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FUNDAMENTAL DIAGRAMS IN TRAFFIC FLOW:
THE CASE OF HETEROGENEOUS KINETIC MODELS*

GABRIELLA PUPPOT, MATTEO SEMPLICE!, ANDREA TOSINS, AND
GIUSEPPE VISCONTIY

Abstract. Experimental studies on vehicular traffic provide data on quantities like density, flux,
and mean speed of the vehicles. However, the diagrams relating these variables (the fundamental
and speed diagrams) show some peculiarities not yet fully reproduced nor explained by mathematical
models. In this paper, resting on the methods of kinetic theory, we introduce a new traffic model which
takes into account the heterogeneous nature of the flow of vehicles along a road. In more detail, the
model considers traffic as a mixture of two or more populations of vehicles (e.g., cars and trucks) with
different microscopic characteristics, in particular different lengths and/or maximum speeds. With this
approach we gain some insights into the scattering of the data in the regime of congested traffic clearly
shown by actual measurements.
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1. Introduction

Prediction and control of traffic have become important aspects of the modern
world. In fact, the necessity of forecasting the depletion time of a queue or optimizing
traffic flows, thereby reducing the number of accidents, has arisen following the increase
of circulating vehicles.

In the current mathematical literature, three different approaches are mainly used
to model traffic flow phenomena. Microscopic models look at vehicles as single entities
of traffic and predict, using a system of ordinary differential equations, the evolution of
their position and speed (namely, the microscopic states characterizing their dynamics)
regarded as time dependent variables. In these models, the acceleration is prescribed
for each vehicle as a function of time, position, and speed of the various entities of
the system, also taking into account mutual interactions among vehicles. For example,
in the well known follow-the-leader theory, each vehicle is assumed to adapt its speed
to that of the leading vehicle based on their instantaneous relative speed and mutual
distance, see [6, 14, 34, 40]. On the opposite end, macroscopic models provide a large-
scale aggregate point of view in which the focus is not on each single particle of the
system. In this case, the motion of the vehicles along a road is described by means
of partial differential equations inspired by conservation and balance laws from fluid
dynamics, following the seminal works [29, 38]. Improvements and further evolution of
such a basic macroscopic description of traffic have been proposed over the years by
several authors, from the classical mechanically consistent restatement of second order
models [3] to applications to road networks thoroughly developed in the book [13]. More
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refined macroscopic models provide flux-density relations which depend on different
states of the flow (see [26]). In the middle, mesoscopic (or kinetic) models are based on
a statistical mechanics approach, which still provides an aggregate representation of the
traffic flow while linking macroscopic dynamics to pairwise interactions among vehicles
at a smaller microscopic scale. These models will be the main reference background of
the present paper.

Kinetic (mesoscopic) models, first introduced in [32, 35, 36], are based on the Boltz-
mann equation that describes the statistical behavior of a system of particles. From
the kinetic point of view, the system is again seen as the resultant of the evolution of
microscopic particles, with given microscopic position and speed, but its representation
is provided in aggregate terms by a statistical distribution function whose evolution is
described by integro-differential equations. Compared to microscopic models, the ki-
netic approach requires a smaller number of equations and parameters. On the other
hand, unlike macroscopic models, at the mesoscopic scale the evolution equations do
not require an a priori closure law: the flow is provided by the statistical moments of
the kinetic distribution function over the microscopic states. Moreover, kinetic models
are a quite natural way to bridge microscopic causes and macroscopic effects. They
have also been extended to include multilane traffic flow [23, 24], flows on networks [12]
and control problems [20], to name just a few applications. Also, kinetic models have
been proposed to derive macroscopic equations (see [18, 19]).

For an overview of vehicular traffic models at all scales, the interested reader is
referred to the review papers [25, 33] and references therein.

In this paper, we propose a multipopulation kinetic model for traffic flow which
draws inspiration from the ideas presented in [4] for macroscopic models, recast in the
frame of discrete-velocity kinetic models [9, 10]. The main goal of this paper is to study
fundamental diagrams computed from moments of equilibrium solutions of the kinetic
equations. In particular, considering traffic flow as a mixture of populations with differ-
ent microscopic characteristics helps to explain the experimentally observed scattering
of fundamental diagrams in the phase of congested traffic. With this approach, scat-
tered data in the congested phase are naturally predicted by the model by taking into
account the macroscopic variability of the flux and mean speed at equilibrium due to
the heterogeneous composition of the “mixture”. This conclusion is reached without in-
voking further elements of microscopic randomness of the system: for example, in [11],
which inspired the present work, the explanation for the phase transition appeals to
the stochasticity of the drivers’ behavior and to the consequent variability of the mi-
croscopic speeds at equilibrium. Moreover, the models proposed here and in [9, 11]
predict a sharp phase transition between the free and the congested phases of traffic,
with a sharp capacity drop across the phase transition. We wish to stress that we not
propose a model that interpolates experimental data. Rather, we use experimental data
to validate the model we propose.

In the literature, a variety of multiphase models have been introduced in order
to reflect the features of traffic (for a review, see [5] and references therein). The
heterogeneity of traffic flow composition is often described by considering two or more
classes of drivers with different behavioral attributes (see [27, 30]); here the heterogeneity
will be described also by introducing two or more classes of vehicles with different
physical features, as in [4], for macroscopic models.

In more detail, the structure of this paper is as follows: in Section 2, we briefly
review the role of fundamental diagrams in vehicular traffic practice. Next, in Section 3
we describe the discrete-velocity kinetic model developed in [9, 10] by focusing on its
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Fic. 2.1. Fundamental diagrams obtained from experimental data. Left: measurements provided
by the Minnesota Department of Transportation in 2003, reproduced by kind permission from Seibold
et al. [39]. Right: experimental data collected in one week in Viale del Muro Torto, Roma, Italy,
from [33].

spatially homogeneous version, which represents the mathematical counterpart of the
experimental setting in which traffic equilibria and fundamental diagrams are measured.
In Section 4 we first review the multi-population macroscopic model [4] and then intro-
duce our new two-population kinetic model, proving in particular its consistency with
the original single-population model and describing how to compute equilibrium solu-
tions. Then, in Section 5, we present and analyze the resulting fundamental diagrams,
and we end in Section 6 with comments and perspectives.

2. Fundamental diagrams

In this section we present a brief description of some basic tools for the analysis of
traffic problems, namely the diagrams which relate the macroscopic flux and mean speed
to the vehicle density in homogeneous steady conditions. The qualitative structure of
such diagrams is defined by the properties of different regimes, or phases, of traffic as
outlined in the following.

Flux-density diagrams. Also called fundamental diagrams, they report the flow rate
of vehicles as a function of the traffic density p, which can be defined as the
number of vehicles per kilometer (Figure 2.1, right), or as a function of the
normalized density (Figure 2.1, left). At low traffic densities, the so-called
free phase in which interactions among vehicles are rare, the flux grows nearly
linearly with the density until a critical density value is reached, at which
the flux takes its maximum value (road capacity). Beyond such a critical value,
traffic switches to the congested phase, which in [21] is defined as complementary
to the free phase. The two phases may be separated by a capacity drop [40],
across which the flux drops suddenly from its maximum value at free flow to a
lower maximum in the congested phase. In this regime, the flux decreases as
the density increases. In fact, interactions among vehicles are more and more
frequent due to the higher packing, which causes faster vehicles to be hampered
by slower ones. The formation of local slowdowns (phantom traffic jams) is first
observed. Additional increments of the density cause a steep reduction of the
flux until the so-called traffic jam is reached, in which the density reaches its
maximum value ppax, called jam density, and the flux is zero.

Speed-density diagrams. They give the mean speed of the vehicles as a function of
the local macroscopic density of traffic. In free flow conditions, vehicles travel
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at the maximum allowed speed, which depends on the environmental conditions
(e.g., quality of the road, weather conditions, infrastructure), on the mechanical
characteristics of the vehicles, and on the imposed speed limits. This speed,
called the free-flow speed, can be reached when there is a large distance between
vehicles on the road. Conversely, in congested flow conditions, vehicles travel
closer to one another at a reduced speed until the density reaches the jam
density, at which vehicles stop and have zero speed.

These diagrams play an important role in the prediction of the capacity of a road
and in the control of the flow of vehicles.

Examples of fundamental diagrams provided by experimental measurements are
shown in Figure 2.1. They clearly exhibit the phase transition between free and con-
gested flow: below the critical density, the flux values distribute approximately on a line
with positive slope, and so the flux can be regarded as a single-valued increasing func-
tion of the density with low, though nonzero, dispersion; conversely, above the critical
density, the flux decreases and experimental data exhibit a large scattering in the flux-
density plane. In the congested phase, therefore, the flux can hardly be approximated
by a single-valued function of the density (see [1]). Moreover, in the plot on the right,
a capacity drop can also be seen.

Kinetic models of traffic flow give fundamental diagrams as stationary asymptotic
solutions starting from a statistical description of microscopic interactions among vehi-
cles. In addition, some kinetic models have proved to be able to catch the transition
from the free to the congested phase of traffic without building the phase transition into
the model (see [9, 10]).

However, standard kinetic models do not account for the scattered data typical
of the congested regime. For instance, in [19], multivalued fundamental diagrams are
obtained supposing that the flow aims to stabilize around a multivalued heuristic equilib-
rium velocity which is not computed by the model itself. Otherwise, this characteristic
of the flow is explained considering the statistical variability of driver behaviors, who
may individually decide to drive at a different speed from the one resulting from the
local density (see [11]).

In this work, we propose instead a different interpretation of the scattering of the
flux in congested traffic based on the consideration that the flow along a road is naturally
heterogeneous. That is, it is composed by different classes of vehicles with different
physical and kinematic characteristics (e.g. size, maximum speed, et cetera). For this,
we will extend the aforementioned kinetic models in order to deal with a mixture of
two populations of vehicles, say cars and trucks, each described by its own statistical
distribution function. The core of the model will be the statistical description of the
microscopic interactions among the vehicles of the same population and of different
populations, which will take into account the microscopic differences of the various
types of vehicles. For the sake of simplicity, the model will be described for the case
of a mixture of two populations, but it can be easily generalized to the case of several
populations (see [4]).

3. A discrete kinetic model

In this section we briefly review the kinetic traffic model recently introduced in [10],
which will be the basis for our multipopulation extension. In the kinetic approach, we
focus on a statistical description of the microscopic states of the vehicles. Therefore,
the evolution of their position = and speed v is described by means of a distribution
function f= f(t,x,v) such that f(¢,z,v)dxzdv is the number of vehicles which at time
t are located between = and x+dx with a speed between v and v+ dv.
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The model proposed in [10] is discrete both in space and in speed. Since in this
work we focus on the space homogeneous case, we describe only the domain of the
microscopic speeds, say V C [0, +00). That is,

V={v1,v2,...,05,...,Un},

where the v;’s are speed classes such that 0<v; <wv;11, Vji=1,...,n—1, and v;=
0, v = Vinax, Vmax being the maximum speed of a vehicle. For instance, V,.x can be
chosen as a speed limit imposed by any of the following: safety regulations, the state of
the road, or the mechanical characteristics of the vehicles.

The microscopic state of a generic vehicle is given by v; €V and the statistical
distribution of vehicles is given by the functions:

fi=71i®):]0, Tmax] = [0,+00), j=1,....,n,

i.e., f;(t) is the number of vehicles which at time ¢ travel with speed v;.

The macroscopic variables useful in the study of traffic (namely, the vehicle density
p, flux ¢, and mean speed u) are obtained from the f;’s as statistical moments with
respect to the speed:

- 3 (0
pO=D_Fi(t)  a®= D vify(H),  ult)="7. (3.1)
= = p(t)

As already mentioned in Section 2, the experimental diagrams are measured under
flow conditions which are as much as possible homogeneous in space and stationary.
Thus, we study the evolution in time of f;(t) due to vehicle interactions towards equi-
librium. The corresponding system of (spatially homogeneous) Boltzmann-type kinetic
equations is:

dfi _

dt
where J; is the jth collisional operator, which describes the microscopic interactions
among vehicles causing the change of v; in time. We use the vector notation f:={ f; }}‘:1.
Conservation of mass requires that

JIE £, j=1,....n, (3.2)

n

> Tl f]=0 Vi,

j=1

which ensures that % =0.
Stationary flow conditions mean that we are actually interested in equilibrium solu-
tions (if any) to system (3.2), that is constant-in-time solutions f¢={fF}7_; such that
J;[fe,f¢]=0for all j=1,...,n. In [11], it is proven that Vp >0, 3!f¢. Hence, equilibrium
solutions are parameterized by specific values of the vehicle density p, which is given
by the initial condition pzzg;l £;(0). This fact allows us to define analytically the

fundamental and speed diagrams of traffic by means of the following mappings:

n
p=fS = perqlp) =Y vif5,  prulp)=
j=1

alp)
o)

In particular, if, for any given p, system (3.2) admits a unique stable equilibrium, then
these mappings are indeed functions of p; otherwise, they define multivalued diagrams.
We stress that, contrary to macroscopic models, the mapping p— ¢(p) is not based on
a priori closure relations but is obtained from the large time evolution of the kinetic
distribution function as a result of microscopic vehicle interactions.
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3.1. Modeling vehicle interactions. The operators J; model the microscopic
interactions among vehicles. Following [10], the formalization of J; is based on assigning
post-interaction speeds in a non-deterministic way consistent with the intrinsic stochas-
ticity of driver behaviors. We report here the construction of the operator J;, which
will be extended later to the two-population case. We consider only binary interactions
among vehicles, and so the collisional operator can be written as

J;[f, f1=G;[f, f]— f;L;[f].

Take:

Gj [fa f] = Z nhkAikfhfk and L, [f] = ankfk
k=1

h,k=1

which are the gain and loss terms, respectively. The coefficients npni,n;: >0 are
the interaction rates, which depend on the relative speed of the interacting pairs:
Nhie =n0(|vg —op|) as in [8]. For simplicity, here we will assume the interaction rates
independent of the pre-interaction speeds, so 75, =1 constant. The term G; counts sta-
tistically the number of interactions which lead, in the unit time, a so-called candidate
vehicle with speed vy, to switch to the test speed v; after an interaction with a field
vehicle with speed vy. Conversely, the term L; describes the loss of vehicles with test
speed v; after interactions with any field vehicle. Thus the single-population model is
written

d . n ) n
g: > nAikahfk—fj;nfk. (3:3)

h,k=1 —

For each j=1,...,n, the matrix A7 :{Aglk}gk:l is called the table of games. It
encodes the discrete probability distribution of gaining the test speed v;:

Aik:Prob(vh%vj\vk,p), hk,j=1,...,n,

which in the present model is further parameterized by the macroscopic density p so as
to account for the influence of the macroscopic traffic conditions (local road congestion)
on the microscopic interactions among vehicles. We stress that this is a further source
of nonlinearity on the right-hand side of (3.2) besides the quadratic one typical of
Boltzmann-like kinetic equations. Since for each fixed j the coefficients A7, constitute
a discrete probability distribution, they must satisfy the following conditions:

0< Al <1
ZA‘;lkzl vh7k7j:13"'an7 vpe[07pmax]7 (34)
j=1

Pmax > 0 being the maximum density of vehicles that can be locally accommodated on
the road in bumper-to-bumper conditions. These conditions ensure mass conservation.
The table of games of model (3.3) is built appealing to the following assumptions:

e A candidate vehicle with speed v, can accelerate by at most one speed class
at a time. However, it can decelerate by an arbitrary number of speed classes
when it interacts with a field vehicle with lower speed v, <wvy,.
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e Let P be the probability that a candidate vehicle gets the maximum possible
test speed resulting from an interaction. We assume that P is a decreasing
function of the density p.

In more detail, we distinguish three types of interactions which determine com-
pletely the table of games.

o [Interaction with a faster field vehicle: In this case, we have v, <vg, or h<

k. Following the interaction, we assume that the candidate vehicle can either
accelerate or maintain its speed. Thus:

1-P ifj=h
Al =P if j=h+1 h<k=2,...,n. (3.5)
0 otherwise

e Interaction with a slower field vehicle: In this case, we have vy, > vy, or h>
k. Following the interaction, we assume that the candidate vehicle can either
maintain its speed, if for instance there is enough room to overtake the leading
field vehicle, or decelerate to v, and queue up. Thus:

1-P ifj=k
Al =4 P if j=h h>k=1,...,n—1. (3.6)
0 otherwise

Notice that In this case, P plays the role of a probability of passing as defined
in [35].

e [nteraction with a field vehicle with the same speed: In this case, we have v, = vy,
or h=k. Following the interaction, we assume that the candidate vehicle can
either maintain its pre-interaction speed, accelerate to overtake the leading
vehicle, or decelerate. Hence, the test speed resulting from this interaction is
either v; =vj41 with probability P, v; =wv,—1 with probability @, or finally
vj =vp with probability 1 —(P+Q). Thus Q is the probability of braking and
it is chosen as an increasing function of p.

We further distinguish three cases. In fact, if the candidate vehicle is in v1 =0
or in v, = Vihax, then it cannot decelerate or accelerate, respectively. Thus,

1-P ifj=1
Al =<¢P if j=2 (3.7a)
0 otherwise
Q if j=h—1
. 1—(P if j=h
4l =L (PHQ) L —2 -1 (3.7b)
if j=h+1
0 otherwise

Q if j=n—1
Al =¢1-Q ifj=n (3.7¢)
0 otherwise
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Fi1G. 3.1. Top row: fundamental diagrams, bottom row: speed diagrams obtained from model (3.3)
with n=2,3,4 speed classes, mazimum density pmae =200 vehicles/km, and uniformly distributed mi-
croscopic speeds in the interval [0,100 km/h].

Note that with these choices the candidate vehicle can accelerate at most by one
speed class, which amounts to bounding the maximum acceleration (see [26]). In con-
trast, the deceleration is not bounded and this reflects the hypothesis that drivers behave
differently in acceleration and deceleration (see the definition of traffic hysteresis in [40]
and references therein). Moreover, in the third case, we use two different probabilities
for the acceleration and deceleration interactions, as proposed also in [18].

The choice of P is crucial in our model. As in most traffic models, we will assume
that accelerating is less likely in high density traffic, so P is chosen as a decreasing
function of p. Conversely, the probability of braking, which is either @ or 1 — P, will be
an increasing function of p. Following the standard Greenshield’s assumption, which is
the simplest choice, we will choose, unless otherwise stated,

Pa<1 P ) Q=(1-a)-L—, o0<a<i, (3.8)
pmax pmax

where the coefficient « € [0, 1] can be thought of as a parameter describing the environ-

mental conditions (for instance road or weather conditions, with «=0,1 standing for

prohibitive and optimal conditions, respectively).

The ansatz (3.8) is chosen by several other authors (see [18, 22, 35]), but other
choices are possible, see below. Furthermore, P and () can also depend on the local
states, i.e. P=P(p,vp,vr). This would make the model richer, but our results show
that the simple choice P=P(p) already accounts for the complexity of macroscopic
data. Thus, unless otherwise stated, in the following, we will take P defined by (3.8)
and a=1.

By computing the evolution towards equilibrium of a given initial condition corre-
sponding to a fixed value of p, we obtain the fundamental and speed diagrams depicted
in Figure 3.1 for three different values of the number n of speed classes. For p < % Pmax
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we recognize the free phase of traffic, in which the flux is an increasing linear function of
the density. Conversely, for p > % Pmax, We find the congested phase, in which the specific
form of the diagrams predicted by the model depends on the number n of speed classes.
Note that for n=3 and n=4 the phenomenon of capacity drop becomes apparent.
The value of p. = % Pmax 18 due to the particular choice of P. If we take instead

el () o

then the critical density p. decreases when v <1 (see Figure 5.5 in Section 5, and the
discussion in Section 4.3). The value p. mentioned in Section 2, at which a bifurcation
of equilibria occurs, is the mathematical counterpart of the physical phase transition.
See also [11].

These results confirm that the kinetic approach is able to catch successfully the
phase transition in traffic flow as a consequence of more elementary microscopic interac-
tion rules. In particular, such a phase transition need not be postulated a priori through
heuristic closures of the flux as a given function of the density. Nevertheless, model (3.3)
still provides a single-valued density-flux relationship. In fact, as shown in [11], for all
P €0, pmax| there exists a unique stable and attractive equilibrium f¢ = { f]e J=1- Conse-
quently, the flux ¢ at equilibrium is uniquely determined by the initial density p, which
does not explain the scattered data of the experimental diagrams.

4. Two-population models

Starting from the kinetic approach discussed in the previous section, we now intro-
duce a model which treats traffic as a mixture of different types of vehicles with different
physical and kinematic characteristics. As far as we know, this is the first attempt to
account for the heterogeneity of traffic in a kinetic model. We will see that the proposed
structure allows us to account for the nature of scattered data in experimental diagrams.
For the sake of simplicity, we will consider a two-population model, which can be easily
extended to more complex mixtures.

Multi-population models of vehicular traffic are already available in the literature
(see [4, 27, 30]). Here we start from [4], in which the authors describe an M-population
generalization of the Lighthill-Whitham-Richards macroscopic traffic models [29, 38],
which we briefly illustrate in the case of M =2 species as an introduction to the forth-
coming kinetic approach.

Let Ny(t,z) be the number of vehicles of the pth population, p=1,2, contained in
a stretch of road of length L (typically L will be 1 kilometer). The model consists of
two coupled one-dimensional conservation laws:

(4.1)
Op2 + 0. Fa(p1, p2)

0rp1+ 0. F1(p1, p2) =0

=0

where p,=pp(t,x)=Np(t,z)/L is the macroscopic density of the pth species,

F,(p1, p2) = ppup(p1, p2) is its flux function, and vy(p1,p2) is the speed-density rela-

tion, which describes the attitude of drivers of the pth population to change speed on

the basis of the local values of p1, ps. The model is based on the idea that the pth

population is characterized by vehicles with length I, >0 and maximum velocity V,, > 0.
Then, one can define the fraction of road occupancy as the dimensionless quantity

s:= p1ly + pala, 0<s<1
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and consider the following extension of the Greenshield speed-density relation:

UD(P17P2):(1_3)VW p:172

With these choices, system (4.1) becomes
O¢p2+0z(p2(1—s5)V2) =0

with fluxes F,(p1,p2)=pp(1—5)V,. We notice that the total flux Fy+Fo=(1—
$)(p1 V14 p2Va) is not a one-to-one function of the fraction of road occupancy s, as
there might exist different pairs (p1, p2) giving rise to the same value of s and neverthe-
less to different total fluxes. This is possible provided [y # s or Vi # V5.

4.1. A two-population kinetic model. In constructing our two-population
kinetic model, we confine ourselves to the spatially homogeneous case in order to focus
on the study of fundamental diagrams. To fix ideas, we identify the two classes of
vehicles as “cars” (C') and “trucks” (7T'), respectively. Roughly speaking, the physical
and kinematic differences between them consist in that cars are shorter and faster
than trucks, therefore (¢ <IT and V¢ >VT. Clearly, other choices are possible (see
Section 5). We adopt a compact notation, which makes use of two indices

pe{C,T}, q=-p

to label various quantities referred to either population of vehicles.

We assume that the discrete spaces of microscopic speeds for cars and trucks (V¢
VT | respectively) are such that VT C VY i.e., the speeds accessible to trucks are a subset
of those accessible to cars. For simplicity, we take V¢ as an equispaced lattice of speeds,
ie.,

VC:{U]‘:’rjc]-VmaX, 1§j§’nc},

¢ is the number of speed classes for cars, then we choose VTz{vj ;L; with

where n
nT <n®. This way the maximum speed of cars is Vi = Viax, whereas the maximum
speed of trucks is V= %Vmax < Vmax-

On the discrete space VP, we introduce the kinetic distribution function

fjp:fjp(t)'[OaTmax}%[Ov'i_oo)a pe{C7T}7 .]:177np7

which gives the statistical distribution of p-vehicles traveling with speed v; at time t.
The macroscopic observable quantities referred to such a class of vehicles are recovered
as (cf. (3.1))

PO=D 1), W=D vflt), uP(t)= : (4.3)
j=1 j=1

We model the evolution of the f;’s by means of the following equation:

a; _

LRI (6], =1, (4.4)
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where the term J7 [P, (fP,£9)] describes the interactions of p-vehicles with all other
vehicles, in which, as a result, the p vehicle assumes the velocity v;. Since we consider
only binary interactions, we can follow an approach frequently used for mixtures of two
gases in kinetic theory (see [7, 15, 17]) which consists in writing the collisional operator
as the sum of two terms:

JPIEP, (£, £9)] = JPP[£P, £°] + JPI[EP, £9),  j=1,...,mP. (4.5)

In particular, the term J;p [fP, fP] accounts for self-interactions within the population p,
i.e., interactions in which p-vehicles also play the role of field vehicles. Conversely, the
term JJP 4[£P, £9] accounts for cross-interactions between the two populations. Following
the same logic underlying the single population model (cf. Section 3.1) each term is
written as a balance of gain and loss contributions:

JPP £, fP] = Z nhkAZIgfhfk fpznjkfk

k=1
j=1,....,nP (4.6)
nP nf
Jpq £r, £a] Zznpq qu,afhfk fpzn]k i
h=1k=1
where APJ, BP9, j=1,...,nP, are the self-interaction and cross-interaction tables of

games, respectively. Since the coefficients of the two tables of games model the transition
probabilities, we require that

0<A§’L,373pq]<1 Vh,k,j,p,q
ZAh/C_ZBPqJ:]‘ thka pP,q

so that for each h, k fixed, the coefficients A%/ and BP$ with j=1,...,p indeed form
discrete probability densities. This ensures that

nP nP nP
LSBT WALLE
j=1 j=1 j=1
whence from (4.4) mass conservation for each species is obtained:
d<s , dpP
— = — = 0.
dt Z J; dt
j=1
Finally, the two-population model resulting from (4.4)—(4.6) can be written as

dfp nP nP ni nP
Z nhkAZIgfhfk +ZZ”Z?<quthfk fp Zn]kfk: +Z77 wli (4.7)
h,k=1 h=1k=1 k=1

for each j=1,...,nP

Here, the interaction rates 0}, ,nhi may depend on the type of interacting vehicles
and on the relative speeds between the vehicles, but, for the sake of simplicity, in the
following, we will assume that they are constant (let n=n}, =nh). In particular, in all
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numerical tests, since we are interested in equilibrium solutions, 1 will be taken equal
to 1 without loss of generality.

REMARK 4.1. In [11], it is proven that, for a single population, if f;(0)>0Vj, then
fj(t) >0 for all times, and the equilibrium distribution f¢ is uniquely determined by the
initial condition. Here, our numerical evidence suggests that the same properties are also
inherited by the multipopulation model when the well balanced scheme of Section 4.2
is used. This fact can also be proven (see [37]).

4.1.1. Modeling self- and cross-interactions. The total number of p-vehicles
present in a stretch of road of length L>0 is NP:LZ;.lzlfJP. Recall that [P >0 is
the characteristic length of p-vehicles. Therefore the total space occupied by pop-
ulation p along the road is NPIP, while the total space occupied by all vehicles is
S:ZpE{C,T} NP[P. Ultimately, the fraction of road occupancy over the length L is

S;:%: 3 %zp: 3 ifj'? P= Y P (4.8)

pe{C, T} pe{C, T} \j=1 pe{C, T}

Let pP .. be the maximum density of vehicles of the pth population, which is obtained
when the road is completely filled and p4=0. Obviously, given [©, [T, the admissible
pairs of densities (p©, pT) €[0, p<..] % [0, pL .. ] are those such that 0<s<1.

Notice that pP,. =7, and therefore s can be rewritten as

= Y L

-
pe{C, T} fmax

P

From this expression, it is clear that s is the natural generalization of the term -
appearing in the probabilities P, @ of the single-population model (cf. Section 3.1).
Therefore, we will assume that, in the two-population model, the transition probabilities
depend on s. In other words, following the same logic of the single-population case, the
elements of the table of games depend on the local state of occupancy of the road,
which, when more than one population is present, is given by s. More precisely, P is
a decreasing function of s, while @ is an increasing function of s. Following (3.8), the

simplest choice is
P=a(l-ys), Q=(1-a)s. (4.9)

Other choices are possible, as in the case of the y-law (3.9) (see §4.3 and Figure 5.5). Tt
would also be possible to consider different reactive behaviors in the two populations.
But the simplest choice, which, as we will see, results in a realistic macroscopic behavior,
is to suppose that both types of vehicles react in the same way to the single parameter
which accounts for the state of occupation of the road, which is s. The result of this
ansatz is that the tables of games differ only in their dimensions.

For the matrices AP/, we use the same construction as in (3.5)—(3.7¢c) because they
express self-interactions within either population of vehicles regardless of the presence
of the other population. The only difference is that they are nP x nP matrices; hence
their dimensions change depending on the specific population.

The tables of games BP%J are instead nP x n% rectangular matrices. Therefore we
need to slightly revise the basic interaction rules of the single-population model in
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order to take into account the different maximum speeds of the two populations in the
description of the speed transitions.

The table B¢+ gives the probability distribution that candidate cars switch to
the test speed v; upon interacting with field trucks. The coeflicients B,?kT’J are con-
structed as in (3.5)—(3.7c), considering however that the case (3.7b) applies only for
h=2,...,n" <n® and that the case (3.7c) applies only if n” =n®. Thus the matrices
BT are n” xnC.

Conversely, the table BT gives the probability distribution that candidate trucks

switch to the test speed v; upon interacting with field cars. If the candidate truck is
faster than the field car, then the coefficient szc 7 is constructed as in (3.6). Instead,
when interactions also involve accelerations, it is necessary to consider that the candidate
truck might not be able to increase its speed if it is already traveling at its maximum
possible velocity v,,r, which, unless n7 =n®, is in general smaller than Vp,... In other
words, in the case (3.5), the option of accelerating may not apply. Hence, for candidate
trucks traveling at speed v,r which encounter faster field cars, i.e., cars traveling at
speed vy with k=nT+1,...,n%  we modify the transition probabilities (3.5) as:
BTC_ {1 if j=n"

k>nt.

T - .
ntk 0 otherwise,

Notice instead that the other cases which include an acceleration, namely (3.7a)
and (3.7b), can be borrowed from the single-population model without modifications.

Interestingly, model (4.7), along with the tables of games discussed above, satisfies
an indifferentiability principle similar to the one valid for kinetic models of gas mixtures
(see [2]): when all the species composing the gas are identical, one recovers the equations
of a single-component gas. In the present case, the indifferentiability principle can be
stated as follows:

THEOREM 4.2 (Indifferentiability principle).  Assume that the two types of vehicles
are identical, i.e., they have the same physical and kinematic characteristics, and fJ'»J
exists Vpe{C,T}, Vj. Then the total distribution function

fi= > fF (4.10)

pe{C, T}

obeys the evolution equations of the single-population model (3.3).

Proof. If the two types of vehicles are the same we have [¢ =17 =:1, p¢ =pT =
1 =1 Pmax- It follows
T A
Pmax Pmax
Since VT C VY, if the maximum speed is the same, then n®=n":=n and VT =

VC. This implies AP =BP%J = AJ_ the latter being the table of games of the single-
population model (cf. Section 3.1). Further, since the two populations are identical, the
interaction rates are the same. So taking these facts into account and summing (4.7)
over p yields:

S = Al X |- X ) .

pe{C,T} h,k=1 pe{C,T} pe{C,T} k=1
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whence, using definition (4.10), we have

d . n ) n
%: > kAl fufi— 1> nikfes

h,k=1 k=1
which concludes the proof. O

REMARK 4.3. In [2], the indifferentiability principle is proved for a model featuring
a single collision operator, which hinders the description of cross-interactions among
particles of different species in the mixture. In more standard models for gas mixtures,
the collision terms are separate, as in our case, but the indifferentiability principle holds
only at equilibrium. Here, instead, Theorem 4.2 holds at all times, moreover without
having to merge the two collision terms into one.

4.2. A well-balanced formulation for computing equilibria. Our numerical

evidence suggests that, for any pair of densities (p©, pT) €0, p$..] ¥ [0, pL.. ], with 0 <

3

s <1, all initial distributions (f(0) >0, f"(0) >0) such that 37, f7(0)=pP, pe {C, T},
converge in time to the same pair of equilibrium distributions (f&¢,f®7), which is
therefore uniquely determined by p¢ and p”. The proof of this and other analytical
properties can be found in [37]. To get the correct equilibrium, however, it is important
to devise a well balanced numerical scheme. As we will see, round-off error can drive
the solution to spurious equilibrium states if the model is not integrated properly.

Under the simplifying assumption =1, in [11], existence and uniqueness of stable
equilibria for the single-population model (3.3) are established and their analytic ex-
pressions are computed. In the general case, it is necessary to integrate numerically in
time the system of ODEs (4.7) until a steady state is reached.

It is worth pointing out that in [11] equilibria are studied by rewriting the loss
term —f; > p_, fx of (3.3) in the analytically equivalent form —pf;. This allows us to
take advantage of the fact that p is indeed a parameter of system (3.3) fixed by the
initial condition, since it is constant in time. However, such a simplification cannot be
carried out when the system is integrated numerically, because of instabilities triggered
by round-off errors.

For the sake of simplicity, we illustrate this phenomenon for the single-population
model (3.3), but our considerations apply to the two-population model (4.7) as well. For
this purpose, we consider the numerical approximation of the following two analytically
equivalent formulations of the single-population model:

US> Apnisi— 1Y 5 (4.11a)
k=1 =1
% = Z AL fufi—ptj, (4.11b)
k=1

where the first, which we will call well-balanced, leads to the computation of the correct
equilibria while the second does not preserve stationary solutions and possibly leads to
a violation of mass conservation. The context is similar to the construction of well-
balanced numerical schemes for balance laws, where particular care is needed in order
to preserve stationary solutions at the discrete level (see [28, 31] and references therein).
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t t

Fia. 4.1. Solution to the spatially homogeneous problem for the single-population model obtained

with (continuous line) and without (dashed line) the well-balanced formulation (4.11a). Left p=0.3,
center p=0.5, right p=0.7.

Let y(t)=>_7_, fj(t). Summing over j both sides of (4.11a) yields (th =0 as ex-
pected, while the same operation performed on (4.11b) gives

dy
pr =(y—p)y-

In this case, y is in general not constant in time and moreover two equilibria exist,
y; =0 and y5 = p, where the first is stable and attractive, whereas the second is unstable.
This means that mass conservation y(t)=p holds for all ¢ if and only if y(0)=p and
y is computed without round-off. Otherwise, any small perturbation will drive y away
from the unstable equilibrium y§=p towards the stable equilibrium y§=0 and mass
conservation will fail.

Figure 4.1 shows the results of the numerical integration of the two equa-
tions (4.11a), (4.11b) in the simple case with n=2 speed classes and a=1, starting
from initial conditions for which the density is p=0.3, p=0.5, or p=0.7 respectively.
As proved in [11], the correct equilibrium distribution is ¢ = (0, p) for p <0.5, but, from
the first two panels of Figure 4.1, it can be seen that only the solution of (4.11a) con-
verges to such an equilibrium, while (4.11b) is attracted toward the state (0,0) which
violates mass conservation. For 0.5 < p <1, the correct equilibrium distribution f¢ con-
sists instead of two strictly positive values, which once again are reached only by the

numerical solution of the well-balanced formulation (4.11a), as it is evident from the
third panel of Figure 4.1.

4.3. Transition from free to congested phase. In this section, we compute
the value of s which determines the transition from the free to the congested phase. For
this purpose, we will compute the equilibria of system (4.7) in the free flow phase. Our
goal is to investigate analytically the main characteristics of the fundamental diagrams
resulting from our model. In particular, using the equilibria of the sum of the two
distribution functions, we compute the value of occupied space, the critical space s., at
which the transition from the free to the congested phase occurs, and we will see how
s. depends on the choice of the probability P.

In order to compute the equilibria, we need the explicit expression of the interaction

matrices. We will write the table of games explicitly for the -law (3.9), with a=1.
Thus we have

P=1-¢7, Q=0.
As a result, the structure of the tables of games is considerably simplified. Nevertheless,
the wealth of information which can be extracted from the model is still surprising. Note
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also the sparsity pattern of the matrices APJ, BP%J which permits a fast evaluation of
the collision terms in (4.4).

Let R:=1—P. We report only the nonzero elements, drawing a circle around the
elements which belong to the jth row and column of each of the interaction matrices,
APJ and BP%J respectively. Inside the circle, we indicate the value of the corresponding
element.

Concerning the self-interaction table of games, we have

&)
APl = (B

: P
® ®-- 0@

while the general expression for 1< j <nP is

p,n® _
) A" - b

©
®
@)
@

aC)

4 P - P
APJ — @@ @

EECE

These matrices are all nP x nP. The cross-interaction matrices B¢7/ between cars (can-
didates) and trucks (fields) have the same structure as the APJ’s, apart from being
rectangular of dimensions n¢ x n”. Differences, however, arise for j >n", for example

i o i -

P
BCTA" _ @ - ® 7 BCT.n"+1 _ P ,
@ @@

! ®) ! |

and in general

BCT = , g>nT 1.

Finally, the cross-interaction matrices BT/ between trucks (candidates) and cars
(fields) are n” xn®. They can in turn be easily derived from the APJ’s, the only
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different case being the one for j=n’"

©

BTC,TLT —

P @ ... P
GENGIOION0)

We will assume that the distribution functions are nonnegative in time provided
f;(O) >0,Vj. Our numerical evidence supports this assumption, but see also [37]. Let
Fy=3,f7 and p=3" pP.

ary _

Summing the equations =0 and df ~+ =0, we have
—R(F1)*+(2R—1)pF;, =0, (4.12)

which is a quadratic equation whose nonnegative roots are:

0
F:
! {(QRR”P it R>

Since the leading coefficient of equation (4.12) is negative, the stable and attractive
equilibrium is always the largest root: thus, for R<1/2, the equilibrium solution is
F1=0. Since the two distribution functions are nonnegative, the equilibrium for each
population is f =0, i.e., no vehicle travels with velocity vy =0.

Henceforth, we take R<1/2, we suppose fr-’_1 =0,p=0C,T, Vj<nT (inductive hy-

P

. df’
pothesis), and we prove that f P=0. By summing again the equations % =0, we obtain

—R(F})*+F; (1—3R)§:Fk+(2R—l)
k=1

+(1-R)F

-Sh|-

and, using the inductive step, this expression reduces to
—R(F. ) +F;(2R—1)p=0,

which again has a stable root at F; =0 for R<1/2, closing the induction. Therefore, if
R <1/2, the stable and attractive equ1hbr1um of each species is f; P=0,Vji=1,. —1.

For j=n", using mass conservation for trucks, we have

ZT fT

Thus, for R<1/2, all trucks travel with the maximum velocity allowed in VT at equi-
librium. Using this result, the remaining equations for f,j=n",...,n% can be written
once fT is known. The equilibrium related to the distribution function of cars traveling
at the velocity v,,r can be found by solving the quadratic equation of fST resulting from

C_
dt 0:

~R(f%) 4+ 5% [2R-1)p° — p"] + RpCp" =0
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Since
Apr=[(2R-1)pC = pT]* +4R2pC p"

is nonnegative V R € [0, 1], all solutions are real. In particular, they clearly have opposite
sign if po and pp are nonzero, and the positive root is

o (R-1)p%—p"+A,r

nt 2R '
This root represents the stable and attractive equilibrium. This result depends implicitly
on the assumption R<1/2 because it exploits the fact that £f&7 =[0,...,0,p7], which
holds if R<1/2. For j=nT+1,...,n° —1, equilibrium distributions of cars result from
the equations

J—1
(1-3R) Y f{+(2R-1)p" —Rp"

k=nT

—R(f9) +f¢ +(1=R)c; =0,

j=nT+1,...,n%—1,
where the coefficient c; is

pra lsznT+1
j—2
C; =
V(- S e
k=nT

Again, the roots of the quadratic equation are real and of opposite sign. The largest
one is

(1—3R) ka +(2R-1)p% —Rp™ + /A,

k=nT .
ij: n SR . j=nT41,....n°% -1,

and it is the stable and attractive equilibrium, where

2
Aj=|(1-3R) > f{+@2R-1)p°—Rp"| +4R(1-R)c;, j=n"+1,...n%~1

is the nonnegative discriminant of the equation for fjc7 j=nT+1,....n% -1
Finally, by mass conservation, the asymptotic distribution related to cars traveling
at the maximum velocity v,,c is

n®—1

- >

k=nT

Note that, if there are no trucks, p” =0, the equilibrium distribution for the cars is
feC = [0,...,0,/)0]. Since now the equilibrium distributions are known, we obtain the
total flux of vehicles in the case R<1/2:

nC‘

q(p%.p" ) =p v + Y v fL (4.13)

j=nT
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Therefore the flux depends not only on R, but also on the composition of the mix-
ture. When the critical value R=1/2 is crossed, fjc, jT, j=1,...,nT —1 are turned on,
meaning that there are vehicles at lower velocities. This leads to a decrease in the flow
values.

We conclude that the maximum flow is found for R=1/2, which means that the
critical space, across which the phase transition occurs, is given by s.=(1/ 2)1/ 7. Thus,
the critical space depends on the particular y-law chosen.

The maximum traffic flow is obtained at R=1/2, for p” =0, and it corresponds
t0 VinaxpSax /27, because then R=1/2 implies that the flow is composed only of cars
traveling at maximum speed. Thus the slope of the fundamental diagram is strongly
dependent on Vi,.x. A more detailed study of equilibria is shown in [37].

5. Fundamental diagrams of the two-population model

In this section, we investigate numerically the fundamental diagrams resulting from
the two-population kinetic model (4.7). As we will see, they do not only capture the
main qualitative features of the experimental diagrams of Figure 2.1, including especially
the data dispersion in the congested flow regime, but they also provide tools to better
understand the behavior of traffic at the macroscopic scale.

In all cases studied, system (4.7) is integrated numerically up to equilibrium, using
the well balanced formulation (4.11a). Once the equilibrium distributions have been
computed, the flux and the mean speed are obtained as moments of the kinetic distri-
butions as indicated in (4.3). Since, in the space homogeneous case, the total density
p:Zp pP is constant in time, it acts as a parameter, fixed by the initial condition,
characterizing the macroscopic quantities.

As a matter of fact, each pP is also constant in time. Therefore the fraction of road
occupancy s defined in (4.8) also remains stationary. It is then possible to study the
flux and mean speed at equilibrium as functions of the density and also as functions of
s. Summarizing, we will study two types of equilibrium diagrams:

o Fluz-density diagrams, that is diagrams relating the total flux at equilibrium
q=>_,9%P :szyilvjf;’p to the total density p=3}_pP, which corresponds
to the total number of vehicles per unit length, irrespective of the size of the
different vehicles. Experimental diagrams are indeed expected to represent such
a relationship.

e Fluz-space diagrams, that is diagrams relating the total flux at equilibrium to
the fraction of road occupancy s.

Except when otherwise stated, all simulations are performed with the parameters
indicated in Table 5.1. Initially we consider n® =3 speed classes for cars and n” =2
speed classes for trucks. Hence the corresponding spaces of microscopic speeds are

VY =1{0,50 km/h, 100 km/h},  VT={0,50 km/h}.

See also Section 4.1.

In Figure 5.1, we show the flux-space diagrams of each class of vehicles obtained
using deterministic initial conditions: for each s€[0,1], we select three prototypical
pairs (p¢, pT) €0, p$,...] X [0, pL. ] such that p©1¢ + pTIT = s, corresponding to different
conditions of road occupancy (see Table 5.2). The resulting fundamental diagrams
are qualitatively similar to those obtained from the single-population model (3.2) with
analogous numbers of speed classes. For instance, the fundamental diagram of the trucks
alone compares well with the one shown in Figure 3.1 with n=2 speed classes.
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Parameter Description Value
«a Environmental parameter 1
¢ Typical length of a car 4 m
T Typical length of a truck 12 m
05 0 Maximum car density 250 vehicles/km
ok Maximum truck density 83.3 vehicles/km
Vinax Maximum speed 100 km/h

TABLE 5.1. Parameters of model (4.7) common to all simulations.

Combination type Marker  Expression p¢  pT
Space occupied mostly by cars Crosses pTiT = % pCl¢ 32[2 5T
Space evenly occupied by cars and trucks Circles  pTiT =p©1¢ 570 3T
Space occupied mostly by trucks Dots pl1T =2p¢1¢ sic AT

TABLE 5.2. Deterministic pairs (p€, pT) used in the fundamental diagrams of figures 5.1-5.3 for
given values of the fraction of road occupancy s.

4000

Cars Trucks

3000

4 [vehicles/h]
M
5
2
2
T
¢ [vehicles/h]

1000

4000

3000

4 [vehicles/h]
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T
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1000

s K

Fic. 5.1. Fluz-space diagrams for the three conditions of road occupancy listed in Table 5.2.

All plots in Figure 5.1 show clearly that there is a critical fraction of occupied
space, beyond which the flow starts to decrease. On the top section of the figure, the
two subplots show that the critical space for each species changes depending on the
mixture we consider. In fact, the space occupied by a class of vehicles is only one
contribution to the fraction of occupied space which determines the transition matrices.
In other words, even the dynamics of a single species depends on the dynamics of the
complete mixture. Consequently, the flow depends on the composition of traffic.

In the bottom section of the figure, the flow of cars and trucks is shown as a function
of the total fraction of occupied space s. We can immediately note that there is a single
value for the critical space which corresponds to s.= % for all three combinations. This
result seems to suggest that the transition from the free to the congested phase does not
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Fia. 5.2. Fluz-space diagrams. Left: deterministic choice of the pairs (pc,pT) according to
Table 5.2. Right: random choice of the pairs (p©, pT) for each s€[0,1].
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Fic. 5.3. Fluz-density diagrams for the three conditions of road occupancy listed in Table 5.2.

depend on how the road is occupied but on how much of it is occupied. This value of s.
depends on the particular choice =1 in the expression of the probability P (see § 4.3).

In Figure 5.2, we compare the fundamental diagrams obtained by using either the
three deterministic pairs (p, p7) given in Table 5.2 or three pairs chosen randomly for
each s. The left of Figure 5.2 shows the total flux as a function of s, again, for the
three combinations of Table 5.2, and on the right for three random combinations, for
each fixed s. Here the role of the critical value s= % is even more apparent. In spite of
the apparent data dispersion, this diagram does not reproduce the experimental data,
because the information brought by the fraction of road occupancy s is too synthetic to
take into account the heterogeneity of traffic.

Motivated by this argument, we now turn to flux-density diagrams, which give
the flux as a function of the number of vehicles per kilometer. Indeed, experimental
fundamental diagrams are expected to result from this type of observation. In this case,
the composition of traffic is taken into account, because the same fraction of occupied
space s € [0,1] can be obtained by different initial densities pc, pr.

Again, for each s€]0,1], the graphs in Figure 5.3 are obtained by taking three
pairs (p©, pT) corresponding to the combinations reported in Table 5.2. The plots on
the left correspond to the flux of each single species, as a function of its corresponding

number density (top) and of the total number of vehicles (bottom). The plot on the
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FIG. 5.4. Fluz-density diagram of the complete mizture obtained with three random pairs (p©, pT)
for each s€[0,1]. Left: n® =3, nT =2; right: n®=4, nT =3. Blue star markers: data for s<0.8;

cyan circle markers: data for s>0.8.
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F1G. 5.5. Fundamental diagrams with n© =4 and nT =3 velocity classes and probability transition
P=1—+/s. The mazimum speeds v,c =100 km/h (on the left) and v,c =130 km/h (on the right)
are considered. The diagrams are obtained with three random pairs (p©, pT) for each s€[0,1]. Blue
star markers: data for s <0.8; cyan circle markers: data for s>0.8.

right gives the total flux as a function of the total number of vehicles. This deterministic
choice allows us to look at the transition from the free to the congested phase. Here,
each combination has a different critical value of the density for the phase transition,
which depends on the ratio of the different species within the mixture. But we know
from Figure 5.2 that each of these critical values of the density will correspond to the
single value s= % Note that the plot on the right begins to resemble the experimental
fundamental diagrams of Figure 2.1.

By sampling three random pairs (p©, pT) for any given s€[0,1], we obtain the
fundamental diagrams illustrated in Figure 5.4, which clearly capture the main char-
acteristics of the experimental diagrams discussed in Section 2. In particular, at low
densities the total flux grows nearly linearly with small dispersion, while at higher den-
sities it decreases with larger dispersion due to the frequent interactions between fast
and slow vehicles. In the graph, cyan circles indicate the total density-total flux pairs
obtained for s € (0.8, 1], whereas blue stars indicate those obtained for s €[0,0.8]. As a
matter of fact, the latter are the most likely to occur in practice, since even in traffic
jams vehicles seldom attain a state of maximum density and complete stop (see Fig-
ure 2.1, where a residual movement always appears). Note also that the plot on the
right exhibits a capacity drop across the critical density. The behavior of the model
with respect to the number of discrete velocities is analyzed in [37].
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In figures 5.1-5.4 the transition probabilities were P=1—s and =0, as given
in (4.9). This choice determines flux-space diagrams in which the transition from the
free to the congested phase occurs at the value s=1/2 for any composition of the
mixture (see figures 5.1, 5.2, and §4.3). This leads to fundamental diagrams in which
the maximum value of the flow is reached when p” =0 and p=p%, /2 =125 vehicles/km,
(see figures 5.3 and 5.4), because in this case the flow is composed only of cars traveling
at their maximum speed. Choosing instead P=1—s7, with v <1, the phase transition

occurs at s, = (%)% and it decreases when - is decreased. In particular, in the left plot of
Figure 5.5, we consider v =1/2 and we observe that the fundamental diagram, obtained
with n® =4 and n” =3, shows a better reproduction of experimental data (see Section 2,
Figure 2.1). In the right plot, instead, we consider vy=1/2 but Vi,.x = 130 km /h, showing
that a greater maximum speed causes an increase in the slope of the diagram in the free
flow phase.

The examples discussed so far suggest that the bulk characteristics of traffic at
equilibrium could be predicted deterministically once the composition of traffic, i.e.,
the pair (p©, p7), is known. This induces us to interpret the scattering of data in the
congested phase as a consequence of the possible heterogeneity of vehicles in traffic for
a given level of road occupancy rather than as an effect of the unpredictability of driver
behaviors.

This affirmation can be articulated more precisely, by considering the two-
populations model in which vehicles differ by only one characteristic. The plot on
the left of Figure 5.6 shows the flux-density diagram when the two classes of vehicles
have the same length, but they differ in their maximum speed: V¢ = {0,50,80,100} and
VT ={0,50,80}. We can interpret this case as thinking that vehicles are now identical,
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but we are considering two different types of driver, according to the maximum speed
they are willing to settle on when the road is free (say, fast and slow drivers). The plot
on the right of Figure 5.6 is obtained by considering vehicle classes which have different
lengths, as given in Table 5.1, but the same microscopic speeds.

By inspecting them, we infer that differences in the speeds (in particular, the max-
imum ones) of the vehicles composing the traffic mixture seem to be responsible for the
small scattering of the data in the free flow phase, whereas differences in the length
determine the larger scattering of the data in the congested flow phase.

The same two cases are further investigated in Figure 5.7 by focusing on the speed
diagram versus the fraction of road occupancy s. In particular, when vehicles have
different microscopic speeds but the same length (the diagram on the left), we deduce
that, in free flow conditions, the slower population is not affected by the faster one,
while fast drivers may have to slow down due to their interactions with slower cars.
On the other hand, both types of drivers are forced to slow down, finally reaching the
same mean speed, as the road becomes congested. Conversely, when vehicles have the
same microscopic speeds but different lengths (the diagram on the right), we discover
that the mean speed is the same for both populations in both traffic regimes, i.e., it is
a one-to-one function of the fraction of occupied space.

These remarks are indeed consistent with the daily experience of driving on high-
ways: in free flow, drivers can choose their speed, and thus they keep different maximum
speeds according to their driving style, while in congested flow they tend to travel all
at the same speed, which steadily decreases as the traffic congestion increases.

Finally, Figure 5.8 shows the fundamental diagram for the traffic mixture modeled
by the two-population macroscopic model [4] summarized in Section 4. It is immediately
noticeable that there is no trace of the sharp phase transition predicted by our kinetic
model and that the scattering of the data is very high also at low densities.

6. Conclusions and perspectives

In this paper, we have introduced a kinetic model for vehicular traffic with a new
structure which accounts for the heterogeneous composition of traffic flow. Our approach
differs from standard kinetic models in that we consider two distribution functions
describing two classes of vehicles with different physical features, in this case the typical
length of a vehicle and its maximum speed.

As in [10], the model is built by assuming a discrete space of microscopic speeds
and by expressing vehicle interactions in terms of transition probabilities among the
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admissible speed classes. We have shown that our two-population model satisfies an
indifferentiability principle, which makes it consistent with the original single-population
model when the particles composing the mixture share the same physical characteristics
(in our case, the vehicle length and maximum speed). This property, enforced in [2], is
not trivial, and several kinetic models for gas mixtures possess it only at equilibrium [15,
17].

We have also used our two-population kinetic model to perform a computational
analysis of the equilibria of the system and to derive in this way the fundamental dia-
grams predicted by the simulated dynamics. Even with a small number of microscopic
speeds, such diagrams feature a structure closely resembling experimental data. In par-
ticular, they are characterized by a marked phase transition: at low vehicle densities
(free flow) the flux increases almost linearly with small standard deviation, while beyond
a critical density the flow decreases taking widely scattered values (congested flow). We
have also computed the critical density at which the transition occurs.

Several authors have dealt with this problem, such as [11, 16] where this phe-
nomenon is explained by invoking the uncertainty of the drivers’ behavior in terms of
standard deviation of the statistical distribution of speeds at equilibrium. However,
such an approach predicts a zero standard deviation in the free phase of traffic and
furthermore interprets the scattered distribution of the data in the congested phase as
a consequence of the variability of the microscopic speeds at equilibrium. In our case,
instead, we not only recover the sharp phase transition, which seems to result naturally
from our kinetic approach, but we also obtain the scattered behavior at a genuinely
macroscopic level as a consequence of the fact that a given road occupancy can be ob-
tained with different compositions of the mixture. In other words, if the flux is given as
a function of the number of vehicles crossing a section of road in a unit time, then our
model indicates that the scattering may be due to the simultaneous presence of different
types of vehicles. On the other hand, in the congested phase, the mean speed of the
vehicles seems to depend only on the degree of congestion of the road.

Finally, we also wish to note that the model is very simple: the complexity of a
real flow is clustered in the characteristics of only two distinct populations, with a very
small number of microscopic velocities. Thus, from a computational point of view, this
construction is not significantly more demanding than a macroscopic model.

As far as the analytical properties of the model are concerned, we refer to the forth-
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coming paper [37], where we prove the well-posedness of the Cauchy problem associated
with (4.7) in the sense that the solution exists, is unique, depends continuously on the
initial data, and moreover remains nonnegative and bounded by the initial mass. Fur-
thermore, we can also prove that equilibria, which define the fundamental diagrams, are
uniquely determined by the initial mass of the two classes of vehicles, and, in some sim-
plified cases, that they can be computed explicitly. Additional study will be dedicated
to the extension of the present model to road networks and multilane highways.
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