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ATTRACTOR OF THE QUANTUM ZAKHAROV SYSTEM ON AN
UNBOUNDED DOMAIN∗

YANFENG GUO† , JINGJUN ZHANG‡ , AND CHUNXIAO GUO§

Abstract. In this paper, we study the attractor of the quantum Zakharov system on unbounded
domain Rd (d=1,2,3). We first prove the existence and uniqueness of the solution by the standard
energy method. Then, by making use of the particular characters of the quantum Zakharov system
and the special decomposition of the solution operator, we obtain the existence of an attractor for this
system.
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1. Introduction
As is well known, one of the most important models in plasma physics is given by the

classical Zakharov system [31] which describes the interaction between high-frequency
Langmuir waves and low-frequency ion-acoustic waves. Recently, when taking quantum
effects into account, a generation of the Zakharov system was derived in [19, 20], which
is named the modified Zakharov system or quantum Zakharov system. Indeed, in recent
years, many physicists have been increasingly interested in the application for a model
taking both collective charged particle effects and quantum phenomena into account.
The subject of the present work is to investigate the dynamical properties of the quan-
tum Zakharov system. For the sake of convenience, we only study the scalar form for
the system in this paper. In a dimensionless form, the quantum Zakharov system can
be written as

iEt+ iγE+ΔE−h2Δ2E=nE+f, (1.1)

ntt+αnt+βn−Δn+h2Δ2n=Δ|E|2+g, (1.2)

where E :R×R
d→C denotes the envelope of the high-frequency electric field, n :R×

R
d→R denotes the plasma density measured from its equilibrium value, and α,β,γ >

0. In (1.1)–(1.2), f and g are the external forces, and the coefficient h measures the
influence of quantum effects. Usually, h is an extremely small quantity, see [19].

It is well known that the classical Zakharov system has been quite extensively
studied theoretically and numerically by many mathematicians and physicists in the
past decades. We refer to references [1, 5, 10, 11, 13, 24, 28, 30] for the local or global
well-posedness results and [4, 7, 9, 14, 23] for the existence of attractors for the classical
and dissipative Zakharov system.

System (1.1)–(1.2) describes the nonlinear interaction between the quantum Lang-
muir and quantum ion-acoustic waves. The quantum Zakharov system plays an espe-
cially important role in intense laser plasmas and in dense astrophysical plasmas, mainly
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due to the importance of the quantum effects in these subjects. For more comprehen-
sive work on the dynamics of (1.1)–(1.2), see [15, 16, 17, 19, 25, 26, 27, 29] and the
references cited therein. Recently, we have obtained the attractor on a bounded domain
in R

d with d=1,2,3 for the quantum Zakharov system in [15]. But the results about
an attractor on an unbounded domain such as Rd in case of d=1,2,3 for the quantum
Zakharov system have not been obtained at present. Since the imbedding theorem is
not compact on an unbounded domain, it is very difficult to obtain the compactness of
an attractor by using the usual techniques. To fill this gap, the subject of this work is
to investigate dynamical behaviors of the quantum Zakharov system in R

d (d=1,2,3)
complemented with initial data

E(0,x)=E0(x),n(0,x)=n0(x),nt(0,x)=n1(x), x∈Rd. (1.3)

The method used here is different from [15].
First, we introduce some standard notation which will be used throughout the

paper. We denote the spaces of complex valued functions and real valued functions
by the same symbols. For s≥0, 1≤p≤∞, we denote Hs,p(Rd) (when p=2, we write
Hs(Rd) for short) or Ḣs(Rd) the usual inhomogeneous or homogeneous Sobolev spaces
of order s. The notation (·, ·) is the inner product in L2(Rd), and ‖·‖p is the norm of
Lp(Rd), especially ‖·‖=‖·‖2. Moreover, we often write

∫
Rd ·dx=

∫ ·dx. Also, as in [16]
we define the product space Vk as

Vk := (H2k−1(Rd)∩Ḣ−1(Rd))×H2k+1(Rd)×H2k+2(Rd), k=0,1,2

and endow Vk with the natural norm, namely,

‖(u1,u2,u3)‖Vk
:=‖u3‖H2k−1∩Ḣ−1 +‖u2‖H2k+1 +‖u1‖H2k+2 .

We note that the imbedding of Hs(Rd) into Hs′(Rd) (s>s′) is not compact. In order to
overcome this difficulty, we apply the methods in [22] and in [6] to show the asymptotic
smoothness of the semigroup S(t) by using the Kuratowskii α-measure of noncompact-
ness. Then applying the theory of [21], we can prove that the quantum Zakharov system
has a maximal attractor in the space V1 which attracts bounded sets in the topology of
V2.,

In this paper, we shall repeatedly use the Gagliardo–Nirenberg inequality [8]

‖Dju‖p≤C‖u‖1−λ
q ‖Dmu‖λr , u∈Lq∩Hm,r(Rd),

where 1
p =

j
d +λ( 1r − m

d )+
1−λ
q ,1≤ q,r≤∞, j is an integer, and 0≤ j≤m, j

m ≤λ≤1. If

m−j− d
r is a nonnegative integer, then the inequality holds for j

m ≤λ<1.
In the next section, by establishing some uniform estimates in the spaces V0,V1,V2,

we show the existence and uniqueness of solution for system (1.1)–(1.2). In order to get
the compactness of the attractor, we study the decomposition of the solution operator
in the third section. In Section 4, the main results of this paper are obtained by the
preparation of former sections. The last section gives some further remarks on the
attractor for this system. Throughout the paper, C is a generic constant, and the value
of C may be different from line to line. In Section 5, some remarks are given for some
work in the future.

2. Existence of bounded absorbing sets
Let m=nt+εn. Then system (1.1)–(1.2) can be written as

iEt+ iγE+ΔE−h2Δ2E=nE+f, (2.1)
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nt+εn=m, (2.2)

mt+(α−ε)m+(β−ε(α−ε))n−Δn+h2Δ2n=Δ|E|2+g, (2.3)

where (β−ε(α−ε))I−Δ is a positive self-adjoint and elliptic operator of order 2 which
is a homeomorphism from Hs(Rd) into Hs−2(Rd), where f and g are known functions
only depending on the spatial variables. The initial data of (m,n,E) is

(m,n,E)(0,x)=(n1+εn0,n0,E0)(x)=(m0,n0,E0)(x), x∈Rd. (2.4)

Lemma 2.1. Let f ∈H4(Rd),g∈H3(Rd). Then

(1) for any (m0,n0,E0)(x)∈V1, the solution of (2.1)–(2.4) belongs to L∞(R+;V1);

(2) for any (m0,n0,E0)(x)∈V2, the solution of (2.1)–(2.4) belongs to L∞(R+;V2).

Proof.
(1) Taking the inner product of (2.1) with 2E in R

d and choosing the imaginary part,
we have

d

dt
‖E‖2+2γ‖E‖2=2Im

∫
fĒdx≤γ‖E‖2+C‖f‖2.

Thus we see

‖E‖2= e−γt‖E0‖2+C‖f‖2
∫ t

0

e−γ(t−s)ds≤M, (2.5)

where M is a positive constant independent of t.
Taking the inner product of (2.1) with 2(γE+Et) in R

d, we can obtain

d

dt
(‖∇E‖2+h2‖ΔE‖2+2Re

∫
fĒdx)+2γ(‖∇E‖2+h2‖ΔE‖2+Re

∫
fĒdx)

+

∫
n(|E|2)tdx+2γ

∫
n|E|2dx=0. (2.6)

Taking inner product of (2.3) with 2(−Δ)−1m in R
d and noticing that 2

∫
mndx=

d
dt‖n‖2+2ε‖n‖2 and −2∫ mΔndx= d

dt‖∇n‖2+2ε‖∇n‖2, we have

d

dt
(‖m‖2−1+(β−ε(α−ε))‖n‖2−1+‖n‖2+h2‖∇n‖2)+2ε(β−ε(α−ε))‖n‖2−1+2ε‖n‖2

+2((α−ε)‖m‖2−1+εh2‖∇n‖2+
∫
(nt|E|2+εn|E|2−g(−Δ)−1m)dx=0. (2.7)

Now, we set

H0(t)=2‖∇E‖2+2h2‖ΔE‖2+4Re

∫
fĒdx+2

∫
n|E|2dx+‖m‖2−1+‖n‖2

+(β−ε(α−ε))‖n‖2−1+h2‖∇n‖2 (2.8)

and

I0(t)=4γ(‖∇E‖2+h2‖ΔE‖2+Re

∫
fĒdx)+4γ

∫
n|E|2dx+2(α−ε)‖m‖2−1+2ε‖n‖2

+2ε(β−ε(α−ε))‖n‖2−1+2εh2‖∇n‖2+2ε

∫
n|E|2dx−

∫
2g(−Δ)−1mdx, (2.9)
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then it follows from (2.6)×2+(2.7) that

dH0(t)

dt
+I0(t)=0. (2.10)

Therefore, there exist a small α0>0 and a positive constant K0 satisfying

dH0(t)

dt
+α0H0(t)≤K0. (2.11)

According to Gronwall’s lemma, it can be inferred that

H0(t)≤ e−α0tH0(0)+
K0

α0
(1−e−α0t)≤ e−α0tH0(0)+

K0

α0
≤M0, (2.12)

where M0 is a positive constant independent of time. Then (m,n,E)∈L∞(R+;V0).
On the other hand, taking the inner product of (2.1) by 2Δ2Et+2γΔ2E in R

d and
choosing the real part, we can obtain

d

dt
(‖∇ΔE‖2+h2‖Δ2E‖2+2Re

∫
(fΔ2Ē+nEΔ2Ē)dx)+2γ(‖∇ΔE‖2+h2‖Δ2E‖2)

+2γ(Re

∫
(fΔ2Ē+nEΔ2Ē)dx)−2Re

∫
(ntEΔ2Ē+nEtΔ

2Ē)dx=0. (2.13)

Moreover, multiplying (2.3) by 2m in R
d yields

d

dt
‖m‖2+2(α−ε)‖m‖2+2(β−ε(α−ε))

∫
mndx

−2

∫
mΔndx+2h2

∫
mΔ2ndx−

∫
mΔ|E|2dx+2

∫
mgdx=0.

Noticing that 2
∫
mndx= d

dt‖n‖2+ε‖n‖2, −2∫ mΔndx= d
dt‖∇n‖2+2ε‖∇n‖2 and

2h2
∫
mΔ2ndx=h2 d

dt‖Δn‖2+2εh2‖Δn‖2, we have

d

dt
(‖m‖2+(β−ε(α−ε))‖n‖2+‖∇n‖2+h2‖Δn‖2−2

∫
ngdx)+2ε(β−ε(α−ε))‖n‖2

+2(α−ε)‖m‖2+2ε‖∇n‖2+2εh2‖Δn‖2−2ε

∫
ngdx−2

∫
mΔ|E|2dx=0. (2.14)

Also, multiplying (2.3) by 2Δm, we can get

d

dt
(‖∇m‖2+(β−ε(α−ε))‖∇n‖2+‖Δn‖2+h2‖∇Δn‖2+2

∫
gΔndx)+2(α−ε)‖∇m‖2

+2ε((β−ε(α−ε))‖∇n‖2+‖Δn‖2+h2‖∇Δn‖2+
∫

gΔndx)+2

∫
mΔ2|E|2dx=0.

Then we have

d

dt
(‖m‖2+‖∇m‖2+(β−ε(α−ε))‖n‖2+(1+(β−ε(α−ε)))‖∇n‖2+(h2+1)‖Δn‖2

+h2‖∇Δn‖2+2

∫
g(Δn−n)dx)+2(α−ε)(‖m‖2+‖∇m‖2)+2ε(β−ε(α−ε))‖n‖2

+2ε(1+(β−ε(α−ε)))‖∇n‖2+2ε(h2+1)‖Δn‖2+2εh2‖∇Δn‖2+2ε

∫
g(Δn−n)dx)
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−2

∫
mΔ|E|2dx+2

∫
mΔ2|E|2dx=0. (2.15)

Note that

2

∫
ntΔ

2|E|2dx=4Re

∫
ntEΔ2Ēdx+4

∫
m|ΔE|2dx+8Re

∫
m∇ΔE∇Ēdx

−4ε

∫
n|ΔE|2dx−8Re

∫
(εn∇ΔE∇Ēdx+∇mΔE∇Ē−ε∇nΔE∇Ē)dx. (2.16)

Therefore, from (2.13)×2+(2.15), we obtain

d

dt
H1(t)+I1(t)=0, (2.17)

where

H1(t)=2‖∇ΔE‖2+2h2‖Δ2E‖2+‖m‖2+‖∇m‖2+(β−ε(α−ε))‖n‖2+h2‖∇Δn‖2

+(1+(β−ε(α−ε)))‖∇n‖2+(h2+1)‖Δn‖2+4Re

∫
(nE+f)Δ2Ēdx

+2

∫
g(Δn−n)dx, (2.18)

and

I1(t)=4γ(‖∇ΔE‖2+h2‖Δ2E‖2+Re

∫
fΔ2Ēdx+Re

∫
nEΔ2Ēdx)+2εh2‖∇Δn‖2

+2(α−ε)(‖m‖2+‖∇m‖2)+2ε(β−ε(α−ε))‖n‖2+2ε(1+(β−ε(α−ε)))‖∇n‖2

+2ε(h2+1)‖Δn‖2−2ε

∫
gndx+2ε

∫
gΔndx−2

∫
mΔ|E|2dx+4

∫
m|ΔE|2dx

+8Re

∫
m∇ΔE∇Ēdx−4ε

∫
n|ΔE|2dx+2ε

∫
nΔ2|E|2dx−4Re

∫
nEtΔ

2Ēdx

−8(Re

∫
(εn∇ΔE∇Ē+∇mΔE∇Ē+ε∇nΔE∇Ē)dx. (2.19)

Hence, there exist α1>0 sufficiently small and K1>0 satisfying

dH1(t)

dt
+α1H1(t)≤K1. (2.20)

By Gronwall’s lemma, we have

H1(t)≤ e−α1tH1(0)+
K1

α1
(1−e−α1t)≤ e−α1tH1(0)+

K1

α1
≤M1, (2.21)

where M1 is a positive constant independent of time. Then (m,n,E)∈L∞(R+;V1).

(2) On the other hand, taking inner product of (2.1) with 2Δ4Et+2γΔ4E in R
d, we

can obtain

d

dt
(‖∇Δ2E‖2+h2‖Δ3E‖2+2Re

∫
(nE+f)Δ4Ēdx)+2γ‖∇Δ2E‖2

+2γ(h2‖Δ3E‖2+Re

∫
(nE+f)Δ4Ēdx)−2Re

∫
(nEt+ntE)Δ4Ēdx=0. (2.22)
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Meanwhile, we multiply (2.3) by 2Δ2m in R
d and get

d

dt
‖Δm‖2+2(α−ε)‖Δm‖2+2(β−ε(α−ε))

∫
nΔ2mdx−2

∫
Δ2mΔndx

+2h2

∫
Δ2mΔ2ndx−2

∫
Δ2mΔ|E|2dx−2

∫
gΔ2mdx=0. (2.23)

Note that

2

∫
Δ2mndx=

d

dt
‖Δn‖2+2ε‖Δn‖2,

−2
∫

Δ2mΔndx=
d

dt
‖∇Δn‖2+2ε‖∇Δn‖2,

2h2

∫
Δ2mΔ2ndx=h2 d

dt
‖Δ2n‖2+2εh2‖Δn‖2,

so we have

d

dt
(‖Δm‖2+(β−ε(α−ε))‖Δn‖2+‖∇Δn‖2+h2‖Δ2n‖2−2

∫
gΔ2ndx)

+2((α−ε)‖Δm‖2+ε(β−ε(α−ε))‖Δn‖2+ε‖∇Δn‖2+εh2‖Δ2n‖2−
∫

εgΔ2ndx)

−2

∫
ΔmΔ2|E|2dx=0. (2.24)

Taking inner product of (2.3) with 2Δ3m in R
d and noting

2

∫
Δ3mndx=

d

dt
‖∇Δn‖2+2ε‖∇Δn‖2,2

∫
Δ3mΔndx=

d

dt
‖Δ2n‖2+2ε‖Δ2n‖2

and

−2h2

∫
Δ3mΔ2ndx=h2 d

dt
‖∇Δ2n‖2+2εh2‖∇Δn‖2,

we can obtain

d

dt
(‖∇Δm‖2+(β−ε(α−ε))‖∇Δn‖2+‖Δ2n‖2+h2‖∇Δ2n‖2+2

∫
gΔ3ndx)

+2(α−ε)‖∇Δm‖2+2ε(β−ε(α−ε))‖∇Δn‖2+2ε‖Δ2n‖2+2εh2‖∇Δ2n‖2

+2ε

∫
gΔ3ndx+2

∫
Δ3mΔ|E|2dx=0. (2.25)

Since

2

∫
Δ|E|2Δ3mdx=4Re

∫
(ntĒΔ4E+4ntΔ

3EΔĒ)dx+12

∫
nt|Δ2E|2dx, (2.26)

we have

d

dt
(‖∇Δm‖2+(β−ε(α−ε))‖∇Δn‖2+‖Δ2n‖2+h2‖∇Δ2n‖2+2

∫
gΔ3ndx)

+2(α−ε)‖∇Δm‖2+2ε(β−ε(α−ε))‖∇Δn‖2+2ε‖Δ2n‖2+2εh2‖∇Δ2n‖2
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+2ε

∫
gΔ3ndx+4Re

∫
(ntĒΔ4E+4ntΔ

3EΔĒ+3nt|Δ2E|2)dx=0. (2.27)

Therefore, from ((2.25)+(2.27))×2+(2.22), we obtain

d

dt
H2(t)+I2(t)=0, (2.28)

where

H2(t)=2‖∇Δ2E‖2+2h2‖Δ3E‖2+4Re

∫
nEΔ4Ēdx+4Re

∫
fΔ4Ēdx

+‖Δm‖2+‖∇Δm‖2+(β−ε(α−ε))‖Δn‖2+(1+(β−ε(α−ε)))‖∇Δn‖2

+(1+h2)‖Δ2n‖2+h2‖∇Δ2n‖2−2

∫
gΔ2ndx+2

∫
gΔ3ndx, (2.29)

and

I2(t)=4γ(‖∇Δ2E‖2+h2‖Δ3E‖2+Re

∫
nEΔ4Ēdx+Re

∫
fΔ4Ēdx)

−4Re

∫
nEtΔ

4Ēdx+2(α−ε)(‖Δm‖2+‖∇Δm‖2)+2ε(β−ε(α−ε))‖Δn‖2

+2ε(1+(β−ε(α−ε)))‖∇Δn‖2+2ε(1+h2)‖Δ2n‖2+2εh2‖∇Δ2n‖2+2ε

∫
gΔ3ndx

−2ε

∫
gΔ2ndx−2

∫
ΔmΔ2|E|2dx+16Re

∫
ntΔ

3EΔĒdx+12

∫
nt|Δ2E|2dx.

With the same techniques as above, we know that there exist a small positive constant
α2 and a positive constant K2 such that

dH2(t)

dt
+α2H2(t)≤K2, (2.30)

which, by Gronwall’s lemma, implies that

H2(t)≤ e−α2tH2(0)+
K2

α2
(2−e−α2t)≤ e−α2tH2(0)+

K2

α2
≤M2, (2.31)

where M2 is a positive constant independent of time. Then (m,n,E)∈L∞(R+;V2).

From Lemma 2.1, it is not hard to prove the existence and uniqueness of the solu-
tions and the bounded absorbing sets, which are stated as follows.

Lemma 2.2. Let f ∈H4(Rd), g∈H3(Rd). Then, for any (m0,n0,E0)(x)∈V1, there
exists a unique solution (m,n,E)∈Cb(R

+;V1) for (2.1)–(2.4).
Moreover, if S(t) is the solution operator, that is, (m(t),n(t),E(t))=

S(t)(m0,n0,E0) is the solution of (2.1)–(2.4) with the initial condition (m0,n0,E0)∈V1,
then S(t) is a semigroup in V1, uniformly continuous on any compact interval [0,T ], and
has a bounded absorbing set B1⊂V1. In addition, S(t) is also a continuous semigroup
in V2 and has a bounded absorbing set B2⊂V2.

3. The decomposition of solution operators
Let χL(x)∈C∞

0 (R) satisfying 0≤χL≤1 and

χL(x)=

{
1, |x|≤L,
0, |x|≥1+L.

(3.1)
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Then, for any σ∈ (0,1], there exists an L(σ)>0 (sufficiently large) such that

‖f−fσ‖4H2 ≤σ, where fσ =fχL(σ), (3.2)

‖g−gσ‖3H1 ≤σ, where gσ =gχL(σ), (3.3)

‖Δ|E|2(1−χL(σ))‖2H3 ≤σ. (3.4)

Now, we denote by (mσ,nσ,Eσ)=S1σ(m0,n0,E0) the solution of the problem:

iEσt+ΔEσ−h2Δ2Eσ+ iγEσ−nEσ− iσΔEσ+ iσh2Δ2Eσ

=f−fσ− iσΔE+ iσh2Δ2E, (3.5)

nσt+εnσ =mσ, (3.6)

mσt+(α−ε)mσ+(β−ε(α−ε))nσ−Δnσ+h2Δ2nσ =(Δ|E|2+g)(1−χL(σ)), (3.7)

(mσ,nσ,Eσ)(0,x)=(m0,n0,E0)(x), x∈Rd. (3.8)

Then

(wσ,vσ,uσ)=S2σ(t)(m0,n0,E0)

=S(t)(m0,n0,E0)−S1σ(t)(m0,n0,E0)=(m−mσ,n−nσ,E−Eσ)

satisfies

iuσt+Δuσ−h2Δ2uσ+ iγuσ− iσΔuσ+ iσh2Δ2uσ−nuσ =fσ, (3.9)

wσ =vσt+εvσ, (3.10)

wσt+(α−ε)wσ+(β−ε(α−ε))vσ−Δvσ+h2Δ2vσ =(Δ|E|2+g)χL(σ), (3.11)

(wσ,vσ,uσ)(0,x)=(0,0,0), x∈Rd. (3.12)

Lemma 3.1. There exist a constant C>0 and an increasing function ω(0)=0 such that
the solution of (3.5)–(3.8) satisfies

‖Eσ‖H4 ,‖nσ‖H3 ,‖mσ‖H1 ≤C, for all 0<σ≤1 and t≥0,

‖Eσ‖H4 ,‖nσ‖H3 ,‖mσ‖H1 ≤ω(σ), for all 0<σ≤1 and t≥ t∗ (∃t∗>0).

Proof. Multiplying (3.5) by 2Ēσ and integrating the imaginary part, we see

d

dt
‖Eσ‖2+2γ‖Eσ‖2+2σ‖∇Eσ‖2+2σh2‖ΔEσ‖2

=Im

∫
2Ēσ(f−fσ− iσΔE+ iσh2Δ2E)dx

≤γ‖Eσ‖2+σ‖∇Eσ‖2+σh2‖ΔEσ‖2+σ‖∇E‖2+σh2‖ΔE‖2+C‖f−fσ‖2. (3.13)

Hence, it is easy to see

d

dt
‖Eσ‖2+γ‖Eσ‖2≤σ‖∇E‖2+C‖f−fσ‖2+σh2‖ΔE‖2≤Cσ. (3.14)

By Gronwall’s inequality, we obtain

‖Eσ‖2≤‖E0‖2e−γt+
Cσ

γ
(1−e−γt). (3.15)
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Hence, for all t>0 and 0<σ≤1, there holds

‖Eσ‖2≤C. (3.16)

Moreover, there exists a t1>0 such that e−γt1‖E0‖2≤σ and for all t> t1,

‖Eσ‖2≤Cσ. (3.17)

Multiplying (3.14) by 2Ēσt and integrating the real part, then we get

Re

∫
2Ēσt(iEσt+ΔEσ−h2Δ2Eσ+ iγEσ− iσΔEσ+ iσh2Δ2Eσ)

=Re

∫
2Ēσt(nEσ+f−fσ− iσΔE+ iσh2Δ2E)dx. (3.18)

Substituting the identity

−iĒσt=−ΔĒσ+h2Δ2Ēσ+ iγĒσ+nĒσ− iσΔĒσ

+ iσh2Δ2Ēσ+ iσΔĒ− iσh2Δ2Ē+ f̄− f̄σ,

into (3.18), and using Hölder’s inequality, Young’s inequality, and the Gagliardo–
Nirenberg inequality, we can obtain

d

dt
H̃0(t)+γH̃0(t)≤Cσ, (3.19)

where H̃0(t)=‖∇Ēσ‖2+h2‖ΔĒσ‖2+
∫
n|Ēσ|2dx+2

∫
Ēσ(f̄− f̄σ)dx. Thus it follows

from Gronwall’s inequality that

H̃0(t)≤ e−γtH̃0(0)+Cσ(1−e−γt). (3.20)

Note that∫
n|Ēσ|2dx+2

∫
Ēσ(f̄− f̄σ)dx≤C(‖n‖L∞‖Eσ‖2+‖Eσ‖2+‖f̄− f̄σ‖2).

Therefore, there holds

‖∇Ēσ‖2+h2‖ΔĒσ‖2≤C (3.21)

for all 0<σ≤1 and t≥0. Also, there exists a t2>t1>0 such that

‖∇Ēσ‖2+h2‖ΔĒσ‖2≤Cσ (3.22)

for all 0<σ≤1 and t>t2. Similarly, with the same arguments as above, it is not difficult
to obtain

‖Eσ‖H4 ≤C, for all 0<σ≤1 and t≥0,

‖Eσ‖H4 ≤ω(σ), for all 0<σ≤1 and t≥ t3 (∃t3>t2>t1>0).

In addition, we multiply (3.7) by 2Δmσ and integrate in R
d, to obtain the following:

∫
2Δmσ(mσt+(α−ε)mσ+(β−ε(α−ε))nσ−Δnσ+h2Δ2nσ)dx
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=

∫
2Δmσ(Δ|E|2+g)(1−χL(σ))dx. (3.23)

So we can obtain

d

dt
(‖∇mσ‖2+(β−ε(α−ε))‖∇nσ‖2+‖Δnσ‖2+h2‖∇Δnσ‖2)
+2(α−ε)‖∇mσ‖2+2ε(β−ε(α−ε))‖∇nσ‖2+2ε‖Δnσ‖2+2εh2‖∇Δnσ‖2

=

∫
2Δmσ(Δ|E|2+g)(1−χL(σ))dx, (3.24)

which implies

d

dt
(‖∇mσ‖2+(β−ε(α−ε))‖∇nσ‖2+‖Δnσ‖2+h2‖∇Δnσ‖2)
+2(α−ε)‖∇mσ‖2+2ε(β−ε(α−ε))‖∇nσ‖2+2ε‖Δnσ‖2+2εh2‖∇Δnσ‖2

≤α−ε

2
‖∇mσ‖2+Cσ.

Define

Hσ(t)=‖∇mσ‖2+(β−ε(α−ε))‖∇nσ‖2+‖Δnσ‖2+h2‖∇Δnσ‖2,
by choosing a small positive constant ε<min{α2 , βα} such that α−ε>ε and β−ε(α−
ε)>0. Then we have

d

dt
Hσ(t)+εHσ(t)≤Cσ, (3.25)

and by Gronwall’s inequality, there holds

Hσ(t)≤ e−εtHσ(0)+Cσ(1−e−εt)≤C, ∀t>0. (3.26)

Moreover, there exists a t4>t3>0 such that

Hσ(t)≤Cσ (3.27)

for all t>t4 and 0<σ≤1. Therefore, it is easy to obtain

‖nσ‖H3 ,‖mσ‖H1 ≤C, for all 0<σ≤1 and t≥0,

‖nσ‖H3 ,‖mσ‖H1 ≤ω(σ), for all 0<σ≤1 and t≥ t4,

where ω(0)=0. Finally, Lemma 3.1 follows if we choose t∗=max{t3,t4}.
Lemma 3.2. There exist constants C1(σ),C2(σ) such that

‖xuσ‖, ‖x∇uσ‖, ‖xΔuσ‖, ‖x∇Δuσ‖, ‖xΔ2uσ‖≤C1(σ),

‖xvσ‖, ‖x∇vσ‖, ‖xΔvσ‖, ‖x∇Δvσ‖, ‖xwσ‖, ‖x∇wσ‖≤C2(σ).

Proof. Taking the inner product with 2|x|2uσ for (3.9) and taking the imaginary
part, we have

Im

∫
2|x|2ūσ(iuσt+Δuσ−h2Δ2uσ+ iγuσ− iσΔuσ+ iσh2Δ2uσ)dx
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=Im

∫
2|x|2ūσ(nuσ+fσ)dx. (3.28)

Note that

Im

∫
2|x|2ūσΔuσdx = −4Im

∫
xūσ∇uσdx,

−Im
∫

2h2|x|2ūσΔ
2uσdx = −4h2Im

∫
2x∇ūσΔuσdx,

−Im
∫

2iσ|x|2ūσΔuσdx = 2σ‖x∇uσ‖2+4σRe

∫
xūσ∇uσdx,

Im

∫
2iσh2|x|2ūσΔ

2uσdx = 2σh2‖xΔuσ‖2

+8σh2Re

∫
x∇ūσΔuσdx−4σh2‖∇uσ‖2.

Then, through the standard estimates for (3.28), we obtain

d

dt
‖xuσ‖2+2γ‖xuσ‖2+2σ‖x∇uσ‖2+2σh2‖xΔuσ‖2

≤γ‖xuσ‖2+σ‖x∇uσ‖2+σh2‖xΔuσ‖2+C(σ)(‖uσ‖2+‖∇uσ‖2+‖xfσ‖2),
which can be estimated as

d

dt
‖xuσ‖2+γ‖xuσ‖2≤C(σ)(‖uσ‖2+‖∇uσ‖2+‖xfσ‖2)≤C(σ).

Then applying Gronwall’s inequality yields

‖xuσ‖2≤C(σ)

∫ t

0

e−γ(t−s)ds=
C(σ)

γ
(1−e−γt)≤C(σ).

As before, we can further deal with the higher-order norm as follows. Taking the inner
product with 2|x|2uσt for (3.9), we have

Re

∫
2|x|2ūσt(iuσt+Δuσ−h2Δ2uσ+ iγuσ− iσΔuσ+ iσh2Δ2uσ)dx

=Re

∫
2|x|2ūσt(nuσ+fσ)dx. (3.29)

Notice that

Re

∫
2|x|2ūσtΔuσdx=− d

dt
‖x∇uσ‖2−Re

∫
4xūσt∇uσdx,

Re

∫
−2|x|2ūσth

2Δ2uσdx=−h2 d

dt
‖xΔuσ‖2+4h2Re

∫
ūσtΔuσdx

+8h2Re

∫
xūσt∇Δuσdx,

Re

∫
2|x|2ūσt(nuσ+fσ)dx=

d

dt
(

∫
|x|2|uσ|2ndx+2Re

∫
|x|2uσfσdx)

−Re

∫
|x|2|uσ|2(m−εn)dx,
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and

Re

∫
2iγ|x|2uσūσtdx=−2γIm

∫
|x|2uσūσtdx,

Re

∫
−2iσ|x|2ūσtΔuσdx=2σIm

∫
|x|2ūσtΔuσdx,

Re

∫
2iσh2|x|2ūσtΔ

2uσdx=−2σh2Im

∫
Δuσ(2ūσt+4x∇ūσt+ |x|2Δūσt)dx.

In addition, in view of the identity

ūσt= ifσ− iΔūσ+ ih2Δ2ūσ−γūσ+ inūσ+σΔūσ−σh2Δ2ūσ,

we can obtain

d

dt
G0(t)+γG0(t)≤C(σ), (3.30)

where G0(t)=‖x∇uσ‖2+h2‖xΔuσ‖2+
∫ |x|2|uσ|2ndx+2Re

∫ |x|2uσfσdx. In the esti-
mate (3.30), we have used the fact uσ ∈H3(Rd), which can be easily obtained by inves-
tigating problem (3.9)–(3.12) through the standard method. Therefore, by Gronwall’s
inequality, it is easy to obtain ‖x∇uσ‖2+h2‖xΔuσ‖2≤C(σ).

Moreover, using similar approach as above, one can also obtain ‖x∇Δuσ‖2+
h2‖xΔ2uσ‖2≤C(σ) under the condition f ∈H4(Rd). Therefore, we have shown that
there exists a constant C1(σ) satisfying

‖xuσ‖, ‖x∇uσ‖, ‖xΔuσ‖, ‖x∇Δuσ‖, ‖xΔ2uσ‖≤C1(σ).

Now, we use a similar argument to deal with the terms including wσ and vσ. Taking
the inner product with 2|x|2wσt for (3.11), we have

∫
2|x|2wσt(wσt+(α−ε)wσ+(β−ε(α−ε))vσ−Δvσ+h2Δ2vσ)dx

=

∫
2|x|2wσt(Δ|E|2+g)χL(σ)dx,

from which we can get

d

dt
G3(t)+εG3(t)≤C(σ), (3.31)

where G3(t)=‖xwσ‖2+(β−ε(α−ε))‖xvσ‖2+‖x∇vσ‖2+h2‖xΔvσ‖2. If we choose ε>
0 sufficiently small to satisfy ε< β

2 and ε≤ (β−ε(α−ε)), then there exists a constant
C(σ) such that

‖xwσ‖2, ‖xvσ‖2, ‖x∇vσ‖2, ‖xΔvσ‖2≤C(σ).

Differentiating (3.11) and taking the inner product with 2|x|2∇wσt for the resulting
equation, we see

∫
2|x|2∇wσt(∇wσt+(α−ε)∇wσ+(β−ε(α−ε))∇vσ−∇Δvσ+h2∇Δ2vσ)dx

=

∫
2|x|2∇wσt∇(Δ|E|2+g)χL(σ)dx.
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Repeating the above process, we can obtain

d

dt
G4(t)+εG4(t)≤C(σ), (3.32)

where G4(t)=‖x∇wσ‖2+(β−ε(α−ε))‖x∇vσ‖2+‖xΔvσ‖2+h2‖x∇Δvσ‖2. Again, we
select a sufficiently small ε>0 that ε< β

2 and ε≤ (β−ε(α−ε)), then there exists a
constant C(σ) satisfying ‖x∇wσ‖2,‖x∇Δvσ‖2≤C(σ). Hence, we can take a common
C2(σ) such that ‖xvσ‖, ‖x∇vσ‖, ‖xΔvσ‖, ‖x∇Δvσ‖, ‖xwσ‖, ‖x∇wσ‖≤C2(σ). This
completes the proof of Lemma 3.2.

4. The existence of the attractor
Let S(t) be the semigroup generated by (2.1)–(2.4). According to the previous

sections, we know that S(t) has a bounded absorbing set in V1 and V2. In Section
3, decomposition of S(t) is used in order to make use of the so-called Kuratowskii α-
measure of noncompactness to prove the asymptotic smoothness of S(t) and construct
the maximal attractor. Recall that the α-measure of a set A in a Banach space X is
defined by

α(A)� inf{d| there is a finite covering of A of diameter<d},

where d represents distance. α(A) has the following properties (see e.g., [2, 21]):

α(A∪B)≤α(A)+α(B),

α(A)=0, A is compact in X.

To prove the main result, we need to give the following compact imbedding lemma.

Lemma 4.1. Let s>s1 be an integer, then the imbedding of Hs(Rd)∩Hs1(Rd,(1+
|x|2)dx) into Hs1(Rd) is compact.

The proof of Lemma 4.1 can be found in [3, 12]. Now we present the main result
of the paper.

Theorem 4.2. Assume f ∈H4(Rd), g∈H3(Rd) (d=1,2,3), and S(t) be the semigroup
generated by (2.1)–(2.4). Then there exists a set A⊂V1 satisfying

(1) S(t)A=A, ∀ t≥0,

(2) lim
t→∞distV1

(S(t)B,A)= lim
t→∞ sup

y∈B
distV1

(S(t)y,A)=0, ∀B⊂V2 bounded,

(3) A is compact in V1.

That is to say, A is a maximal compact attractor in V1 which attracts bounded sets of
V2 in the topology of V1.

Proof. From lemmas 3.2 and 4.1, we see that S2σ defined by (3.9)–(3.12) is compact
from V2 into V1. Then, for any bounded B⊂V2, we have

α(S2σ(t)B)=0, ∀ t≥0.

From Lemma 3.1, for any η>0, there exist σ and t0 such that

‖S1σ(t)(m0,n0,E0)‖<η
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for all t≥ t0 and (m0,n0,E0)∈B.
Hence, there holds α(S1σ(t)B)≤2η for all t≥ t0. Therefore, we can obtain

α(S(t)B)≤α(S1σ(t)B)+α(S2σ(t)B)=α(S1σ(t)B)≤2η, ∀ t≥ t0.

Namely, for any bounded set B⊂V2, we have

lim
t→∞α(S(t)B)=0,

which implies that S(t) is asymptotically smooth. Therefore, Theorem 4.2 follows easily
by applying Theorem 3.4 in [21]. This ends the proof of the theorem.

5. Further remarks
In this section, we present two remarks on the attractor which will be investigated

in our forthcoming work.
An interesting question is the dimensional estimate for the attractor. In the case

of the periodic boundary condition, by studying the estimates of Lyapunov exponents,
we obtained the finite dimension estimates of the Hausdorff dimension and the fractal
dimension of the attractor for system (1.1)–(1.2) in [18]. However, the Poincaré inequal-
ity and corresponding compact operator do not hold on unbounded domain in general,
which have been used for dimensional estimates in periodic boundary condition [18].
So, we must further investigate dimensional estimates in our case.

Another problem is to study the limit behavior of the attractor when h→0+. This
problem is meaningful from the view of physics, as h is an extremely small quantity in
physics [19]. The classical limit of the quantum Zakharov system was shown in [16].
However, the limit of the attractor for this system has not been studied yet. In fact,
concerning the limit behavior of the attractor, one has to show the existence of solutions,
uniformly estimate solutions independent of h, and estimate the precompactness of
union of attractors depending on h. All these properties are not obvious for this system,
especially in the case of unbounded domain and higher spatial dimensions. Therefore,
we need to investigate the dynamics of the attractor more deeply in the future.
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de Langmuir en dimension 2, C. R. Acad. Sci. Paris, 299, 551–554, 1984.

[2] A.V. Babin and M.I. Vishik, Attractors of Evolutions, Amsterdam, London, New York, Tokyo,
North-Holland, 1992.

[3] A.V. Babin and M.I. Vishik, Attractors of partial differential evolution equations in an unbounded
domain, Proc. Roy. Soc. Edinburgh Sect. A, 116, 221–243, 1990.

[4] I.D. Chueshov and A.S. Shcherbina, On 2D Zakharov system in a bounded domain, Differ. Integral
Equ., 18, 781–812, 2005.

[5] J. Colliander, J. Holmer, and N. Tzirakis, Low regularity global well-posedness for the Zakharov
and Klein–Gordon–Schrödinger systems, Trans. AMS, 360(9), 4619–4638, 2008.

[6] E. Feireisl, Attractors for semilinear damped wave equation in R3, Nonlinear Anal., 23, 187–195,
1994.



Y.F. GUO, J.J. ZHANG, AND C.X. GUO 641

[7] I. Flahaut, Attractors for the dissipative Zakharov system, Nonlinear Anal. TMA, 16(7-8), 599–
633, 1991.

[8] A. Friedman, Partial Differential Equations, Holt, Reinhart and Winston, 1969.
[9] O. Goubet and I. Moise, Attractor for dissipative Zakharov system, Nonlinear Anal. TMA, 31(7),

823–847, 1998.
[10] B.L. Guo and L.J. Shen, The existence and uniqueness of the classical solution on the periodic

initial value problem for Zakharov equation (in Chinese), Acta Math. Appl. Sin. (Chinese),
5, 310–324, 1982.

[11] B.L. Guo, J.J. Zhang, and X.K. Pu, On the existence and uniqueness of smooth solution for a
generalized Zakharov equation, J. Math. Anal. Appl., 365, 238–253, 2010.

[12] B.L. Guo and Y.S. Li, Attractor for dissipative Klein–Gordon–Schrödinger equations in R3, J.
Diff. Equ., 136(2), 356–377, 1977.

[13] Y.F. Guo, Z.D. Dai, and D.L. Li, Explicit heteroclinic tube solutions for the Zakharov system
with periodic boundary, Chin. J. Phys., 46(5), 570–577, 2008.

[14] Y.F. Guo, B.L. Guo, and D.L. Li, Global random attractors for the stochastic dissipative Zakharov
equations, Acta Math. Appl. Sin.(English Series), 30(2), 289–304, 2014.

[15] Y.F. Guo, B.L. Guo, and D.L. Li, Asymptotic behaviors of the solutions for dissipative quantum
Zakharov equations, Appl. Math. Mech.(English Edition), 33(4), 511–524, 2012.

[16] Y.F. Guo, J.J. Zhang, and B.L. Guo, Global well-posedness and the classical limit of the solution
for the quantum Zakharorv system, Z. Angew. Math. Phys., 64, 53–68, 2013.

[17] Y.F. Guo, B.L. Guo, and D.L. Li, Asymptotic behavior of stochastic dissipative quantum Zakharov
equations, Stocha. Dynam., 13(2), 1250016, 2013.

[18] Y.F. Guo, J.J. Zhang, and C.X. Guo, Attractor and dimension estimates for the dissipative
quantum Zakharov equations, Advances Math.(Chinese), 39(6), 765–767, 2010.

[19] L.G. Garcia, F. Haas, L.P.L. de Oliveira, and J. Goedert, Modified Zakharov equations for plasmas
with a quantum correction, Phys. Plasmas, 12, 012302, 2005.

[20] F. Haas and P.K. Shukla, Quantum and classical dynamics of Langmuir wave packets, Phys. Rev.
E, 79, 066402, 2009.

[21] J.K. Hale, Asymptotic Behavior of Dissipative system, Math. Surveys and Monographs, American
Mathematical Society, Providence, R.I., 25, 1988.

[22] P. Laurencot, Long-time behavior for weakly damped driven nonlingear Schrödinger equations in
Rn≤3, Nonlinear Diff. Equ. Appl., 2(3), 357–369, 1995.

[23] Y.S. Li and B.L. Guo, Attractor of dissipative radially symmetric Zakharov equations outside a
ball, Math. Meth. Appl. Sci., 27, 803–818, 2004.

[24] Y.S. Li and B.L. Guo, Attractor for dissipative Zakharov equations in an unbounded domain,
Math. Phys., 9(6), 675–687, 1997.

[25] M. Marklund, Classical and quantum kinetics of the Zakharov system, Phys. Plasmas, 12, 082110,
2005.

[26] A.P. Misra, D. Ghosh, and A.R. Chowdhury, A novel hyperchaos in the quantum Zakharov system
for plasmas, Phys. Lett. A, 372, 1469–1476, 2008.

[27] A.P. Misra, S. Banerjee, F. Haas, P.K. Shukla, and L.P.G. Assis, Temporal dynamics in the
one-dimensional quantum Zakharov equations for plasmas, Phys. Plasmas, 17, 032307, 2010.

[28] C. Sulem and P.L. Sulem, Quelques résultats de régularité pour les équation de la turbulence de
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