Lemma 2.3 to the orthonormal systems {en}n∈N ∪ {f} and
{φn}n∈N, for each k ∈ N, we get∑

n∈N

|an,k|2 ≤ 1− |fk|2. (2.10)
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By the bilinearity of the inner product,

〈Ten, en〉 =
∞∑
k=1

|an,k|2λk.

Hence,

N∑
n=1

〈Ten, en〉 =
∞∑
k=1

(
N∑

n=1

|an,k|2
)
λk. (2.11)

Since the en’s have norm 1, in the expression (2.11), the sum of the coefficients of λk

over k equals N . Given that the λk’s are in the increasing order, the expression (2.11)
is minimized when the coefficients of λk are maximized for small k. Having the con-
straint (2.10), we get

N∑
n=1

〈Ten, en〉 =
∞∑
k=1

(
N∑

n=1

|an,k|2
)
λk ≥

N∑
k=1

(
1− |fk|2

)
λk + λN+1

N∑
k=1

|fk|2.

Combining this with the inequality (2.8), we get

N∑
n=1

λn + F (N) ≥
N∑

n=1

〈Ten, en〉 ≥
N∑

n=1

(
1− |fn|2

)
λn + λN+1

N∑
n=1

|fn|2,

which implies

N∑
n=1

|fn|2(λN+1 − λn) ≤ F (N),

as desired.

Lemma 2.5 will be essential for proving the completeness result. The estimate (2.9)
provides us an understanding of the elements lying inside the orthogonal complement in
terms of F (N) and the eigenvalues of T . If the estimate (2.9) is incompatible with the
growth of eigenvalues, then we deduce that the orthogonal complement is empty and,
hence, the orthonormal system is maximal.

The next lemma provides an estimate for the deviation of the functional values of
ζn from the eigenvalues corresponding to the true eigenstates, so that Lemma 2.5 is
applicable.

Lemma 2.6. Let {ζn}n∈N be the solutions to the variational procedure (2.1). Let
{λn}n∈N be the eigenvalues of T , in increasing order. Then,

J [ζn] ≤ λn + ||P ||.

In particular, we have

N∑
n=1

〈Tζn, ζn〉 ≤
N∑

n=1

J [ζn] ≤
N∑

n=1

λn + ||P ||N. (2.12)



Ö.F. TEKİN, K. YIN, AND F. BAREKAT 783

Proof. Let {an,k}n,k∈N denote the coefficients with ζn expanded into the basis
{φk}k∈N:

ζn =
∑
k∈N

an,kφk.

Let n ∈ N be fixed. For integers j with 1 ≤ j ≤ n− 1, define

ηj =

n∑
k=1

aj,kφk.

Clearly, {η1, η2, . . . , ηn−1} ⊂ span{φ1, φ2, . . . , φn}. Furthermore,

dim span{φ1, φ2, . . . , φn} = n,

i.e. the space span{φ1, φ2, . . . , φn} has dimension larger than the cardinality of
{η1, η2, . . . , ηn−1}, so that we can find η ∈ span{φ1, φ2, . . . , φn}, η �= 0, such that

η ⊥ ηj , ∀j : 1 ≤ j ≤ n− 1.

Now, since ηj ’s and η lie inside span{φ1, φ2, . . . , φn}, we get

〈η, ζj〉 = 〈η, ηj〉 = 0, ∀j : 1 ≤ j ≤ n− 1,

so that

η ⊥ ζj , ∀j : 1 ≤ j ≤ n− 1.

By rescaling, we may assume ||η|| = 1, so that η lies precisely in the class of functions
where we look for a minimizer to determine ζn. The function η is in the solution set of
the variational problem (2.1) at the nth step. Hence,

J [ζn] ≤ J [η] = 〈Tη, η〉+ P (η). (2.13)

Note first by the boundedness of P that

P (η) ≤ ||P || ||η|| = ||P ||. (2.14)

Suppose η has the expansion

η =

n∑
k=1

bkφk.

Since, ||η|| = 1, we have
∑n

k=1 |bk|2 = 1. Furthermore, by the bilinearity of the inner
product,

〈Tη, η〉 =
n∑

k=1

|bk|2λk.

We also have that λk’s are in increasing order, so that

〈Tη, η〉 =
n∑

k=1

|bk|2λk ≤ λn

n∑
k=1

|bk|2 = λn. (2.15)
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Combining (2.13)–(2.15), we obtain

J [ζn] ≤ λn + ||P ||. (2.16)

Summing up the inequality (2.16) for n = 1, 2, . . . , N and combining with the non-
negativity of P , we verify (2.12).

The following theorem provides the completeness of the orthonormal system
{ζn}n∈N, provided the eigenvalues satisfy the super-linear growth.

Theorem 2.7. Suppose the eigenvalues of T satisfy

lim
n→∞

λn

n
= ∞. (2.17)

Then, {ζn}n∈N, which is defined by the variational procedure (2.1), forms a complete
orthonormal system in H.

Proof. Lemma 2.6 implies

N∑
n=1

〈Tζn, ζn〉 ≤
N∑

n=1

λn + ||P ||N,

so that Lemma 2.5 is applicable to the orthonormal system {ζn}n∈N with the function
F (N) = ||P ||N . That is, assuming the existence of an f ∈ {ζn}⊥n∈N

, ||f || = 1 with the
expansion

f =
∑

fnφn, fn ∈ C,

we obtain the estimate

N∑
n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N. (2.18)

This last inequality implies (assuming fn �= 0)

λN+1 − λn ≤ ||P ||N
|fn|2 , ∀N ∈ N,

which yields a contradiction by violating the growth condition (2.17) on λN+1 as we
pass to limit as N → ∞. Therefore, there is no non-zero function f ∈ {ζn}⊥n∈N

, so that
the orthonormal system {ζn}n∈N is complete, as desired.

By trading the magnitude of the penalty term with the growth of λn, we can
generalize the Theorem 2.7 so that it holds under a weaker growth condition on λn.

Theorem 2.8. Suppose that the eigenvalues λn grow linearly in the sense that they
satisfy

λn = Mn+ o(n), as n → ∞ (2.19)

for some constant M . Suppose also that the penalty term P satisfies the following bound:

||P || < M. (2.20)
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Then, {ζn}n∈N forms a complete orthonormal system in H.

Proof. Proceeding similarly to the proof of Theorem 2.7, we get the inequal-
ity (2.18), namely that if f is a function with unit norm, lying in the orthogonal com-
plement of {ζn}n∈N, then we have

N∑
n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N. (2.21)

Now, for m < N , by the monotonicity of λk, we can lower-bound the LHS of (2.21) by

(λN+1 − λm)

m∑
n=1

|fn|2,

so that

λN+1 − λm

N

m∑
n=1

|fn|2 ≤ ||P ||, ∀N ∈ N, ∀m : 0 < m < N. (2.22)

Taking the limit in (2.22) as N → ∞, with the aid of the growth condition (2.19), we
obtain

M

m∑
n=1

|fn|2 ≤ ||P ||, ∀m ∈ N.

Now, taking the limit as m → ∞ and keeping in mind that ||f || = 1, we obtain

M ≤ ||P ||,

contradicting (2.20).

The following theorem establishes how close the functions ζn approximate the sub-
spaces generated by the first few eigenvectors of the operator T .

Theorem 2.9. Let Vm be the subspace generated by the functions {ζ1, ζ2, . . . , ζm}.
Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m||P ||
λm+1 − λn

,

provided λm+1 �= λn.

Proof. Recall from Lemma 2.6 that

m∑
j=1

〈Tζj , ζj〉 ≤
m∑
j=1

J [ζj ] ≤ m||P ||+
m∑
j=1

λj . (2.23)

Recall by the bilinearity of the inner product that

〈Tζj , ζj〉 =
∞∑
k=1

|aj,k|2λk. (2.24)
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Combining (2.24) and (2.23) yields that

m∑
j=1

∞∑
k=1

|aj,k|2λk ≤ m||P ||+
m∑
j=1

λj . (2.25)

Rearranging (2.25), we obtain

∞∑
k=m+1

m∑
j=1

|aj,k|2λk −
m∑

k=1

⎛
⎝1−

m∑
j=1

|aj,k|2
⎞
⎠λk ≤ m||P ||.

Bounding the terms λk from below with k > m by λm+1 in the last expression, we
obtain

λm+1

∞∑
k=m+1

m∑
j=1

|aj,k|2 −
m∑

k=1

⎛
⎝1−

m∑
j=1

|aj,k|2
⎞
⎠λk ≤ m||P ||. (2.26)

Since
∑∞

k=1 |aj,k|2 = 1 for j = 1, 2, . . . ,m, we conclude that

∞∑
k=m+1

m∑
j=1

|aj,k|2 =

m∑
k=1

⎛
⎝1−

m∑
j=1

|aj,k|2
⎞
⎠ .

Substituting this into the inequality (2.26) and rearranging further, we obtain

m∑
k=1

⎛
⎝1−

m∑
j=1

|aj,k|2
⎞
⎠ (λm+1 − λk) ≤ m||P ||. (2.27)

Notice by Lemma 2.3 that the coefficient in front of λm+1 − λk in (2.27) is equal to
d(φk, Vm)2, so that (2.27) becomes

m∑
k=1

d(φk, Vm)2(λm+1 − λk) ≤ m||P ||.

Exploiting the monotonicity of λk once more, we obtain

n∑
k=1

d(φk, Vm)2(λm+1 − λn) ≤
m∑

k=1

d(φk, Vm)2(λm+1 − λk) ≤ m||P ||,

implying

n∑
k=1

d(φk, Vm)2 ≤ m||P ||
λm+1 − λn

,

as desired.

3. Perturbed variational problems associated to elliptic operators
The results of Section 2 can now be applied to second-order linear symmetric elliptic

operators. Let L be a second-order linear symmetric elliptic operator defined on a
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bounded domain Ω in R
d. For simplicity, we will consider symmetric elliptic operators

with principal parts −Δ, i.e. the Schrödinger’s operator given by

Lu = −Δu+ cu,

where c : Ω → R is a bounded measurable function.
As noted in the beginning of Section 2, according to the spectral theorem for second-

order linear symmetric elliptic operators, L satisfies the following properties:

(1) L has real (Dirichlet) eigenvalues, λk, with {λk}∞k=1 in increasing order, and
λk → +∞ as k → ∞ and

(2) the (normalized) eigenfunctions {φk}∞k=1, with Lφk = λkφk, form a complete
orthonormal system in L2(Ω).

Furthermore, the Courant–Fisher principle applies to L, so that the eigenvalues and
eigenfunctions of L is found by the following variational formulae:

λ1 = min
u∈H1

0 (Ω)
||u||2=1

B[u, u],

φ1 = argmin
u∈H1

0 (Ω)
||u||2=1

B[u, u],

λk = min
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

φk = argmin
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

where

B[u, v] = 〈Lu, v〉 =
∫
Ω

∇u · ∇v + cuv dx

is the bilinear form associated to L.
We proceed similarly to as in Section 2, where we perturb the functional B[u, u].

This time, we restrict ourselves to the penalty terms given by a constant multiple of the
L1 norm. Namely, we consider the energy functional

Jμ[u] = B[u, u] +
1

μ
||u||L1

and analogously define the functions {ψk}k∈N via

ψ1 = argmin
u∈H1

0 (Ω)
||u||2=1

Jμ[u],

(3.1)
ψk = argmin

u∈H1
0 (Ω)

u∈{ψ1,...,ψk−1}⊥
||u||2=1

Jμ[u].

We call these functions {ψk}k∈N “compressed modes of second type” (CM-II) by
analogy to the “compressed modes” (CM) defined in [9]. The main difference between
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CM and CM-II is that CMs are defined as the minimizers of a joint energy sum under
orthogonality constraints, whereas CM-IIs marginally minimize the energy functional
under a progressive orthogonality constraint. Nevertheless, CM-IIs {ψ1, ψ2, . . . , ψm},
being an orthonormal sequence, are in the solution set of the associated variational
problem for CMs, so that the theory for CM-IIs can be used to prove the analogous
results for CMs.

The following lemma establishes the existence of {ψk}k∈N by verifying the existence
criteria (2.2) for the L1 penalty term in the definition of Jμ.

Lemma 3.1. Let P : L2(Ω) → R be defined by P (u) = 1
μ ||u||L1 . Then, P satisfies the

criteria in (2.2). Furthermore,

||P || = |Ω| 12
μ

.

Proof. By the Cauchy–Schwarz inequality,

1

μ
||u||L1 ≤ 1

μ
||u||L2 ||1Ω||L2 =

|Ω| 12
μ

||u||L2 , (3.2)

with equality when u is a non-zero constant function. Therefore, P is bounded with

functional norm |Ω| 12
μ .

As for the lower semi-continuity, consider a sequence un ∈ L2(Ω) converging to
some u ∈ L2(Ω) in L2. The inequality (3.2) implies that un converges to u also in L1,
so that P (u) = limP (un), as desired.

Now, theorems 2.7, 2.8, and 2.9, can be derived for {ψk}k∈N. Theorems 2.7 and
2.8 hold when the eigenvalues grow super-linearly and linearly, respectively. Weyl’s
law yields the exact asymptotic behavior of the eigenvalues of a second-order linear
symmetric elliptic operator:

Theorem 3.2 (Weyl’s law (see e.g. [8])). Let L be a second-order linear elliptic
operator on a bounded domain Ω ⊂ R

d of the form

Lu = −Δu+ cu,

where c : Ω → R is a bounded measurable function. Let {λn}n∈N be the eigenvalues of
L, arranged in increasing order. Then,

λn =
(2π)d

ωd|Ω|n
2/d + o(n2/d), as n → ∞,

where ωd denotes the volume of the unit ball in R
d.

Therefore, we can deduce from Weyl’s law that super-linear and linear growth con-
ditions on eigenvalues holds true precisely in dimensions 1 and 2, so that we have the
following corollaries as direct consequences of theorems 2.7, 2.8, and 2.9:

Corollary 3.3 (Corollary to Theorem 2.7). Let L = −Δ + c(x) be defined on
a bounded open interval in R, where c is a bounded measurable function. Then, the
associated compressed modes of second type (CM-II), {ψn}n∈N, which is defined by the
variational procedure (3.1), forms a complete orthonormal system in L2(Ω).
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Corollary 3.4 (Corollary to Theorem 2.8). Let L = −Δ + c(x) be defined on
a bounded open interval in R, where c is a bounded measurable function. Suppose also
that the penalty parameter μ satisfies the following bound:

μ >
1

4π|Ω| 32 .

Then, the associated compressed modes of second type (CM-II),
{ψn}n∈N, which is defined by the variational procedure (3.1), forms a complete orthonor-
mal system in L2(Ω).

Corollary 3.5 (Corollary to Theorem 2.9). Let {φk}k∈N be the (Dirichlet)
eigenfunctions of the operator L = −Δ + c(x), defined on a bounded domain Ω ⊂ R

n.
Let {λk}k∈N be the associated eigenvalues. Let {ψn}n∈N be the functions defined by
the variational procedure (3.1), and let Vm be the subspace generated by the functions
{ψ1, ψ2, . . . , ψm}. Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m|Ω| 12
μ(λm+1 − λn)

, (3.3)

provided that λm+1 �= λn.

Remark 3.1. Corollaries 3.3–3.5 holds true (with modified inequalities) for second-
order linear symmetric elliptic operators with appropriate coercivity properties, so that
the eigenvalues grow at the same order as −Δ.

The following theorem establishes that the elements that lie in the orthogonal com-
plement of {ψn}n∈N cannot lie inside the space H1

0 (Ω). In other words, the orthogonal
complement consists of highly irregular functions.

Theorem 3.6. Let Ω ⊂ R
d and {ψn}n∈N be the solutions to the variational proce-

dure (2.1). Then,

{ψn}⊥n∈N
∩H1

0 (Ω) = {0}.

Proof. Assume to the contrary that there is a non-zero f ∈ {ψn}⊥ ∩H1
0 (Ω). We

may normalize f such that ||f ||2 = 1. Since f ∈ {ψ1, . . . , ψn−1}⊥ for all n, f is in
the class of functions where we look for a minimizer to obtain ψn, and hence, is in the
solution set of the variational problem (2.1) at nth step. As ψn is the actual solution
to the corresponding minimization problem, we have

Jμ[ψn] ≤ Jμ[f ]. (3.4)

We now prove that

lim
n→∞ Jμ[ψn] = ∞, (3.5)

which together with (3.4) implies

Jμ[f ] = ∞. (3.6)

Recall that

N∑
n=1

B[ψn, ψn] =

∞∑
k=1

(
N∑

n=1

|an,k|2
)
λk, (3.7)
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where the coefficients in front of λk have magnitude less than or equal to 1 for each k
and have their sum over k is N . Since λk’s are in increasing order, the expression (3.7)
is minimized when the coefficients of λk are maximized for small k. Therefore,

N∑
n=1

B[ψn, ψn] ≥
N∑

k=1

λk,

and, since P is non-negative,

N∑
n=1

Jμ[ψn] =

N∑
n=1

B[ψn, ψn] + P (ψn) ≥
N∑

n=1

B[ψn, ψn] ≥
N∑

k=1

λk. (3.8)

We know that lim
n→∞λn = ∞ and that both λn’s and Jμ[ψn]’s are in increasing order.

Therefore, the inequality (3.8) can hold only if (3.5) holds. Hence, we verify (3.6), i.e.

Jμ[f ] = B[f, f ] + P (f) = ∞. (3.9)

Now, since P is bounded, the expression (3.9) yields

B[f, f ] = ∞. (3.10)

On the other hand, as B is the bilinear form associated to a second-order elliptic oper-
ator, it is bounded in the sense that

|B[u, v]| ≤ C||u||H1(Ω)||v||H1(Ω). (3.11)

Combining (3.10) and (3.11) applied to u = v = f , we get

||f ||H1(Ω) = ∞,

i.e. f /∈ H1(Ω), contradicting the assumption that f ∈ {ψn}⊥ ∩H1
0 (Ω).

3.1. Scaling properties. In this subsection, our aim is to provide the scaling
invariance between μ and Ω. Let κΩ denote the usual scaling of the domain Ω by a
positive real number κ. Let L̃ on κΩ be given by

L̃u = −Δu+ c̃u = −Δu+ κ−2c
(x
κ

)
u.

If the operator L on Ω has orthonormal eigenpairs {(φn(x), λn)}∞n=1, then

{(κ−d/2φn

(x
κ

)
, κ−2λn)}∞n=1

forms the orthonormal set of eigenpairs for L̃. Let {ψ1, ψ2, . . .} be the compressed
modes of second type (CM-II), corresponding to the operator L. For each n ∈ N,
define ψ̃n(x) = κ−d/2ψn(

x
κ ). Then, clearly {ψ̃1, ψ̃2, . . .} forms an orthonormal system.

Moreover,

B̃[ψ̃n, ψ̃n] = 〈L̃ψ̃n, ψ̃n〉 =
∫
κΩ

|∇ψ̃n|2dx+

∫
κΩ

c̃ψ̃2
ndx

= κ−2

∫
Ω

|∇ψn|2dx+ κ−2

∫
Ω

cψ2
ndx
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= κ−2B[ψn, ψn]

and

‖ψ̃n‖1 =

∫
κΩ

|ψ̃n|dx = κd/2

∫
κΩ

|ψn|dx = κd/2‖ψn‖1.

Hence, {ψ̃1, ψ̃2, . . .} is the corresponding CM-II for the operator L̃ on κΩ, with respect
to the energy functional

J̃μ̃[u] = B̃[u, u] +
1

μ̃
||u||L1 ,

where

μ̃ =
μ

κ2+d/2
.

Notice that this last scaling relation is consistent with the scaling properties of the
inequalities in Corollary 3.4 and Corollary 3.5.

4. Applications
We now establish the analogues of theorems 2.7–2.9 for the compressed modes and

the compressed plane waves. We first provide the precise definitions of Compressed
Modes (CMs) and Compressed Plane Waves (CPWs) as introduced in [9, 10], and es-
tablish their connections to the theory we developed in Section 2. Then we proceed
with the verification of the analogous theorems.

4.1. Compressed modes. CMs are defined via the following minimization
procedure:

Ψ(m) = {ψ(m)
1 , . . . , ψ(m)

m } = argmin
h1,h2,...,hm

m∑
i=1

Jμ[hi] s.t. 〈hj , hk〉 = δjk, (4.1)

where

Jμ[u] =
1

μ
||u||L1 + 〈u,

(
−1

2
Δ + V

)
u〉 = 1

μ
||u||L1 +

1

2
||∇u||L2 +

∫
Ω

V u2dx, (4.2)

where V is a bounded measurable real-valued function defined on Ω. Here, the quantity
〈u, (− 1

2Δ+ V
)
u〉 corresponds to the bilinear form associated to the elliptic operator

− 1
2Δ + V . We denote the eigenvalues and eigenfunctions of − 1

2Δ + V by λn and φn,
with the λn’s in increasing order, as usual.

As noted earlier, CMs of second type {ψ1, ψ2, . . . , ψm} defined by the variational
procedure (3.1), being an orthonormal sequence, are in the solution set of the minimiza-
tion problem (4.1), so that

m∑
i=1

Jμ[ψ
(m)
i ] ≤

m∑
i=1

Jμ[ψi].

Combining this with the estimate (2.12), we obtain

m∑
i=1

Jμ[ψ
(m)
i ] ≤ m

|Ω| 12
μ

+
m∑
j=1

λj . (4.3)



792 COMPLETENESS THEORY FOR COMPRESSED PDES

The proof of Theorem 2.9 relies essentially on the estimation (2.23) and the or-
thonormality of the sequence {ψ1, . . . , ψm}. We still have the orthonormality and the
estimation (4.3) analogous to (2.23). Hence, the following corollary holds.

Corollary 4.1 (Corollary to Theorem 2.9). Let Vm be the subspace generated

by the compressed modes Ψ = {ψ(m)
1 , ψ

(m)
2 , . . . , ψ

(m)
m }. Then, for any n ≤ m, we have

n∑
k=1

d(φk, Vm)2 ≤ m|Ω| 12
μ(λm+1 − λn)

,

provided that λm+1 �= λn.

From Corollary 4.1, we deduce the following approximation result:

Corollary 4.2. Let {φk}k∈N be the (Dirichlet) eigenfunctions of a second-order
linear symmetric elliptic operator L, defined on a bounded domain Ω ⊂ R. Given any
fixed parameter μ, the first m compressed modes up to a linear transformation, denoted

by {ξ(m)
1 , . . . , ξ

(m)
m }, satisfy

lim
m→∞ ‖φk − ξ

(m)
k ‖2 = 0, ∀k ∈ N.

Proof. Let ξ
(m)
k denote the projection of φ

(m)
k onto the linear subspace spanned by

{ψ(m)
1 , . . . , ψ

(m)
m }, which we denote by Vm. Then, clearly, ξ

(m)
k is a linear combination

of {ψ(m)
1 , . . . , ψ

(m)
m }. Furthermore, as a property of the projection, we have

d(φk, Vm) = ||φ(m)
k − ξ

(m)
k ||2,

so that Corollary 4.1 implies

n∑
k=1

||φk − ξ
(m)
k ||22 ≤ m|Ω| 12

μ(λm+1 − λn)
. (4.4)

As Ω is a bounded domain inside R, By Weyl’s law, we know that λm grows quadratically
in m. Hence, passing to the limit in (4.4) as m → ∞, we conclude that the summands
in the LHS of (4.4) decay to zero, i.e.

lim
m→∞ ‖φk − ξ

(m)
k ‖2 = 0, (4.5)

as desired.

Corollary 4.2 can be viewed as a completeness result, since (4.5) yields that any

eigenfunction φk is well approximated by its projection ξ
(m)
k onto Vm. In a sense, Vm’s

trace the full space, as m → ∞.

4.2. Compressed plane waves. The construction of CPWs is closely related
to that of compressed modes, where both involve minimizing a certain functional. The
difference is that compressed plane waves have multi-resolution capabilities, which is
achieved by adding the shift-orthogonality constraints.

Let w = (w1, . . . , wd) ∈ R
d
+ be a basis of a d-dimensional lattice, and let Ω be a

rectangular box with

Ω = [0, n1w1]× · · · × [0, ndwd], (n1, . . . , nd) ∈ N
d.
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Define the lattice

Γw = {jw := (j1w1, . . . , jdwd)|0 ≤ j1 < n1, . . . , 0 ≤ jd < nd}.

The first n basic compressed plane waves (BCPWs), {ψk}nk=1, are defined via

ψ1 = argmin
ψ

Jμ[ψ] s.t. 〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw;

ψk = argmin
ψ

Jμ[ψ] s.t.

{
〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw

〈ψ(x), ψi(x− jw)〉 = 0 ∀ i : 0 < i < k,

where the functional Jμ is defined by

Jμ[u] =
1

μ
||u||L1 + 〈u,−1

2
Δu〉 = 1

μ
||u||L1 +

1

2
||∇u||L2 .

Notice that this functional is a special case of the functional (4.2), with V ≡ 0.
The translations of the BCPWs on the lattice Γw produce all CPWs. Unlike CMs

that are solved in a single minimization problem, the compressed plane waves are con-
structed hierarchically. This is similar to the shift-orthogonality wavelets, but a distinc-
tion of CPWs is that it is adapted to the Laplace’s operator.

The existence of CPWs essentially follows from the observation that shift orthog-
onality (i.e. the constraints in the definition of BCPWs) is preserved under L2-limits,
so that any minimizing sequence has a subsequential limit, which still satisfies the shift
orthogonality properties.

The following theorem (see for example [4]) characterizes any orthonormal sequence
of shift orthogonal functions.

Theorem 4.3. Let Ω ⊂ R
d, and let the lattice Γw be defined as above. Let {ξk}∞k=1

be an orthonormal sequence of shift orthogonal functions. Then, the (Hilbert) space
H = L2(Ω) can be written as a direct sum

H = H1 ⊕H2 ⊕ · · · ⊕ HN ,

where each Hk is the Hilbert space spanned by some eigenfunctions for the Laplace’s
equation in the rectangular box Ω, with the property that, if ξk has the decomposition

√
Nξk = ek1 + ek2 + · · ·+ ekN , ekj ∈ Hj ,

then E = {ekj |j = 1, 2, . . . , N ; k ∈ N} forms an orthonormal system in H. Furthermore,
N = n1n2 · · ·nd = |Γw|.

A detailed discussion of Theorem 4.3, with a characterization of the Hilbert spaces,
Hk is given in Appendix A.

Remark 4.1. For a fixed k, both {ξkj |jw ∈ Γw} and {ekj |j = 1, 2, . . . , N} form an
orthonormal system and have the same cardinality. Hence, their linear spans agree.
Therefore,

span{ξkj |jw ∈ Γw; k = 1, . . . ,M} = span{ekj |j = 1, . . . , N ; k = 1, . . . ,M}

for any M ∈ N ∪ {∞}.
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With this remark and Theorem 4.3 in mind, instead of working with the CPWs
{ψk

j }, it is natural to switch to {ekj } for completeness results. We define

J∞[u] =
1

2
||∇u||2L2(Ω).

Then, we can write

Jμ[u] = J∞[u] +
1

μ
||u||L1 .

As the Hilbert spaces Hj are the span of some eigenfunctions of the Laplacian, the
functional J∞ satisfies the following linearity property:

J∞[e1 + e2 + . . .+ eN ] = J∞[e1] + J∞[e2] + . . . J∞[eN ], ej ∈ Hj , j = 1, 2, . . . , N.

Now, the minimization procedure for {ekj } becomes

{e11, e12, . . . , e1N} = argmin
fj∈Hj

||fj ||2=1

J∞[f1] + · · ·+ J∞[fN ] +
1

μ
||f1 + · · ·+ fN ||1,

{ek1 , ek2 , . . . , ekN} = argmin
fj∈{e1j ,...,ek−1

j }⊥∩Hj

||fj ||2=1

J∞[f1] + · · ·+ J∞[fN ] +
1

μ
||f1 + · · ·+ fN ||1.

This is analogous to the variational procedure (2.1), except that, at each step in the
minimization, we obtain multiple functions. Nevertheless, we might view one particular
ekj , say ek1 for simplicity, as the solution to the following minimization problem over H1:

ek1 = argmin
f∈{e11,...,ek−1

1 }⊥∩H1

||f ||2=1

J∞[f ] + J∞[ek2 ] + . . . J∞[ekN ] +
1

μ
||f + ek2 + · · ·+ ekN ||1.

We still have the boundedness of the penalty term P (f) = 1
μ ||f + ek2 + · · ·+ ekN ||1, as

1

μ
||f + ek2 + · · ·+ ekN ||1 ≤ 1

μ

(||f ||1 + ||ek2 ||1 + · · ·+ ||ekN ||1
)

(Cauchy–Schwarz) ≤ |Ω| 12
μ

(||f ||2 + ||ek2 ||2 + · · ·+ ||ekN ||2
)

=
N |Ω| 12

μ
,

i.e.

||P || ≤ N |Ω| 12
μ

. (4.6)

Therefore, {ekj }k∈N could be viewed as the solutions to an analogue of the variational
procedure (2.1) in the Hilbert space Hj , with the linear functional being the restriction
of −Δ to Hj .
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Next, let’s enumerate the eigenfunctions forming each Hilbert space Hj as follows

Hj = span{φk
j |k = 1, 2, . . .},

−1

2
Δφk

j = λk
jφ

k
j

λ1
j ≤ λ2

j ≤ · · · .
(4.7)

The following theorem establishes an analogue of Weyl’s law.

Theorem 4.4. Let λk
j be defined as in (4.7). Then,

λk
j =

N(2π)d

2ωd|Ω| k
2/d + o(k2/d), as k → ∞,

where ωd denotes the volume of the unit ball in R
d.

A discussion of Theorem 4.4 can be found in Appendix A.
We verified that the functions {ekj } are obtained via a variational procedure anal-

ogous to (2.1). We also noted in Remark 4.1 that the spans of {ekj } and CPWs agree.
Therefore, the theory developed in Section 2 applies to CPWs, so that we obtain the
following corollaries as direct consequences of theorems 2.7, 2.8, and 2.9.

Corollary 4.5 (Corollary to Theorem 2.7). Let Ω be a bounded interval in R

that is an integer multiple of some lattice Γw. Then, for any parameter μ, the set of
compressed plane waves {ψk

j } defined on Ω forms a complete orthonormal system in

L2(Ω).

Proof. Notice that {ekj }k∈N ⊂ Hj are obtained as the solutions to a variational
problem in Hj , analogous to the variational procedure (2.1). Furthermore, since Ω lies
inside R, by Theorem 4.4, the corresponding eigenvalues grow super-linearly. Therefore,
Theorem 2.7 applies so that {ekj }k∈N forms a complete orthonormal system in Hj for

each j = 1, 2, . . . , N . Finally, by Remark 4.1, {ψk
j } is a complete orthonormal system

in H.

Corollary 4.6 (Corollary to Theorem 2.8). Let Ω be a rectangular domain inside
R

2 that is an integer multiple of some lattice Γw. Then, for any parameter μ satisfying

μ >
|Ω| 32
2π

, (4.8)

the set of compressed plane waves {ψk
j } defined on Ω forms a complete orthonormal

system in L2(Ω).

Proof. Since Ω lies inside R2, notice by Theorem 4.4 that the corresponding eigen-
values grow linearly, with the linearity constant 2πN

|Ω| . The proof proceeds analogous to

the proof of Corollary 4.5, except that we apply Theorem 2.8. The bound for the penalty
term is provided in (4.6), so that Theorem 2.8 holds precisely when the bound (4.8) is
satisfied.

Corollary 4.7 (Corollary to Theorem 2.9). Let V m
j be the subspace generated

by the functions {e1j , e2j , . . . , emj }. Then, for any n ≤ m, we have

n∑
k=1

d(φk
j , V

m
j )2 ≤ mN |Ω| 12

μ(λm+1
j − λn

j )
,
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provided that λm+1
j �= λn

j . Defining V m via

V m = span
{
ψk
j

∣∣j ∈ Z
d, k = 1, 2, . . . ,m

}
,

we further have

∑
k≤m,j≤N

d(φk
j , V

m)2 =
mN |Ω| 12

μ

∑
j≤N

1

λm+1
j − λn

j

.

Appendix A. We will provide an explicit characterization of the Hilbert spaces Hj

in Theorem 4.3. The eigenfunctions of the Laplace’s operator in a rectangular domain
Ω = [0, n1w1]× · · · × [0, ndwd] is given by

φm1,...,md
(x) = e

2πi
(

m1x1
n1w1

+
m2x2
n2w2

+···+mdxd
ndwd

)
.

where (m1,m2, . . . ,md) ∈ Z
d. Hence, if we form the lattice

Πw =

{(
m1

n1w1
,

m2

n2w2
, . . . ,

md

ndwd

)∣∣∣∣(m1,m2, . . . ,md) ∈ Z
d

}
,

then each of the eigenfunctions of the Laplace’s operator in the domain Ω can be rep-
resented as

φυ(x) = e2πiυ·x, υ ∈ Πw,

with the corresponding eigenvalue λυ = 4π2|υ|2. Now, we define

Λw =

{(
m1

n1w1
,

m2

n2w2
, . . . ,

md

ndwd

)∣∣∣∣0 ≤ m1 < n1, 0 ≤ m2 < n2, . . . , 0 ≤ md < nd

}
.

Each ρ ∈ Λw has a natural periodic extension in Πw with respect to Γw. For each
ρ ∈ Λw, we denote such extension by Σρ. Now, the family of Hilbert spaces Hj in
Theorem 4.3 consists of the Hilbert spaces

Hρ = span{φυ|υ ∈ Σρ}.
Since Λw, and Γw each has cardinality n1n2 . . . nd; N , the cardinality of the family of
Hilbert spaces {Hj}Nj=1, satisfies N = n1n2 . . . nd = |Γw|, as asserted in Theorem 4.3.

We have already observed that the eigenvalue corresponding to φυ is λυ = 4π2|υ|2.
Weyl’s law in the rectangular domain case can be viewed as the growth of the size of
the distance between lattice points and the origin. Therefore, with all these lattice
characterization of the eigenfunctions, it is not hard to see that the growth of the
eigenvalues corresponding to the eigenfunctions in each of the Hilbert spaces Hj are
given precisely as in Theorem 4.4.

As an illustration, we can consider Ω = [0, 2] × [0, 3] ⊂ R
2, and w = (1, 1). Then,

Γw becomes

Γw = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
The eigenfunctions for the Laplace’s equation in Ω are given by

φm,n(x, y) = e2πi(
mx
2 +ny

3 ),
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so that

Πw =
{(m

2
,
n

3

)∣∣∣m,n ∈ Z

}
.

Now, the finite lattice Λw becomes

Λw =

{
(0, 0),

(
0,

1

3

)
,

(
0,

2

3

)
,

(
1

2
, 0

)
,

(
1

2
,
1

3

)
,

(
1

2
,
2

3

)}
.

Finally, the decomposition given in Theorem 4.3 becomes

L2(Ω) = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5 ⊕H6,

where

H1 = span{φ2k,3l}k,l∈Z, H2 = span{φ2k,3l+1}k,l∈Z, H3 = span{φ2k,3l+2}k,l∈Z,

H4 = span{φ2k+1,3l}k,l∈Z, H5 = span{φ2k+1,3l+1}k,l∈Z, H6 = span{φ2k+1,3l+2}k,l∈Z.
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[7] Haim Brézis, Avner Friedman, et al., Estimates on the support of solutions of parabolic variational
inequalities, Illinois Journal of Mathematics, 20(1), 82–97, 1976.

[8] Lawrance Evans, Partial Differential Equations, American Mathematical Soc., 2012.
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