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ON THE CAMASSA–HOLM SYSTEM WITH ONE MEAN ZERO
COMPONENT∗

ZHENGGUANG GUO† , WEIMING WANG‡ , AND CHONGBIN XU§

Abstract. In this paper, a generalized two-component Camassa–Holm model, closely connected
to the shallow water theory, is discussed. This two-component Camassa–Holm system is investigated
on the local well-posedness and blow-up phenomena. The present work is mainly concerned with
the detailed blow-up criteria where some special classes of initial data are involved. Moreover, as a
by-product, the blow-up rate is established.
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1. Introduction
We consider the following two-component Camassa–Holm system:{

yt+yxu+2yux+π(ρ)ρx=0,
π(ρ)t+(π(ρ)u)x=0,

(1.1)

where

y=u−uxx, π(ρ)=ρ−μ(ρ)=ρ−
∫ 1

0

ρdx,

with u(x,t) and ρ(x,t) depending on a space variable x∈S=R/Z and a time variable t≥
0. For convenience, we call system (1.1) the π-CH2 equation. It is obvious that equation
(1.1) for μ(ρ)=0 reduces to the two-component Camassa–Holm (CH2) equation studied
in [8, 9, 12, 13, 33, 37], and reduces to the Camassa–Holm (CH) equation for π(ρ)=0
investigated in [1–4,27,32, etc.]

The CH equation was derived physically by Camassa and Holm in [2] (found earlier
by Fokas and Fuchssteniner [14] as a bi-Hamiltonian generalization of the KdV equation)
by directly approximating the Hamiltonian for Euler’s equation in the shallow water
region with u(x,t) represents the free surface above a flat bottom. An important feature
of CH equation is its integrability [2]. Recently, an alternative derivation of the CH
equation as a model for water waves was presented by Johnson [28]. Some satisfactory
results were obtained by several authors concerning the local well-posedness [3,26,31,34],
wave breaking phenomena (the solution itself remains bounded while its slope becomes
infinity in finite time) [3, 4, 7, 29, 31, 32, 42, 43] and global in time solutions [3, 4], the
aspects of weak solutions [6,35,40], the global conservative solutions [1] and the solitary
waves [10]. It is worthy of being mentioned here is the property of propagation speed
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of solutions to the CH equation, which was presented by Zhou and his collaborators in
their work [27], and the asymptotic profile in [27] was improved by [36].

The CH2 equation is also an integrable system [8]. It has been discussed under
geometric aspects [11, 24]. Some qualitative research of solutions to the CH2 equation
and its generalizations are the subjects of [12,15–22,38,39,41,46] . The inverse scattering
and the derivation of the solitons are in [25] and references therein. Let’s now draw
our attention to (1.1). It is obvious that (1.1) can be viewed as the CH2 equation by
substituting ρ with π(ρ), or equivalently, viewed as the CH2 equation with one mean zero
component. Note that the geometric structure of (1.1) is different from CH2 equation
with the incorporation of the term μ(ρ), this restricts our discussion only on the unit
circle. Furthermore, the discussion of this work shows that π-CH2 system possesses wave
breaking phenomenon which is described with different blow-up criteria while the CH2
system admits not only breaking wave solutions but also solutions defined for all times.
At least, we are not sure the existence of global solutions of π-CH2 equation for the time
being. It is the structure of (1.1) that breaks some properties which previously holds
for the CH2 system. We are interested in (1.1) based on the following considerations.
It is known that for the CH2 system (1.1)

d

dt

∫
S

ρdx=−
∫
S

(ρu)xdx=0,

it follows that
∫
S
ρdx is an invariant with respect to time. Particularly, if ρ has mean

zero at initial time t=0, then the solution ρ to CH2 system will preserve zero mean for
all time. This is one motivation of our present work. Secondly, we consider the system
(1.1) in the spaces Hs×Hs−1/R for s>5/2 on the circle, where Hs=Hs(S) denotes
the L2-Sobolev space of regularity. The basic idea of this variation is the decomposition
of ρ∈Hs−1= Ĥs−1⊗R into π(ρ) and μ(ρ), where μ(ρ)∈R is independent on variable
x, π(ρ) belongs to Ĥs−1, a subspace of Hs−1 containing all zero mean functions. The
interesting aspect is that the CH2 equation has a meaningful geometric interpretation
on the entire space Hs×Hs−1 as well as on the component Hs×Ĥs−1. In [30], the
author investigated the π-CH2 equation from geometric point of view and the local
well-posedness of the system (1.1) was established. No further results were obtained
for (1.1) for the moment. The main purpose of our work is to investigate formation of
singularities of solutions to (1.1) where the conservation laws play crucial roles.

The rest of this paper is organized as follows. In Section 2, we recall the local well-
posedness theorem and show some auxiliary results which will be used in the sequel.
In Section 3, the blow-up criteria are established via various initial conditions and the
blow-up rate is also shown. The final section, Section 4, is a brief conclusion and remarks
to our results.

2. Preliminaries
We now provide the framework in which we shall reformulate (1.1). Let

G(x)=
cosh(x− [x]−1/2)

2sinh(1/2)
, x∈R.

where [x] means the integer part of x. Then (1−∂2
x)

−1f =G∗f for all f ∈L2(S) and
G∗y=u where ∗ is the convolution. With these in hand, one can rewrite (1.1) as follows{

ut+uux=−∂xG∗
(
u2+ 1

2u
2
x+

1
2π(ρ)

2
)

π(ρ)t=−(π(ρ)u)x
(2.1)
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We first recall the elementary result due to Kohlmann on the local well-posedness
theorem for system (1.1). For sake of convenience of readers, we denote by Hs−1/R the
space Hs−1 with two functions being identified if they differ by a constant, and write
[ρ] for the element of Hs−1/R which can be represented by π(ρ).

Theorem 2.1 ( [30]). Let s>5/2. There is an open neighborhood U containing
(0, [0]) in Hs×Hs−1/R such that for any (u0, [ρ0])∈U there is T >0 and a unique
solution (u, [ρ]) to the initial value problem for the system (1.1) with

(u, [ρ])∈C (
[0,T );Hs×Hs−1/R

)∩C1
(
[0,T );Hs−1×Hs−2/R

)
,

(u, [ρ])(0)=(u0, [ρ0]) and with continuous dependence on (u0, [ρ0]), i.e., the mapping

(u0, [ρ0]) �−→ (u, [ρ]), U→C
(
[0,T );Hs×Hs−1/R

)∩C1
(
[0,T );Hs−1×Hs−2/R

)
is continuous.

The associated Lagrangian scale of (1.1) is established by the initial-value problem{
qt=u(q,t), 0<t<T, x∈R,
q(x,0)=x, x∈R. (2.2)

where u denotes the first component of the solution to (1.1) with certain initial data and
T is the lifespan of the solution, then q is a diffeomorphism of the line. This implies that
the L∞-norm of any function v(·,t)∈L∞(R), t∈ [0,T ) is preserved under the family of
diffeomorphism q(·,t), i.e.,

||v(·,t)||L∞ = ||v(q(·,t),t)||L∞ , t∈ [0,T ),

which will be used in the sequel without mention. Moreover, we know the map q(·,t) is
an increasing diffeomorphism of R with

qx(x,t)=exp
(∫ t

0

ux(q,s)ds
)
>0, (x,t)∈R× [0,T ). (2.3)

This is usually called the particle trajectory method, and it is important in the discussion
of blow-up phenomena. Now, in the framework of the well-posedness result, we are in
a position to state.

Lemma 2.2. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U , T >0 is assumed to be the maximal existence time of
the corresponding solution X=(u,π(ρ)) to (1.1). Then we have

π (ρ(q,t))qx(x,t)=π(ρ0 (x)), (x,t)∈S× [0,T ).

The proof follows from the direct application of (2.2). Generally, we say a solution
(u, [ρ]) for (1.1) which corresponds to certain initial data blows up in finite time, that
is the Hs×Hs−1/R Sobolev norm of (u,π(ρ)) goes to infinity in finite time. To be
precise, it is shown that the behavior of the first order spatial derivative of u(x,t) is
sufficient to determine wave breaking of the considered solutions in finite time while ρ
is not involved. This is the content of the following result.

Theorem 2.3. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . Let T be the maximal existence time of the solution
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X=(u,π(ρ)) to (1.1) with the initial data X0. Then the solution X blows up in finite
time if and only if

lim
t→T

inf
x∈S

{ux(x,t)}=−∞. (2.4)

Proof. It is sufficient to consider the case of s=3 for the solution (u,π(ρ)) due to
the density argument. Multiplying the first equation in (1.1) by y and integrating by
parts, we get ∫

S

yytdx+

∫
S

yyxudx+2

∫
S

y2uxdx+

∫
S

yπ(ρ)π(ρ)xdx=0.

It follows that

1

2

d

dt

∫
S

y2dx=−3

2

∫
S

y2uxdx+
1

2

∫
S

π(ρ)2yxdx

=−3

2

∫
S

y2uxdx+
1

2

∫
S

π(ρ)2uxdx− 1

2

∫
S

π(ρ)2uxxxdx. (2.5)

Differentiating the first equation in (1.1) with respect to x, multiplying by yx, and
integrating by parts yield

1

2

d

dt

∫
S

y2xdx=−
5

2

∫
S

uxy
2
xdx+

∫
S

y2uxdx

+

∫
S

uxxx(π(ρ)
2
x+π(ρ)π(ρ)xx− 1

2
π(ρ)2)dx. (2.6)

Combining (2.5) and (2.6) together, we obtain

d

dt

∫
S

(
y2+y2x

)
dx=

∫
S

(
π(ρ)2−5y2x−y2

)
uxdx

+2

∫
S

uxxx(π(ρ)
2
x+π(ρ)π(ρ)xx−π(ρ)2)dx. (2.7)

Similar arguments made on the second equation in (1.1) yield

d

dt

∫
S

π(ρ)2dx=−
∫
S

π(ρ)2uxdx, (2.8)

and

d

dt

∫
S

π(ρ)2xdx=−3
∫
S

π(ρ)2xuxdx+

∫
S

π(ρ)2uxxxdx, (2.9)

d

dt

∫
S

π(ρ)2xxdx=−5
∫
S

π(ρ)2xxuxdx−
∫
S

(2π(ρ)π(ρ)xx+6π(ρ)xπ(ρ)xx)uxxxdx. (2.10)

It follows by combining (2.7)–(2.10) that

d

dt

∫
S

(
y2+y2x+π(ρ)2+π(ρ)2x+π(ρ)2xx

)
dx
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=−
∫
S

ux

(
y2+5y2x+3π(ρ)2x+5π(ρ)2xx

)
dx

+

∫
S

uxxx

(
2π(ρ)2x−6π(ρ)xπ(ρ)xx−π(ρ)2

)
dx.

Assume the solution X blows up in finite time, but (2.4) does not hold. Then there
exists M>0 such that

infux(x,t)≥−M, (x,t)∈S× [0,T ). (2.11)

We claim that

||π(ρ)||L∞ ≤ eMt||π(ρ0)||L∞ ≤ ceMt||ρ0||L∞ , ∀t∈ [0,T ), (2.12)

and

||π(ρ)x||L∞ = ||ρx||L∞ ≤ ce(2M+ 1
2 )t, ∀t∈ [0,T ), (2.13)

where c is a suitable constant. In fact, (2.12) is a direct consequence of Lemma 2.2 and
the properties of q(x,t). In order to show (2.13), we proceed as follows. First, note that

d

dt
ux(q(x,t),t)=(uxt+uuxx)(q,t)

=−1

2
u2
x(q,t)+

1

2
π(ρ)2+g(q,t),

and

d

dt
π(ρ(q,t))t=−π(ρ)ux(q,t)

where g(q,t)=u2(q,t)−G∗(u2+ 1
2u

2
x+

1
2π(ρ)

2
)
(q,t). It is not difficult to show that

g(q,t) is bounded due to Sobolev embedding theorem and the conservation of E1 (see
below). It follows that

ux(q(x,t),t)
d

dt
ux(q(x,t),t)

=−1

2
ux(q(x,t),t)u

2
x(q,t)+

1

2
ux(q(x,t),t)π(ρ)

2+ux(q(x,t),t)g(q,t)

≤ 1

2
Mu2

x(q,t)+
1

2
ux(q,t)π(ρ(q,t))

2+
1

2

(
u2
x(q,t)+g2(q,t)

)
.

Similarly,

π(ρ(q,t))
d

dt
π(ρ(q,t))t=−π(ρ(q,t))2ux(q,t).

Then

1

2

d

dt

(
u2
x(q(x,t),t)+π(ρ(q,t))2

)
≤ 1

2
Mu2

x(q,t)+
1

2
Mπ(ρ(q,t))2+

1

2

(
u2
x(q,t)+g2(q,t)

)
≤ 1

2
(M+1)

(
u2
x(q,t)+π(ρ(q,t))2

)
+

1

2
g2(q,t).
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It follows by Gronwall’s inequality

u2
x(q(x,t),t)+π(ρ(q,t))2≤ e

∫ t
0
(M+1)dτ

(∫ t

0

g2(q,t)e−
∫ τ
0
(M+1)dsdτ+u2

0x(x)+π(ρ0(x))
2

)

≤ e(M+1)t

(∫ t

0

g2(q,t)e−(M+1)τdτ+u2
0x(x)+π(ρ0(x))

2

)
≤ ce(M+1)t,

for t∈ [0,T ) with positive constant c depending onM and the norm of initial value, this
constant may be different from instance to instance, changing even within the same line,
we still use this notation without mention in the following. Similar arguments made on
π(ρ)x yield

π(ρ(q))2x+u2
xx(q,t)≤ ce(4M+1)t.

This gives the bound (2.13).
Now we have

d

dt

∫
S

(
y2+y2x+π(ρ)2+π(ρ)2x+π(ρ)2xx

)
dx

≤ cM
∫
S

(
y2+y2x+π(ρ)2x+π(ρ)2xx

)
dx

+c

∫
S

(
u2
xxx+π(ρ)2+π(ρ)2x+π(ρ)2xx

)
dx

≤ c

∫
S

(
y2+y2x+π(ρ)2+π(ρ)2x+π(ρ)2xx

)
dx.

By Gronwall’s inequality, we get

||u||2H3 + ||π(ρ)||2H2 ≤||y||2H1 + ||π(ρ)||2H2

≤ ect
(||y0||2H1 + ||π(ρ0)||2H2

)
, ∀t∈ [0,T ), (2.14)

which is a contradiction of our assumption that T <∞ with the maximum time T of
existence.

On the other hand, due to the Sobolev embedding of H1 into L∞, we observe that
ux(x,t)→−∞ will lead to blow-up of solutions.

After the local well-posedness of strong solutions (see Theorem 2.1) is established,
a natural question is whether this local solution can exist globally. If the solution only
exists in finite time, what induces the blow-up? On the other hand, to find sufficient
conditions to guarantee the finite time singularities or global existence is of great interest,
especially for sufficient conditions added on certain initial value. The following results
will give positive answers.

3. Blow-up phenomena
In this section we pay more attention to the formation of singularities for strong

solutions to our system. The following theorems will show that wave breaking is the
one way that singularities arise in smooth solutions. Let us start this section with the
following useful lemmas.

Lemma 3.1. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . We assume T is the maximal existence time of the
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corresponding solution X=(u,π(ρ)) to (1.1) with initial data X0. Then we have the
following conservation laws

E1=

∫
S

(u2+u2
x+π(ρ)2)dx and E2=

∫
S

(u3+uu2
x+uπ(ρ)2)dx.

The proof is very similar to the one in [18] by energy method, we are not going to
repeat it here. The conservation of E1 guarantees the uniform bound of u(x,t), then
Theorem 2.3 is also interpreted as wave breaking.

Lemma 3.2 ( [44]). For all f ∈H1(S), the following inequality holds

G∗
(
f2+

f2
x

2

)
≥C0f

2(x),

with

C0=
1

2
+

arctan(sinh(1/2))

2sinh(1/2)+2arctan(sinh(1/2))sinh2(1/2)
≈0.869.

Moreover, C0 is the optimal constant obtained by the function

f0=
1+arctan(sinh(x− [x]−1/2))sinh(x− [x]−1/2)

1+arctan(sinh(1/2))sinh(1/2)
.

Lemma 3.3 ( [43]). For all f ∈H1(S), the following inequality holds

max
x∈[0,1]

f2(x)≤C1||f ||2H1(S),

where

C1=
e1/2+e−1/2

2(e1/2−e−1/2)
≈1.082.

Moreover, C1 is the minimum value, so in this sense, C1 is the optimal constant which
is obtained by the associated Green’s function

G(x)=
cosh(x− [x]−1/2)

2sinh(1/2)

Lemma 3.4 ( [43]). For any function f ∈H2(S), the following inequality holds

‖f(x)‖2L∞(S)≤
(∫

S

f(x)dx

)2

+‖f(x)‖2H1(S) .

Lemma 3.5 ( [45]). Assume f(x)∈Hs(S), s>2. If
∫
S
f(x)dx=0, then

||f(x)||2L∞(S)≤
1

12

∫
S

f2
x(x)dx,

∫
S

f2(x)dx≤ 1

12

∫
S

f2
x(x)dx,

and

∫
S

f2(x)f2
x(x)dx≤

1

12

(∫
S

f2
x(x)dx

)2

.
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We now state our result.

Theorem 3.6. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . Let T be the maximal existence time of solution X=
(u,π(ρ)) to system (1.1) with the initial data X0. If the following inequality holds∫

S

u3
x(x,0)dx<−M0,

where the constant M0=
√

2E1(0)κ, and κ is a constant which is determined later, then
the corresponding solution X blows up in finite time.

Proof. Differentiating the first equation in system (1.1) with respect to x, we
obtain

uxt+u2
x+uuxx+∂2

x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
=0. (3.1)

Applying the relation ∂2
xG∗f =G∗f−f to (3.1) gives

uxt+
1

2
u2
x+uuxx+G∗

(
u2+

1

2
u2
x+

1

2
π(ρ)2

)
−u2− 1

2
π(ρ)2=0. (3.2)

Multiplying (3.2) by u2
x and integrating by parts subsequently, we obtain

1

3

d

dt

∫
S

u3
xdx=−

∫
S

u2
x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
dx

−1

6

∫
S

u4
xdx+

∫
S

u2
x

(
u2+

1

2
π(ρ)2

)
dx

≤−1

6

∫
S

u4
xdx+

1

2

∫
S

u2
xu

2dx+
1

2

∫
S

u2
xπ(ρ)

2dx, (3.3)

where we have used the facts ∫
S

u2
x

(
G∗π(ρ)2)dx≥0,

G∗
(
u2+

1

2
u2
x

)
≥ 1

2
u2(x).

In the following, we estimate the three terms on the right-hand side of (3.3) one by one.
The Cauchy–Schwartz inequality implies that∣∣∣∣

∫
S

u3
xdx

∣∣∣∣≤
(∫

S

u4
xdx

)1/2(∫
S

u2
xdx

)1/2

,

hence ∣∣∣∣
∫
S

u4
xdx

∣∣∣∣≥ 1

E1(0)

(∫
S

u3
xdx

)2

. (3.4)

Using Lemma 3.3 and the invariant property of E1, we have∫
S

u2
xu

2dx≤‖u‖2L∞

∣∣∣∣
∫
S

u2
xdx

∣∣∣∣≤C1E
2
1(0). (3.5)
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Suppose the solution does not blow-up in finite time, it follows that there exists a
constant M∗>0 such that ux(x,t)>−M∗, and π(ρ) is bounded thanks to (2.12) by
some constant M1. Thus∣∣∣∣

∫
S

u2
xπ(ρ)

2dx

∣∣∣∣≤M2
1

∣∣∣∣
∫
S

u2
xdx

∣∣∣∣≤M2
1E1(0). (3.6)

By (3.4)–(3.6), we get

d

dt

∫
S

u3
xdx≤−

1

2

∫
S

u4
xdx+

3

2

∫
S

u2
xu

2dx+
3

2

∫
S

u2
xπ(ρ)

2dx

≤− 1

2E1(0)

(∫
S

u3
xdx

)2

+
3C1

2
E2

1(0)+
3

2
M2

1E1(0).

For convenience of notations, we denote by κ the quantity

3C1

2
E2

1(0)+
3

2
M2

1E1(0).

That is

d

dt

∫
S

u3
xdx≤−

1

2E1(0)

(∫
S

u3
xdx

)2

+κ. (3.7)

Note that if the initial quantity satisfies∫
S

u3
x(x,0)dx<−

√
2E1(0)κ,

then by (3.7) ∫
S

u3
x(x,t)dx<−

√
2E1(0)κ.

The standard argument on the Riccati type inequality and the initial hypothesis ensure
that there exists a finite time T , such that

lim
t→T

∫
S

u3
x(x,t)dx=−∞.

Since ∫
S

u3
xdx≥ infux(x,t)

∫
S

u2
xdx> infux(x,t)E1(0).

This implies that

lim
t→T

infux(x,t)=−∞.

Then it contradicts the assumption ux(x,t)>−M∗. By Theorem 2.3, we know that the
solution must blow up in finite time.

Remark 3.1. Compared with Theorem 3 in [18], we in the present case are able to
remove the restriction on the boundedness of the component ρ(x,t) in the condition due
to the inner structure of (1.1).
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Theorem 3.7. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R, s>
5/2, and X0=(u0,π(ρ0))∈U . Assume that there exists some suitable positive constant
κ1 such that the initial energy E1(0)>κ1 and u0 is not zero equivalently, satisfying∫

S

u0(x)dx=0.

Then the corresponding solution to initial data X0 of (1.1) blows up in finite time.

Proof. Differentiating both sides of the first equation of (2.1) with respect to
variable x, we obtain

uxt+u2
x+uuxx+∂2

x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
=0. (3.8)

Applying the relation ∂2
x (G∗f)=G∗f−f to (3.8), it follows that

uxt=−1

2
u2
x−uuxx−G∗

(
u2+

1

2
u2
x+

1

2
π(ρ)2

)
+u2+

1

2
π(ρ)2. (3.9)

Multiplying by u2
x on both sides of (3.9) and integrating by parts with respect to x, one

obtains

1

3

d

dt

∫
S

u3
xdx=−

1

6

∫
S

u4
xdx+

∫
S

u2u2
xdx+

1

2

∫
S

u2
xπ(ρ)

2dx

−
∫
S

u2
x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
dx,

where we have used the following identity∫
S

u2
xuuxxdx=−1

3

∫
S

u4
xdx.

Now it is easy to show that
∫
S
u(x,t)dx=0 in view of the hypothesis, and the following

inequality holds

1

2sinh(1/2)
≤G(x)≤ cosh(1/2)

2sinh(1/2)
, (3.10)

where

cosh(1/2)

2sinh(1/2)
≈1.082>1.

Using Lemma 3.5 and (3.10), we obtain

d

dt

∫
S

u3
xdx=−

1

2

∫
S

u4
xdx+3

∫
S

u2u2
xdx+

3

2

∫
S

u2
xπ(ρ)

2dx

−3
∫
S

u2
x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
dx

≤−1

2

∫
S

u4
xdx+

1

4

(∫
S

u2
xdx

)2

− 3

2

∫
S

u2
x

(
G∗u2

x

)
dx+

3

2

∫
S

u2
xπ(ρ)

2dx

≤−1

2

∫
S

u4
xdx+

(
1

4
− 3

4sinh(1/2)

)(∫
S

u2
xdx

)2

+
3

2

∫
S

u2
xπ(ρ)

2dx.
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From similar arguments to (3.6) in Theorem 3.6, we obtain that

d

dt

∫
S

u3
xdx≤−

1

2

∫
S

u4
xdx+

(
1

4
− 3

4sinh(1/2)

)(∫
S

u2
xdx

)2

+
3

2
M2

1E1(0).

Since E1(0)>κ1, there is some δ>0 such that

3

2
M2

1E1(0)≤ δ

(∫
S

u2
xdx

)2

.

and

3

4sinh(1/2)
− 1

4
−δ>0.

However, Lemma 3.5 also implies that∫
S

u2
x(x)dx≥

12

13
||u(x)||2H1(S).

We note that ||u(x)||2H1(S) is bounded. Hence

d

dt

∫
S

u3
xdx≤−

1

2

∫
S

u4
xdx−

144

169

(
3

4sinh(1/2)
− 1

4
−δ

)
||u||4H1(S),

On the other hand, in view of Hölder’s inequality, there holds

∫
S

u4
xdx≥

(∫
S

u3
xdx

) 4
3

.

For simplicity of notations, we denote by ϕ(t) and μ>0 the following quantities∫
S

u3
xdx and

144

169

(
3

4sinh(1/2)
− 1

4
−δ

)
,

respectively. Therefore we have

dϕ(t)

dt
≤−1

2
ϕ

4
3 (t)−μ||u||4H1(S).

First, since ϕ(t)≤ϕ(0)−μ||u||4H1(S)t, it is not difficult to find that there exists a time

t0 such that ϕ(t0)<0. Then for all t>t0, we have

dϕ(t)

dt
≤−1

2
ϕ

4
3 (t), with ϕ(t0)<0.

Solving this inequality yields

ϕ(t)≤
(
ϕ− 1

3 (t0)+
1

6
(t− t0)

)−3

,

which goes to −∞ as t tends to −6ϕ− 1
3 (t0)+ t0, i.e., there exists a time T ≤−6ϕ− 1

3 (t0)+
t0 such that

lim
t→T

∫
S

u3
xdx=−∞.
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Since ∫
S

u3
xdx≥ infux(x,t)

∫
S

u2
xdx≥ infux(x,t)||u||2H1(S),

which shows that

lim
t→T

inf
x∈S

ux(x,t)=−∞.

Then it contradicts the assumption ux(x,t)>−M∗. By Theorem 2.3, we know that the
solution must blow up in finite time. This finishes the proof.

As we know, different estimates will lead to different results for some partial dif-
ferential equation problems. So it is important to give different estimates for some
quantity. To be precise, we show

Theorem 3.8. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . Suppose the initial energy E1(0)>κ2 for some suitable
positive constant κ2, and u0 is not zero equivalently, satisfying∫

S

(
u3
0+u0u

2
0x+u0π(ρ0)

2
)
dx=0.

Then existence time of the corresponding solution to (1.1) is finite.

Proof. Since E2 is an invariant with respect to time, it is trivial to get∫
S

u
(
u2+u2

x+π(ρ)2
)
dx=

∫
S

(
u3+uu2

x+uπ(ρ)2
)
dx=0.

Consequently, u(x,t) must change its sign on S, so there must exist at least one zero
point. Then for t∈ [0,T ), suppose that there is a ξt∈ [0,1] such that u(ξt,t)=0. Now
we have

u2(x,t)=

(∫ x

ξt

uxdz

)2

≤ (x−ξt)

∫ x

ξt

u2
xdz, x∈ [ξt,ξt+ 1

2
]. (3.11)

Thus, the relation above and integration by parts give

∫ ξt+
1
2

ξt

u2u2
xdx≤

∫ ξt+
1
2

ξt

(x−ξt)

(∫ x

ξt

u2
xdz

)
u2
xdx

=

∫ ξt+
1
2

ξt

(x−ξt)

(∫ x

ξt

u2
xdz

)
d

(∫ x

ξt

u2
xdz

)

=
1

4

(∫ ξt+
1
2

ξt

u2
xdz

)2

− 1

2

∫ ξt+
1
2

ξt

(∫ x

ξt

u2
xdz

)2

dx

≤ 1

4

(∫ ξt+
1
2

ξt

u2
xdz

)2

.

Doing the similar estimate on [ξt+
1
2 ,ξt+1], we obtain

∫
S

u2u2
xdx≤

1

4

(∫
S

u2
xdx

)2

, (3.12)



Z. GUO, W. WANG, AND C. XU 529

and in view of (3.11) that

‖u(x,t)‖2L∞(S)≤
1

2

∫
S

u2
xdx. (3.13)

We observe that (3.12) and (3.13) actually provide two basic estimates instead of the
ones in Lemma 3.5, once the new estimates are prepared, it is possible to establish
different wave breaking criterion. There holds by similar steps as above that

d

dt

∫
S

u3
xdx=−

1

2

∫
S

u4
xdx+3

∫
S

u2u2
xdx+

3

2

∫
S

u2
xπ(ρ)

2dx

−3
∫
S

u2
x

(
G∗(u2+

1

2
u2
x+

1

2
π(ρ)2)

)
dx

≤−1

2

∫
S

u4
xdx+

(
3

4
− 3

4sinh(1/2)

)(∫
S

u2
xdx

)2

+
3

2

∫
S

u2
xπ(ρ)

2dx.

Similarly, there exists a constant δ�>0 such that

3

2
M2

1

∫
S

u2
xdx≤ δ�

(∫
S

u2
xdx

)2

,

and

3

4sinh(1/2)
− 3

4
−δ�>0,

where we used the same notation M1 as the bound of π(ρ). Notice that (3.13) implies∫
S

u2
xdx≥

2

3
‖u‖2H1(S) .

We still use the notation ϕ(t) as in the above theorem to derive

dϕ(t)

dt
≤−1

2

∫
S

u4
xdx+

1

9

(
3− 3

sinh(1/2)
+4δ�

)
‖u‖4H1(S)

≤−1

2
ϕ

4
3 (t)− 1

9

(
3

sinh(1/2)
−3−4δ�

)
‖u‖4H1(S) ,

where

3

sinh(1/2)
−3−4δ�>0, for some δ�>0.

The remaining part is very close to the proof of Theorem 3.7, we omit it.

Remark 3.2. Scrutinizing the whole proof of Theorem 3.8, we find that the condition
guarantees that u(x,t) has at least one zero point. So in this sense Theorem 3.8 is still
true once the condition is replaced by

∫
S
u0(x)dx=0 or

∫
S
y0(x)dx=0. We would also

like to point out that the condition in Theorem 3.7 can still lead to the inequalities
(3.12) and (3.13) where the crucial point is the existence of one zero point. However, we
cannot get any information from the condition of Theorem 3.7 on the quantity E2(0),
this implies that Theorem 3.8 and Theorem 3.7 are essentially different from each other.
On the other hand, Constantin and Ivanov [8] claimed that global solutions may exist
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provided that the initial E1 is small, while Theorem 3.7 and Theorem 3.8 actually give
an answer what would happen if initial E1 is larger.

Wave breaking may also occur while condition is added on the initial slope of u at
some point, we state some criteria as following.

Theorem 3.9. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . X=(u,π(ρ)) is the solution to system (1.1) with
initial data X0. If there is some point x0∈S such that

u′
0(x0)<−

√
2(1−C0)C1E1(0),

where the constants C0 and C1 are given in Lemma 3.2 and Lemma 3.3. Then the
solution X must blow up in finite time.

Proof. Differentiating the first equation in system (2.1) with respect to x, and
noticing that ∂2

xG∗f =G∗f−f , we have

uxt+u2
x+uuxx=u2+

1

2
u2
x+

1

2
π(ρ)2−G∗

(
u2+

1

2
u2
x+

1

2
π(ρ)2

)
.

This equation, in combination with (2.2), yields

d

dt
ux(q(x,t),t)=(uxt+uuxx)(q,t)

≤
(
−1

2
u2
x+(1−C0)u

2+
1

2
π(ρ)2

)
(q,t),

where we have used Lemma 3.2. Note that∫
S

π(ρ)dx=0.

We deduce that there exists at least one point x0 such that π(ρ(q(x0,t),t))=0 for
t∈ [0,T ). Let us consider this problem at (q(x0,t),t), and for sake of convenience, we
denote ux(q(x0,t),t)=m(t). Then we have

dm(t)

dt
≤−1

2
m2(t)+(1−C0)u

2

≤−1

2
m2(t)+(1−C0)C1E1(0). (3.14)

Using the notation 
=2(1−C0)C1E1(0), we have

dm(t)

dt
≤−1

2

(
m2(t)−


)
. (3.15)

In view of the initial condition, it is not difficult to obtain

dm(t)

dt
≤ δ−1

2
m2(t),

with 0<δ<1 determined by δm2(0)=
. Then, by using the standard arguments for
this type of inequality and our hypothesis, it is easy to conclude that the lifespan of the
solution is finite, i.e., blow-up phenomenon occurs.
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Theorem 3.10. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . If there holds that for some x0

u′
0(x0)<−

√
2(1−C0)K(0),

where C0 is the best constant given by Lemma 3.2 and

K(0)=

(∫
S

u0(x)dx

)2

+

∫
S

(
u2
0+u2

0x+π(ρ0)
2
)
dx.

Let T be the maximal existence time of the corresponding solution to (1.1) with the
initial data X0. Then T is finite.

Proof. This result differs the estimate on u(x,t) from Theorem 3.9. We easily
know that

∫
S
u(x,t)dx is also an invariant with respect to time. Thus Theorem 3.10 can

be proved by using Lemma 3.4 with

‖u(x)‖2L∞(S)≤
(∫

S

u(x)dx

)2

+‖u(x)‖2H1(S)<K(0)

in (3.14) instead of ‖u(x,t)‖2L∞(S)≤C1‖u(x,t)‖2H1(S)≤C1E1(0).

When we study the blow-up problems for differential equations, according to [23],
the basic questions includes when, where, and how. Theorems 3.6–3.10 give answers to
the first two questions. The following theorem answers one aspect of the third question,
the rate of blow-up. In the remaining part the deep phenomenon is examined while the
solution blows up in finite time.

Theorem 3.11. Let U be an open neighborhood containing (0, [0]) in Hs×Hs−1/R,
s>5/2, and X0=(u0,π(ρ0))∈U . X(x,t) is the corresponding solution. If there holds
the condition of Theorem 3.9, then we have the following description

lim
t→T

{(T − t)m(t)}=−2,

where m(t) is defined in Theorem 3.9.

Proof. The conclusion follows from the theory of ordinary differential equations
to inequality (3.15). Indeed, we have by (3.14)

dm(t)

dt
≤−1

2
m2(t)+(1−C0)u

2.

In view of Lemma 3.3 and the conservation of E1, there holds for all t∈ [0,T ) that∣∣∣∣dm(t)

dt
+

1

2
m2(t)

∣∣∣∣≤ 


2
.

It follows that

−


2
≤ dm(t)

dt
+

1

2
m2(t)≤ 


2
,i a.e. on (0,T ).

Since limt→T m(t)=−∞ by Theorem 3.9, it implies that for any ε∈ (0,1/2) there exists
a t0 such that m2(t)>
/2ε for all t∈ [t0,T ). Therefore,

−m2(t)ε≤ dm(t)

dt
+

1

2
m2(t)≤m2(t)ε,
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it follows that

−1

2
−ε≤ 1

m2(t)

dm(t)

dt
≤−1

2
+ε.

Direct integration from t to T gives

−1

2
−ε≤ 1

(T − t)m(t)
≤−1

2
+ε,

the arbitrariness of ε leads to our result.

Remark 3.3. The first investigation concerning the blow-up rate for the Camassa–
Holm equation can be found in [5], the authors have proved that the blow-up rate for
Camassa–Holm equation is −2. Actually, we find that the blow-up rate largely relies
on the coefficient of higher order term m2(t) in the present problem. Moreover, we can
summarize that for a class of nonlinear nonlocal evolution equations the blow-up rate is
a constant which is determined by the coefficients of the leading term u2

x(x,t) in some
sense when blow-up occurs. We also noticed that in [5] the blow-up set was studied, it
gave an answer to the second basic question, where blow-up occurs. However, in our
case the point q(x0,t) in Theorem 3.9 can be regarded as the blow-up set.

4. Conclusion and remarks
We presented in this work some new blow-up criteria where some special initial

data play very important role for a new π-CH2 system. Particularly, wave breaking
phenomenon was investigated via the associated conservation laws. The blow-up rate
has shown more insight into the wave breaking phenomenon. We remark here that
Theorem 3.9 and Theorem 3.10 are interesting and different themselves. Examples can
be given to show their applicability, the readers who are interested in it, please see [19]
for the details. However, there are still some interesting problems to be solved. We are
trying to establish some sufficient conditions added on the second component ρ(x,t) to
show wave breaking. Furthermore, the condition which guarantees the global existence
of solutions is worthy of being investigated. We are going to introduce a new method
to discuss it. As a matter of fact, we are also concerned about its application of our
method to other related models. We therefore hope these problems can be shown in the
forthcoming work.
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itary symmetries, Phys. D, 4(1), 47–66, 1981/82.

[15] Y. Fu, Y. Liu, and C. Qu, Well-posedness and blow-up solution for a modified two-component
periodic Camassa–Holm system with peakons, Math. Ann., 348, 415–448, 2010.

[16] G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component
Camassa–Holm system, J. Funct. Anal., 258, 4251–4278, 2010.

[17] Z. Guo, Asymptotic profiles of solutions to the two-component Camassa–Holm system, Nonlinear
Anal., 75, 1–6, 2012.

[18] Z. Guo and Y. Zhou, On solutions to a two-component generalized Camassa–Holm system, Stud.
Appl. Math., 124, 307–322, 2010.

[19] Z. Guo, Blow-up and global solutions to a new integrable model with two components, J. Math.
Anal. Appl., 372, 316–327, 2010.

[20] Z. Guo and M. Zhu, Wave breaking for a modified two-component Camassa–Holm system, J. Diff.
Eqs., 252, 2759–2770, 2012.

[21] Z. Guo and L. Ni, Persistence properties and unique continuation of solutions to a two-component
Camassa–Holm equation, Math. Phys. Anal. Geom., 14, 101–114, 2011.

[22] Z. Guo, M. Zhu, and L. Ni, Blow-up criteria of solutions to a modified two-component Camassa–
Holm system, Nonlinear Anal. Real World Appl., 12, 3531–3540, 2011.

[23] V. Galaktionov and J. Vazquez, The problem of blow-up in nonlinear parabolic equations, in:
Proceeding of the Conference on Current Developments in Partial Differential Equations,
Temuco 1999, Discrete Contin. Dyn. Syst., 8, 399–433, 2002.

[24] D. Hol and C. Tronci, Geodesic flows on semidirect-prodect Lie groups: geometry of singular
measure-valued solutions, Proc. R. Soc. A, 465, 457–476, 2009.

[25] D. Holm and R. Ivanov, Two-component CH system: inverse scattering, peakons and geometry,
Inverse Problems, 27(4), 2011.

[26] A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Diff.
Inter. Eqs., 14, 821–831, 2001.

[27] A. Himonas, G. Misiolek, G. Ponce, and Y. Zhou, Persistence properties and unique continuation
of solutions of the Camassa–Holm equation, Commun. Math. Phys., 271, 511–522, 2007.

[28] R.S. Johnson, Camassa–Holm, Korteweg-de vries and related models for water waves, J. Fluid
Mech., 455, 63–82, 2002.

[29] Z. Jiang, L. Ni, and Y. Zhou, Wave breaking for the Camassa–Holm equation, J. Nonlinear Sci.,
22, 235–245, 2012.

[30] M. Kohlmann, On a two-component π-Camassa–Holm system, J. Geom. Phys., 62, 832–838, 2012.
[31] Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive

model wave equation, J. Diff. Eqs., 162, 27–63, 2000.
[32] H.P. McKean, Breakdown of a shallow water equation, Asian J. Math., 2, 767–774, 1998.
[33] O.G. Mustafa, On smooth traveling waves of an integrable two-component Camassa–Holm shallow

water system, Wave Motion, 46, 397–402, 2009.
[34] G. Misiolek, Classical solutions of the periodic Camassa–Holm equation, Geom. Funct. Anal., 12,

1080–1104, 2002.
[35] L. Molinet, On well-posedness results for Camassa–Holm equation on the line: a survey, J.

Nonlinear Math. Phys., 11, 521–533, 2004.
[36] L. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa–Holm equation, Proc.

Amer. Math. Soc., 140, 607–614, 2012.
[37] P.J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions

having compact support, Phys. Rev. E, 53, 1900–1906, 1996.
[38] Z. Popowicz, A 2-component or N =2 supersymmetric Camassa–Holm equation , Phys. Lett. A,

354, 110–114, 2006.
[39] W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component

Camassa–Holm equation, J. Funct. Anal., 261, 1204–1226, 2011.
[40] Z. Xin and P. Zhang, On the weak solution to a shallow water equation, Commun. Pure Appl.



534 CAMASSA–HOLM SYSTEM WITH ONE MEAN ZERO COMPONENT

Math., 53, 1411–1433, 2000.
[41] M.W. Yuen, Self-similar blowup solutions to the 2-component Camassa–Holm equations, J. Math.

Phys., 51, 093524, 2010.
[42] Y. Zhou, Wave breaking for a shallow water equation, Nonlinear Anal., 57, 137–152, 2004.
[43] Y. Zhou, Wave breaking for a periodic shallow water equation, J. Math. Anal. Appl., 290, 591–604,

2004.
[44] Y. Zhou, Blow-up of solutions to a nonlinear dispersive rod equation, Calc. Var. Part. Diff. Eqs.,

25, 63–77, 2005.
[45] Y. Zhou and Z. Guo, Blow up and propagation speed of solutions to the DGH equation, Discrete

Contin. Dyn. Syst. Ser. B, 12, 657–670, 2009.
[46] P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-

component Camassa–Holm system, Int. Math. Res. Not., 11, 1981–2021, 2010.


