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DERIVATION OF THE BURGERS’ EQUATION FROM
THE GAS DYNAMICS∗

LIAN YANG† AND XUEKE PU‡

Abstract. We establish in this paper that under long-wavelength small-amplitude approximation,
the solution to the gas dynamics system converges globally in time to the solution of the Burgers’
equation for well prepared initial data.
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1. Introduction
In this paper, we study the long-wavelength, small amplitude limit of the gas dy-

namics system to the Burgers’ equation. Consider the following gas dynamics system

{
nt+(nu)x=0

(nu)t+(nu2+p)x=μuxx,
(1.1)

where n(t,x), u(t,x) are the density and velocity of the gas at time t≥0 and position x∈
R, respectively. The pressure p=p(n)=Anγ for γ≥1 is the ratio of specific heats. When
γ=1, it describes an isothermal process, while when γ >1, it describes an adiabatic
process. The constant μ≥0 is the viscosity coefficient. The system (1.1) is also known
as the compressible Navier–Stokes equations.

The Burgers’ equation [1]

ut+uux=μuxx

is one of the simplest yet most important nonlinear PDEs, and has received a great deal
of attention due to the fact that it models a number of physically important phenomena
such as shock waves and acoustic transmissions. Due to its important features, it is also
frequently used as a test equation in numerical schemes.

It was shown formally that under the weak nonlinearity and long-wavelength ap-
proximation, the Burgers’ equation can be derived under the Gardner–Morikawa trans-
formation (see [6]). However, to the best knowledge of the authors there are no rigorous
mathematical justifications. In this paper, we justify this limit with mathematical rigor.

In the next section, we give the formal derivation and the main results (Theorem
2.2). In the third section, we prove Theorem 2.2 by uniform energy estimates for the
remainder terms in Sobolev spaces. An appendix is given to derive the key remainder
equation (2.15).

2. Formal expansion and the main result
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2.1. Formal expansion. To study the dynamics of the small but finite ampli-
tude of the gas dynamics, we transform the independent space-time coordinates to the
stretching coordinate (Gardner–Morikawa transformation, see [6])

ξ=ε(x−c0t), τ =ε2t, (2.1)

where ε denotes the amplitude of the initial perturbation and is assumed to be small
compared with unity. The parameter c0 is the wave phase parameter to be determined
to balance the time variation of a state variable and dissipative effects. Using (2.1) in
(1.1), we obtain (after denoting (ξ,τ) as (x,t)){

εnt−c0nx+(nu)x=0, (2.2a)

εut−c0ux+uux+Aγnγ−2nx=ε
μ

n
uxx, (2.2b)

where p=Anγ is explicitly used.
We consider the formal expansion as series in powers of ε about an equilibrium state

(n,u)=(1,0)

n=1+εn(1)+ε2n(2)+ · · ·
u=εu(1)+ε2u(2)+ · · · .

(2.3)

To determine the coefficients of (n(i),u(i)), we plug the formal expansion (2.3) into the
rescaled equation (2.2). Now, we equate the coefficients on both sides of the resulting
equation in front of different powers of the parameter ε.

At the first order, we have

(S0)

{
−c0n

(1)
x +u(1)

x =0, (2.4a)

Aγn(1)
x −c0u

(1)
x =0. (2.4b)

To get a nontrivial solution of n(1) and u(1), we require the determinant of the matrix
of coefficients to vanish to obtain

c20=Aγ, (2.5)

which will be assumed throughout this paper. There are two solutions of (2.5), i.e.,
c0=±√

Aγ, representing the right-going and the left-going waves respectively. From
(2.4), we assume

u(1)= c0n
(1), (2.6)

which make (2.4) valid with n(1) to be determined.
At the second order, we have

(S1)

⎧⎪⎨
⎪⎩

∂tn
(1)−c0∂xn

(2)+∂xu
(2)+∂x(n

(1)u(1))=0; (2.7a)

∂tu
(1)−c0∂xu

(2)+u(1)∂xu
(1)

+Aγ∂xn
(2)+Aγ(γ−2)n(1)∂xn

(1)=μ∂xxu
(1). (2.7b)

Multiplying (2.7a) with c0 and adding the resultant to (2.7b), after rearranging we
obtain the Burgers’ equation

∂tn
(1)+

Aγ(γ+1)

2c0
n(1)∂xn

(1)=
μ

2
∂xxn

(1), (2.8)
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where we have used (2.6) explicitly. Here we have used (2.5) explicitly to cancel the
coefficients in front of n(2) and u(2). From (2.7a), we can write

u(2)= c0n
(2)+r(1)= c0n

(2)−
∫ x

∂tn
(1)+∂x(n

(1)u(1))dξ, (2.9)

where r(1) depends only on (n(1),u(1)). Proceeding as above, we have the coefficients of
ε3:

(S2)

⎧⎪⎪⎨
⎪⎪⎩

∂tn
(2)−c0∂xn

(3)+∂xu
(3)+∂x(n

(1)u(2))+∂x(n
(2)u(1))=0; (2.10a)

∂tu
(2)−c0∂xu

(3)+Aγ∂xn
(3)+∂x(u

(1)u(2))+Aγ(γ−2)∂x(n
(1)n(2))

+
Aγ(γ−2)(γ−3)

2
(n(1))2∂xn

(1)=μ∂xxu
(2)−μn(1)∂xxu

(1). (2.10b)

Multiplying (2.10a) with c0, and adding the resultant to (2.10b), we obtain a linearized
Burgers’ equation for n(2):

∂tn
(2)+

Aγ(γ+1)

2c0
∂x(n

(1)n(2))=
μ

2
∂xxn

(1)+G(1), (2.11)

where the nonhomogeneous term G(1) involves only n(1) and u(1). Since explicit form
of G(1) plays no role in this paper, we don’t work it out explicitly.

Inductively, we can formally derive the equation to any order of ε, we are interested
in. Let k≥2 be an integer. From the system (Sk−1) for the coefficients of εk, we obtain

u(k)= c0n
(k)+r(k−1), (2.12)

where rk−1 depends only on (n(j),u(j)) for 1≤ j≤k−1. Then in the evolution system
(Sk) for the coefficients of εk+1, by the same procedure that leads to (2.8), we obtain
the linearized Burgers’ equation for n(k):

∂tn
(k)+

Aγ(γ+1)

2c0
∂x

(
n(1)n(k)

)
=

μ

2
∂xxn

(k)+G(k−1), (2.13)

where G(k−1) only depends on (n(j),u(j)) for 1≤ j≤k−1, which are “known” from the
(k−1)th step. If we define G(0)=0, the Burgers’ equation (2.8) can be unified in the
form of (2.13). Note that the system (2.12) and (2.13) is self contained, which does not
depend on (n(j),u(j)) for j≤k+1.

For the solvability of (n(k),u(k)), we recall the following classical result for the
existence of sufficiently smooth solutions in a small time interval.

Proposition 2.1. Let μ≥0 and s≥2. Then for any (n
(i)
0 ,u

(i)
0 )∈Hs satisfying

(2.12) at time t=0, there exists a maximal time of existence T >0 such that the initial
value problem (2.13) has a unique solution (n(i)(t),u(i)(t)) on 0≤ t<T with initial data

(n
(i)
0 ,n

(i)
0 ), such that u∈L∞([0,T ′];Hs(R)) for every T ′<T .

The proof can be modified from classical results of Kato [3].

2.2. Remainder equation. However, to show that as ε→0, n(1) converges to
a solution of the Burgers’ equation, we must make the above procedure rigorous. We
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need to cut off and consider the remainder terms. To do so, we consider the following
expansions with remainder terms (nε

R,u
ε
R):{

n =1+εn(1)+ε2n(2)+ε3n(3)+ε2nε
R

u =εu(1)+ε2u(2)+ε3u(3)+ε2uε
R,

(2.14)

where (nε
R,u

ε
R) are the remainder terms that may depend on ε. Here (n(i),u(i)) for

1≤ i≤3 satisfy (2.6), (2.8), (2.9), (2.11), (2.12), and (2.13) with k=3, whose existence
and regularity is guaranteed by Proposition 2.1. To further simplify the notations in
what follows, we denote

ñ=n(1)+εn(2)+ε2n(3), ũ=u(1)+εu(2)+ε2u(3).

Plugging the expansion (2.14) into the gas dynamics equation (1.1), and then sub-
tracting ε2×(2.7) and ε3×(2.10), we have the remainder equation for (nε

R,u
ε
R):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tn
ε
R− c0

ε
∂xn

ε
R+

1

ε
∂xu

ε
R+∂x [(ñ+εnε

R)u
ε
R]+∂x [ũu

ε
R]+εR1=0, (2.15a)

∂tu
ε
R− c0

ε
∂xu

ε
R+

Aγ

ε
∂xn

ε
R+(ũ+εuε

R)∂xu
ε
R+a21(εn

ε
R)∂xn

ε
R (2.15b)

+a22(εn
ε
R)n

ε
R+∂xũu

ε
R=

μ

n
∂xxu

ε
R−εμbnε

R−εR2 (2.15c)

where a21,a22 depend on n(1), n(2), n(3), their spatial derivatives and εnε
R, and

b=
1

n
(∂xxu

(1)+ε∂xxu
(2)−ε∂xxu

(1)n(1)),

R1=∂tn
(3)+∂x(

∑
1≤i,j≤3;i+j≥4

εi+j−4n(i)u(j)),

R2=∂tu
(3)+

∑
1≤i,j≤3;i+j≥4

εi+j−4u(i)∂xu
(j)+a23(n

(1),n(2),n(3))+a24(εn
ε
R).

(2.16)

The derivation of such a remainder system is detailed in Appendix A.
This system is an hyperbolic system with singular perturbation, whose uniform (in

ε) estimate is not straightforward. To rigorously justify the limit from gas dynamics to
the Burgers’ equation, we need uniform in ε estimate for this system.

2.3. Main results. We state the main result of this paper in the following

Theorem 2.2. Let μ≥0, γ≥1 and s≥2 in Proposition 2.1 be sufficiently large.
Let (n(i),u(i))∈Hs be a solution on [0,T ) constructed in Proposition 2.1 for (2.13)

with initial data (n
(i)
0 ,u

(i)
0 )∈Hs satisfying (2.12). Assume (nε

R0,u
ε
R0)∈H2 and has the

expansion

n0=1+ε1n
(1)
0 +ε2n

(2)
0 +ε3n

(3)
0 +ε2nε

R0,

u0=ε1u
(1)
0 +ε2u

(2)
0 +ε3u

(3)
0 +ε2uε

R0,

then for any T ′<T , there exists εT ′ >0 such that if 0<ε<εT ′ , the solution of the
system (2.2) with initial data (n0,u0) can be expressed as

n=1+ε1n(1)+ε2n(2)+ε3n(3)+ε2nε
R,

u=ε1u(1)+ε2u(2)+ε3u(3)+ε2uε
R,
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such that

sup
t∈[0,T ′]

‖nε
R(t)‖2H2 +‖uε

R(t)‖2H2 ≤CT ′

for all 0<ε<εT ′ .

We see that if by some chance T =∞, then T ′ can be made arbitrary large.
This theorem applies when μ≥0. In the long-wavelength limit, when μ>0, the

Burgers’ equation governs the dynamics, while when μ=0, the inviscid Burgers’ equa-
tion does. The result also works in the spatial periodic case x∈T, which is not developed
here. To prove Theorem (2.2), we have to prove that (nε

R,u
ε
R) is bounded in H2 uni-

formly in ε. This is given in Section 2 by delicate energy estimate. In Appendix A, we
give a detailed derivation of the remainder system (2.15).

We also remark that under a different Gardner–Morikawa transformation

ξ=ε(x−c0t), τ =ε3t,

KdV equation can be derived [6] and justified by the method in this paper. See also
the derivation of the KdV equation and the two dimensional Kadomtsev–Petviashvili
II (KP-II) equation and the three dimensional Zakharov–Kuznetsov equation in higher
dimensions from the Euler–Poisson systems in [2, 5] and the references therein.

3. Uniform estimates
Since the viscous term μ∂xxu

ε
R plays a beneficial role in the estimate, we only

consider the inviscid case of μ=0 in the following. The case μ>0 is easier and can
be proved in the same way. Furthermore, we renormalize the equation by setting the
coefficients Aγ= c0=1. Then the remainder equations can be written in the following
form (μ=0)⎧⎪⎨

⎪⎩
∂tn

ε
R− 1−u

ε
∂xn

ε
R+

n

ε
∂xu

ε
R+∂xñu

ε
R+∂xũn

ε
R+εR1=0, (3.1a)

∂tu
ε
R− 1−u

ε
∂xu

ε
R+

1+εa21(εn
ε
R)

ε
∂xn

ε
R+a22(εn

ε
R)n

ε
R+∂xũu

ε
R=−εR2, (3.1b)

where R2, a21, and a22 are defined in (2.16). The system is hyperbolic and symmetriz-
able [4]. The local existence of smooth solutions is then standard from Kato’s theory [3],
which is stated in the following

Proposition 3.1. Let s> d
2 +1, ε>0 be fixed, and the initial data (nε

R0,n
ε
R0)∈Hs.

Then there exists a maximal existence time Tε and a solution (nε
R,n

ε
R) of (3.1) such

that

(nε
R,n

ε
R)∈C([0,T ];Hs)∩C1([0,T ];Hs−1),

for every T <Tε.
We want to prove that Tε≥T as ε→0 for some T >0. To slightly simplify the

presentation, we let C̃ be constant, which will be fixed later, much larger than the
bound of the initial data (nε

R,u
ε
R)|t=0 in H2, i.e.,

‖(nε
R,u

ε
R)(t)‖H2 ≤ C̃, ∀t∈ [0,Tε]. (3.2)

As a consequence of the expansion (2.14), there exists ε0>0 such that

1/2<n<3/2, |u|≤1/2, ∀ε<ε0. (3.3)
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Furthermore, from Lemma A.1 in Appendix A, when ε<ε0, we have

‖a21‖H2 ,‖a22‖H2 ≤C1(εC̃).

Lemma 3.2. Let α=0,1 and (nε
R,u

ε
R) be a solution to the equation (3.1), then there

exist some constant C such that

‖ε∂tnε
R‖2Hα ≤C(1+‖nε

R‖2Hα+1 +‖uε
R‖2Hα+1).

Proof. We first consider α=0. Multiplying (3.1a) by ε and taking L2-norm yield

‖ε∂tnε
R‖2≤‖(1−u)∂xn

ε
R‖2+‖n∂xuε

R‖2+ε2‖∂xũnε
R‖2+ε2‖∂xñuε

R‖2+ε4‖R1‖2
≤C(‖∂xnε

R‖2+‖∂xuε
R‖2)+Cε2(1+‖nε

R‖2+‖uε
R‖2)

≤C(1+‖nε
R‖2H1 +‖uε

R‖2H1), (3.4)

thanks to (3.3).
When α=1, we take ∂x of (3.1a), and then take L2-norm to yield

‖ε∂txnε
R‖2≤C(1+‖nε

R‖2H2 +‖uε
R‖2H2). (3.5)

Adding (3.4) and (3.5) together, we complete the proof.

Proposition 3.3. Let σ=0,1,2 and (nε
R,u

ε
R) be a solution to the equation (3.1).

Then the following inequality holds

1

2

d

dt

∫
|∂σ

xu
ε
R|2dx+

1

2

d

dt

∫
1+εa21(εn

ε
R)

n
|∂σ

xn
ε
R|2dx

≤C1(1+ε‖nε
R‖H2 +ε‖uε

R‖H2)(‖nε
R‖2Hσ +‖uε

R‖2Hσ ). (3.6)

Proof. Taking ∂σ
x of (3.1b), and then taking inner product of the resultant and

∂σ
xu

ε
R, we have by integrating by parts

1

2

d

dt

∫
|∂σ

xu
ε
R|2=

∫
∂σ
x (

1−u

ε
∂xu

ε
R)∂

σ
xu

ε
R−

∫
∂σ
x (

1+εa21(εn
ε
R)

ε
∂xn

ε
R)∂

σ
xu

ε
R

−
∫

∂σ
x (a22(εn

ε
R)n

ε
R)∂

σ
xu

ε
R−

∫
∂σ
x (∂xũu

ε
R)∂

σ
xu

ε
R−ε

∫
∂σ
xR2∂

σ
xu

ε
R. (3.7)

We denote the first to the fifth terms on the LHS as Ii, for i=1, . . . ,5.
For the term I1, we have by integrating by parts

I1=

∫
1

ε
∂σ+1
x uε

R∂
σ
xu

ε
R−

∫
u

ε
∂σ+1
x uε

R∂
σ
xu

ε
R−

∑
1≤β≤σ

Cβ
σ

∫
∂β
x (ũ+εuε

R)∂
σ−β+1
x uε

R∂
σ
xu

ε
R

=
1

2

∫
∂x(ũ+εuε

R)|∂σ
xu

ε
R|2−

∑
1≤β≤σ

Cβ
σ

∫
∂β
x (ũ+εuε

R)∂
σ−β+1
x uε

R∂
σ
xu

ε
R

≤C‖uε
R‖2Hσ +Cε‖∂xuε

R‖L∞‖uε
R‖2Hσ .

When σ=0, there is no such summation term.
For the second term I2, we have by chain rule

I2=−
∫

1+εa21(εn
ε
R)

ε
∂σ+1
x nε

R∂
σ
xu

ε
R−

∑
1≤β≤σ

∫
∂β
xa21(εn

ε
R)∂

σ−β+1
x nε

R∂
σ
xu

ε
R
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= :B+I21. (3.8)

When σ=0, I21=0. When β=1, by Sobolev embedding and Lemma A.1, we have

I21≤C‖∂xa21‖L∞‖∂σ
xn

ε
R‖‖∂σ

xu
ε
R‖

≤C1(ε‖nε
R‖H2)(‖nε

R‖2Hσ +‖uε
R‖2Hσ ).

Similarly, when β=2 and σ=2, we have

I21≤C‖∂xxa21‖L2‖∂xnε
R‖L∞‖∂σ

xu
ε
R‖

≤C1(ε‖nε
R‖H2)(‖nε

R‖2Hσ +‖uε
R‖2Hσ ).

Therefore, we have

I2≤C1(ε‖nε
R‖H2)(‖nε

R‖2Hσ +‖uε
R‖2Hσ )+B, (3.9)

where B defined in (3.8) will be estimated together with J3 in (3.10) in the following.
The estimate of I3 is similar to that of I21 in (3.8). We have

I3≤C(ε‖∂xnε
R‖L∞)‖nε

R‖Hσ‖uε
R‖Hσ .

The term I4 is bounded similarly,

I4≤C‖uε
R‖2Hσ .

For I5, by Lemma A.2, we have

I5≤C(ε∂xn
ε
R‖H2)‖uε

R‖Hσ

≤C(ε∂xn
ε
R‖H2)(1+‖uε

R‖2Hσ ).

To cope with the term B and to get an estimate for nε
R, we resort to the

equation (3.1a). By taking ∂σ
x of (3.1a), and then taking inner product with

n−1(1+εa21(εn
ε
R))∂

σ
xn

ε
R, we obtain

∫
1+εa21(εn

ε
R)

n
∂t∂

σ
xn

ε
R∂

σ
xn

ε
R−

∫
∂σ
x

(
(1−u)

ε
∂xn

ε
R

)
1+εa21(εn

ε
R)

n
∂σ
xn

ε
R

+

∫
1+εa21(εn

ε
R)

ε
∂σ+1
x uε

R∂
σ
xn

ε
R+

∑
1≤β≤σ

∫
∂β
x (

n

ε
)∂σ−β+1

x uε
R

1+εa21(εn
ε
R)

n
∂σ
xn

ε
Rdx

+

∫
1+εa21(εn

ε
R)

n
∂σ
x (∂xñu

ε
R)∂

σ
xn

ε
R+

∫
1+εa21(εn

ε
R)

n
∂σ
x (∂xũn

ε
R)∂

σ
xn

ε
R

+

∫
1+εa21(εn

ε
R)

n
ε∂σ

xR1∂
σ
xn

ε
R=:

7∑
i=1

Ji=0. (3.10)

In the following, we estimate them term by term.
For the term J1, we have by integrating by parts w.r.t. time t

J1=
1

2

d

dt

∫
1+εa21(εn

ε
R)

n
|∂σ

xn
ε
R|2dx−

1

2

∫
∂t(

1+εa21(εn
ε
R)

n
)|∂σ

xn
ε
R|2dx. (3.11)
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By direct computation,

∂t(
1+εa21(εn

ε
R)

n
)=

ε(∂tn
(i)∂n(i)a21+ε∂tn

ε
R∂nε

R
a21)

n

− (1+εa21(εn
ε
R))(ε∂tñ+ε2∂tn

ε
R)

n2
,

which yields from Remark A.1 that

‖∂t(1+εa21(εn
ε
R)

n
)‖L∞ ≤εC(ε‖nε

R‖L∞)(1+ε‖∂tnε
R‖L∞).

By Lemma 3.2, Hölder’s inequality, and the Sobolev embedding theorem, the second
term on the RHS of (3.11) can be bounded by∣∣∣∣12

∫
∂t(

1+εa21(εn
ε
R)

n
)|∂σ

xn
ε
R|2dx

∣∣∣∣≤C(ε‖∂nε
R
‖L∞)(1+ε‖ε∂tnε

R‖L∞)‖nε
R‖2Hσ

≤C1(1+ε‖nε
R‖H2 +ε‖uε

R‖H2)‖nε
R‖2Hσ ,

where C1=C1(ε‖∂nε
R
‖H2). We therefore have from (3.11) that

J1≥1

2

d

dt

∫
1+εa21(εn

ε
R)

n
|∂σ

xn
ε
R|2dx−C1(1+ε‖nε

R‖H2 +ε‖uε
R‖H2)‖nε

R‖2Hσ . (3.12)

For J2 in (3.10), we have

J2=−
∫
(
(1−u)(1+εa21(εn

ε
R))

εn
)∂σ+1

x nε
R∂

σ
xn

ε
R

−
∑

1≤β≤σ

Cβ
σ

∫
∂β
x (

(1−u)

ε
)∂σ−β+1

x nε
R

1+εa21(εn
ε
R)

n
∂σ
xn

ε
R

=:J21+J22. (3.13)

For J21, by integrating by parts, we have

J21=− 1

2

∫
∂x(

(1−u)(1+εa21(εn
ε
R))

εn
)|∂σ

xn
ε
R|2.

By (3.3), there exists ε0 such that when ε<ε0

‖∂x( (1−u)(1+εa21(εn
ε
R))

εn
)‖L∞ ≤C‖∂xa21‖L∞ +ε(‖∂xnε

R‖L∞ +‖∂xuε
R‖L∞).

This yields from Lemma A.1 that

J21≤C(‖∂xa21‖L∞ +ε‖∂xnε
R‖L∞ +ε‖∂xuε

R‖L∞)‖nε
R‖2Hσ

≤C(ε‖∂xnε
R‖L∞)‖nε

R‖2Hσ +Cε‖∂xuε
R‖L∞‖nε

R‖2Hσ . (3.14)

Similarly estimates yield

J22≤C(ε‖∂xnε
R‖L∞)(‖nε

R‖2Hσ +‖uε
R‖2Hσ )+Cε‖∂xuε

R‖L∞(‖nε
R‖2Hσ +‖uε

R‖2Hσ ). (3.15)

Therefore

J2≤C(ε‖∂xnε
R‖L∞)(‖nε

R‖2Hσ +‖uε
R‖2Hσ )+Cε‖∂xuε

R‖L∞(‖nε
R‖2Hσ +‖uε

R‖2Hσ ).
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For the last four terms, we have by Hölder’s inequality and Lemma A.1 that

J4≤C(ε‖nε
R‖H2)(1+ε‖∂xnε

R‖L∞ +ε‖∂xuε
R‖L∞)(‖nε

R‖2Hσ +‖uε
R‖2Hσ )

≤C1(1+ε‖nε
R‖H2 +ε‖uε

R‖H2)(‖nε
R‖2Hσ +‖uε

R‖2Hσ ),

and

J5+J6+J7≤C1(ε‖nε
R‖H2)(1+‖nε

R‖2Hσ +‖uε
R‖2Hσ ),

where C1=C1(ε‖nε
R‖H2).

Adding (3.7) and (3.10) together, and using the above estimates for Ii and Ji, we
have

1

2

d

dt

∫
|∂σ

xu
ε
R|2dx+

1

2

d

dt

∫
1+εa21(εn

ε
R)

n
|∂σ

xn
ε
R|2dx

≤C1(1+ε‖nε
R‖H2 +ε‖uε

R‖H2)(‖nε
R‖2Hσ +‖uε

R‖2Hσ )+B−J3, (3.16)

where B is given in (3.8) and J3 is given in (3.10). Therefore, we need only to estimate
the following term

G :=B−J3=−
∫

1+εa21(εn
ε
R)

ε
∂x(∂

σ
xn

ε
R∂

σ
xu

ε
R). (3.17)

By integration by parts, we have

|G|=
∣∣∣∣
∫

∂xa21(εn
ε
R)(∂

σ
xn

ε
R∂

σ
xu

ε
R)

∣∣∣∣
≤C(ε‖nε

R‖H2)(‖nε
R‖2Hσ +‖uε

R‖2Hσ ),

thanks to Lemma A.1 in Appendix A. Plugging this into (3.16), we get the Grönwall’s
inequality (3.6). Completing the proof.

Now, we prove Theorem 2.2. From Lemma A.1 and (3.2), there exists ε0 such that
εa21(εn

ε
R)|≤1/2 when ε<ε0. This together with (3.3) implies that

1

3
≤ 1+εa21(εn

ε
R)

n
≤3.

From Proposition 3.3, by adding the inequalities (3.6) for σ=0,1,2 together, and then
integrating in time over (0,t), we obtain

‖uε
R(t)‖2H2 +‖nε

R(t)‖2H2 ≤3(‖uε
R(0)‖2H2 +‖nε

R(0)‖2H2)

+

∫ t

0

C0(ε‖nε
R‖H2 ,ε‖uε

R‖H2)(‖nε
R‖2H2 +‖uε

R‖2H2)dτ,

for some C0=C0(ε‖nε
R‖H2 ,ε‖uε

R‖H2) depends on ε‖nε
R‖H2 and ε‖uε

R‖H2 .

Let Ĉ0=sup0≤r,s≤1C0(r,s) and C2>3supε<1(‖nε
R(0)‖H2 +‖uε

R(0)‖H2). Recall that

T is the maximal existence time in Proposition 2.1. Let T ′<T be arbitrary and C̃ be

sufficiently large such that C̃ >C2e
Ĉ0T

′
. Then there exists εT ′ such that εC̃≤1 for all

ε<εT ′ , and we have

sup
0≤t≤T ′

(‖nε
R(t)‖H2 +‖uε

R(t)‖H2)≤C2e
Ĉ0T

′
<C̃.
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It is then standard to obtain uniform estimates independent of ε by the continuity
method. Thus completing the proof of Theorem 2.2.

Appendix A. In this section, we derive the remainder system (2.15) for (nε
R,u

ε
R).

We first collect the equations that (n(k),u(k))(k=1,2,3) satisfy:

(n(1),u(1)) satisfies (2.6) and (2.8)

(n(2),u(2)) satisfies (2.9) and (2.11)

(n(3),u(3)) satisfies (2.12) and (2.13).

We only consider the derivation of the remainder equation of (2.2b). Inserting the
expansion (2.14) into the equation and subtracting (2.7) multiplied by ε2 and (2.10)
multiplied by ε3, we will have the remainder equation (2.15). For clarity, we consider
Taylor expansion of the pressure term Aγnγ−2nx,

P :=Aγ(1+εñ+ε2nε
R)

γ−2(εñ+ε2nε
R)x

=
(
cγ1+cγ2(εñ+ε2nε

R)+cγ3(εñ+ε2nε
R)

2+cγ4(εñ+ε2nε
R)

3
)
(εñ+ε2nε

R)x

+

(∫ 1

0

cγ5(1+θ(εñ+ε2nε
R))

γ−4(1−θ)3(εñ+ε2nε
R)

4dθ

)
(εñ+ε2nε

R)x, (A.1)

where cγ1=Aγ and cγk=Aγ
∏k

i=2(γ− i)/(k−1)! for k=2,3,4,5. In a power series of ε,
we have

P =ε1
(
cγ1∂xn

(1)
)
+ε2 (cγ1∂xn

ε
R+ · · ·)+ε3

(
cγ2n

(1)∂xn
ε
R+cγ2∂xn

(1)nε
R+ · · ·

)
+ε4

(
{cγ2(n(2)+nε

R)+cγ3(n
(1))2}∂xnε

R+{cγ2n(2)+2cγ3(n
(1))2}nε

R+ · · ·
)

+ · · ·+IR(ε
2nε

R)(ε∂xñ)+IR(ε
2nε

R)(ε
2∂xn

ε
R), (A.2)

where IR(ε
2nε

R) denotes the integral term in (A.1). Here, we only write out the terms
involving nε

R and ∂xn
ε
R, since these terms do not cancel each other out. Similarly, we can

write out the other terms in a power series of ε. Adding them together, we get a power
series of ε, whose coefficients depend on ñ, ũ, nε

R, and uε
R. This series is nothing but a

rearrangement of (2.2b). Subtracting (2.7b) multiplied by ε2 and (2.10b) multiplied by
ε3 from the power series of (2.2b), and then dividing the resultant by ε3, we obtain the
remainder

1

ε
{cγ1∂xnε

R}+{cγ2n(1)∂xn
ε
R+cγ2∂xn

(1)nε
R}+ε{(cγ2(n(2)+nε

R)+cγ3(n
(1))2)∂xn

ε
R

+(cγ2n
(2)+cγ3(n

(1))2)nε
R}+ · · ·+ 1

ε3
IR(ε

2nε
R)(ε∂xñ)+

1

ε3
IR(ε

2nε
R)(ε

2∂xn
ε
R),

(A.3)

where ′ · · ·′ only consists of finitely many terms. In particular, ε1
(
cγ1∂xn

(1)
)
in (A.2)

cancels with the term −ε1(c0∂xu
(1)) from −c0∂xu in (2.2b). Rearranging, we obtain the

remainder equation (2.15c) for (2.2b)

∂tu
ε
R−

c0
ε
∂xu

ε
R+

Aγ

ε
∂xn

ε
R+(ũ+εuε

R)∂xu
ε
R+a21(εn

ε
R)∂xn

ε
R

+a22(εn
ε
R)n

ε
R+∂xũu

ε
R=

μ

n
∂xxu

ε
R−εμbnε

R−εR2,
(A.4)
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where a21,a22 depend on n(1), n(2), n(3), their spatial derivatives, and εnε
R; and

b=
1

n
(∂xxu

(1)+ε∂xxu
(2)−ε∂xxu

(1)n(1)),

R2=∂tu
(3)+

∑
1≤i,j≤3;i+j≥4

εi+j−4u(i)∂xu
(j)+a23(n

(1),n(2),n(3))+a24(εn
ε
R).

(A.5)

We also remark that the remainder of 1
ε3 IR(ε

2nε
R)(ε∂xñ) in (A.3) goes into the term

a22(εn
ε
R)n

ε
R and a24(εn

ε
R) in (A.5) and 1

ε3 IR(ε
2nε

R)(ε
2∂xn

ε
R) goes into a21(εn

ε
R)∂xn

ε
R.

After dividing by ε3, the term IR(ε
2nε

R)(ε∂xñ) depends on nε
R in the form of a22(εn

ε
R)n

ε
R

and IR(ε
2nε

R)(ε
2∂xn

ε
R) depends on nε

R in the form of a21(εn
ε
R)n

ε
R. The dependence of

a21 and a22 on εnε
R is important to get global in time estimates of (uε

R,n
ε
R) uniformly

in ε.
The derivation of (2.15a) is simpler and hence omitted.

Remark A.1. From the derivation of the remainder equation (A.4), we know that
for any integers α,β≥0, there exists constant C such that

‖∂α
n(i)∂

β
nε
R
a2r‖L∞ ≤εβC(ε‖nε

R‖L∞).

Lemma A.1. Let n(1),n(2) and n(3) be given and smooth and nε
R∈H2. Then there exist

some ε0>0 and constant C1=C1(ε‖nε
R‖H2) such that

‖a21‖H2 ,‖a22‖H2 ≤C1(ε‖nε
R‖H2),

for every ε<ε0.

Here, the constant C1 also depends on n(i) for i=1,2,3, which is omitted in the
parentheses to stress the dependence on nε

R.

Proof. By the Sobolev embedding theorem, we have ‖nε
R‖L∞ ≤C‖nε

R‖H1 . There-
fore, there exists constant ε0>0 such that ε‖ñ‖L∞ +ε2‖nε

R‖L∞ <1/2, for any 0<ε<ε0.
Hence 1/2<n<3/2 for every 0<ε<ε0.

When α=0, from the definition of a2r (r=1,2), we have

|a2r|≤C(|n(i)|+ |εnε
R|),

where C depends on n(i) and εnε
R for i=1,2,3. By Sobolev embedding, since H1 is an

algebra, we have

‖a2r‖L2 ≤C(‖n(i)‖L∞ ,ε‖nε
R‖L∞)(‖n(i)‖L2 +‖εnε

R‖L2)

≤C(ε‖nε
R‖H1). (A.6)

When α=1, we have

|∂xa2r|≤|∂n(i)a2r||∂xn(i)|+ |∂nε
R
a2r||ε∂xnε

R|,

where ∂n(i)a2r and ∂nε
R
a2r depend on εnε

R. By computing its L2-norm, we have

‖∂xa2r‖L2 ≤‖∂n(i)a2r‖L∞‖∂xn(i)‖L2 +‖∂nε
R
a2r‖L∞‖ε∂xnε

R‖L2

≤C(ε‖nε
R‖H1), (A.7)
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thanks to Remark A.1 and the fact that H1 is an algebra.
When α=2, we have similarly

‖∂xxa2r‖L2 ≤C(ε‖nε
R‖H2). (A.8)

Combining (A.6), (A.7), and (A.8) completes the proof of Lemma A.1.

Lemma A.2. Let n(1)i, n(2) and n(3) be given and smooth with nε
R∈H2. There exist

ε0>0 and constant C1=C1(‖n(i)‖H s̃ ,ε‖nε
R‖H2) such that

‖R2‖Hα ≤C(ε‖nε
R‖H2),

for every ε<ε1.

Proof. The proof is similar to that of Lemma A.1, and hence is omitted.
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