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RECTILINEAR VORTEX SHEETS OF INVISCID LIQUID-GAS
TWO-PHASE FLOW: LINEAR STABILITY∗

LIZHI RUAN† , DEHUA WANG‡ , SHANGKUN WENG§ , AND CHANGJIANG ZHU¶

Abstract. The vortex sheet solutions are considered for the inviscid liquid-gas two-phase flow. In
particular, the linear stability of rectilinear vortex sheets in two spatial dimensions is established for
both constant and variable coefficients. The linearized problem of vortex sheet solutions with constant
coefficients is studied by means of Fourier analysis, normal mode analysis, and Kreiss symmetrizer, while
the linear stability with variable coefficients is obtained by Bony–Meyer paradifferential calculus theory.
The linear stability is crucial to the existence of vortex sheet solutions of the nonlinear problem. A novel
symmetrization and some weighted Sobolev norms are introduced to study the hyperbolic linearized
problem with characteristic boundary.
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1. Introduction

Two-phase or multi-phase flows are concerned with flows with two or more compo-
nents and have a wide range of applications in nature, engineering, and biomedicine.
Examples include sediment transport, geysers, volcanic eruptions, clouds, rain in nat-
ural and climate systems, mixture of oil and natural gas in extraction tubes of oil
exploitation, oil transportation, steam generators, cooling systems, mixture of hot wa-
ter and vapor of water in cooling tubes of nuclear power stations in energy production,
bubble columns, aeration systems, tumor biology, anticancer therapies, developmental
biology, plant physiology in chemical engineering, medical and genetic engineering, bio-
engineering, and so on. Multi-phase flow is much more complicated than single-phase
flow due to the existence of a moving and deformable interface and its interactions with
multi-phases [6, 28, 31, 32]. In this paper, we consider the following system of partial
differential equations for the compressible inviscid liquid-gas two-phase flow of drift-flux
type: ⎧⎪⎨⎪⎩

∂tm+∇·(mu)=0,

∂tn+∇·(nu)=0,

∂t(nu)+∇·(nu⊗u)+∇p(m,n)=0,

(1.1)

where m=αgρg and n=αlρl denote the gas mass and the liquid mass, respectively,
αg,αl∈ [0,1] denote the gas and liquid volume fractions satisfying αg+αl=1, ρg and ρl
denote the gas and liquid densities; u denotes the mixed velocity of the liquid and the
gas, and p is the common pressure for both phases.
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In fact, the model (1.1) is a simplified version of the following general two-phase
flow model:⎧⎪⎨⎪⎩

∂t(αgρg)+∇·(αgρgug)=0,

∂t(αlρl)+∇·(αlρlul)=0,

∂t(αgρgug+αlρlul)+∇·(αgρgug⊗ug+αlρlul⊗ul)+∇p(αgρg,αlρl)=0,

where αg, αl and ρg,ρl denote the same as above and where ug and ul denote the gas
and liquid velocities, respectively. Just as in [14,19,23,35,57,58], in order to help further
understand the behavior of the solution to the general model, we use two densities and
only one fluid velocity to study the simplified two-phase flow model, i.e. we restrict
ourselves to a flow regime where liquid and gas velocities can be assumed to be equal:
ug =ul=u. Since the liquid phase is much heavier than the gas phase, we also neglect
the gas phase in the mixture momentum equations.

In general, the pressure law p(m,n) should be a nonlinear complicated function of
the densities, we will follow the simplification made in [18] which guarantees that the
model is thermo-mechanically consistent in the sense that one can get a basic energy
estimate easily. We assume that the pressure p is a smooth function of (m,n) defined
on (0,+∞)×(0,+∞), and in particular we take the pressure of the following form (see
e.g. [18]):

p(m,n)=(c1m+c2n)
2P ′(c1m+c2n),

where c1,c2 are positive constants and P =P (ρ) is a smooth function such as P (ρ)=
ργ−1, γ >1. Without loss of generality, we take c1= c2=1 and hence the pressure is

p(m,n)=(γ−1)(m+n)γ , (1.2)

and

pm(m,n)=pn(m,n)=γ(γ−1)(m+n)γ−1. (1.3)

We shall see in the next section that (1.1) is a non-strictly hyperbolic system of conser-
vation laws in the region (m,n)∈ (0,+∞)×(0,+∞).

The viscous two-phase flows have been investigated extensively. In particular, the
existence, uniqueness, regularity, asymptotic behavior, decay rate estimates, and blow-
up phenomena of solutions to various one-dimensional and multi-dimensional viscous
two-phase flows have been studied recently in [13, 14, 18, 19, 23, 24, 26, 35, 53, 55–58]
and related references therein. The theory of the inviscid two-phase flow (1.1) is com-
paratively mathematically underdeveloped although there have been many numerical
studies; see [3,4,6,9,15–18,21] and their references. In this paper, we are concerned with
the rectilinear vortex sheet problem for the two-phase flow (1.1) in the two-dimensional
space R2. A velocity discontinuity in an inviscid flow is called a vortex sheet, which
yields a concentration of vorticity along the discontinuity front (see [11]). In the three-
dimensional space, a vortex sheet has vorticity concentrated along a surface in the space.
In two-dimensional space, the vorticity is concentrated along a curve in the plane.

Vortex sheets occur commonly in nature, sciences, and engineering and have at-
tracted enormous studies. Some early studies on the linear stability of planar and recti-
linear compressible vortex sheets can be found in [20,43]. In three spatial dimensions, it
is known that the planar vortex sheets is unstable (see e.g. [45]). In the two-dimensional
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case, subsonic vortex sheets are also unstable, but the supersonic vortex sheets are lin-
early stable (see e.g. [43, 45]). For the incompressible theory of vortex sheets, we refer
the readers to [2, 7, 29, 30,36,37,41,47,49,54] and the references therein.

Our work in this paper is inspired by [8,11,12,44,48] on the stability of planar and
rectilinear vortex sheets for the compressible isentropic [11,12] and non-isentropic Euler
equations [44], and the ideal compressible magnetohydrodynamics (MHD) [8, 48]. The
linear stability of compressible vortex sheets for the isentropic Euler equations in two
spatial dimensions was studied under a supersonic condition and an energy estimate
for the linearized boundary value problem was proved in [11]. The nonlinear stability
was analyzed in [12] based on the linear analysis in [11] and the Nash–Moser iteration.
These two papers of Coulombel and Secchi [11, 12] are the pioneering works in the
direction of compressible vortex sheets. The result on linear stability for the isentropic
case in [11] was also extended to the non-isentropic case (see [44]). The linear and
nonlinear stability of current-vortex sheets for the ideal compressible MHD was studied
in [8,48,51]. The vortex sheets in the three-dimensional steady compressible flows were
considered in [50,52].

As mentioned in [8, 11, 12, 44, 48], the existence of compressible vortex sheets is a
nonlinear hyperbolic problem with free boundaries. Since the vortex sheet is a contact
discontinuity, the free boundary is characteristic. Thus, we have a hyperbolic initial-
boundary value problem with a characteristic boundary, violating the uniform Kreiss–
Lopatinskii condition and causing loss of derivatives with respect to the source terms for
energy estimates as well as loss of control of the tangential velocity (the “characteristic
part” of the solution) on the boundary. Thanks to the ellipticity of the boundary
conditions for the unknown front, we will be able to gain one derivative as for shock
waves in Majda [39].

The purpose of this paper is to establish linear stability with both constant and
variable coefficients of rectilinear vortex sheets for the two-phase flow (1.1) in two spa-
tial dimensions. We remark that our paper is strongly motivated by the ideas of the
pioneering paper [11] and generalizes the work of [11] to the two-phase flow. To this end,
we organize the analysis as follows. In Section 2, we first set up the vortex sheet problem
as a free-boundary problem by analyzing the Rankine–Hugoniot conditions correspond-
ing to the vortex sheets of equation (1.1), and then we reformulate this problem into
a fixed-boundary problem by employing the standard partial hodograph transforma-
tion [8,11,48] and tedious calculations. We note that a natural approach of introducing
the Lagrangian coordinates to fix the boundary does not seem to work for the vortex
sheet problem.

In Section 3, in order to obtain the a priori energy estimates mentioned above, we
first in Subsection 3.1 introduce a “good” symmetric form of the linearized version of the
liquid-gas two-phase flow system (1.1), which plays a crucial role in our analysis. To the
best of our knowledge this “good” symmetric form is new and does not follow directly
from any known symmetrization. As emphasized in [8,11,48], a “good” symmetric form
is very important, although it is easy to perform a “trivial” symmetrization of system
(1.1). However, a “good” symmetric form is required to separate the “characteristic
part” and “non-characteristic part” of solutions so that one can get rid of the singularity
from the boundary matrix and reduce the symbolic characteristic case to the non-
characteristic case. Fortunately, we find a “good” transformation (see (3.5), (3.6))
which leads to a “good” symmetric form of the linearized equations. We remark, as
pointed out in [25], that most hyperbolic operators are not symmetrizable in d (d≥
2) spatial dimensions although the physical systems of compressible Euler equations,
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MHD, and liquid-gas two-phase flows can be reduced to symmetric hyperbolic systems
of conservation laws in time-space dimension d+1. Then, in Subsection 3.2, some
weighted Sobolev norms are introduced since there is a loss of control on derivatives
in the normal direction for the hyperbolic problem with characteristic boundary. The
main result on the linear stability for constant coefficients is stated.

In Section 4, we shall prove the main theorem on the linearized problem with
constant coefficients by the normal mode analysis of the linearized problem and con-
structing a degenerate Kreiss symmetrizers in order to derive our energy estimate. As
in [11, 39, 40], the linearized Rankine–Hugoniot conditions form an elliptic system for
the unknown front, which is very important when eliminating the unknown front and
considering a standard-boundary value problem with a symbolic boundary condition.
Based on our new observation and the property that no jump occurs in the sum of
mass of both liquid and gas even though each has jump individually, we introduce an
appropriate C∞ smooth mapping Q to obtain the elliptic estimate on the corresponding
symbol and formally cast our problem in the framework of [44], which allows us directly
employ their construction of symmetrizers to simplify our calculation and mathemat-
ical analysis. However, the construction of the symmetrizers is microlocal. Near the
neighborhood of the poly point, the construction of symmetrizers is different from those
in [11] and [44] for the original symbolic algebraic-differential equations.

In Section 5, we discuss and formulate the linearized problem of vortex sheets with
variable coefficients and state the main result on the linear stability. In Section 6,
we shall prove the main theorem on the linearized problem with variable coefficients
by paralinearized techniques and Bony–Meyer paradifferential calculus theory [5, 42].
The key point is to freeze the coefficients to turn the variable coefficient problem into
the constant coefficient problem. The critical set of Lopatinski determinants will be
constructed in detail. This is a key point of microlocal analysis in the neighborhood
of bicharacteristic curve along which singularities propagate. In the analysis, we need
some precise calculations, which will be collected in Appendix A.

We conclude the introduction by remarking that the linear stability studied in this
paper is a crucial step towards the local-in-time existence of vortex sheet solutions of
the nonlinear problem. This nonlinear stability will be investigated in a forthcoming
paper based on the linear stability obtained in this paper and the Nash–Moser iteration
method.

2. Vortex sheet problem and reformulation
In this section, we first set up the vortex sheet problem as a free boundary problem

and then reformulate it into an initial-boundary value problem with fixed boundaries.

2.1. Vortex sheet problem. We will consider the liquid-gas two-phase flow
(1.1) in the whole space R2 and present the analysis which leads to a vortex sheet
problem. Let x=(x1,x2) be the space variable in R2, and let v and u be the first and
second components, respectively, of the velocity field. Thus u=(v,u)∈R2. Then, for

U =(m,n,u)�∈ (0,+∞)×(0,+∞)×R2,

we define the following matrices:

A1(U)=

⎛⎜⎜⎜⎝
v 0 m 0

0 v n 0
pm

n
pn

n v 0

0 0 0 v

⎞⎟⎟⎟⎠ , A2(U)=

⎛⎜⎜⎜⎝
u 0 0 m

0 u 0 n

0 0 u 0
pm

n
pn

n 0 u

⎞⎟⎟⎟⎠ . (2.1)
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Denote the spatial partial derivatives by

∂1=∂x1
, ∂2=∂x2

.

In the region where (m,n,u) is smooth (i.e. differentiable), (1.1) is equivalent to the
following quasilinear form:

∂tU+A1(U)∂1U+A2(U)∂2U =0. (2.2)

The eigenvalues of the matrix

A(U,ξ)=A(m,n,u,ξ)= ξ1A1(U)+ξ2A2(U), ∀ξ=(ξ1,ξ2)∈R2,

are given by ⎧⎪⎪⎨⎪⎪⎩
λ1(U,ξ)= ξ ·u−|ξ|

√
mpm+npn

n with multiplicity m1=1,

λ2(U,ξ)= ξ ·u with multiplicity m2=2,

λ3(U,ξ)= ξ ·u+ |ξ|
√

mpm+npn

n with multiplicity m3=1,

(2.3)

in the region U ∈ (0,+∞)×(0,+∞)×R2. The eigenvector corresponding to the second
eigenvalue field λ2(U,ξ) is given by

r2(U,ξ)=(ξ2,−ξ1,ξ2pn,−ξ1pm)�.

If pn=pm for the pressure p, the second characteristic field of system (2.2) (or (1.1)) is
linearly degenerate, which leads us to consider the vortex sheet (contact discontinuity)
solutions for the two-phase flow. In fact, a vortex sheet (contact discontinuity) solution
is a weak solution with possible strong discontinuities.

Definition 2.1 (Weak solution). Let (m,n,u) be a smooth function of (t,x1,x2)
on either side of a smooth surface Γ :={x2=ϕ(t,x1),t>0,x1∈R}. Then, (m,n,u) is
a weak solution of (1.1) if and only if (m,n,u) is a classical solution of (1.1) on both
sides of Γ and the Rankine–Hugoniot conditions hold at each point of Γ:⎧⎪⎨⎪⎩

∂tϕ[m]− [mu ·ν]=0,

∂tϕ[n]− [nu ·ν]=0,

∂tϕ[nu]− [(nu ·ν)u]− [p]ν=0,

(2.4)

where ν := (−∂1ϕ,1) is a space normal vector to Γ and (−∂tϕ,−∂1ϕ,1)=(−∂tϕ,ν) is a
time-space conormal vector to Γ. As usual, [q]= q+−q− denotes the jump of a quantity
q across the interface Γ.

Moreover, vortex sheets have continuous normal velocity and possible jump of tan-
gential velocity, yielding a concentration of vorticity along the discontinuity front. The
velocity of the front ∂tϕ satisfies ∂tϕ=u+ ·ν=u− ·ν, which means that the first two
equations in (2.4) are automatically satisfied and the third one gives p+=p−. We are
now in a position to give the rigorous definition of a vortex sheet solution (contact
discontinuity in sense of Lax [33]) of the liquid-gas two-phase flow.

Definition 2.2 (Vortex sheet solution). A piecewise smooth vector-function
(m,n,u) is called a rectilinear vortex sheet solution of (1.1) if (m,n,u) is a classical
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solution of (1.1) on either side of the smooth surface Γ and the Rankine–Hugoniot
conditions (2.4) are satisfied at each point of Γ in the following way:

∂tϕ=u+ ·ν=u− ·ν, p+=p−. (2.5)

We note that (2.5) implies

∂tϕ=u+ ·ν=u− ·ν, m++n+=m−+n−. (2.6)

Then the problem of existence and stability of vortex sheets solution can be formulated
as the following free boundary problem: determine

U±(t,x1,x2)=
(
m±,n±,v±,u±)(t,x1,x2)∈ (0,+∞)×(0,+∞)×R2

and a free boundary Γ :={x2=ϕ(t,x1),t>0,x1∈R} such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tU

++A1 (U
+)∂1U

++A2 (U
+)∂2U

+=0, x2>ϕ(t,x1),

∂tU
−+A1 (U

−)∂1U−+A2 (U
−)∂2U−=0, x2<ϕ(t,x1),

U(0,x1,x2)=

{
U+
0 (x1,x2), x2>ϕ0(x1),

U−
0 (x1,x2), x2<ϕ0(x1),

(2.7)

satisfying the jump conditions on Γ:

∂tϕ=−v+∂1ϕ+u+=−v−∂1ϕ+u−, m++n+=m−+n−, (2.8)

where ϕ0(x1)=ϕ(0,x1).
Note that the first two equalities in (2.8) are just the eikonal equations

ϕt+λ2

(
m+,n+,u+,∂1ϕ

)
=0 and ϕt+λ2

(
m−,n−,u−,∂1ϕ

)
=0, (2.9)

on {x2=0}, where the eigenvalue λ2 (m,n,u,ξ) is defined in (2.3). To prove the existence
of tangential discontinuities (vortex sheets) for the free-boundary problem (2.7) and
(2.8), one needs to find a solution (U,ϕ)(t,x1,x2) of the problem (2.7) and (2.8) at least
locally in time. More precisely, we need to prove the local-in-time well-posedness of
the problem (2.7) and (2.8). Our goal in this paper is to establish the well-posedness
of the linearized problem resulting from the linearization of (2.7) and (2.8) around a
background vortex sheet (piecewise constant) solution. As discussed in [11], for the
isentropic Euler equations (1.1), these solutions are exactly the contact discontinuities
in the sense of Lax [33].

2.2. Reformulation. We now reformulate the free-boundary problem into a
fixed-boundary problem. To straighten the unknown front, we employ the standard
partial hodograph transformation (see e.g. [8, 11, 48]):

t= t̃, x1= x̃1, x2=Φ±(t̃, x̃1,x̃2

)
(2.10)

with some smooth functions Φ± satisfying

±∂x̃2Φ
±(t̃, x̃1,x̃2

)
≥κ>0,

Φ+
(
t̃, x̃1,0

)
=Φ−(t̃, x̃1,0

)
=ϕ

(
t̃, x̃1

)
,

(2.11)

for some constant κ>0. Under (2.10), the domains are transformed into {x̃2>0} and
the free boundary Γ into the fixed boundary {x̃2=0}. More precisely, the unknowns
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(m±,n±,u±)(t,x1,x2), that are smooth on either side of {x2=ϕ(t,x1)}, are replaced
by the functions(

m±
� ,n

±
� ,u

±
�

)(
t̃, x̃1,x̃2

)
=
(
m±,n±,u±)(t,x1,x2)

=
(
m±,n±,u±)(t̃, x̃1,Φ

±(t̃, x̃1,x̃2)
)
, (2.12)

which are smooth on the fixed domain {x̃2>0}.
From now on we drop the tildes for simplicity of notation. Let us denote by v�

and u� the two components of the velocity, that is, u±
� =

(
v±� ,u

±
�

)
. Then, the smooth

solutions
(
m±

� ,n
±
� ,v

±
� ,u

±
� ,Φ

±
)
satisfy the following initial-boundary value problem with

the fixed boundary x2=0:

∂tm
±
� +v±� ∂1m

±
� +

(
u±
� −∂tΦ

±−v±� ∂1Φ
±
) ∂2m±

�

∂2Φ±

+m±
� ∂1v

±
� +m±

�

∂2u
±
�

∂2Φ± −m±
�

∂1Φ
±

∂2Φ± ∂2v
±
� =0, (2.13)

∂tn
±
� +v±� ∂1n

±
� +

(
u±
� −∂tΦ

±−v±� ∂1Φ
±
) ∂2n

±
�

∂2Φ±

+n±
� ∂1v

±
� +n±

�

∂2u
±
�

∂2Φ± −n±
�

∂1Φ
±

∂2Φ± ∂2v
±
� =0, (2.14)

∂tv
±
� +v±� ∂1v

±
� +

(
u±
� −∂tΦ

±−v±� ∂1Φ
±
) ∂2v

±
�

∂2Φ±

+
pm±

�

n±
�

∂1m
±
� −

pm±
�

n±
�

∂1Φ
±

∂2Φ± ∂2m
±
� +

pn±
�

n±
�

∂1n
±
� −

pn±
�

n±
�

∂1Φ
±

∂2Φ± ∂2n
±
� =0, (2.15)

∂tu
±
� +v±� ∂1u

±
� +

(
u±
� −∂tΦ

±−v±� ∂1Φ
±
)

∂2u
±
�

∂2Φ± +
p
m

±
�

n±
�

∂2m
±
�

∂2Φ± +
p
n
±
�

n±
�

∂2n
±
�

∂2Φ± =0, (2.16)

in the fixed domain {x2>0}, together with the boundary conditions from (2.12) and
(2.11):

Φ+(t,x1,x2)
∣∣∣
x2=0

=Φ−(t,x1,x2)
∣∣∣
x2=0

=ϕ(t,x1),(
v+� −v−�

)
(t,x1,x2)

∣∣∣
x2=0

∂1ϕ(t,x1)−
(
u+
� −u−

�

)
(t,x1,x2)

∣∣∣
x2=0

=0,

∂tϕ(t,x1)+v+� (t,x1,x2)
∣∣∣
x2=0

∂1ϕ(t,x1)−u+
� (t,x1,x2)

∣∣∣
x2=0

=0,(
m+

� +n+
�

)
(t,x1,x2)

∣∣∣
x2=0

−
(
m−

� +n−
�

)
(t,x1,x2)

∣∣∣
x2=0

=0.

(2.17)

For contact discontinuities, one can choose the change of variables Φ± satisfying the
eikonal equations:

∂tΦ
±+λ2

(
m±

� ,n
±
� ,u

±
� ,∂1Φ

±
)
=∂tΦ

±+v±� ∂1Φ
±−u±

� =0, (2.18)
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in the whole closed half-space {x2≥0}. We know from (2.17) that (2.18) is satisfied on
the boundary {x2=0}.

Again for the sake of simplicity of notation, we shall drop the symbol � in (2.13)–
(2.16) and denote U := (m,n,v,u)�. Then the nonlinear equations (2.13)–(2.16) read

∂tU
++A1(U

+)∂1U
++ 1

∂2Φ+ (A2(U
+)−∂tΦ

+I4×4−∂1Φ
+A1(U

+))∂2U
+=0,

∂tU
−+A1(U

−)∂1U−+ 1
∂2Φ− (A2(U

−)−∂tΦ
−I4×4−∂1Φ

−A1(U
−))∂2U−=0.

(2.19)

Here A1(U),A2(U) are defined by (2.1) and I4×4 is the 4×4 identity matrix. Define the
differential operator L as the left side of (2.19). Then system (2.19) becomes

L(U+,∇Φ+)U+=0, L(U−,∇Φ−)U−=0, (2.20)

where ∇Φ±=(∂tΦ
±,∂1Φ±,∂2Φ±). With a slight abuse of notation, we also write this

system as

L(U,∇Φ)U =0, (2.21)

where U denotes the vector (U+,U−) and Φ for (Φ+,Φ−). The two equations in (2.19)
are decoupled in the interior of the domain, and their coupling is made through the
boundary conditions (2.17).

There exist many simple solutions of (2.20), (2.17), and (2.11) corresponding to
rectilinear vortex sheets in the original variables. In the new variables, they are piecewise
constant solutions of (2.20), (2.17), and (2.11):

Ur=

⎛⎜⎜⎝
mr

nr

vr
0

⎞⎟⎟⎠ , Ul=

⎛⎜⎜⎝
ml

nl

vl
0

⎞⎟⎟⎠ , Φr,l(t,x1,x2)≡±x2, ϕ≡0, (2.22)

with the relation

(mr+nr)−(ml+nl)=0, vr+vl=0. (2.23)

We only consider the case vr 	=0, and without loss of generality we assume vr>0. We
also assume mr,ml,nr,nl>0. In the next section, we study the linearized equations
around the special background solution defined by (2.22).

3. Linear stability: constant coefficients
In this section, we formulate the linearized problem with constant coefficients and

state the main result on the linear stability with constant coefficients.

3.1. The linearized equations. Denote by

U̇± := (ṁ±,ṅ±, v̇±,u̇±), Ψ±

the small perturbations of the exact solution given by (2.22), that is,

U±=Ur,l+ U̇±, Φ±=Φr,l+Ψ±.

Up to second order, the perturbations U̇±=(ṁ±,ṅ±, v̇±,u̇±) satisfy the following lin-
earized equations

∂tU̇++A1(Ur)∂1U̇++A2(Ur)∂2U̇+=0,

∂tU̇−+A1(Ul)∂1U̇−−A2(Ul)∂2U̇−=0,
(3.1)
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in the domain {x2>0}, as well as the linearized Rankine–Hugoniot relations

Ψ+=Ψ−=ψ,

(vr−vl)∂1ψ−(u̇+− u̇−)=0,

∂tψ+vr∂1ψ− u̇+=0,

(ṁ++ ṅ+)−(ṁ−+ ṅ−)=0,

(3.2)

on the boundary {x2=0}. Rewrite equations (3.1) and (3.2) as{
L′U̇ =0, if x2>0,

B(U̇ ,ψ)=0, if x2=0,
(3.3)

where U̇ =(U̇+,U̇−), and

L′U̇ =∂t

(
U̇+

U̇−

)
+

(
A1(Ur) 0

0 A2(Ul)

)
∂1

(
U̇+

U̇−

)
+

(
A1(Ur) 0

0 −A2(Ul)

)
∂2

(
U̇+

U̇−

)
,

B(U̇ ,ψ)=

⎛⎜⎝ (vr−vl)∂1ψ−(u̇+− u̇−)
∂tψ+vr∂1ψ− u̇+

(ṁ++ ṅ+)−(ṁ−+ ṅ−)

⎞⎟⎠ .

We remark that the interior equations do not involve the perturbation ψ. Thus, the
operator L′ only acts on U̇ . Generally energy estimates for the linearized equations
depend on the source terms both in the interior domain and on the boundary. We now
consider the linear equations{

L′U̇ =f =(f+,f−)�, if x2>0,

B(U̇ ,ψ)=g=(g1,g2,g3)
�, if x2=0,

(3.4)

and the goal is to establish the estimates of U̇ and ψ in terms of f and g in appropriate
functional spaces.

To simplify the calculations, we introduce some new unknown functions by per-
forming the linear and invertible changes of variables⎛⎜⎜⎝

ṁ+

ṅ+

v̇+
u̇+

⎞⎟⎟⎠=

⎛⎜⎜⎜⎝
2nr 0 −2mr 2mr

−2nr 0 −2nr 2nr

0 1 0 0

0 0 2cr 2cr

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

W1

W2

W3

W4

⎞⎟⎟⎠ (3.5)

and ⎛⎜⎜⎝
ṁ−
ṅ−
v̇−
u̇−

⎞⎟⎟⎠=

⎛⎜⎜⎜⎝
2nl 0 −2ml 2ml

−2nl 0 −2nl 2nl

0 1 0 0

0 0 2cl 2cl

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

W5

W6

W7

W8

⎞⎟⎟⎠ , (3.6)

where cr,l are defined by

cr,l=

√(
1+

mr,l

nr,l

)
pn (3.7)
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and pn=pn(mr,nr)=pn(ml,nl) are given in (1.3). We also define the following vectors:

W := (W1,W2,W3,W4,W5,W6,W7,W8)
�,

W c := (W1,W2,W5,W6)
�,

Wnc := (W3,W4,W7,W8)
�.

The notation W c and Wnc are introduced in order to separate the “characteristic part”
of the vector W and the “non-characteristic part” of W . It is obvious that estimating
W is equivalent to estimating U̇ . The vector W satisfies⎧⎪⎨⎪⎩

L̄W :=∂tW +Ā1∂1W +Ā2∂2W = f̄ , if x2>0,

B̄(Wnc,ψ) :=MWnc|x2=0+b

(
∂tψ

∂1ψ

)
= ḡ, if x2=0,

(3.8)

with new f̄ and ḡ and

Ā1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vr 0 0 0

0 vr −2c2r 2c2r
0 − 1

4 vr 0

0 1
4 0 vr

O

O

vl 0 0 0

0 vl −2c2l 2c2l
0 − 1

4 vl 0

0 1
4 0 vl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.9)

Ā2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −cr 0

0 0 0 cr

O

O

0 0 0 0

0 0 0 0

0 0 cl 0

0 0 0 −cl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.10)

as well as

b=

⎛⎜⎝0 vr−vl

1 vr

0 0

⎞⎟⎠=

⎛⎜⎝0 2vr

1 vr

0 0

⎞⎟⎠ ,

M =

⎛⎜⎝−2cr −2cr 2cl 2cl

−2cr −2cr 0 0

−2(mr+nr) 2(mr+nr) 2(ml+nl) −2(ml+nl)

⎞⎟⎠ .

(3.11)

Hereafter O stands for the 4×4 zero matrix.
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Let us further define the following 8×8 symmetric matrices:

A0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1
4 0 0

0 0 2c2r 0

0 0 0 2c2r

O

O

1 0 0 0

0 1
4 0 0

0 0 2c2l 0

0 0 0 2c2l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.12)

A1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vr 0 0 0

0 1
4vr − 1

2c
2
r

1
2c

2
r

0 − 1
2c

2
r 2c2rvr 0

0 1
2c

2
r 0 2c2rvr

O

O

vl 0 0 0

0 1
4vl − 1

2c
2
l

1
2c

2
l

0 − 1
2c

2
l 2c2l vl 0

0 1
2c

2
l 0 2c2l vl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.13)

A2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 −2c3r 0

0 0 0 2c3r

O

O

0 0 0 0

0 0 0 0

0 0 2c3l 0

0 0 0 −2c3l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.14)

Then, the linear problem (3.8) becomes equivalently the following symmetric system
with A0 definite positive:{

LW :=A0∂tW +A1∂1W +A2∂2W =f, if x2>0,

B(Wnc,ψ)≡B̄(Wnc,ψ)=g, if x2=0,
(3.15)

with new f and g.
We remark that the kernel of A2 consists exactly of those W satisfying Wnc=0

(and W c is arbitrary). Thus, the boundary {x2=0} is characteristic with multiplicity
2. As noted in earlier works (see e.g. [11,34,38]), we expect to lose control of the trace
of W c. However, we expect to have control of the trace of Wnc on {x2=0}, that is,
‖Wnc|x2=0‖20 in (4.4) later.

3.2. Main result. Before stating our energy estimate for system (3.15), we
need to introduce some weighted Sobolev norms since (3.15) is a hyperbolic problem
with characteristic boundary and there is a loss of control on derivatives in the normal
direction ( ∂

∂x2
).
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First, define the half-space

Ω :=
{
(t,x1,x2)∈R3 : x2>0

}
=R2×R+.

For all real number s and all λ≥1, define the weighted Sobolev space

Hs
λ(R

2) :=
{
u∈D′(R2) : exp(−λt)u∈Hs(R2)

}
,

which is equipped with the norm

‖u‖Hs
λ(R

2) :=‖exp(−λt)u‖Hs(R2).

Letting ũ := exp(−λt)u, one has

‖u‖Hs
λ(R

2)�‖ũ‖s,λ,

where

‖v‖2s,λ :=
1

(2π)2

∫
R2

(
λ2+ |ξ|2

)s |v̂(ξ)|2dξ,
and v̂ is the Fourier transform of a function v defined on R2. For all integers k and real
λ≥1, one can define the space Hk

λ(Ω) as follows:

Hk
λ(Ω) :=

{
u∈D′(Ω) : exp(−λt)u∈Hk(Ω)

}
.

For all s>r, it holds that

Hs
λ

(
R2
)
⊂Hr

λ

(
R2
)
, ‖v‖r,λ≤

1

λs−r
‖v‖s,λ.

The space L2
(
R+;Hs

λ(R
2)
)
is equipped with the norm

|‖v|‖2L2(Hs
λ)
:=

∫ ∞

0

‖v(·,x2)‖2Hs
λ(R

2)dx2.

Our first main result is stated as follows.

Theorem 3.1. Let (Ur,l,Φr,l) be a solution to (2.21), (2.17), and (2.18) defined by
(2.22) and (2.23).
(i) If

vr−vl>
(
c

2
3
r +c

2
3

l

) 3
2

and vr−vl 	=
√
2(cr+cl). (3.16)

Then, there exists a positive constant C such that, for all λ≥1 and for all solutions
(W,ψ)∈H2

λ(Ω)×H2
λ(R

2) to (3.15), the following estimate holds:

λ‖|W‖|2L2
λ(Ω)+‖Wnc|x2=0‖2L2

λ(R
2)+‖ψ‖2H1

λ(R
2)

≤C

(
1

λ3
‖|LW‖|2L2(H1

λ)
+

1

λ2
‖B(W,ψ)‖2H1

λ(R
2)

)
. (3.17)

(ii) If

vr−vl=
√
2(cr+cl), (3.18)
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then there exists a positive constant C such that, for all λ≥1 and for all solutions
(W,ψ)∈H3

λ(Ω)×H3
λ(R

2) to (3.15), the following estimate holds:

λ‖|W‖|2L2
λ(Ω)+‖Wnc|x2=0‖2L2

λ(R
2)+‖ψ‖2H1

λ(R
2)

≤C

(
1

λ5
‖|LW‖|2L2(H2

λ)
+

1

λ4
‖B(W,ψ)‖2H2

λ(R
2)

)
. (3.19)

Here, cr,l are defined by (3.7).

We shall prove Theorem 3.1 by a normal mode analysis of (3.15). Introduce the
new unknown functions:

W̃ := exp(−λt)W, ψ̃ := exp(−λt)ψ.

Then, (3.15) is equivalent to⎧⎪⎨⎪⎩
LλW̃ :=λA0W̃ +LW̃ = exp(−λt)f, if x2>0,

Bλ(W̃nc,ψ̃)=MW̃nc|x2=0+b

(
λψ̃+∂tψ̃

∂1ψ̃

)
= exp(−λt)g, if x2=0.

(3.20)

We can rewrite Theorem 3.1 equivalently as the following.

Theorem 3.2. (i) Assume that (3.16) holds. Then, there exists a positive constant
C such that, for all λ≥1 and for all (W̃ ,ψ̃)∈H2(Ω)×H2(R2), the following estimate
holds:

λ‖|W̃‖|20+‖W̃nc|x2=0‖20+‖ψ̃‖21,λ

≤C

(
1

λ3
‖|LλW̃‖|21,λ+

1

λ2
‖Bλ(W̃ ,ψ̃)‖21,λ

)
. (3.21)

(ii) Assume that (3.18) holds. Then, there exists a positive constant C such that for
all λ≥1 and for all (W̃ ,ψ̃)∈H3(Ω)×H3(R2), the following estimate holds:

λ‖|W̃‖|20+‖W̃nc|x2=0‖20+‖ψ̃‖21,λ

≤C

(
1

λ5
‖|LλW̃‖|22,λ+

1

λ4
‖Bλ(W̃ ,ψ̃)‖22,λ

)
. (3.22)

In (3.21) and (3.22), we have used the following notation for v∈L2(R+;Hs(R2)):

‖|v‖|2s,λ :=
∫ +∞

0

‖v(·,x2)‖2s,λdx2.

For instance, ‖| ·‖|20,λ is the usual norm on L2(Ω) and does not involve λ, so we shall

denote it by ‖| ·‖|20. The norm ‖| ·‖|21,λ is the weighted norm on L2(R+;H1(R2)).

4. Proof of Theorem 3.2
This section is devoted to the proof of Theorem 3.2. To simplify the notation, we

shall drop the tildes from the unknowns W̃ ,ψ̃. As in [11], by introducing an auxil-
iary problem with maximally dissipative boundary conditions, one can show that it is
sufficient to prove estimates (3.21) and (3.22) for the system with zero interior source
term

λA0W +A0∂tW +A1∂1W +A2∂2W =0 (4.1)
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in the interior domain Ω, as well as the following boundary conditions:

MWnc|x2=0+b

(
λψ+∂tψ

∂1ψ

)
=g, on x2=0. (4.2)

Recall that all matrices Aj(j=0,1,2) are symmetric and that A0 is positive definite
(see (3.12)). We take the scalar product of (4.1) with W and integrating over Ω yield
the following inequality:

λ‖|W‖|20≤C‖Wnc|x2=0‖20. (4.3)

Consequently, in order to obtain (3.21) and (3.22), it is sufficient to derive the following
estimates:

‖Wnc|x2=0‖20+‖ψ‖21,λ≤
C

λ2
‖g‖21,λ, (4.4)

‖Wnc|x2=0‖20+‖ψ‖21,λ≤
C

λ4
‖g‖22,λ, (4.5)

which can be further reduced to estimate the L2-norm of the trace of Wnc in the Sobolev
norm of g by “eliminating” the front ψ in the boundary conditions (4.2) as in [11]. In
the next subsections, we shall perform the normal mode analysis in detail and construct
a symbolic symmetrizer.

4.1. Elimination of the front. First, we apply the Fourier transform in (t,x1)
on (4.1) and (4.2). Denote the dual variables by (δ,η) and define τ :=λ+ iδ. Then, we
obtain the following system of ordinary differential equations (ODEs):

(τA0+ iηA1)Ŵ +A2
d̂W
dx2

=0, x2>0,

b(τ,η)ψ̂+MŴnc(0)= ĝ,
(4.6)

where b(τ,η) is simply defined by

b(τ,η) := b

(
τ

iη

)
=

⎛⎜⎝ 2ivrη

τ+ ivrη

0

⎞⎟⎠ . (4.7)

Recall that b and M are defined by (3.11). Observe that b(τ,η) is homogeneous of degree
1 with respect to (τ,η). Define the hemisphere

Σ :={(τ,η)∈C×R : |τ |2+v2rη
2=1 and Rτ ≥0},

where Rτ is the real part of τ , and denote by Ξ the set

Ξ :={(λ,δ,η)∈ [0,+∞)×R2 : (λ,δ,η) 	=(0,0,0)}=(0,+∞) ·Σ.

We always identify (λ,δ)∈R2 with τ =λ+ iδ∈C. We remark that a symbolic sym-
metrizer r(τ,η) of (4.15) as a homogeneous function of degree zero with respect to
(τ,η)∈Ξ will be constructed. In fact, it is enough to construct r(τ,η) in the unit hemi-
sphere Σ. Since Σ is a compact set, by a smooth partition of unity, it can be reduced
to construct r(τ,η) in a neighborhood of each point of Σ.
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One crucial note is that the symbol b(τ,η) is elliptic, that is, it does not vanish on
the closed hemisphere Σ. Similar to [11], we can choose the c∞ mapping Q on Σ as
follows:

∀(τ,η)∈Σ, Q(τ,η) :=

⎛⎜⎝ 0 0 1
2(m̄+n̄)

1
2 (τ+ ivrη) −ivrη 0

−2ivrη τ̄− ivrη 0

⎞⎟⎠ , (4.8)

which is homogeneous of degree zero. For reducing the boundary matrix β(τ,η) in (4.13)
later to the same form as that of [44] and directly employing their parts of construction
on symmetrizer, we may choose

1

2(m̄+ n̄)
=

1

2(mr+nr)
=

1

2(ml+nl)
(4.9)

in the first row of Q(τ,η) and (4.9) can truely be satisfied due to (2.23). Then one can
easily check

Q(τ,η)b(τ,η)=

⎛⎜⎝ 0

0

θ(τ,η)

⎞⎟⎠ .

Here θ is C∞, homogeneous of degree 1 and given by

θ(τ,η) := |τ+ ivrη|2+4v2rη
2, (τ,η)∈Σ,

satisfying the lower bound

min
(τ,η)∈Σ

|θ(τ,η)|>0. (4.10)

Note that the last row of Q(τ,η) is nothing but b(τ,η)∗ when (τ,η)∈Σ and Q can be
extended to Ξ by homogeneity.

Let us multiply the boundary conditions in (4.6) by the matrix Q(τ,η). By repeating
the arguments of [11], the elliptic estimate (4.10) for θ(τ,η) yields the control of the front:

‖ψ‖21,λ≤C
(
‖Wnc|x2=0‖20+‖g‖20

)
≤C

(
‖Wnc|x2=0‖20+

1

λ2
‖g‖21,λ

)
≤C

(
‖Wnc|x2=0‖20+

1

λ4
‖g‖22,λ

)
. (4.11)

Therefore, in order to obtain (4.4) and (4.5), it is sufficient to derive an estimate on
the trace of Wnc. Consequently, we focus on the reduced algebraic-differential equation
problem

(τA0+ iηA1)Ŵ +A2
d̂W
dx2

=0, x2>0,

β(τ,η)Ŵnc(0)= ĥ,
(4.12)

and we shall derive an estimate for Ŵnc(0). Here the source term ĥ∈C2 can be esti-
mated by ĝ and

β(τ,η) =

(
−1 1 1 −1

−cr(τ− ivrη) −cr(τ− ivrη) cl(τ+ ivrη) cl(τ+ ivrη)

)
(4.13)
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as in [44] because of our choice of Q in (4.8), but the precise expressions of cr,l defined
by (3.7) in this paper are different from those in [44].

Next, we shall recall that, under the assumption made in theorems 3.1 and 3.2,
the above problem satisfies the Kreiss–Lopatinskii condition but violates the uniform
Kreiss–Lopatinskii condition.

4.2. The normal mode analysis. Due to the singularity of the matrix A2,
some equations in (4.12) do not involve derivation with respect to the normal variable
x2. The second and sixth equations in (4.12) read

1
4 (τ+ ivrη)Ŵ2− 1

2 ic
2
rηŴ3+

1
2 ic

2
rηŴ4=0,

1
4 (τ+ ivlη)Ŵ6− 1

2 ic
2
l ηŴ7+

1
2 ic

2
l ηŴ8=0

(4.14)

based on the expression

τA0+ iηA1=

(
(τA0+ iηA1)r 0

0 (τA0+ iηA1)l

)
and

(τA0+ iηA1)r,l=

⎛⎜⎜⎜⎝
τ+ ivr,lη 0 0 0

0 1
4 (τ+ ivr,lη) − 1

2 ic
2
r,lη

1
2 ic

2
r,lη

0 − 1
2 ic

2
r,lη 2c2r,l(τ+ ivr,lη) 0

0 1
2 ic

2
r,lη 0 2c2r,l(τ+ ivr,lη)

⎞⎟⎟⎟⎠ .

Thus we obtain an expression for Ŵ2 and Ŵ6 that we can substitute in the third, fourth,
seventh, and eighth equations in (4.12). This operation yields a system of ordinary
differential equations of the following form:{

d ̂Wnc

dx2
=A(τ,η)Ŵnc, x2>0,

β(τ,η)Ŵnc(0)= ĥ, x2=0.
(4.15)

The matrix A(τ,η) in (4.15) is given by the same form as in [11,44]:

A(τ,η) :=

⎛⎜⎜⎜⎜⎝
μr −mr 0 0

mr −μr 0 0

0 0 −μl ml

0 0 −ml μl

⎞⎟⎟⎟⎟⎠ , with

μr,l :=
(1/cr,l)(τ+ ivr,lη)

2+(cr,l/2)η
2

τ+ ivr,lη
,

mr,l :=
(cr,l/2)η

2

τ+ ivr,lη
,

(4.16)

where cr,l are defined by (3.7). By computing the eigenvalues and the stable subspace
of A(τ,η), the theoretical results in [25,27,39] apply. The following lemma of [11] gives
an expression of the stable subspace.

Lemma 4.1 ( [11], Lemma 4.2). Let τ ∈C and η∈R, with Rτ >0 and (τ,η)∈Σ.
The eigenvalues of A(τ,η) are the roots ω of the dispersion relations

ω2
r =μ2

r−m2
r =

1
c2r
(τ+ ivrη)

2+η2,

ω2
l =μ2

l −m2
l =

1
c2l
(τ+ ivlη)

2+η2.
(4.17)
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In particular, (4.17)1 (resp. (4.17)2) admits a unique root ωr (resp. ωl) of negative real
part. The other root of (4.17)1 (resp. (4.17)2) is −ωr (resp. −ωl) and has positive real
part. The stable subspace E−(τ,η) of A(τ,η) has dimension 2 and is spanned by the
following two vectors:

Er(τ,η) :=
(

cr
2 η

2, 1
cr
(τ+ ivrη)

2+ cr
2 η

2−(τ+ ivrη)ωr,0,0
)�

,

El(τ,η) :=
(
0,0, 1

cl
(τ+ ivrη)

2+ cl
2 η

2−(τ+ ivrη)ωr,
cl
2 η

2
)�

.
(4.18)

Both ωr and ωl admit a continuous extension to any point (τ,η) such that Rτ =0 and
(τ,η)∈Σ. This allows us to extend both vectors Er and El in (4.18) to the whole
hemisphere Σ. Those two vectors are linearly independent for any value of (τ,η)∈Σ.

The symbol A(τ,η) is diagonalizable as long as both ωr and ωl do not vanish, that is,
when τ 	=(±vr±cr,l)iη. Away from such points, A admits a C∞ basis of eigenvectors.

Following Majda and Osher [11, 38], we define the Lopatinskii determinant associ-
ated with the boundary conditions β in the following way:

Δ(τ,η) :=det [β(τ,η)(Er(τ,η) El(τ,η))] , (4.19)

with β defined by (4.13) and (Er,El) defined by (4.18). We emphasize that the Lopatin-
skii determinant Δ is defined on the whole hemisphere Σ and is continuous with respect
to (τ,η). The first step in proving an energy estimate for (4.15) is to determine whether
Δ vanishes on Σ. The answer is given in the following result.

Proposition 4.2 (see [44], Proposition 3.4). Assume that the condition

vr−vl=2vr>
(
c

2
3
r +c

2
3

l

) 3
2

holds.

(a) If cr= cl := c, then there exists a positive number V1 such that for any (τ,η)∈Σ,
one has Δ(τ,η)=0 if and only if

τ =0 or τ =±iV1η.

Each of the preceding roots of Δ(τ,η)=0 is simple, namely, if (τ0,η0) is any of the points
above, there exists an open neighborhood V of (τ0,η0) in Σ and a C∞ function h defined
on V such that, for all (τ,η)∈V, one has Δ(τ,η)=(τ−τ0)h(τ,η) and h(τ0,η0) 	=0.

(b) If cr 	= cl, then there exist two positive numbers X2,X3 satisfying

cr−vr<crX2<crX3<−cl+vr,

such that Δ(τ,η)=0 for (τ,η)∈Σ if and only if

τ = iqvrη or τ = icrX2q or τ = icrX3q,

where q := cr−cl
cr+cl

.

For vr 	= cr+cl√
2

, each of the preceding roots of Δ(τ,η)=0 is simple. When vr=
cr+cl√

2
,

one (and only one) of the two identities below holds:

qvr= crX2 or qvr= crX3.
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Hence, each of the roots (iqvrη,η)∈Σ of Δ(τ,η)=0 is quadratic. This means that to
every point (iqvrη0,η0)∈Σ, there corresponds an open neighborhood V in Σ and a C∞

function h on V such that

Δ(τ,η)=(τ− iqvrη0)
2h(τ,η), ∀ (τ,η)∈V,

and h(iqvrη0,η0) 	=0. The other root of Δ(τ,η)=0 is simple.

4.3. Construction of the symmetrizer. This subsection will be entirely
devoted to constructing a symbolic symmetrizer r(τ,η), which is a homogeneous function
of degree zero with respect to (τ,η)∈Ξ. As remarked earlier, it is sufficient to construct
r(τ,η) in a neighborhood of each point of Σ. The analysis performed in Section 4.2 shows
that we have to consider five different classes of frequencies (τ,η)∈Σ in the construction
of r(τ,η):

(C1) the interior points (τ0,η0) of Σ such that Rτ0>0;

(C2) the boundary points (τ0,η0) of Σ where A(τ0,η0) is diagonalizable and the
Lopatinskii condition is satisfied at (τ0,η0) (namely, Δ(τ0,η0) 	=0);

(C3) the boundary points (τ0,η0) where A(τ0,η0) is diagonalizable but the Lopatin-
skii condition breaks down at (τ0,η0) (i.e. Δ(τ0,η0)=0);

(C4) Those points (τ0,η0) where A(τ0,η0) is not diagonalizable, that is, τ0=(±vr±
cr,l)iη0 (η0 	=0), and in this case Proposition 4.2 asserts that the Lopatinskii condition
is satisfied at (τ0,η0); and

(C5) Those points (τ0,η0) that are the poles of A, that is, τ0=±ivrη0, and at those
points, the Lopatinskii condition is satisfied.

The construction of the symmetrizer is microlocal and is performed near each point
(τ0,η0)∈Σ. For a point belonging to the above classes (C1), (C2), and (C4), the con-
struction is very similar to the corresponding one of sections 4.4, 4.5, and 4.7 in [11].
It can be proved that, if (τ0,η0) is a point in one of the above classes, there exist a
neighborhood V of (τ0,η0) and two C∞ mappings T :V→GL4(C) and r :V→M4×4(C)

such that, for all (τ,η)∈V, r(τ,η) is Hermitian and homogeneous of degree zero with
respect to (τ,η), and such that the estimates

R
(
r(τ,η)T (τ,η)A(τ,η)T−1(τ,η)

)
≥κI4×4≥κλI4×4, ∀(τ,η)∈V,

r(τ,η)+C
(
β(τ,η)T (τ,η)−1

)∗
β(τ,η)T (τ,η)−1≥ I4×4, ∀(τ,η)∈V,

(4.20)

hold, where I4×4 denotes the identity matrix of order 4, and C,κ are suitable positive
constants. On the left-hand side of (4.20), we use the notation RM := M+M∗

2 for every
complex square matrix M . Here, M∗=M̄T is the conjugate transpose.

For the case of points belonging to the class (C3), as in [44] the symmetrizer is
defined in a neighborhood of (τ0,η0) by

r(τ,η) :=diag
(
−λ2ν0 ,−λ2ν0 ,K,K

)
,

where ν0=1 or ν0=2 correspond to vr 	= cr+cl
2 or vr=

cr+cl
2 , respectively, and K is a

constant to be chosen large enough. The matrix r(τ,η) above is Hermitian and satisfies

R
(
r(τ,η)T (τ,η)A(τ,η)T−1(τ,η)

)
≥κλdiag

(
−λ2ν0 ,−λ2ν0 ,K,K

)
,

r(τ,η)+C
(
β(τ,η)T (τ,η)−1

)∗
β(τ,η)T (τ,η)−1≥λ2ν0I4×4

(4.21)

for all (τ,η)∈V and suitable positive constants κ,C >0.
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We now consider the last case (C5), which is (τ0,η0)∈Σ with τ0=−ivrη0. As in [11],
we have to go back to the original system:

(τA0+ iηA1)Ŵ +A2
d̂W
dx2

=0, x2>0,

β(τ,η)Ŵnc(0)= ĥ.
(4.22)

Note that the matrices τA0+ iηA1 and A2 are different from those of [11]. The idea
now is to perform some manipulations on the rows of these two matrices so that (4.22)1
is transformed into an “almost diagonal” system of differential equations. By direct
calculations similar to those in [11], we can choose both C∞ matrices S and T on the
whole neighborhood V as follows:

S(τ,η) :=

(
Sr(τ,η) O

O Sl(τ,η)

)
, T (τ,η) :=

(
Tr(τ,η) O

O Tl(τ,η)

)
, (4.23)

where

Sr(τ,η) =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 2i
c3rη

(τ+ ivrη−crωr)
ξr

c3rη
2

1
2c3r

⎞⎟⎟⎟⎟⎠ ,

Sl(τ,η) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 − i(τ+ivlη+clωl)
c3l ηωl(τ+ivlη)

1
4c3l ωl(τ+ivlη)

ξ+l
2c4l η

2ωl(τ+ivlη)

0 − i(τ+ivlη−clωl)
c3l ηωl(τ+ivlη)

1
4c3l ωl(τ+ivlη)

ξ−l
2c4l η

2ωl(τ+ivlη)

⎞⎟⎟⎟⎟⎟⎠ ,

Tr(τ,η) :=

⎛⎜⎜⎜⎝
1 0 0 0

0 1 −icrη(τ+ ivrη−crωr) 0

0 0 cr
2 η

2 0

0 0 (τ+ ivrη)(μr−ωr) 1

⎞⎟⎟⎟⎠ ,

Tl(τ,η) :=

⎛⎜⎜⎜⎝
1 0 0 0

0 1 iclη(τ+ ivlη−clωl) iclη(τ+ ivlη+clωl)

0 0 (τ+ ivlη)(μl−ωl) (τ+ ivlη)(μl+ωl)

0 0 cl
2 η

2 cl
2 η

2

⎞⎟⎟⎟⎠ ,

and

ξr : = (τ+ ivrη)(μr−ωr)=(τ+ ivrη)μr−(τ+ ivrη)ωr

= 1
cr
(τ+ ivrη)

2+ cr
2 η

2−(τ+ ivrη)ωr,

ξ±l : = (τ+ ivlη)(μl±ωl)=(τ+ ivlη)μl±(τ+ ivlη)ωl

= 1
cl
(τ+ ivlη)

2+ cl
2 η

2±(τ+ ivlη)ωl.

(4.24)
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It is now easy to derive the following equalities for all (τ,η) in V:

S(τ,η)A2T (τ,η)=diag
(
0,0,−c4rη

2,1,0,0,−1,1
)
,

S(τ,η)(τA0+ iηA1)T (τ,η)

=

(
Sr(τ,η)(τA0+ iηA1)rTr(τ,η) O

O Sl(τ,η)(τA0+ iηA1)lTl(τ,η)

)
,

(4.25)

where

Sr(τ,η)(τA0+ iηA1)rTr(τ,η)=

⎛⎜⎜⎜⎝
τ+ ivrη 0 0 ic2rη

0 1
4 (τ+ ivrη) 0 1

2 ic
2
rη

0 − 1
2 ic

2
rη c4rη

2ωr 0

0 0 0 ωr

⎞⎟⎟⎟⎠
and

Sl(τ,η)(τA0+ iηA1)lTl(τ,η)=

⎛⎜⎜⎜⎝
τ+ ivlη 0 0 0

0 1
4 (τ+ ivlη) 0 0

0 0 ωl 0

0 0 0 ωl

⎞⎟⎟⎟⎠ .

Thus, we simultaneously “almost diagonalize” the original system of algebraic-
differential equations (4.22) due to (4.25). This is sufficient to derive energy estimates
in such a neighborhood V of the pole (τ0,η0).

4.4. Derivation of the energy estimate. We now derive the estimates (3.21)
and (3.22). Thanks to (4.4), (4.5), and (4.11), it is sufficient to estimate the trace of
Wnc on {x2=0}.

As in [11, 44], the previous analysis shows that, for all (τ0,η0)∈Σ, there exists a
neighborhood V of (τ0,η0) in Σ with desired properties. Because Σ is a C∞ compact
manifold, there exists a finite covering (V1, · · · ,VI) of Σ by such neighborhoods, and a
smooth partition of unity (χ1, · · · ,χI) associated with this covering, that is, the functions
χ1, · · · ,χI are nonnegative, C∞, and satisfy

supp χi⊂Vi and

I∑
i=1

χ2
i ≡1.

For (τ0,η0) belonging to the classes (C1), (C2), and (C4), the energy estimate can be
obtained in the same way as in [11]. For (τ0,η0) belonging to the class (C5), the energy
estimate can be obtained similarly to [11] by employing “almost diagonal” matrices
(4.25). More precisely, we have

λχ2
i (τ,η)

∫ +∞

0

|Ŵnc(δ,η,x2)|2dx2+χ2
i (τ,η)|Ŵnc(δ,η,0)|2≤Ciχ

2
i (τ,η)|ĥ|2.

For (τ0,η0) belonging to the class (C3), the energy estimate can be obtained as in [44]
by using the estimate (4.21) as the following:

λχ2
i (τ,η)

∫ +∞

0

|Ŵnc(δ,η,x2)|2dx2+χ2
i (τ,η)|Ŵnc(δ,η,0)|2

≤ Ci

λ2ν0
χ2
i (τ,η)|ĥ|2

(
|τ |2+v2rη

2
)2ν0

.
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Adding up the above two estimates, using the partition of unity, then integrating the
resulting inequality with respect to (δ,η)∈R2, and employing Plancherel’s theorem yield
the desired estimate:

‖|Wnc|x2=0|‖20+‖Wnc
∣∣
x2=0

‖20≤
C

λ2ν0
‖g‖2ν0,λ. (4.26)

For ν0=1 or ν0=2 corresponding to vr 	= cr+cl
2 or vr=

cr+cl
2 , respectively, the combina-

tion of (4.4), (4.5), and (4.11) with (4.26) leads to the estimates (3.21) and (3.22). This
completes the proof of Theorem 3.2 (equivalent to Theorem 3.1).

5. Linear stability: variable coefficients
For the case of variable coefficients, we first present the linearized problem and state

the main result in this section, and then we prove the main result in the next section.

5.1. The linearized equations. We first introduce the linearized equations
around a state Ur,l(t,x1,x2),Φr,l(t,x1,x2) that are given by a perturbation of the con-
stant solution in (2.22). More precisely, let us consider the functions

Ur,l(t,x1,x2)=

⎛⎜⎜⎝
m̄r,l

n̄r,l

±v̄r
0

⎞⎟⎟⎠+ U̇r,l(t,x1,x2),

Φr,l(t,x1,x2)=±x2+Φ̇r,l(t,x1,x2),

(5.1)

where m̄r,l, n̄r,l, v̄r are fixed positive constants and

Ur,l(t,x1,x2)≡

⎛⎜⎜⎝
mr,l

nr,l

vr,l
ur,l

⎞⎟⎟⎠(t,x1,x2), U̇r,l(t,x1,x2)≡

⎛⎜⎜⎝
ṁr,l

ṅr,l

v̇r,l
u̇r,l

⎞⎟⎟⎠(t,x1,x2).

The index r (resp. l) denotes the state on the right (resp. on the left) of the interface
(after the change of variables). Notice that vr(t,x1,0) 	=−vl(t,x1,0) here. We assume
that

Ur,l, ∇Φr,l∈W 2,∞(Ω),

‖(Ur,Ul)‖W 2,∞(Ω)+‖(∇Φr,∇Φl)‖W 2,∞(Ω)≤K0,
(5.2)

where K0>0 is constant and the perturbations U̇r,l have compact support. The corre-
sponding Rankine–Hugoniot conditions and the continuity condition for the functions
Φr,l can be written in the form of (2.17) by dropping the � index as

Φr(t,x1,x2)
∣∣∣
x2=0

=Φl(t,x1,x2)
∣∣∣
x2=0

=ϕ(t,x1),

(vr−vl)(t,x1,x2)
∣∣∣
x2=0

∂1ϕ(t,x1)−(ur−ul)(t,x1,x2)
∣∣∣
x2=0

=0,

∂tϕ(t,x1)+vr(t,x1,x2)
∣∣∣
x2=0

∂1ϕ(t,x1)−ur(t,x1,x2)
∣∣∣
x2=0

=0,

(mr+nr)(t,x1,x2)
∣∣∣
x2=0

−(ml+nl)(t,x1,x2)
∣∣∣
x2=0

=0.

(5.3)

The functions Φr and Φl should also satisfy the eikonal equations

∂tΦr+vr∂1Φr−ur=0,

∂tΦl+vl∂1Φl−ul=0
(5.4)
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together with

∂2Φr(t,x1,x2)≥κ0, ∂2Φl(t,x1,x2)≤−κ0 (5.5)

for a suitable constant κ0>0 in the whole closed half-space {x2≥0}.
Let us consider some families

U±
s =Ur,l+sV ±, Φ±

s =Φr,l+sΨ±,

where s is a small parameter. We compute the linearized equations around the state
Ur,l,Φr,l:

L′(Ur,l,Φr,l)(V±,Ψ±) :=
{

d

ds
L(U±

s ,Φ±
s )U

±
s

}∣∣∣
s=0

=f±. (5.6)

We obtain

L′(Ur,Φr)(V+,Ψ+)

=∂tV++A1(Ur)∂1V++
1

∂2Φr
(A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur))∂2V+

+[dA1(Ur)]V+∂1Ur−
∂2Ψ+

(∂2Φr)2
[A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur)]∂2Ur

1

∂2Φr
{d[A2(Ur)]V+−∂tΨ+I4×4−∂1Ψ+A1(Ur)−∂1Φrd[A1(Ur)]V+}∂2Ur

=f+ (5.7)

in the domain {x2>0}, and we also obtain a similar equation for L′(Ul,Φl)(V−,Ψ−)
with V−,Ψ−,Ul,Φl,f− replacing V+,Ψ+,Ur,Φr,f+.

Recall that, according to the definition in (2.19) and (2.20), the second row in (5.7)
may be simply denoted by

L(Ur,∇Φr)V+ :=∂tV++A1(Ur)∂1V+

+
1

∂2Φr
[A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur)]∂2V+.

The linearized equation (5.7) and the corresponding one for (V−,Ψ−) may be simplified
by introducing the “good unknown” as in [1]:

V̇+=V+− Ψ+

∂2Φr
∂2Ur, V̇−=V−− Ψ−

∂2Φl
∂2Ul. (5.8)

A direct calculation shows that V̇+ and V̇− satisfy

L(Ur,∇Φr)V̇++C(Ur,∇Ur,∇Φr)V̇++ Ψ+

∂x2Φr
∂2{L(Ur,∇Φr)Ur}=f+,

L(Ul,∇Φl)V̇−+C(Ul,∇Ul,∇Φl)V̇−+ Ψ−
∂x2Φl

∂2{L(Ul,∇Φl)Ul}=f−,
(5.9)

where

C(Ur,∇Ur,∇Φr)V̇+ :=
(
dA1(Ur)V̇+

)
∂1Ur

+
1

∂2Φr

{
dA2(Ur)V̇+−∂1Φr[dA1(Ur)V̇+]

}
∂2Ur, (5.10)

with a similar expression for C(Ul,∇Ul,∇Φl)V̇−.
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5.2. The effective linearized equations. From [1, 22], we neglect the zeroth
order term Ψ+,Ψ− in the linearized equation (5.9) and consider the effective linear
operators

L′
rV̇+ :=L(Ur,∇Φr)V̇++C(Ur,∇Ur,∇Φr)V̇+=f+,

L′
lV̇− :=L(Ul,∇Φl)V̇−+C(Ul,∇Ul,∇Φl)V̇−=f−.

(5.11)

We can easily verify, using (5.2), that the coefficients of the operators L(Ur,∇Φr) and
L(Ul,∇Φl) are in W 2,∞(Ω), that is,

A1(Ur)∈W 2,∞(Ω), 1
∂2Φr

[A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur)]∈W 2,∞(Ω),

A1(Ul)∈W 2,∞(Ω), 1
∂2Φl

[A2(Ul)−∂tΦlI4×4−∂1ΦlA1(Ul)]∈W 2,∞(Ω).

Moreover, we have C(Ur,l,∇Ur,l,∇Φr,l)∈W 1,∞(Ω).

We note that the linearized equation (5.11) forms a symmetrizable hyperbolic sys-
tem. As an example, a Friedrichs symmetrizer for the operator L′

r,l is

Sr,l(t,x)=

⎛⎜⎜⎜⎝
pn

mr,l
0 0 0

0 pn

nr,l
0 0

0 0 nr,l 0

0 0 0 nr,l

⎞⎟⎟⎟⎠(t,x).

Using the eikonal equation (5.4), we find (recall that A1(U),A2(U) are defined by (2.1))

Sr

∂2Φr
[A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur)]

= 1
∂2Φr

⎛⎜⎜⎜⎝
0 0 −pn∂1Φr pn

0 0 −pn∂1Φr pn

−pn∂1Φr −pn∂1Φr 0 0

pn pn 0 0

⎞⎟⎟⎟⎠ ,
(5.12)

and thus expect to control the traces of the components V̇+,1+ V̇+,2, and(
V̇+,4−∂1ΦrV̇+,3

)
on the boundary {x2=0}. In the same way, we expect to control the

traces of the components V̇−,1+ V̇−,2, and
(
V̇−,4−∂1Φr,lV̇−,3

)
on the boundary. These

preliminary considerations motivate the introduction of the following trace operator on
the boundary:

P(ϕ)V̇±
∣∣∣
x2=0

:=

(
V̇±,1+ V̇±,2

V̇±,4−∂1Φr,lV̇±,3

)
x2=0

. (5.13)

This operator will be used in the energy estimates for the linearized equations.

Remark 5.1. As in [44], one can check that the rows of (5.13) are just the traces of
the non-characteristic components of V̇± after multiplication of equation (5.11) by the
symmetrizer Sr,l.
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5.3. The linearized boundary conditions. We now turn to the linearized
boundary conditions. The linearization of (5.3) gives

Ψ+(t,x1,x2)
∣∣∣
x2=0

=Ψ−(t,x1,x2)
∣∣∣
x2=0

=ψ(t,x1),

(vr−vl)
∣∣∣
x2=0

∂1ψ+(v+−v−)
∣∣∣
x2=0

∂1ϕ−(u+−u−)
∣∣∣
x2=0

=g1,

∂tψ+vr

∣∣∣
x2=0

∂1ψ+v+

∣∣∣
x2=0

∂1ϕ−u+

∣∣∣
x2=0

=g2,

(m++n+)
∣∣∣
x2=0

−(m−+n−)
∣∣∣
x2=0

=g3

(5.14)

on the boundary {x2=0}.
Let us introduce the matrices

b(t,x1)=

⎛⎜⎜⎝
0 (vr−vl)

∣∣∣
x2=0

1 vr

∣∣∣
x2=0

0 0

⎞⎟⎟⎠ ,

M(t,x1)=

⎛⎜⎝0 0 ∂1ϕ −1 0 0 −∂1ϕ 1

0 0 ∂1ϕ −1 0 0 0 0

1 1 0 0 −1 −1 0 0

⎞⎟⎠ .

(5.15)

Denote

V =(V+,V−)�=(m+,n+,v+,u+,m−,n−,v−,u−)�,

∇ψ=(∂tψ,∂1ψ)
�, g=(g1,g2,g3)

�.

Then, the linearized boundary conditions become equivalently

Ψ+(t,x1,x2)
∣∣∣
x2=0

=Ψ−(t,x1,x2)
∣∣∣
x2=0

=ψ(t,x1),

b∇ψ+MV
∣∣∣
x2=0

=g.

In terms of the good unknown V̇ =
(
V̇+,V̇−

)�
defined by (5.8), the linearized boundary

conditions read as

Ψ+(t,x1,x2)
∣∣∣
x2=0

=Ψ−(t,x1,x2)
∣∣∣
x2=0

=ψ(t,x1),

B′(Ur,l,Φr,l)

(
V̇
∣∣∣
x2=0

,ψ

)
:=b∇ψ+M

(
V̇++

Ψ+

∂2Φr
∂2Ur,V̇−+

Ψ−
∂2Φl

∂2Ul

)� ∣∣∣
x2=0

=b∇ψ+M

(
∂2Ur

∂2Φr
ψ,

∂2Ul

∂2Φl
ψ

)� ∣∣∣
x2=0

+MV̇
∣∣∣
x2=0

=b∇ψ+M

(
∂2Ur

∂2Φr
∂2Ul

∂2Φl

)∣∣∣
x2=0︸ ︷︷ ︸

b�

ψ+MV̇
∣∣∣
x2=0

=g. (5.16)
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5.4. Main result. We observe that, from (5.15), the linearized boundary con-

ditions only involve PV̇±
∣∣∣
x2=0

, where P is defined by (5.13). With this notation, we

can state our main result (the norms are the weighted norms defined in Section 3) as
follows.

Theorem 5.1. Assume that the particular solution defined by (5.1) satisfies

v̄r− v̄l>
(
c̄

2
3
r + c̄

2
3

l

) 3
2

, v̄r− v̄l 	=
√
2(c̄r+ c̄l) , (5.17)

and that the perturbations U̇r,l, ∇Φ̇r,l have compact support and are small enough in
W 2,∞(Ω). Then, there exist some constants C1 and λ1≥1 depending on K0 and κ0

(defined in (5.2) and (5.5)) such that, for all λ≥λ1, the solution (V̇ ,ψ)∈H2
λ(Ω)×

H2
λ(R

2) to the linearized problem (5.11) and (5.16) satisfies the following estimates:

λ‖|V̇ ‖|2L2
λ(Ω)+‖PV̇ |x2=0‖2L2

λ(R
2)+‖ψ‖2H1

λ(R
2)

≤C1

(
1

λ3
‖|L′V̇ ‖|2L2(H1

λ)
+

1

λ2
‖|B′(V̇ ,ψ)‖|2H1

λ(R
2)

)
:=C1

(
1

λ3
‖|(f+,f−)‖|2L2(H1

λ)
+

1

λ2
‖|g‖|2H1

λ(R
2)

)
, (5.18)

where the linearized operators L′ and B′ are defined in (5.11) and (5.16).

Remark 5.2. Theorem 5.1 is counterpart of Theorem 3.1 for variable coefficients.

6. Proof of Theorem 5.1
This section is devoted to the proof of Theorem 5.1 on the linear stability with

variable coefficients.

6.1. Some preliminary transformations.

6.1.1. Preliminary transformations of the interior equations. For the
linearized equation (5.11), from multiplication by the Friedrichs symmetrizer defined in
the previous section and an integration by parts, one has the following lemma.

Lemma 6.1. There exist two constants C>0 and λ0≥1 such that, for all λ≥λ0, the
following estimates hold:

λ‖|V̇±‖|2L2
λ(Ω)

≤ C
λ ‖|L′

rV̇±‖|2L2
λ(Ω)

+‖PV̇±|x2=0‖2L2
λ(R

2)

and thus

λ‖|V̇ ‖|2
L2

λ(Ω)
≤ C

λ ‖|L′V̇ ‖|2
L2

λ(Ω)
+‖PV̇ |x2=0‖2L2

λ(R
2)
,

where the operator P is defined in (5.13).

As in the case of constant coefficients, we only need estimate the traces PV̇±|x2=0

and the front function ψ in terms of the source terms in the interior domain and on the
boundary. For this purpose, we shall reformulate further the interior equation (5.11)
to deal with the matrix coefficient of ∂2 in the differential operators L′

r,l, noticing that
the boundary matrix has constant rank in the whole closed half-space. Thus, we first
consider the coefficients of ∂2V̇± in (5.11) which are equal to

1

∂2Φ
[A2(U)−∂tΦI4×4−∂1ΦA1(U)] , (6.1)
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where we drop the indices r,l. Under assumption (5.4), (6.1) reduces to the matrix

Ā2(U,∇Φ) = 1
∂2Φ

[A2(U)−∂tΦI4×4−∂1ΦA1(U)]

= 1
∂2Φ

⎛⎜⎜⎜⎝
0 0 −m∂1Φ m

0 0 −n∂1Φ n

−pn∂1Φ
n −pn∂1Φ

n 0 0
pn

n
pn

n 0 0

⎞⎟⎟⎟⎠ ,

which has eigenvalues

λ∗
1=0 with multiplicity 2, and λ∗

2,3=±c(m,n)〈∂1Φ〉
∂2Φ

.

Here, c(m,n) is defined by (3.7) and we denote 〈∂1Φ〉 :=
√
1+(∂1Φ)2.

We now diagonalize the above matrix. The eigenvectors associated with the eigen-
values are

(1,−1,0,0)�, (0,0,1,∂1Φ)
�, for λ∗

1,(
m
n 〈∂1Φ〉,〈∂1Φ〉,− c(m,n)

n ∂1Φ,
c(m,n)

n

)�
, for λ∗

2,(
m
n 〈∂1Φ〉,〈∂1Φ〉, c(m,n)

n ∂1Φ,− c(m,n)
n

)�
, for λ∗

3.

Observe that these eigenvectors are not orthonormal. Thus, we may define the following
(non orthogonal) matrix

T (U,∇Φ) : =

⎛⎜⎜⎜⎜⎝
1 0 m

n 〈∂1Φ〉 m
n 〈∂1Φ〉

−1 0 〈∂1Φ〉 〈∂1Φ〉
0 1 − c(m,n)

n ∂1Φ
c(m,n)

n ∂1Φ

0 ∂1Φ
c(m,n)

n − c(m,n)
n

⎞⎟⎟⎟⎟⎠ . (6.2)

Then, by direct calculations, the inverse T−1(U,∇Φ) is⎛⎜⎜⎜⎜⎝
n

m+n − m
m+n 0 0

0 0 1
〈∂1Φ〉2

∂1Φ
〈∂1Φ〉2

n
2(m+n)〈∂1Φ〉

n
2(m+n)〈∂1Φ〉 − n

2c(m,n)
∂1Φ

〈∂1Φ〉2
n

2c(m,n)
1

〈∂1Φ〉2
n

2(m+n)〈∂1Φ〉
n

2(m+n)〈∂1Φ〉
n

2c(m,n)
∂1Φ

〈∂1Φ〉2 − n
2c(m,n)

1
〈∂1Φ〉2

⎞⎟⎟⎟⎟⎠ , (6.3)

which allows one to diagonalize the matrix Ā2(U,∇Φ) as

T−1(U,∇Φ)Ā2(U,∇Φ)T (U,∇Φ) =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 λ∗
2 0

0 0 0 λ∗
3

⎞⎟⎟⎟⎠ .

In order to obtain a constant boundary matrix in the differential operators, we also
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introduce the matrix

A0(U,∇Φ) :=

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 λ∗−1
2 0

0 0 0 λ∗−1
3

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 ∂2Φ
c(m,n)〈∂1Φ〉 0

0 0 0 − ∂2Φ
c(m,n)〈∂1Φ〉

⎞⎟⎟⎟⎟⎠ .

It follows that A0T
−1Ā2T = I2 :=diag(0,0,1,1).

Let us define the new unknown functions

W+ :=T−1(Ur,∇Φr)V̇+, W− :=T−1(Ul,∇Φl)V̇− (6.4)

and set

Tr,l :=T (Ur,l,∇Φr,l), Ar,l
0 :=A0(Ur,l,∇Φr,l).

By multiplying on the left of the equations in (5.11) by Ar,l
0 T−1

r,l , we see that W± solve
the following equations (see Appendix A for details):

Ar
0∂tW

++Ar
1∂1W

++I2∂2W
++Ar

0C
rW+=F+,

Al
0∂tW

−+Al
1∂1W

−+I2∂2W
−+Al

0C
lW−=F−,

(6.5)

where we have set with slight abuse of notation

Ar,l
1 :=Ar,l

0 T−1A1T (Ur,l,∇Φr,l),

Cr,l :=
[
T−1∂tT +T−1A1∂1T +T−1Ā2∂2T +T−1CT

]
(Ur,l,∇Ur,l,∇Φr,l),

F±=Ar,l
0 T−1

r,l f±,

with

Ar
1 =

⎛⎜⎜⎜⎜⎜⎝
vr 0 0 0

0 vr
c2r

nr〈∂1Φr〉
c2r

nr〈∂1Φr〉
0 nr

2cr
∂2Φr

〈∂1Φr〉2
(

vr
cr

− ∂1Φr

〈∂1Φr〉
)

∂2Φr

〈∂1Φr〉 0

0 − nr

2cr
∂2Φr

〈∂1Φr〉2 0 −
(

vr
cr

+ ∂1Φr

〈∂1Φr〉
)

∂2Φr

〈∂1Φr〉

⎞⎟⎟⎟⎟⎟⎠ ,

The matrix Al
1 is similar by changing index r by l. Notice that the matrix coefficient

of ∂2 in (6.5) is the constant and diagonal boundary matrix I2.
The above equations (6.5) are equivalent to the linearized equations (5.11). Intro-

ducing W̃±=e−λtW±, one can rewrite equation (6.5) equivalently as

Lλ
r W̃

+ : = λAr
0W̃

++Ar
0∂tW̃

+

+Ar
1∂1W̃

++I2∂2W̃
++Ar

0C
rW̃+=e−λtF+,

Lλ
l W̃

− : = λAl
0W̃

−+Al
0∂tW̃

−

+Al
1∂1W̃

−+I2∂2W̃
−+Al

0C
lW̃−=e−λtF−.

(6.6)

Recall that we have Ar,l
j ∈W 2,∞(Ω)(j=0,1), and Cr,l∈W 1,∞(Ω).
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6.1.2. Preliminary transformations of the boundary conditions. Denote
the vector W =(W+,W−)�=(T−1

r V̇+,T
−1
l V̇−)�. Then, the boundary conditions (5.16)

become

Ψ+(t,x1,x2)
∣∣∣
x2=0

=Ψ−(t,x1,x2)
∣∣∣
x2=0

=ψ(t,x1),

b∇ψ+b�ψ+M

(
Tr0

0 Tl

)(
T−1
r 0

0 T−1
l

)(
V̇+

V̇−

)∣∣∣
x2=0

=b∇ψ+b�ψ+M

(
Tr 0

0 Tl

)
W
∣∣∣
x2=0

=g. (6.7)

Introducing W̃±=e−λtW±,Ψ̃± :=e−λtΨ,ψ̃± :=e−λtψ and b0 := b(1,0)�=(0,1,0)�, we
obtain

be−λt∇ψ= b∇
(
e−λtψ

)
+λbe−λtψ∇t= b∇ψ̃+λψ̃b(1,0)�= b∇ψ̃+λb0ψ̃,

Then, the equations (6.7) are also equivalent to

Ψ̃+(t,x1,x2)
∣∣∣
x2=0

=Ψ̃−(t,x1,x2)
∣∣∣
x2=0

= ψ̃(t,x1),

Bλ(W̃ ,ψ̃) :=λb0ψ̃+b∇ψ̃+b�ψ̃+M

(
Tr 0

0 Tl

)
W̃
∣∣∣
x2=0

=e−λtg.
(6.8)

From (5.2) we have

b∈W 2,∞(R2), b�∈W 1,∞(R2),

M ∈W 2,∞(R2), Tr,l

∣∣∣
x2=0

∈W 2,∞(R2).
(6.9)

6.1.3. A priori estimate for the weighted linearized problem. We now
derive an a priori estimate of the solution to the (weighted) linearized problem (6.6)
and (6.8). By Lemma 6.1, we are looking for an estimate of PV̇+ and PV̇− using the
new function W . From the relations

PV̇+

∣∣∣
x2=0

=

⎛⎝
(
1+ mr

nr

)
〈∂1ϕ〉(W+

3 +W+
4 )
∣∣∣
x2=0

cr
nr

〈∂1ϕ〉2(W+
3 −W+

4 )
∣∣∣
x2=0

⎞⎠ ,

PV̇−
∣∣∣
x2=0

=

⎛⎝
(
1+ ml

nl

)
〈∂1ϕ〉(W−

3 +W−
4 )
∣∣∣
x2=0

cl
nl
〈∂1ϕ〉2(W−

3 −W−
4 )
∣∣∣
x2=0

⎞⎠ ,

(6.10)

one has

‖PV̇+

∣∣
x2=0

‖L2
λ(R

2)+‖PV̇−
∣∣
x2=0

‖L2
λ(R

2)

≤C
(
‖(W+

3 ,W+
4 )
∣∣
x2=0

‖L2
λ(R

2)+‖(W−
3 ,W−

4 )
∣∣
x2=0

‖L2
λ(R

2)

)
. (6.11)

We need to estimate the trace of the vector
(
W̃+

3 ,W̃+
4 ,W̃−

3 ,W̃−
4

)
for a solution W̃ to the

(weighted) linearized equations (6.6) and (6.8). From now on, for the sake of simplicity,
we drop the tildes and write W±,Ψ±,ψ instead of W̃±,Ψ̃±,ψ̃. We note that Ψ±,ψ are
coupled with W± only through the boundary conditions.
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6.2. Paralinearization. We now apply paralinearization (see Bony [5] and
Meyer [42]) to reduce the problem to the case of constant coefficients. The Fourier dual
variables of (t,x1) are (δ,η). Denote τ =λ+ iδ the Laplace dual variable of t. We recall
that the positive constants K0,κ0 were introduced in (5.2) and (5.5).

6.2.1. The boundary conditions. Define the following symbols:

b0 :=

⎛⎜⎝0

1

0

⎞⎟⎠ , (6.12)

b1(t,x1) :=

⎛⎜⎝ vr−vl

vr

0

⎞⎟⎠(t,x1,0), (6.13)

b(t,x1,δ,η,λ) := τb0+ iηb1(t,x1).

Because b0 is constant, we have

λb0ψ+b0∂tψ=Tλ
τb0

ψ.

The main paralinearization estimate yields

∥∥b1∂1ψ−Tλ
iηb1

ψ
∥∥
1,λ

≤C‖b1‖W 2,∞(R2)‖ψ‖0≤
C(K0)

λ
‖ψ‖1,λ.

We now easily obtain

∥∥λb0ψ+b0∂tψ+b1∂1ψ−Tλ
bψ
∥∥
1,λ

≤ C(K0)

λ
‖ψ‖1,λ. (6.14)

We also have the following inequalities:∥∥∥b�ψ−Tλ
b�
ψ
∥∥∥
1,λ

≤C‖b�‖W 1,∞(R2)‖ψ‖0≤ C(K0,κ0)
λ ‖ψ‖1,λ,∥∥∥Tλ

b�
ψ
∥∥∥
1,λ

≤C‖b�‖L∞(R2)‖ψ‖1,λ≤C(K0,κ0)‖ψ‖1,λ,
(6.15)

where b� is defined by (5.16). Finally, we define the symbol

M :=M(t,x1,0)

(
Tr 0

0 Tl

)
(t,x1,0), (6.16)

with the matrices M,Tr,Tl defined in (5.15) and (6.2). Recall that the state around
which the equations are linearized satisfies

Φr(t,x1,0)=Φl(t,x1,0)=ϕ(t,x1), (nr+mr)(t,x1,0)=(nl+ml)(t,x1,0).

A direct calculation yields

M=(Mr Ml)(t,x1,0)

(
Tr 0

0 Tl

)
(t,x1,0)=(Mr Ml)(t,x1,0).
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Here,

(Mr Ml)(t,x1,0)=:M(t,x1)=

⎛⎜⎝0 0 ∂1ϕ −1 0 0 −∂1ϕ 1

0 0 ∂1ϕ −1 0 0 0 0

1 1 0 0 −1 −1 0 0

⎞⎟⎠ ,

Mr =

⎛⎜⎜⎝
0 0 − cr

nr
〈∂1ϕ〉2 cr

nr
〈∂1ϕ〉2

0 0 − cr
nr

〈∂1ϕ〉2 cr
nr

〈∂1ϕ〉2

0 0
(
1+ mr

nr

)
〈∂1ϕ〉

(
1+ mr

nr

)
〈∂1ϕ〉

⎞⎟⎟⎠ ,

and

Ml =

⎛⎜⎜⎝
0 0 cl

nl
〈∂1ϕ〉2 − cl

nl
〈∂1ϕ〉2

0 0 0 0

0 0 −
(
1+ ml

nl

)
〈∂1ϕ〉 −

(
1+ ml

nl

)
〈∂1ϕ〉

⎞⎟⎟⎠ .

Thus, the matrix M only acts on the noncharacteristic part of the vector (W+,W−),
that is, Wnc=

(
W+

3 ,W+
4 ,W−

3 ,W−
4

)
. Since M∈W 2,∞(R2), from (6.14) and (6.15) we

have ∥∥∥MW
∣∣
x2=0

−Tλ
MW

∣∣
x2=0

∥∥∥
1,λ

≤C

λ
‖M‖W 2,∞(R2)‖Wnc

∣∣
x2=0

‖0

≤C(K0)

λ
‖W

∣∣nc
x2=0

‖0. (6.17)

Adding (6.14), (6.15), and (6.17), we obtain the paralinearization estimate for the
boundary operator: ∥∥∥Bλ(W,ψ)−Tλ

bψ−Tλ
MW

∣∣
x2=0

∥∥∥
1,λ

≤C(K0,κ0)

(
‖ψ‖1,λ+

1

λ
‖Wnc

∣∣
x2=0

‖0
)
. (6.18)

Recall that the boundary operator Bλ is defined by (6.8). Observe that, in the paralin-
earized version of Bλ, there is no more zeroth order term in ψ.

6.2.2. The interior equations. We first estimate the paralinearization error
for fixed x2 and then integrate with respect to x2. For instance, we have

|‖λAr
0W

+−Tλ
λAr

0
W+‖|21,λ

=

∫ +∞

0

λ2‖Ar
0W

+(·,x2)−Tλ
Ar

0
W+(·,x2)‖21,λdx2

≤ C

∫ +∞

0

‖Ar
0(·,x2)‖2W 2,∞(R2)‖W+(·,x2)‖20dx2

≤ C‖Ar
0‖2W 2,∞(R2)|‖W+‖|20≤C(K0)|‖W+‖|20.

Similarly, we have the following estimates:

|‖Ar
0∂tW

+−Tλ
iδAr

0
W+‖|1,λ≤C(K0)|‖W+‖|0,

|‖Ar
1∂1W

+−Tλ
iηAr

1
W+‖|1,λ≤C(K0)|‖W+‖|0,

|‖Ar
0C

rW+−Tλ
Ar

0C
rW+‖|1,λ≤C(K0,κ0)|‖W+‖|0.
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Adding these inequalities, we end up with the paralinearization estimate for the interior
equations:

|‖Lλ
rW

+−Tλ
τAr

0+iηAr
1+Ar

0C
rW+−I2∂2W

+‖|1,λ≤C(K0,κ0)|‖W+‖|0, (6.19)

where the linearized operator Lλ
r is defined by (6.6). The estimate for the equation on

W− is identical, that is,

|‖Lλ
l W

−−Tλ
τAl

0+iηAl
1+Al

0C
lW

−−I2∂2W
−‖|1,λ≤C(K0,κ0)|‖W−‖|0. (6.20)

Remark 6.1. In fact, both (6.19) and (6.20) give the error estimates between the dif-
ferential operators Lλ

r,l and the paradifferential operators Tλ
τAr,l

0 +iηAr,l
1 +Ar,l

0 Cr,l +I2∂2.

6.2.3. Elimination of the front. As in the case of constant coefficients we shall
eliminate the front ψ in the (paralinearized) boundary conditions. If the perturbation
is small enough (in the L∞ norm), there exists a constant c>0 (depending only on K0)
such that

|b(t,x1,δ,η,λ)|2≥ c
(
λ2+δ2+η2

)
.

Applying Garding’s inequality, we obtain

R〈Tλ
b∗bψ,ψ〉L2(R2)≥

c

2
‖ψ‖21,λ

for all λ≥λ0 (where λ0 only depends on K0). Using the rules of symbolic calculus,
we have Tλ

b∗b=(Tλ
b )

∗Tλ
b +Rλ, where Rλ is of order ≤1. Consequently, we have the

estimate of the form

‖ψ‖1,λ≤C(K0)‖Tλ
bψ‖0.

For all λ≥λ0, we thus obtain

‖ψ‖1,λ≤C(K0)
(
‖Tλ

bψ+Tλ
MW

∣∣
x2=0

‖0+‖Wnc
∣∣
x2=0

‖
)

≤C(K0)

(
1

λ
‖Tλ

bψ+Tλ
MW

∣∣
x2=0

‖1,λ+‖Wnc
∣∣
x2=0

‖
)
. (6.21)

From (6.18) and (6.21), we deduce for λ≥λ0 large enough (depending on K0) the
estimate:

‖ψ‖1,λ ≤ C(K0)
(

1
λ‖Bλ(W,ψ)‖1,λ+‖Wnc

∣∣
x2=0

‖
)
, (6.22)

which shows that it only remains to prove the estimate of Wnc
∣∣
x2=0

in terms of the

source terms, which will be done by the paralinearized system (6.25).
For all (τ,η) in the hemisphere Σ, we define the matrix

Π(t,x1,δ,η,λ) :=

(
0 0 1

τ+ iηvr(t,x1,0) −iη(vr−vl)(t,x1,0) 0

)
,

and we extend Π as a homogeneous mapping of degree 0 with respect to (τ,η). We have
Πb≡0 (here Πb denotes matrix Π multiplied by b), and Π∈Γ0

2 (here Π plays the same
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role of Q(τ,η) defined in (4.8) for the constant coefficients problem). Here, Γm
k denotes

the set of paradifferential symbols a(x,ξ,γ) :R2×R2× [0,∞)→CN×N of degree m∈R

and regularity k∈N such that a is C∞ with respect to ξ and for all α∈N2 and there
exists a constant Cα satisfying

‖∂α
ξ a(·,ξ,γ)‖Wk,∞(R2)≤Cα(γ

2+ |ξ|2)−
m−|α|

2 .

We thus obtain

‖Tλ
ΠT

λ
bψ‖1,λ=‖Tλ

ΠT
λ
bψ−Tλ

Πbψ‖1,λ≤C(K0)‖ψ‖1,λ,
‖Tλ

ΠMW
∣∣
x2=0

−Tλ
ΠT

λ
MW

∣∣
x2=0

‖1,λ≤C(K0)‖Wnc
∣∣
x2=0

‖0.

Using the decomposition

Tλ
ΠMW

∣∣
x2=0

=
(
Tλ
ΠM−Tλ

ΠT
λ
M

)
W
∣∣
x2=0

+Tλ
Π

(
Tλ
MW

∣∣
x2=0

+Tλ
bψ
)
−Tλ

ΠT
λ
bψ,

we get the following estimate:

‖Tλ
ΠMW

∣∣
x2=0

‖1,λ

≤C(K0)
(
‖Wnc

∣∣
x2=0

‖0+‖Tλ
bψ+Tλ

MW
∣∣
x2=0

‖1,λ+‖ψ‖1,λ
)
. (6.23)

As was done in the case of constant coefficients, we define the symbol β of the reduced
boundary conditions for (t,x1,δ,η,λ)∈R4×R+:

β(t,x1,δ,η,λ) :=
(
βr,βl

)
(t,x1,δ,η,λ), (6.24)

where

βr(t,x1,δ,η,λ) :=

(
0 0

(
1+ mr

nr

)
〈∂1ϕ〉

(
1+ mr

nr

)
〈∂1ϕ〉

0 0 −(τ+ iηvl)
cr
nr

〈∂1ϕ〉2 (τ+ iηvl)
cr
nr

〈∂1ϕ〉2

)

and

βl(t,x1,δ,η,λ) :=

(
0 0 −

(
1+ ml

nl

)
〈∂1ϕ〉 −

(
1+ ml

nl

)
〈∂1ϕ〉

0 0 (τ+ iηvr)
cl
nl
〈∂1ϕ〉2 −(τ+ iηvr)

cl
nl
〈∂1ϕ〉2

)
.

Notice that vr(t,x1,0) 	=−vl(t,x1,0) here.
We now focus on the paralinearized system with reduced boundary conditions:⎧⎪⎨⎪⎩

Tλ
τAr

0+iηAr
1+Ar

0C
rW++I2∂2W

+= F̃+, x2>0,

Tλ
τAl

0+iηAl
1+Al

0C
lW

−+I2∂2W
−= F̃−, x2>0,

Tλ
βW

∣∣
x2=0

= G̃, x2=0.

(6.25)

Notice that the new boundary condition (6.25)3 does not involve the front ψ since the
map Π(t,x1,δ,η,λ) is introduced. In addition, Tλ

τAr
0+iηAr

1+Ar
0C

r =Tλ
τAr

0+iηAr
1
+Tλ

Ar
0C

r .

6.3. Estimate for the paralinearized problem and microlocalization. In
order to prove Theorem 5.1, we first need to establish an estimate for the paralinearized
problem (6.25). More precisely, we have the following proposition.
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Proposition 6.2. There exists a constant C0, depending only on K0 and κ0, such that
the solution W to (6.25) satisfies

‖Wnc
∣∣
x2=0

‖20≤C0

(
1

λ3
‖|F̃‖|21,λ+

1

λ2
‖|G̃‖|21,λ

)
(6.26)

for all λ≥λ0 (where λ0 only depends on K0 and κ0).

Recall that the boundary matrix β in (6.25) only acts on
Wnc=

(
W+

3 ,W+
4 ,W−

3 ,W−
4

)
and not on the full vector W . Namely, the first and fourth

columns of β vanish (see (6.24)). Consequently, we can write the boundary conditions
as the form:

Tλ
βncWnc

∣∣
x2=0

= G̃,

that is, we consider βnc as a matrix with only four columns and two rows:

βnc(t,x1,δ,η,λ) :=
(
βnc,r,βnc,l

)
(t,x1,δ,η,λ), (6.27)

where

βnc,r(t,x1,δ,η,λ) :=

((
1+ mr

nr

)
〈∂1ϕ〉

(
1+ mr

nr

)
〈∂1ϕ〉

−(τ+ iηvl)
cr
nr

〈∂1ϕ〉2 (τ+ iηvl)
cr
nr

〈∂1ϕ〉2

)
and

βnc,l(t,x1,δ,η,λ) :=

(
−
(
1+ ml

nl

)
〈∂1ϕ〉 −

(
1+ ml

nl

)
〈∂1ϕ〉

(τ+ iηvr)
cl
nl
〈∂1ϕ〉2 −(τ+ iηvr)

cl
nl
〈∂1ϕ〉2

)
.

We now prove Proposition 6.2, that is, estimate (6.26) for the paralinearized system
(6.25) using microlocalization. The proof is similar to Subsection 4.2.

6.3.1. Reduction to an ODE system. To derive the desired energy estimate
for (6.25), we follow the general strategy of the constant coefficient case. First, it is
easy to get from the definition of Ar

0 and Ar
1 in (6.5)

τAr
0+ iηAr

1=

⎛⎜⎜⎜⎜⎝
τ+ ivrη 0 0 0

0 τ+ ivrη iη
c2r

nr〈∂1Φr〉 iη
c2r

nr〈∂1Φr〉
0 iη nr

2cr
∂2Φr

〈∂1Φr〉2 (τAr
0+ iηAr

1)33 0

0 −iη nr

2cr
∂2Φr

〈∂1Φr〉2 0 (τAr
0+ iηAr

1)44

⎞⎟⎟⎟⎟⎠ ,

(6.28)
where

(τAr
0+ iηAr

1)33=−(τAr
0+ iηAr

1)44

=
(τ+ ivrη)∂2Φr

cr〈∂1Φr〉
− ∂2Φr∂1Φriη

〈∂1Φr〉2
.

Thus, we can obtain the two equations in (6.25) which do not involve any x2 derivative
since I2=diag(0,0,1,1):

Tλ
τ+ivrη

W+
2 +Tλ

iη
c2r

nr〈∂1Φr〉
W+

3 +Tλ

iη
c2r

nr〈∂1Φr〉
W+

4 +order 0 terms=F+
2 ,

Tλ
τ+ivlη

W−
2 +Tλ

iη
c2
l

nl〈∂1Φl〉
W−

3 +Tλ

iη
c2
l

nl〈∂1Φl〉
W−

4 +order 0 terms=F−
2 .

(6.29)



768 RECTILINEAR VORTEX SHEETS OF TWO-PHASE FLOW

By formally inverting the operators Tλ
τ+ivr,lη

and substituting the corresponding

value of W±
2 into the four remaining equations (the third, fourth, seventh, and eighth

ones), one obtains a system of the form{
∂2W

nc=Tλ
A
Wnc+Tλ

E
Wnc+source term, x2>0,

Tλ
βncWnc

∣∣
x2=0

=source term, x2=0,
(6.30)

where A is of degree 1 and E is of degree zero. Recall that βnc is only a 2×4 matrix
since the boundary matrix β in (6.25) only acts on Wnc and Tλ

A
Wnc and Tλ

E
Wnc are

“the first-order term” and “the zeroth-order term,” respectively. The matrices A and E

are block diagonal since the equations for W+ and W− are decoupled. When inverting
the operators Tλ

τ+ivr,lη
, we need to consider the zeroth order terms in order to avoid

introducing W±
2 in the final equation for Wnc. Let us now consider the first-order term

and find explicitly the symbol A. Take the following 2×2 matrix:

Ar :=

(
Ar

1 −Ar
3

Ar
3 Ar

2

)
, (6.31)

with

Ar
1 :=− crη

2∂2Φr

2(τ+ivrη)〈∂1Φr〉3 −
(τ+ivrη)∂2Φr

cr〈∂1Φr〉 + ∂2Φr∂1Φriη
〈∂1Φr〉2 ,

Ar
2 :=

crη
2∂2Φr

2(τ+ivrη)〈∂1Φr〉3 +
(τ+ivrη)∂2Φr

cr〈∂1Φr〉 + ∂2Φr∂1Φriη
〈∂1Φr〉2 ,

Ar
3 :=

crη
2∂2Φr

2(τ+ivrη)〈∂1Φr〉3 .

(6.32)

The definition of Al is completely similar by changing the index r by l. The symbol A
mentioned above is just the block diagonal matrix

A :=

(
Ar 0

0 Al

)
. (6.33)

6.3.2. Microlocal analysis in the neighborhood of the pole and bicharac-
teristic curve. The set of poles of A is denoted by Yp, that is,

Yp :={(t,x1,x2,τ,η)∈ Ω̄×Ξ such that τ =−iηvr,l(t,x1,x2)}.

As in the constant coefficient case, we denote by E−(t,x1,x2,τ,η) the stable subspace
of A(t,x1,x2,τ,η). This stable subspace is well defined when Rτ >0, and admits a
continuous extension up to any (τ,η) such that τ ∈ iR and (τ,η) 	=(0,0).

The stable eigenvalues ω−
r,l of A(t,x1,x2,τ,η) fulfill the dispersion relations(

ω−
r,l

)2
−
(
A

r,l
1 +A

r,l
2

)
ω−
r,l+A

r,l
1 A

r,l
2 +

(
A

r,l
3

)2
=0.

That is,(
ω−
r,l

)2
−2iη

∂1Φr,l∂2Φr,l

〈∂1Φr,l〉2
ω−
r,l−

(∂2Φr,l)
2

〈∂1Φr,l〉2

(
η2+

1

c2r,l
(τ+ ivr,lη)

2

)
=0. (6.34)

Introduce

ω̃−
r,l=

〈∂1Φr,l〉2
∂2Φr,l

(
ω−
r,l− iη

∂1Φr,l∂2Φr,l

〈∂1Φr,l〉2
)
, c̃r,l=

cr,l
〈∂1Φr,l〉

. (6.35)
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Then, we get (
ω̃−
r,l

)2
=

1

c̃2r,l
(τ+ ivr,lη)

2+η2 (6.36)

and

ω−
r,lI2×2−Ar,l=

∂2Φr,l

〈∂1Φr,l〉2

⎛⎝ ω̃−
r,l+

c̃r,lη
2

2(τ+ivr,lη)
+

τ+ivr,lη
c̃r,l

c̃r,lη
2

2(τ+ivr,lη)

− c̃r,lη
2

2(τ+ivr,lη)
ω̃−
r,l−

c̃r,lη
2

2(τ+ivr,lη)
− τ+ivr,lη

c̃r,l

⎞⎠ .

(6.37)
The corresponding stable eigenspace are spanned by

Er(τ,η)=

(
(τ+ ivrη)ω̃

−
r −

{
1

c̃r
(τ+ ivrη)

2+
c̃r
2
η2
}
,
c̃r
2
η2,0,0

)T

, (6.38)

El(τ,η)=

(
0,0,

c̃l
2
η2,(τ+ ivlη)ω̃

−
l −

{
1

c̃l
(τ+ ivlη)

2+
c̃l
2
η2
})T

.

The Lopatinskii determinant of problem (6.30) is defined by

det(βnc(Er El))

=〈∂1ϕ〉4det
(
L11 L12

L21 L22

)
=〈∂1ϕ〉4

mr+nr

nrnl
c̃lc̃r(ω̃

−
r + ω̃−

l )(ω̃
−
l ω̃

−
r −η2)(c̃rω̃

−
r −τ− ivrη)(c̃lω̃

−
l −τ− ivlη). (6.39)

where

L11=

(
1+

mr

nr

)(
(τ+ ivrη)ω̃r−

1

c̃r
(τ+ ivrη)

2

)
,

L12=−
(
1+

ml

nl

)(
(τ+ ivlη)ω̃l−

1

c̃l
(τ+ ivlη)

2

)
,

L21=
c̃r
nr

(τ+ ivlη)

(
−(τ+ ivrη)ω̃r+

1

c̃r
(τ+ ivrη)

2+ c̃rη
2

)
,

L22=− c̃l
nl

(τ+ ivrη)

(
(τ+ ivlη)ω̃l−(

1

c̃l
(τ+ ivlη)

2+ c̃lη
2)

)
.

We used the fact mr+nr=ml+nl in the last equality.
Formally, the Lopatinskii determinant has the same zero points as those in [44].

Thus, we can directly use their corresponding results, which are summarized as follows.

Proposition 6.3 (see [44], Proposition 4.4). Assume that

v̄r− v̄l>
(
c̄2/3r + c̄

2/3
l

)3/2
(6.40)

and the perturbations U̇r,l,∇Φr,l have compact support and satisfy (5.2) with sufficiently
small K0. Then, there exist two functions X2,X3∈W 2,∞(R2) such that, for every
(t,x1)∈R2, the following inequalities hold true at (t,x1,0):

cr
〈∂1ϕ〉

− vr−vl
2

<
crX2

〈∂1ϕ〉
<

crX3

〈∂1ϕ〉
<− cl

〈∂1ϕ〉
+

vr−vl
2

.
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For any fixed (t,x1)∈R2, Δ(t,x1,τ,η) vanishes at a point (τ,η)∈Σ if and only if one of
the following three identities is satisfied:

(i) τ =η
[
q(t,x1)

(vr−vl)(t,x1,0)
2 − (vr+vl)(t,x1,0)

2

]
, η 	=0,

(ii) τ =η
[
cr(t,x1,0)X2(t,x1)

〈∂1ϕ(t,x1)〉 − (vr+vl)(t,x1,0)
2

]
, η 	=0,

(iii) τ =η
[
cr(t,x1,0)X3(t,x1)

〈∂1ϕ(t,x1)〉 − (vr+vl)(t,x1,0)
2

]
, η 	=0,

where q(t,x1)=
(cr−cl)(t,x1,0)
(cr+cl)(t,x1,0)

. For every (t,x1)∈R2, the three sets of boundary frequen-

cies (τ,η) defined by (i)–(iii) are mutually disjoint, as long as

(vr−vl)(t,x1,0)

2
	= (cr+cl)(t,x1,0)

2
. (6.41)

Thus, Δ(t,x1, ·, ·) has only simple roots.
If, on the contrary, the point (t,x1)∈R2 satisfies

(vr−vl)(t,x1,0)

2
=

(cr+cl)(t,x1,0)

2
, (6.42)

then one of the following two identities hold at (t,x1,0).

q
vr−vl

2
=

crX2

〈∂1ϕ〉
, or q

vr−vl
2

=
clX3

〈∂1ϕ〉
. (6.43)

This means that, for (t,x1) satisfying (6.42), any point (τ0,η0) defined by condition (i) is
a quadratic root of Δ(t,x1,τ,η)=0; namely there exist a neighborhood V0⊂Σ of (τ0,η0)
and a C∞ function h(t,x1, ·, ·) such that

Δ(t,x1,τ,η)=(τ−τ0)
2h(t,x1,τ,η), ∀(τ,η)∈V0 (6.44)

and h(t,x1,τ0,η0) 	=0.

We define the critical set of space frequency variables as follows:

Y0
c :={(t,x1,τ,η)∈∂Ω×Ξ}

such that

τ ∈
{
iη

(
q
vr−vl

2
− vr+vl

2

)
(t,x1,0), iη

(
crX2,3

〈∂1ϕ〉
− vr+vl

2

)
(t,x1,0)

}
.

If the perturbation (U̇r,l,∇Φr,l) is sufficiently small in the L∞ norm, one has

Y0
c ∩(Yp∩{x2=0})=∅.

There also exists a neighborhood V0
c of Y0

c in R2×Ξ and a mapping Q0 on V0
c with

values in the set of 4×4 invertible matrices and homogeneous of degree 0 with respect
to (τ,η) such that

Q0(z)A(z)Q0(z)
−1=diag

(
ω−
r (z),ω

+
r (z),ω

−
l (z),ω

+
l (z)

)
(6.45)

for any z=(t,x1,τ,η)∈V0
c , where ω−

r is the eigenvalue with negative real part of Ar

when λ>0.
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The propagation of singularity on the boundary ∂Ω is formally the same as the
isentropic Euler case [11, Proposition 5.4]. Hence, the singularities propagate along the
solutions of the Hamiltonian system associated with h=�ω−

r,l.

Proposition 6.4 (see [44]). Assume that the perturbation (U̇r,l,∇Φr,l) is small
in W 2,∞(Ω) and has compact support. Then, one can choose the neighborhood V0

c such
that there exists an open set Vc⊂ Ω̄×Ξ satisfying the following properties:

• Vc∩{x2=0}=V0
c and Vc∩Yp=∅.

• The symbol A defined above is diagonalizable on the set Vc. That is, (6.45)
holds on all Vc, and not only on the trace V0

c .

• For all z=(t,x1,x2,τ,η)∈Vc, one has

ω−
r (z) 	=ω+

r (z) and ω−
l (z) 	=ω+

l (z).

• The solutions of the Hamiltonian system of ODEs

dt

dx2
=

∂h

∂δ
(t,x1,x2,τ,η),

dx1

dx2
=

∂h

∂η
(t,x1,x2,τ,η),

dδ

dx2
=−∂h

∂t
(t,x1,x2,τ,η),

dη

dx2
=− ∂h

∂x1
(t,x1,x2,τ,η), (t,x1,δ,η,λ)|x2=0∈V0

c

are defined for all x2≥0 and remain in Vc both for h=�ω−
r and h=�ω−

l .
These solutions are referred to as bicharacteristic curves.

From Proposition 6.3, we know that Y0
c and { vr−vl

2 = cr+cl
2 } are disjoint, and we will

construct a weight that vanishes on the bicharacteristic curves and satisfies a transport
equation. Define σ on R2×Σ by setting

σ(z) :=

[
δ−η

(
q
vr−vl

2
− vr+vl

2

)
(t,x1,0)

]
·
[
δ−η

(
c̃rX2−

vr+vl
2

)
(t,x1,0)

]
·
[
δ−η

(
c̃rX3−

vr+vl
2

)
(t,x1,0)

]
for z=(t,x1,τ,η)∈R2×Σ. Then, we extend σ(z) to the whole set R2×Ξ as a homoge-
neous mapping of degree one with respect to (τ,η). Hence, σ(z)∈Γ1

2. Let σr,l be the
solutions to the linear transport equations

∂2σr+{σr,−�ω−
r }=0, ∂2σl+{σl,−�ω−

l }=0,

σr|x2=0=σl|x2=0=σ,

where

{a,b}=−∂a

∂δ

∂b

∂t
− ∂a

∂η

∂b

∂x1
+

∂a

∂t

∂b

∂δ
+

∂a

∂x1

∂b

∂η

is the Poisson bracket of a and b. Shrinking V0
c and Vc if necessary, we may assume

that σr and σl are defined in the whole open set Vc. Note that σr vanishes on the
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bicharacteristic curve originating from Y0
c and associated with the symbol �ω−

r . Far
from these bicharacteristic curves, both |σr| and |σl| are bounded from below. To extend
σr,l and Q0 to the whole frequency space, we introduce the cut-off functions χc and χp

satisfying the following properties:

• χc and χp are smooth, that is, C∞ and homogeneous of degree 0 with respect
to (τ,η). Thus, they belong to the class Γ0

k for any integer k.

• The support of χc is contained in the open set Vc and χc≡1 in a neighborhood
of the bicharacteristic curves originating from Y0

c .

• The support of χp does not intersect the support of χc, that is, χcχp≡0. More-
over, χp≡1 in a neighborhood of the poles Yp.

6.3.3. Derivation of the desired estimate. The rest of the derivation of
estimate (6.26) is almost the same as the problem dealt with in [11, Section 5.5–5.8].
We shall follow the argument in [11] and only include the basic estimates for different
components of Wnc. We refer the reader to [11] for the detailed proof. For the estimate
of Tλ

χc
Wnc, we have

λ
(
Z−
2

2
1,λ+Z+

2
2
1,λ+Tλ

σl
Z−
1

2
0+Tλ

σl
Z+
1

2
0

)
+λ3

(
Z−
1

2
0+λ2Z+

1
2
0

)
+
(
‖Z−

2 (0)‖21,λ+‖Z+
2 (0)‖21,λ

)
+
(
‖Tλ

σZ
−
1 (0)‖20+‖T γ

σZ
+
1 (0)‖20

)
+λ2

(
‖Z−

1 (0)‖20+‖Z+
1 (0)‖20

)
≤C

λ

(
F 2
1,λ+W 2

0 +Tλ
r W

2
1,λ

)
+‖G‖1,λ+‖Wnc|x2=0‖20, (6.46)

where the vectors Z± are defined as

Z+ :=Tχ1(Qr
0+Qr

−1)
Tλ
χc

(
W+

3

W+
4

)
, Z− :=Tχ1(Ql

0+Ql
−1)

Tλ
χc

(
W−

3

W−
4

)
and χ1 is a cut-off function satisfying χ1χc≡χc. The matrices Qr,l

0 are invertible in a
neighborhood of the support of χ1, and r is a symbol in the class Γ1

0 that vanishes in a
neighborhood of the bicharacteristic curves. For the estimate of Tλ

χu
Wnc, we have

λTλ
χu

W 2
1,λ+‖Tλ

χu
Wnc(0)‖21,λ

≤C
(
‖G‖21,λ+‖Wnc(0)‖20

)
+

C

λ

(
F 2
1,λ+W 2

0 +Tλ
r W

2
1,λ

)
. (6.47)

Finally, the estimate of Tλ
χp
Wnc says

λTλ
χp
W 2

1,λ+‖Tλ
χp
Wnc(0)‖21,λ

≤C(‖G‖21,λ+‖Wnc(0)‖20)+
C

λ
(F 2

1,λ+W 2
0 +Tλ

r W
2
1,λ). (6.48)

Combining (6.46), (6.47), and (6.48), then using the technique developed in [11] to get
rid of the term Tλ

r W1,λ, we finished the proof of (6.26).

6.4. The proof of Theorem 5.1. With the above estimates in hand, the proof
of Theorem 5.1 is straightforward as follows. We first write

Tλ
τAr

0+iηAr
1+Ar

0C
rW++I2∂2W

+=Lλ
rW

++error,

Tλ
τAl

0+iηAl
1+Al

0C
lW

−+I2∂2W
−=Lλ

l W
−+error,

(6.49)
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and estimate the error terms with the help of (6.19) and (6.20). We use (6.19), (6.20),
(6.26), and (6.49) to derive

‖Wnc
∣∣
x2=0

‖20≤C0

(
1

λ3
‖|F̃‖|21,λ+

1

λ2
‖|G̃‖|21,λ

)
≤C0

(
1

λ3
‖|LλW‖|21,λ+

1

λ3
‖|error‖|21,λ+

1

λ2
‖|G̃‖|21,λ

)
≤C ′

0

(
1

λ3
‖|LλW‖|21,λ+

1

λ3
‖|W‖|20+

1

λ2
‖|G̃

∣∣
x2=0

‖|21,λ
)

≤C ′
0

(
1

λ3
‖|LλW‖|21,λ+

1

λ3
‖|W‖|20+

1

λ2
‖|Tλ

βW
∣∣
x2=0

‖|21,λ
)
, (6.50)

where, as usual, LλW =(Lλ
rW

+,Lλ
l W

−). Using (6.21) and (6.23), and choosing λ large
enough, we obtain the following inequality:

‖Wnc
∣∣
x2=0

‖20+‖ψ‖21,λ

≤C ′′
0

(
1

λ3
‖|LλW‖|21,λ+

1

λ3
‖|W‖|20+

1

λ2
‖Tλ

bψ+Tλ
MW

∣∣
x2=0

‖21,λ
)
. (6.51)

Finally, we use (6.18) to derive (choosing λ large enough)

‖Wnc
∣∣
x2=0

‖20+‖ψ‖21,λ
≤ C ′′′

0

(
1
λ3 ‖|LλW‖|21,λ+ 1

λ3 ‖|W‖|20+ 1
λ2 ‖Bλ(W,ψ)‖21,λ

)
.

Then, one uses the definitions

e−λtV̇+=TrW
+, e−λtV̇−=TlW

−,

e−λtAr
0T

−1
r L′

rV̇+=Lλ
rW

+, e−λtAl
0T

−1
l L′

lV̇−=Lλ
l W

−,

as well as (5.17) and Lemma 5.2 to derive (5.12). One can easily check that the constants
C ′

0,C
′′
0 and so on involved in the energy estimates only depend on K0 and κ0. This

completes the proof of Theorem 5.1.

Appendix A. Derivation of Equations (6.5). This appendix gives the details
of derivation of the equations (6.5). Multiplying the left side of the first equation in
(5.11) by Ar

0T
−1
r , we obtain

Ar
0T

−1
r

{
L(Ur,Φr)V̇++C(Ur,∇Ur,∇Φr)V̇+

}
= Ar

0T
−1
r ∂tV̇++Ar

0T
−1
r A1(Ur)∂1V̇+

+Ar
0T

−1
r

1
∂2Φr

[A2(Ur)−∂tΦrI4×4−∂1ΦrA1(Ur)]∂2V̇++Ar
0T

−1
r C(Ur,∇Ur,∇Φr)V̇+

=
4∑

i=1

Ri,

where

R1=Ar
0∂t(T

−1
r V̇+)−Ar

0(∂tT
−1
r )V̇+=Ar

0∂tW
+−Ar

0(∂tT
−1
r )TrW

+

=Ar
0∂tW

+−Ar
0[∂t(T

−1
r Tr)]W

++Ar
0T

−1
r (∂tTr)W

+

=Ar
0∂tW

++Ar
0T

−1
r (∂tTr)W

+,
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R2=[Ar
0T

−1
r A1(Ur)Tr][T

−1
r ∂1V̇+]=Ar

1[T
−1
r ∂1V̇+]

=Ar
1[∂1(T

−1
r V̇+)]−Ar

1[(∂1T
−1
r )V̇+]

=Ar
1∂1W

+−Ar
1[(∂1T

−1
r )Tr][T

−1
r V̇+]

=Ar
1∂1W

+−Ar
1[∂1(T

−1
r Tr)]W

++Ar
1T

−1
r (∂1Tr)W

+

=Ar
1∂1W

++Ar
1T

−1
r (∂1Tr)W

+

=Ar
1∂1W

++(Ar
0T

−1
r A1Tr)T

−1
r (∂1Tr)W

+

=Ar
1∂1W

++Ar
0T

−1
r A1(∂1Tr)W

+,

R3=Ar
0T

−1
r Ā2∂2V̇+=(Ar

0T
−1
r Ā2Tr)(T

−1
r ∂2V̇+)= I2(T

−1
r ∂2V̇+)

= I2[∂2(T
−1
r V̇+)]−I2[(∂2T

−1
r )V̇+]

= I2∂2W
+−I2[(∂2T

−1
r )Tr][T

−1
r V̇+]

= I2∂2W
+−I2[∂2(T

−1
r Tr)]W

++I2T
−1
r (∂2Tr)W

+

= I2∂2W
++I2T

−1
r (∂2Tr)W

+

= I2∂2W
++(Ar

0T
−1
r Ā2Tr)T

−1
r (∂2Tr)W

+

= I2∂2W
++Ar

0T
−1
r Ā2(∂2Tr)W

+,

and

R4=(Ar
0T

−1
r CTr)(T

−1
r V̇+)=(Ar

0T
−1
r CTr)W

+.

Thus,

4∑
i=1

Ri=Ar
0∂tW

++Ar
0T

−1
r (∂tTr)W

++Ar
1∂1W

++Ar
0T

−1
r A1(∂1Tr)W

+

+I2∂2W
++Ar

0T
−1
r Ā2(∂2Tr)W

++(Ar
0T

−1
r CTr)W

+

=Ar
0∂tW

++Ar
1∂1W

++I2∂2W
+

+Ar
0

[
T−1
r (∂tTr)+T−1

r A1(∂1Tr)+T−1
r Ā2(∂2Tr)+T−1

r CTr

]
W+,

which yields the first equation in (6.5) on W+. The second equation in (6.5) on W−

can be obtained similarly.
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