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NONLINEAR TRAVELING WAVES FOR THE SKELETON OF THE
MADDEN–JULIAN OSCILLATION∗

SHENGQIAN CHEN† AND SAMUEL N. STECHMANN‡

Abstract. The Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal (30–
90 days) variability in the tropical atmosphere. Here, traveling wave solutions are presented for the
MJO skeleton model of Majda and Stechmann. The model is a system of nonlinear partial differential
equations that describe the evolution of the tropical atmosphere on planetary (10,000–40,000 km)
spatial scales. The nonlinear traveling waves come in four types, corresponding to the four types of
linear wave solutions, one of which has the properties of the MJO. In the MJO traveling wave, the
convective activity has a pulse-like shape, with a narrow region of enhanced convection and a wide
region of suppressed convection. Furthermore, an amplitude-dependent dispersion relation is derived,
and it shows that the nonlinear MJO has a lower frequency and slower propagation speed than the
linear MJO. By taking the small-amplitude limit, an analytical formula is also derived for the dispersion
relation of linear waves. To derive all of these results, a key aspect is the model’s conservation of energy,
which holds even in the presence of forcing. In the limit of weak forcing, it is shown that the nonlinear
traveling waves have a simple sech-squared waveform.
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1. Introduction

This paper concerns the following system of nonlinear partial differential equations
(PDEs):

Kt+Kx=−1
2
(H̄A−F ), (1.1a)

Rt− 1

3
Rx=−1

3
(H̄A−F ), (1.1b)

Qt+Q̃Kx− Q̃

3
Rx=(

Q̃

6
−1)(H̄A−F ), (1.1c)

At=ΓQA, (1.1d)

which was originally designed in [33]. This is a hyperbolic system whose only nonlin-
earity is in equation (1.1d). The main goals of this paper are (i) to present nonlinear
traveling wave solutions of (1.1) and (ii) to describe the features of the nonlinear waves
that are absent from the linear waves. An important element will be conservation of
energy, which holds even in the presence of the source term, F .

In equation (1.1), the variablesK, R, Q, and A represent the state of the atmosphere
near the equator. K and R represent Kelvin and equatorial Rossby wave circulation
patterns, respectively, and they are related to the velocity and temperature as described
further below. Q represents the lower-tropospheric water vapor (“moisture” hereafter),
and A represents the amplitude of deep convective activity. As such, A accounts for an
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important moisture sink and heat source for the atmosphere, from rainfall and latent
heating, as represented by the proportionality constant H̄ for heating.

The system (1.1) was proposed in [33] as a model for the Madden–Julian Oscillation
(MJO). The MJO is the dominant component of intraseasonal (≈ 30–60 days) variability
in the tropical atmosphere. This variability appears not only in the wind, pressure, and
temperature fields, but also in water vapor and precipitation/convection. The structure
of the MJO is a planetary-scale (≈ 10,000–40,000 km) circulation cell with regions of
enhanced and suppressed convection, and it propagates slowly eastward at a speed of
roughly 5 m/s. The main regions of MJO convective activity are over the Indian Ocean
and western Pacific Ocean, and the MJO interacts with monsoons, tropical cyclones,
El Niño–Southern Oscillation, and other tropical phenomena. Nevertheless, while the
MJO is mainly a tropical phenomenon, it also interacts with the extratropics and can
affect midlatitude predictability. See [21, 24–26,47] for further background information
on the MJO.

Despite the wealth of studies dedicated to the MJO, theory and numerical simula-
tions are still major challenges. Several studies have documented the inadequacies and
progress of general circulation model (GCM) simulations [18,23,41], and new techniques
continue to be developed and show increasingly realistic results [1, 2, 12, 17]. A large
part of the challenge is the complex multiscale structure of the MJO [7, 14, 38]. More
theoretical work is needed to better understand the multiscale processes at work in the
tropics. For recent reviews, see [16, 19,36].

Motivated by the MJO’s multiscale structure, the terminology of the MJO’s “skele-
ton” and “muscle” was introduced in [33], and it refers to the MJO’s intraseasonal–
planetary-scale envelope and to further details beyond the envelope, respectively. Fur-
ther work with the MJO skeleton model can be found in [33,34,44], including a stochastic
version of the model [44]. Work on the MJO’s “muscle” can be found in [5,15,29,32,43],
which focus on the role of the convective momentum transport [37].

In addition to (1.1), which includes effects of the Coriolis force and meridional (y)
variations of the circulation, a simpler yet less realistic system will also be considered
here:

ut−θx=0, (1.2a)

θt−ux= H̄a−F, (1.2b)

qt+Q̃ux=−H̄a+F, (1.2c)

at=Γqa, (1.2d)

where u is velocity and θ represents temperature [33]. This system neglects meridional
(y) variations and can be thought of as the atmospheric circulation directly above the
equator, y=0, where the Coriolis force vanishes. Many of the results here will hold
equally well for (1.1) and (1.2). While (1.2) neglects important physics, their east-
west symmetry is mathematically advantageous, as it provides a simplification of the
equations. Also, these equations have the advantage of being written in terms of zonal
velocity u and potential temperature θ, which are more physically intuitive than the
wave amplitude variables K and R.

The nonlinear traveling waves of the present paper are an addition to several soli-
tary wave systems for other atmospheric phenomena. Several examples take the form
of coupled KdV systems, including some with nonlinear self-interaction and linear cou-
pling [11, 35] and some with nonlinear coupling [3, 4, 13, 28, 39]. The linearly coupled
systems [11, 35] were derived in the context of midlatitude baroclinic instability, and
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the nonlinearly coupled system [28] was derived in the context of tropical–extratropical
interactions of equatorial and midlatitude Rossby waves. What physically distinguishes
the present MJO nonlinear waves from these coupled KdV systems is that the MJO
skeleton model has coupling with moisture and convection, whereas, for the KdV-like
systems for barotropic and baroclinic instabilities, the nonlinearities come from the
transport terms of momentum and temperature [28].

In a model with a different treatment of convection, precipitation front solutions
have been investigated as traveling waves with a discontinuous transition [9] or a steep
gradient [42] between a precipitating region and a non-precipitating region. Unlike
(1.1), the precipitation front equations include a nonlinear switch (Heaviside function)
in the precipitation term, and the system has the mathematical form of a hyperbolic
free boundary problem [31].

In the MJO skeleton model (1.1), the only nonlinear interaction is in the coupling of
moisture Q and convective activity A. As described in more detail below, the moisture-
convection coupling has a mathematical form that is reminiscent of the nonlinearity in
the Toda lattice model [45, 46] when written in terms of Flaschka’s variables [8].

The rest of the paper is organized as follows. Section 2 describes the physical
mechanism and simplifying assumptions for the model. The model conserves a total
energy even in the presence of the forcing term, which is crucial to have an analytical
waveform. In Section 3, the nonlinear traveling wave solutions are presented. The
properties of the nonlinear waves are compared with those of their linear analogues,
including the traveling wave speed, the dispersion relation, and the shape of solutions.
In Section 5, physical quantities are recovered from variables K, R, Q, and A, and their
physical significances in tropical climate are stated. Section 6 provides some further
explorations of the model: the stability/instability of traveling wave solutions, the sech-
squared waveform under the weak forcing limit, and the key results for the east-west
symmetric system (1.2).

2. Model description and energetics
In this section, physical mechanisms and assumptions are described for the MJO

skeleton model.

2.1. Model description. The MJO skeleton model was originally proposed and
developed in [33]. It is a nonlinear oscillator model for the MJO skeleton as a neutrally
stable wave, i.e., the model includes neither damping nor instability mechanisms.

To obtain the simplest model for the MJO, truncated vertical and meridional struc-
tures are used. For the vertical truncation, only the first baroclinic mode is used so
that u(x,y,z,t)=

√
2u∗(x,y,t)cos(z), etc. [6, 27]. The stars are dropped to keep the

expression simple:

ut−yv−θx=0, (2.1a)

yu−θy=0, (2.1b)

θt−ux−vy= H̄a−F, (2.1c)

qt−Q̃(ux+vy)=−H̄a+F, (2.1d)

at=Γqa. (2.1e)

The model (2.1) is a nondimensional model, with the scaling listed in Table 2.1 taken
from [42]. In this paper, the nondimensional variables are used throughout the deriva-
tions and calculations. Here, the coordinate system (x,y,z) represents zonal, meridional
and vertical directions. For the meridional coordinate, typically, y=0 is located at the
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Par. Derivation Dim. val. Description

β 2.3×10−11 m−1s−1 Variation of Coriolis parameter with latitude
θ0 300 K Potential temperature at surface
g 9.8 m s−2 Gravitational acceleration
H 16 km Tropopause height
N2 (g/θ0)dθ̄/dz 10−4 s−2 Buoyancy frequency squared
c NH/π 50 m s−1 Velocity scale

Xe

√
c/β 1500 km Equatorial length scale

T Xe/c 8 hrs Equatorial time scale
HN2θ0/(πg) 15 K Potential temperature scale
H/π 5 km Vertical length scale
H/(πT ) 0.2 m s−1 Vertical velocity scale
c2 2500 m2 s−2 Pressure scale

Table 2.1. From [42]. Constants and reference scales for nondimensionalization.

equator, where the latitude is 0. For the vertical coordinate, z=0 and π are located at
the bottom and top of the troposphere, respectively.

In (2.1), u and v are zonal and meridional velocities, respectively, and θ is the po-
tential temperature. In the 2D shallow-water system (2.1), the dry dynamical core of
model (2.1a)–(2.1c) is the equatorial long-wave equations [5,6,10,27,29]. The long-wave
assumption is based on the fact that planetary equatorial waves have long zonal wave-
length (∼15,000 km) compared to their spans in the meridional and vertical directions
(∼1,500 km). In the zonal long-wave limit, the vt term is neglected [27, 30] and high
frequency inertia-gravity waves are filtered out. Another remark is that the β-plane
approximation is applied for Coriolis force at the equator, where sin(y)∼y as y→0.

While u, v, and θ are from the dry dynamics, the other variables are included to
represent moist convective processes:

q: lower tropospheric moisture

a: amplitude of wave activity envelope
(2.2)

The nondimensional dynamical variable a parameterizes the amplitude of the planetary
scale envelope of synoptic-scale wave activity.

A key part of the q-and-a interaction is how the moisture anomalies influence the
convection. The premise is that, for convective activity on planetary/intraseasonal
scales, it is the time tendency of convective activity, not the convective activity it-
self, that is most directly related to the lower-tropospheric moisture anomaly. In other
words, rather than a functional relationship a=a(q), it is posited that q mainly influ-
ences the tendency, i.e., the growth and decay rates, of the convective activity. The
simplest equation that embodies this idea is (2.1e), where Γ is a constant of propor-
tionality: positive (negative) low-level moisture anomalies create a tendency to enhance
(decrease) the envelope of convective wave activity. The basis for (2.1e) is supported
by a combination of observations, modeling, and theory (see [33] and references therein
for more information).

Notice that this model contains a minimal number of parameters: Q̃=0.9,
the (nondimensional) mean background vertical moisture gradient; Γ=1, or ≈
0.5 d−1(g·kg−1)−1 dimensionally, where Γq acts as a dynamic growth/decay rate of
the wave activity envelope; F =0.023, or ≈1 K/d in dimensional unit, is the fixed,
constant radiative cooling rate; and H̄=0.23, or ≈10 K/d in dimensional unit, is a con-
stant heating rate prefactor. Note that F is taken to be a constant here for simplicity,
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but it could also be chosen to be a function of x and/or t. Also note that H̄ can be
scaled out of the equation by rescaling the a variable. However, to maintain consistency
with model presentations in [33,34], we find it favorable to write the model in the same
fashion.

Next, the model (2.1) is projected and truncated at leading parabolic cylinder func-
tions Φm(y) [6,27]. The parabolic cylinder functions {Φm(y)}∞m=0 form an orthonormal
basis in the meridional (y) direction, with respect to L2, where the inner product is
defined by

〈f,g〉=
∫ +∞

−∞
f(y)g(y)dy. (2.3)

In system (2.1), the variables can be written as projections to the parabolic cylinder
functions. For example,

u(x,y,t)=

∞∑
m=0

um(x,t)Φm(y), (2.4)

where

um(x,t)= 〈u(x,y,t),Φm(y)〉. (2.5)

The leading parabolic cylinder functions are

Φ0(y)=π−1/4 exp(−y2/2),
Φ1(y)=π−1/4

√
2yexp(−y2/2),

Φ2(y)=π−1/42−1/2(2y2−1)exp(−y2/2).
(2.6)

In the derivation of (1.1), it is assumed that a, the envelope of convective wave ac-
tivity, has a simple equatorial meridional structure proportional to Φ0(y): a(x,y,t)=
A(x,t)Φ0(y). Such a meridional heating structure excites only Kelvin waves and the first
symmetric equatorial Rossby waves [6,27,44], and the resulting meridionally truncated
equations are written in (1.1).

The meridional projections of the velocity and potential temperature fields take the
form [6,27,33,34,44]

u(x,y)= [K(x)−R(x)]Φ0(y)+

√
2

2
R(x)Φ2(y),

v(x,y)=
1

3
√
2

[
4R′(x)−(H̄A(x)−F )

]
Φ1(y),

θ(x,y)=− [K(x)+R(x)]Φ0(y)−
√
2

2
R(x)Φ2(y),

(2.7)

where R and K are the contributions from the Rossby and Kelvin waves, respectively.
The meridional structure of q is given by q(x,y,t)=Q(x,t)Φ0(y). Note that the defini-
tions of K and R are different than in [33]; here, K and R have been scaled by 1√

2
and

1
2
√
2
, respectively, as was also done in [44].

2.2. Energetics. The nonlinear MJO skeleton model has an important energy
principle: system (2.1) conserves a total energy that includes a contribution from the
convective activity a:

∂t

[
1

2
u2+

1

2
θ2+

Q̃

2(1−Q̃)

(
θ+

q

Q̃

)2

+
H̄

ΓQ̃
a− F

ΓQ̃
loga

]
−∂x (uθ)−∂y (vθ)=0. (2.8)
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This total energy is a sum of contributions from dry kinetic energy 1
2u

2, potential en-

ergy 1
2θ

2, moist potential energy Q̃

2(1−Q̃)

(
θ+ q

Q̃

)2

, and convective energy H̄
ΓQ̃

a− F
ΓQ̃

loga.

This energy conservation also holds for (1.2), where the meridional (y) variation is ne-
glected. In this case, the term ∂y (vθ) disappears.

Likewise, system (1.1) conserves the total energy:

∂t

[
K2+

3

2
R2+

Q̃

2(1−Q̃)

(
Q

Q̃
−K−R

)2

+
H̄

ΓQ̃
A− F

ΓQ̃
logA

]
+∂x

(
K2− 1

2
R2

)
=0.

(2.9)
This total energy is a sum of contributions from dry kinetic and potential en-

ergy K2+ 3
2R

2, moist potential energy Q̃

2(1−Q̃)

(
Q

Q̃
−K−R

)2

, and convective energy

H̄
ΓQ̃

A− F
ΓQ̃

logA. Note that the natural requirement on the background moisture gradi-

ent, 0<Q̃<1, is needed to guarantee a positive moist potential energy. The convective
energy part H̄

ΓQ̃
A− F

ΓQ̃
logA achieves its minimum value at the radiative-convective equi-

librium state, i.e. A= Ā, where

Ā=F/H̄=0.1. (2.10)

While (2.8) is the total energy conservation for system (2.1), another conserved
quantity is readily obtained by summing up (2.1c)–(2.1d) to eliminate source and forcing
terms. The conservation law is given by

∂t(θ+q)−(1−Q̃)(∂xu+∂yv)=0. (2.11)

The quantity θ+q is an analogue of the moist static energy.

3. Nonlinear traveling wave solutions
In this section, a traveling wave ansatz is applied to system (1.1) and exact solutions

can be found, with certain restrictions on wave speed. Based on the exact traveling wave
formula, connections are built to relate wave amplitude, wavelength, traveling speed and
total energy. The nonlinear solutions are compared with linear solutions, demonstrating
amplitude-dependent features.

3.1. Reduction to nonlinear oscillatory ODE. With the assumption that
the wave travels with speed s, the traveling wave ansatz converts the PDE system (1.1)
to a set of ODEs, by writing [K,R,Q,A](x,t)= [K,R,Q,A](x̃) where x̃=x−st:

(−s+1)K ′=−1
2
(H̄A−F ), (3.1a)

(−s− 1

3
)R′=−1

3
(H̄A−F ), (3.1b)

−sQ′+Q̃K ′− Q̃

3
R′=

(
Q̃

6
−1

)
(H̄A−F ), (3.1c)

−sA′=ΓQA. (3.1d)

From (3.1a) and (3.1b), K ′ and R′ in (3.1c) can be replaced by

K ′=
1

2(s−1)(H̄A−F ) and R′=
1

3s+1
(H̄A−F ), (3.2)



S. CHEN AND S.N. STECHMANN 577

which further simplifies the ODE system to

Q′=
f(s)

6s
(H̄A−F ), (3.3a)

A′=−Γ
s
QA, (3.3b)

where

f(s)=
3Q̃

s−1−
2Q̃

1+3s
−Q̃+6. (3.4)

The plot of f(s) is shown in Figure 3.1. The nonlinearity in (3.3) is reminiscent of
the Toda lattice model [45,46] when written in terms of Flaschka’s variables [8]. Using
this connection, the change of variables B=logA transforms (3.3) into a Hamiltonian
system that has been called the Toda oscillator [20, 22, 40]. The Hamiltonian function
for the Toda oscillator is a conserved quantity for (3.3):

H(Q,A)=
1

s

[
Γ

2
Q2+

f(s)

6
(H̄A−F logA)

]
. (3.5)

The function H(Q,A) is plotted in Figure 3.2, and it will play an important role in
the derivations that follow. In particular, periodic orbits of the Hamiltonian ODEs
correspond to periodic traveling waves of (1.1).

3.2. Allowed traveling wave speed. The periodic traveling wave solutions
exist only for certain wave speeds. Solutions are point values [Q,A] on the closed
contours of Hamiltonian function H from (3.5). To form closed contours, the function
H needs to be convex in both Q and A, which is equivalent to the positivity of f(s):

f(s)>0. (3.6)

Under condition (3.6), the critical point of system (3.3),

[Q0,A0]= [0,Ā], (3.7)

is a local extreme for H (Figure 3.2a,b), and there are closed contours. On the other
hand, with f(s)<0, the critical point is a saddle (Figure 3.2c).

The positivity requirement (3.6) is met by four groups of traveling wave speed s as
shown in Figure 3.1:

s<−1
3
: dry Rossby,

s−<s<0 : moist Rossby,

0<s<s+ : MJO,

s>1 : dry Kelvin,

(3.8)

where s± are roots for f(s)=0. The four groups of traveling wave speeds are analogous
to four eigenvalues in the linearized system [33].

Note that, although the positivity of f(s) gives a wide range of eligible traveling
wave speeds, realistically, when the equatorial circumference is considered, the traveling
wave speeds will be confined by the longest wavelength that is allowed, which will be
further discussed in Section 5.

In (3.8), the boundary values, s±, set limits for traveling wave speeds of two moist
modes. They depend on the moisture gradient coefficient Q̃. The dry modes, on the
other hand, are not confined by Q̃. Similar results can be found in the precipitation
front models, e.g. [9, 42].



578 NONLINEAR TRAVELING WAVE SOLUTIONS FOR MJO SKELETON MODEL

−1 0 1 2
−5

0

5

10

15

s

f
(s
)

−1/3

s
−

s+

Fig. 3.1. Plot of f(s) from (3.4) with Q̃=0.9. The thick lines are four groups of eligible traveling
wave speed s that allow for traveling wave solutions. From left to right, they correspond to four modes:
dry Rossby, moist Rossby, MJO, and dry Kelvin.
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Fig. 3.2. Contour plots of Hamiltonian function H from (3.5) with different choices of traveling
wave speed s. (a): s=0.2, f(s)>0. The critical point [Q0,A0] is a minimum for H. (b): s=1.5,
f(s)>0. The critical point [Q0,A0] is a minimum for H. (c): s=0.5, f(s)<0. The critical point
[Q0,A0] is a saddle for H.

3.3. Analytical waveform. With the choice of wave speed s satisfing (3.8),
analytical waveforms are obtained. A closed contour of H determines the particular
waveform, and the contour is selected by any given extreme values of either A or Q.
According to (3.5), for any closed contour of H as in Figure 3.2, when Q=0, A achieves
its maximum/minimum values, Amax and Amin. When A= Ā, Q achieves its extreme
values. While the value for convective wave envelope A is always positive, the values of
Q shows a positive-negative symmetry.

When the maximum value of A is selected, the Hamiltonian H is given by (3.5):

H=
f(s)

6Γs
(H̄Amax−F logAmax). (3.9)

For other points [Q,A] on the same contour, they satisfy

1

s

[
1

2
Q2+

f(s)

6Γ
(H̄A−F logA)

]
=

f(s)

6Γs
(H̄Amax−F logAmax). (3.10)
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According to (3.3b), Q can be replaced by

Q=−sA′

ΓA
, (3.11)

so that (3.10) becomes an ODE for A:

s2A′2

2Γ2A2
+

f(s)

6Γ
(H̄A−F logA)=

f(s)

6Γ
(H̄Amax−F logAmax), (3.12)

which can be further written as(
dA

dx̃

)2

=
Γf(s)

3s2
A2

[
H̄(Amax−A)−F (logAmax− logA)

]
. (3.13)

This separable ODE has solutions in the implicit form:

x̃=±
√
3s2√
Γf(s)

∫ Amax

A

â−1
[
H̄(Amax− â)−F (logAmax− log â)

]−1/2
dâ+x0 (3.14)

where x̃=x−st was defined above in (3.1). The integration constant x0 is chosen so
that Amax lies at the center of the domain. Next, from (3.5), Q is derived:

Q(x̃)=±
√

f(s)

3Γ

{
H̄[Amax−A(x̃)]−F [logAmax− logA(x̃)]

} 1
2 , (3.15)

where the sign needs to be consistent with (3.3b), depending on the growth/decay of
A and the direction of wave propagation. The other two variables K and R can be
obtained by combining (3.2) and (3.3a):

K=− 3s

(1−s)f(s)
Q, R=

6s

(1+3s)f(s)
Q. (3.16)

The integration constants are chosen to be zero so that K and R have zero mean
values. Equations (3.14)–(3.16) are the analytical traveling waveform for the nonlinear
system (1.1).

As an initial illustration, an example of an MJO waveform is shown in Figure 3.3.
The main nonlinear feature is that convective activity A has a pulse-like shape: the
region of enhanced convection is narrower than the region of suppressed convection. At
the same time, the positive anomaly is stronger than the negative anomaly (recall from
(2.10) that the equilibrium value Ā is 0.1). What remains to be described is how to
construct a waveform with certain features specified, e.g., with a wavelength X that is
a divisor of the Earth’s circumference.

4. Relating wavelength, speed, amplitude, and energy
By using the analytical waveform (3.14), connections are now built to link wave-

length, speed, amplitude, and energy of traveling waves. Any two of these quantities
can determine the other two.

4.1. Relations between amplitude and maximum/minimum values. The
maximum/minimum values of the convection envelope, Amax and Amin, are achieved
when Q=0 in (3.5), so that the following equality holds:

H̄Amax−F logAmax= H̄Amin−F logAmin. (4.1)
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Fig. 3.3. Nondimensional MJO mode traveling wave solution in K, R, Q and A. Total energy
E=3.8 and wavenumber k=1.

The values for Amax and Amin can be written in terms of the wave amplitude A=
Amax−Amin, so that (4.1) can be rewritten as

Amax=
[
1+(eA/Ā−1)−1

]
A, Amin=(e

A/Ā−1)−1A, (4.2)

where the amplitude A is defined as

A=Amax−Amin.

4.2. Amplitude-dependent dispersion relation. With waveform (3.14), the
wavelength X of the solution can be written as a function of s and A:

X=2

√
3s2

Γf(s)
I(A), (4.3)

where

I(A)=
∫ Amax

Amin

â−1
[
(H̄(Amax− â)−F (logAmax− log â)

]−1/2
dâ. (4.4)

The function I(A) illustrates that the wavelength depends on the amplitude A, in
addition to the dependency on wave speeds.

In addition to the amplitude-dependent function (4.3) for the nonlinear waves, a
similar function can be derived in the small-amplitude limit for linear waves. The
amplitude dependency on dispersion relation is a nonlinear feature. If the system (1.1)
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Fig. 4.1. Phase speed s=ω/k (a) and oscillation frequency ω(k) (b) for nonlinear and linear
solutions. Circle: A=0.1; cross: A=0.3; square: A=0.5; star: linear system. The large amplitude
phase speeds, i.e. A=0.5, are 8.76 m/s and 4.61 m/s for k=1 and 2 equatorial waves. The linear
phase speeds, correspondingly, are 10.13 m/s and 5.55 m/s.

is linearized around A= Ā, and the traveling wave ansatz is applied, the simplified ODE
system is the linearized (3.3) around A= Ā,

Q′=
f(s)

6s
H̄Ã,

Ã′=−Γ
s
ĀQ,

(4.5)

where Ã=A−Ā. The solution to system (4.5) has wavelength

X=2π

√
6s2

ΓH̄Āf(s)
=2π

√
6s2

ΓFf(s)
, (4.6)

depending on propagation speed s only, in contrast to the wavelength for nonlinear
solutions (4.3), which depends also on wave amplitude A.

Figure 4.1 shows the dimensional phase speed s and oscillation frequency ω(k)=s/k
of linear and nonlinear waves for moist Rossby and MJO modes, where the wavenumber
k is the number of waves along the 40,000 km long equator. With a smaller amplitude,
e.g. A=0.1, the nonlinear phase speed and oscillation frequency are almost identical to
the linear case. With a larger amplitude, i.e., A=0.5, due to nonlinearity, the phase
speed drops, and so does the frequency. This analytical result is consistent with two
earlier numerical findings. First, a nonlinear numerical simulation yielded a wave with
propagation speed of 6 m/s, in contrast to the linear wave speed of roughly 7 m/s [34].
Second, in the stochastic MJO skeleton model, the maximal spectral power lies at lower
frequencies than the linear wave frequency [44]. Since this holds true even when the
stochasticity of the model is reduced (through their parameter Δa), it suggests that the
reduced frequency is likely due to nonlinear effects rather than stochastic effects.

4.3. Total energy of traveling waves. Like the wavelength expression in
(4.3), the total energy of traveling waves can also be written as a function of s and A.
For comparing nonlinear waves of different types (e.g. MJO vs. moist Rossby), the total
energy E will be the natural quantity to use.
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To derive the total energy of the traveling wave, it is convenient to first introduce
some notation. Denote the length of the total domain (here, the nondimensional equa-
torial circumference) as L. The wavenumber k is then k= L

X . The conserved energy
over the whole domain L is the spatial integral of energy density (2.9):

E=k

∫ X

0

[
Q̃

2(1−Q̃)

(
Q

Q̃
−K−R

)2

+K2+
3

2
R2+

H̄

ΓQ̃
A− F

ΓQ̃
logA

]
dx. (4.7)

With (3.16), the expression is in terms of Q and A only:

E=k

∫ X

0

[
g(s)Q2+

H̄

ΓQ̃
A− F

ΓQ̃
logA

]
dx (4.8)

where

g(s)=
Q̃

2(1−Q̃)

(
1

Q̃
− 3s

(s−1)f(s)−
6s

(3s+1)f(s)

)2

+
9s2

(s−1)2f2(s)
+

54s2

(3s+1)2f2(s)
.

(4.9)
Next, Q can be eliminated through the Hamiltonian function (3.5):

Q2=
f(s)

3Γ

[
H̄(Amax−A)−F (logAmax− logA)

]
. (4.10)

Hence,

E=k

∫ X

0

[
f(s) g(s)

3Γ

(
H̄(Amax−A)−F (logAmax− logA)

)
+

H̄

ΓQ̃
A− F

ΓQ̃
logA

]
dx.

(4.11)
Finally, with the implicit solution (3.14), the integration over A replaces the integration
over x:

dx

dA
=±

√
3s2

Γf(s)
A−1

[
H̄(Amax−A)−F (logAmax− logA)

]−1/2
. (4.12)

This allows us to write

E=2kg(s)
√

s2f(s)

3Γ3

∫ Amax

Amin

A−1
[
H̄(Amax−A)−F (logAmax− logA)

]1/2
dA

+
2k

Q̃

√
3s2

f(s)Γ3

∫ Amax

Amin

A−1
[
H̄(Amax−A)−F (logAmax− logA)

]−1/2(
H̄A−F logA

)
dA.

(4.13)
From (4.3) and (4.13), any two from the following four quantities can determine the

remaining two: traveling speed s, wave amplitude A, wavelength X, and total energy E .
For practical reasons, the wavelength X is usually chosen first so that the circumference
of the equator is a proper domain length.

4.4. Illustrations of waveforms with different amplitudes and energies.
With different wave amplitudes and energies, the waveforms have different shapes due
to nonlinearity. To further illustrate the difference between large and small amplitude
solutions, waveforms with different energies are plotted in Figure 4.2, which shows that,
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Fig. 4.2. Figure of A with different total energy E. Wavenumber k=2.

linear E=2.5 E=3.0 E=3.5
Dry Rossby -20.96 -20.87 -20.70 -20.56
Moist Rossby -3.55 -3.51 -3.44 -3.36

MJO 5.55 5.39 5.09 4.81
Dry Kelvin 52.30 52.29 52.26 52.24

Table 4.1. Traveling wave speeds (in m/s) for linear waves and nonlinear waves with different
total energy. Wave number k=2. Corresponding wave structures are shown in Figure 4.3.

as the energy gets larger (as does the amplitude), the waveforms look more like a pulse
than a sinusoid.

While the shape of waveforms behaves as a nonlinear feature, the relative ratio of
variables’ amplitudes does not change much with respect to energy. The ratio is defined
by

K :R :Q :A, (4.14)

where K=Kmax−Kmin and so on. This ratio is analogous to eigenvectors for the
linearized system. In Figure 4.3, the ratios are plotted with normalizations by L2-
norms of vectors both for nonlinear waveforms with different energies and for linear
waveforms. While the variations for moist Rossby and MJO modes are somewhat visible,
the tendencies for dry modes are hard to see. Another difference between moist and
dry modes that can be seen from Figure 4.3 is that moist modes have the dominant
contributions from the convective envelope A, yet, for the dry modes, the greatest
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Fig. 4.3. Contributions of each component A, Q, K, and R to the linear and nonlinear traveling
wave solutions of four modes: dry Rossby, moist Rossby, MJO, and dry Kelvin modes. Results for
linear waves and nonlinear waves with different total energy E=2.5, 3.0, and 3.5 are shown. Wave
number k=2. Corresponding wave speeds are shown in Table 4.1.

contributions are from R or K, depending on whether the mode is dry Rossby or dry
Kelvin. The corresponding wave speeds are given in Table 4.1.

5. Physical structure

In this section, several results are presented in physically relevant terms by returning
from the (K,R) variables to the (u,v,θ) variables, by returning from nondimensional to
dimensional units, and by plotting both the zonal (x) and meridional (y) variations.

First, we consider the propagation speed s in dimensional units and on a finite
domain. In Section 3.2, the allowed propagation speed s has four branches: dry Rossby,
moist Rossby, MJO, and dry Kelvin waves, with the values marked in Figure 3.1. From
the figure, the traveling wave speed s has quite a large range stretching to infinity for
the two dry modes; in reality, however, the maximum wave speed is confined by two
facts which can be illustrated from Figure 4.1.

Figure 4.1 shows that, for the moisture modes, the propagation speed |s| decreases
as the amplitudes increases and as the wavenumber increases. The same results hold
for the dry modes, although not shown here. Based on these two facts and based on the
fact that wavelengths must be smaller than the Earth’s circumference of ≈40,000 km,
the maximum traveling wave speeds are confined by the speed of the k=1 equatorial
linear waves for four modes in their absolute value:

s1<s<−1
3
, s2<s<0, 0<s<s3, and 1<s<s4. (5.1)
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Fig. 5.1. Physical quantities at equator (y=0) recovered from MJO mode traveling wave solution:
zonal velocity u, potential temperature θ, moisture q and convective activity envelope H̄A. Wave
number k=1. Total energy E=3.8.

Here, sj (j=1,2,3,4) are k=1 linear traveling wave speeds for four modes:

s1=−0.62, s2=−0.09, s3=0.20, s4=1.18. (5.2)

According to (5.1), the dimensional traveling wave speeds are s≈17–31m/s west-
propagating for dry Rossby waves, s�4.7m/s west-propagating for moist Rossby waves,
s�10m/s east-propagating for MJO, and s≈50–59m/s east-propagating for dry Kelvin
waves.

Besides propagation speed s, other variables are reconstructed. With (2.7), the
solution in Figure 3.3 converts to physical quantities at the equator (y=0) [6,27,33,34,
44] as in Figure 5.1. The wave travels in speed s≈0.18, or 9.0 m/s east-propagating. As
shown in Figure 5.1, the accumulating moisture leads to active convection after which
the moisture drops. The enhanced convection also occurs at the same phase as the zonal
wind converges.

With the reconstructed physical variables at the equator, the zonal-meridional struc-
tures are recovered in Figure 5.2 by using the parabolic cylinder functions. One strongly
convective event is present in this case, collocated with upward vertical motion and
horizontal convergence of the zonal wind. Straddling the equator, a pair of anticy-
clones leads, and a pair of cyclones trails the convective activity. Also, the maximum
lower-troposphere moisture leads the convective maximum. Hence, the nonlinear model
reproduces the fundamental features of the MJO skeleton model.

In Figure 4.2, the pulse-like shape of convection envelope for large amplitude A sug-
gests that for strong MJO events, the enhanced region is narrower than the suppressed
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Fig. 5.2. MJO mode traveling wave solution. Total energy E=3.8 and wavenumber k=1. (a):
zonal-meridional structure. Low-level zonal and meridional velocity are shown with contours of the am-
plitude of the convective activity envelope. (b): same as (a), except contours of lower tropospheric mois-
ture, q(x,y). (c): same as (a), except contours of lower tropospheric potential temperature anomaly,
θ. All positive (negative) contours are shown by solid (dashed) lines. For convective heating, moisture,
and convergence, the contour intervals are 0.55 K/day, 0.15 g/kg, and 0.24 K, respectively. Maximum
zonal and meridional velocities are 9.76 m/s and 0.86 m/s, respectively.

region. This is perhaps realistic due to the fact that convective activity and precip-
itation are positive quantities and hence have negative anomalies that are bounded.
Nevertheless, we are unaware of any observational analysis that definitively shows this
or even targets this question.

6. Further explorations

This section includes preliminary results for several interesting topics related to
the traveling wave solution for the MJO skeleton model. While the results are not
exhaustive, possible directions for future investigations are discussed.
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Fig. 6.1. Contours of the amplitude of the convective activity envelope, H̄A(x,t) at y=0. (a)-(d)
are exact traveling wave solutions for dry Rossby, moist Rossby, MJO and dry Kelvin modes with total
energy E=3.8.

6.1. Stability vs. instability of traveling wave solutions. Analytical trav-
eling waveforms to system (1.1) are presented in Section 3.3. However, it is unclear
how the waveforms can be affected by perturbations. As a preliminary investigation of
the stability/instability of waveforms, we perform numerical computations for (1.1) by
adopting the scheme from [34], where an operator splitting method is used to separate
the linear part (1.1a)–(1.1c) and the nonlinear part (1.1d).

First, the numerical integrations are initialized with analytical waveforms [Ke,Re,
Qe,Ae] given by (3.14)-(3.16). Tests are run up to T =200 days with two energies for
four modes: E=2.5 and E=3.8. Although cases with two energies were performed,
only results of E=3.8 cases are shown as contour plots of convective activity envelope
H̄A(x,t) in Figure 6.1. In the figure, the parallel lines are exhibited for most of the
plots, indicating that the numerical nonlinear wave is propagating at a fixed speed.

Next, perturbations are placed on the initial waveforms. The perturbed initial
condition is written as

[K,R,Q,A]= [Ke,Re,Qe,Ae]+[K
′,R′,Q′,A′], (6.1)

where the perturbation [K ′,R′,Q′,A′] are Gaussian functions scaled by 10% of each
variable’s maximum values,

[K ′,R′,Q′,A′]=
1

10
exp(−x2

16
)[Kmax,Rmax,Qmax,Amax], (6.2)

and they decay fast enough that the periodicity of the initial condition is not affected.
The numerical integrations are then performed (not shown) with perturbed initial

data (6.1) up to T =200 days. To evaluate the effect of perturbations, the quantity
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“pattern correlation” P is used, which is defined by

P(t)[Ae,A]=

∫
Ae(x,t)A(x,t)dx

||Ae(x,t)||2||A(x,t)||2 , (6.3)

where Ae(x,t) and A(x,t) are exact solutions and perturbed solutions. From (6.3), it
can be seen that the extreme values of P are ±1, achieved when A(x,t)=CAe(x,t), for
which the sign of C determines whether it is a maximum or a minimum. The proximity
of P to the maximum value 1 indicates the perturbation has little impact, thus the
solution is stable.

Two cases with total energy E=2.5 and E=3.8 are performed here, with initial
conditions described in (6.1). For traveling waves with total energy E=2.5, the pattern
correlation P(t)≥97% up to T =200 days for all modes. The number 97% is close to 1,
implying only a slight effect of the perturbation. In the other case, for traveling waves
with total energy E=3.8, solutions are quite unstable based on the pattern correlation
except for the moist Rossby mode, holding a pattern correlation greater than 97% up to
T =200 days. For the other three modes, the values of P drop significantly within the
computational time. To identify a great impact from the perturbation, the threshold
90% is used here: when the pattern correlation P<90%, the data is greatly affected
by the initial perturbation. For the other three modes, the dry Rossby mode is the
first to have P(t)<90%, appearing at T =62 day; the MJO and dry Kelvin modes have
the first P(t)<90% around T =130 day. From the numerical experiments performed,
it may be suggested that the moist Rossby mode is most stable, but no firm conclusion
can be drawn based on the numerical experiments alone.

6.2. The weak-forcing limit and sech-squared waveforms. In Section 3.3,
the nonlinear traveling wave solution is given implicitly in terms of an integral for the
case of finite forcing, F . In this section, the forcing term, F , is taken to be vanishing,
i.e., F→0. We show now that, in the limiting case, the solution is a solitary wave whose
waveform is in the function sech2. According to (4.2),

Amax→A, Amin→0, as F→0. (6.4)

Also, note that, in the integral equation (3.13), the function on the right-hand side has
the asymptotic behavior that

A2
[
H̄(A−A)−F (logA− logA)]∼ H̄A2(A−A), as F→0. (6.5)

Under this limit, Equation (3.13) becomes

A′=±
√
ΓH̄f(s)

3s2
A
√A−A. (6.6)

By writing

h(s)=

√
ΓH̄f(s)

3s2
, (6.7)

the solution occurs when

A(x̃)=A sech2
[
1

2
h(s)

√
A (x̃−x0)

]
, (6.8)
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where x0 is an integration constant that determines the location of A. This integration
procedure is similar to getting a soliton from a KdV equation.

In the solution (6.8), the wavelength goes to infinity as the forcing term vanishes,
i.e., F→0. Besides wavelength, another important length scale is the effective width of
A, or namely, the length of enhanced convective region, d, which is defined as

d=
1

h(s)
√A . (6.9)

The effective width d is determined by both the wave amplitude A and the wave speed
s.

6.3. The model without meridional (y) variations. Model (1.2) neglects
meridional (y) variations and can be considered as the atmospheric circulation directly
above the equator, y=0, where the Coriolis force is negligible. Similar results hold
equally well for (1.2) and (1.1). While (1.2) neglects important physics, their east–west
symmetry simplifies the mathematical formulas. Model (1.2) would perhaps be easier
to study in regard to the further questions raised in sections 6.1 and 6.2.

The key results of traveling wave solutions are provided for system (1.2). With
the traveling wave ansatz x̃=x−st, system (1.2) is reduced to the nonlinear oscillatory
ODE:

Q′=
1

s
(
1− Q̃

1−s2

) (H̄A−F ), (6.10a)

A′=−Γ
s
AQ. (6.10b)

The Hamiltonian function of (6.10) is

H(Q,A)=
1

s

[
Γ

2
Q2+

1−s2

1−s2−Q̃
(H̄A−F logA)

]
. (6.11)

The solution existence requires that H has closed contours, which turn out to be:

1−s2

s2(1−s2−Q̃)
>0, (6.12)

or equivalently,

s2>1 or 0<s2<1−Q̃. (6.13)

Unlike the system (1.1), the allowed wave propagation speed s for (1.2) has east-west
symmetry. Here, the limiting values for dry waves and moist waves are

cdry=1, and cmoist=

√
1−Q̃. (6.14)

These critical values are the same in the model governing precipitation fronts [9, 42],
where traveling speed boundaries were set for drying fronts, slow moistening fronts, and
fast moistening fronts. Given (6.10)-(6.14), one can derive results analogous to those
presented in Section 3.
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7. Conclusions
Nonlinear traveling wave solutions were presented for the MJO skeleton model,

and they were compared with their linear counterparts. The nonlinear traveling waves
come in four types, and the propagation speed of each type is restricted to lie in a
particular interval. One wave type has a structure and slow eastward propagation
speed that are consistent with the MJO. In the nonlinear MJO wave, the convective
activity has a pulse-like shape, with a narrow region of enhanced convection and a
wide region of suppressed convection. Furthermore, an amplitude-dependent dispersion
relation was derived, and it shows that the nonlinear MJO has a lower frequency and
slower propagation speed than the linear MJO. By taking the small-amplitude limit,
an analytical formula was also derived for the dispersion relation of linear waves. To
derive all of these results, a key aspect was the model’s conservation of energy, which
holds even in the presence of the forcing term, F .

The results here suggest several interesting directions for observational analysis of
the MJO. In particular, What are the amplitude-dependent properties of the MJO in
observational data? As one example, for large-amplitude MJO events, is the region of
enhanced convection stronger and/or narrower than the region of suppressed convection?
An affirmative answer would perhaps be expected due to the simple fact that convec-
tive activity and precipitation are positive quantities (as illustrated here in Figure 4.2).
Nevertheless, we are unaware of any observational analysis that definitively shows this
or even targets this question. In some numerical simulations of the MJO [1, 17], it ap-
pears to the eye that such an asymmetry might exist between enhanced and suppressed
convection regions.

Another interesting direction is to investigate the stability of the nonlinear waves.
In our numerical simulations, all nonlinear wave types can be reproduced and can prop-
agate around the Earth’s circumference a dozen or more times with very little change to
their structure. When perturbed, the numerical waves still retain a significant amount
of their coherent propagation, although some wave modulation can arise, and it can be
difficult to know for certain which perturbed features are part of the true variability and
which are numerical artifacts. It would be interesting to rigorously prove the stability
or instability of the nonlinear waves.

Finally, another open question is whether the MJO skeleton model is possibly a
completely integrable system. The nonlinearity has a mathematical form that is rem-
iniscent of the Toda lattice model [45, 46] when written in terms of Flaschka’s vari-
ables [8]. Perhaps one could expand upon this similarity. The mathematically simplest
case to consider is probably the weak-forcing limit F→0 on the real line rather than
the physically realistic case of finite forcing F 	=0 on a periodic domain. In the limit of
weak forcing, it was shown that the shape of the nonlinear traveling waves is greatly
simplified and has a simple sech2 waveform, the same form as the soliton of the KdV
equation.
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