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A FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD
WITH IMPROVED CONTROL OVER THE MODELING ERROR∗

DOGHONAY ARJMAND† AND CHRISTIAN STOHRER‡

Abstract. Multiscale partial differential equations (PDEs) are difficult to solve by traditional
numerical methods due to the need to resolve the small wavelengths in the media over the entire
computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method
(FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic,
and hyperbolic type. Typical multiscale methods require a coupling between a micro and a macro
model. Inspired from the homogenization theory, traditional FE-HMM schemes use elliptic PDEs as
the micro model. We use, however, the second order wave equation as our micro model independent
of the type of the problem on the macro level. This allows us to control the modeling error originating
from the coupling between the different scales. In a spatially fully discrete a priori error analysis we
prove that the modeling error can be made arbitrarily small for periodic media, even if we do not
know the exact period of the oscillations in the media. We provide numerical examples in one and two
dimensions confirming the theoretical results. Further examples show that the method captures the
effective solutions in general non-periodic settings as well.

Key words. Multiscale method, homogenization, partial differential equations, modeling error.

AMS subject classifications. 35B27, 35J15, 65M60, 65N30, 74Q10, 74Q15.

1. Introduction

Various physical phenomena in the universe have multiscale/multiphysics nature.
In general, attacking these kind of problems poses a considerable difficulty due to the
interaction of different scales in the problem. While the smallest scales in the problem
contribute to the average behavior of the overall system, the quantity of interest—the
average part of the multiscale solution—varies on a larger scale only. Nevertheless,
using a coarse resolution in a naive way leads to significant errors. On the other hand,
resolving all the scales in the problem through the entire computational domain can be
prohibitively expensive if the size of the fluctuations in the model parameters are much
smaller than the characteristic length of the domain. Therefore, the trend has been to
develop multiscale methods which couple the mathematical models in different scales in
a clever way and thereby lead to a lower computational cost, see [14] and the references
therein.

In this work, we develop and analyze a multiscale method, within the framework of
Heterogeneous Multiscale Methods (HMM). This framework was introduced by E and
Engquist [15] to treat problems with multiscale nature. In the last decade multiscale
schemes based on HMM principles have been successfully applied to a variety of different
multiscale problems [3,16]. Here, we propose a novel HMM scheme, which approximates
the effective solutions of multiscale problems modeled by linear elliptic, parabolic, and
hyperbolic partial differential equations (PDEs). We assume that the multiscale nature
of the problem is only due to the heterogeneities in the medium, e.g., in the elliptic case
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we consider the model problem⎧⎨
⎩
Find uε∈H1

0 (Ω), such that∫
Ω

aε(x)∇uε ·∇vdx=

∫
Fvdx ∀v∈H1

0 (Ω).

Here the properties of the medium is represented by the coefficient aε, where ε is the
length of its fastest oscillations and thus stands for the size of the smallest scale in the
problem. We will introduce the precise mathematical settings of our model problems
in the next section. As ε gets smaller, a direct numerical simulation of such a problem
becomes expensive. On the contrary, the solution uε converges to the solution of an
effective problem, known as the homogenized problem, which has no dependency on
the small scale parameter. This is a well known result from homogenization theory
(see [10, 13,21]). Nevertheless, explicit formulas for the homogenized equation are only
available under certain restrictive assumptions such as periodicity of the media. Our
motivation in this paper is to develop a method with targeting three main goals. First,
the method should not assume any restrictive assumptions such as periodicity. The only
assumption, other than classical well-posedness requirements, is that the scales involved
in the problem should be well separated. Second, the method should approximate the
homogenized solution up to high orders whenever homogenization is applicable, e.g. in
periodic media. Lastly, the method should be far cheaper than the traditional methods.

The principal idea of HMM is to solve an incomplete macro problem with a standard
numerical scheme. The missing data to solve the problem are computed on the fly by
solving micro problems constrained by the macro state. Since the micro problems are
computed on small sampling domains not covering the entire computational domain
HMM schemes become feasible in terms of computational costs. Moreover, since the
micro problems are independent of each other they could be solved in parallel reducing
the computational time even further. Following this idea one has to choose two solvers,
one for the solution of the macro problem and one for the micro problem. Using twice
a finite element method is a common choice, leading to so called FE-HMM schemes.

The FE-HMM scheme proposed in [1,17] for the elliptic, in [6,23] for the parabolic,
and in [4,5] for the hyperbolic problem, use elliptic micro problems to compute the FE-
HMM bilinear form. At first, it might be surprising, that the same micro problem is used
in all three cases. Homogenization theory gives a profound explanation thereof. Since
only the elliptic part of all three second order partial differential equations displays
a multiscale behavior, the homogenized tensor remains the same for all three cases.
The a priori error analysis of these FE-HMM schemes relies on Strang-type lemmas
for nonconforming FEMs and the decomposition of the overall error into a macro, a
micro, and a modeling error. The former two errors can be controlled by choosing
appropriate meshsizes. However, in a general non-periodic setting, or if the true period
of a material is unknown a non-negligible modeling error arises mainly caused by the
artificial boundary conditions for the micro problems [26].

On the contrary, by the physical intuition it is natural to have the same type of
problems in the macro and the micro levels. For instance, Engquist, Holst, and Runborg
proposed in [18, 19] a FD-HMM scheme for the wave equation with a hyperbolic micro
problem, instead of the elliptic one. Later the idea of using the wave equation as the
micro model was applied to FD-HMM scheme for elliptic problems [7]. The motivation
behind this strategy is to remove the boundary error which originates from the artificial
boundary condition posed on the micro problem. Due to the finite speed of propagation
of waves, the error on the boundary does not influence the interior solution if the
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micro domain is large enough. However, when formulated in a finite element setting,
this method does not lead immediately to a symmetric bilinear form, which makes the
complete convergence analysis hard to carry through [25, Section 5.5].

Inspired by this FD-HMM scheme, we propose and analyze here a FE-HMM, which
uses hyperbolic micro problems. Therefore, it does not suffer from the artificial bound-
ary error in the micro problem due to the finite speed of propagation of the microscopic
solutions. Moreover, the method leads to a symmetric bilinear form. Hence, it is
amenable to a rigorous mathematical study. Similar as for the standard FE-HMM our
new scheme can be used to approximate the homogenized solutions of elliptic, parabolic,
and hyperbolic equations, without needing to precompute the homogenized coefficients,
nor to resolve the microscopic scale underlying media. In addition, the method does not
assume any precise knowledge about the wavelength of the fluctuations in the media.
To validate the reliability of our method, we consider a rather academic case of purely
periodic media and we prove that the solution of the proposed method converges to the
homogenized solution up to arbitrary order in terms of ε/η, where η is the size of the
micro domain. Furthermore, we provide numerical results to support the theoretical
arguments.

The discussion in this paper is organized as follows. In Section 2 we introduce the
precise mathematical settings we are interested in. The multiscale method is presented
in Section 3. Section 4 contains our main statements. The main result is Theorem 4.7
in which we prove that our method improves the modeling error up to arbitrary rates
in ε/η. Moreover, we use this theorem to estimate the difference between the FE-HMM
and the homogenized solutions. The last section is devoted to the numerical study of
the method. We consider problems in one and two dimensions showing that the effective
parameters are well-captured.

2. Model problems
Let Ω be a bounded Lipschitz domain in R

d, 1≤d≤3. For simplicity we assume
that Ω can be covered exactly with simplicial or quadrilateral elements. We consider
three classical model problems for second order partial differential equation in their
variational form and equipped with homogeneous Dirichlet boundary conditions. Note
that the choice for this type of boundary condition is only for the ease of presentation.
Yet, other boundary conditions could be used as well with no conceptual changes in the
multiscale method. Hence, we consider the elliptic problem{

Find uε∈H1
0 (Ω), such that

Bε(uε,v)=(F,v) ∀v∈H1
0 (Ω),

(2.1)

the heat equation⎧⎪⎨
⎪⎩
Find uε : [0,T ]→H1

0 (Ω), such that

(∂tu
ε(t),v)+Bε(uε(t),v)=(F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

uε(0)=f in Ω,

(2.2)

and the wave equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Find uε : [0,T ]→H1

0 (Ω), such that

(∂ttu
ε(t),v)+Bε(uε(t),v)=(F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

uε(0)=f in Ω,

∂tu
ε(0)=g in Ω.

(2.3)
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Here (·, ·) denotes the standard L2-inner product over Ω and the bilinear form Bε is
given by

Bε(v,w)=

∫
Ω

aε(x)∇v(x) ·∇w(x)dx, ∀v,w∈H1
0 (Ω).

We also assume that aε∈L∞(Ω;Rd×d) is symmetric, uniformly elliptic and bounded,
i.e., there exist 0<α≤β, such that for all ξ∈R

d and for all ε>0

α |ξ|2≤aε(x)ξ ·ξ≤β |ξ|2 . (2.4)

Hence the bilinear form Bε is symmetric, uniformly elliptic and bounded on H1
0 (Ω).

Note that the coefficient aε is assumed to be time independent and our theoretical
results for the parabolic and hyperbolic problems, (2) and (2), do not apply directly
to general time dependent coefficients. Furthermore, we make the following standard
regularity assumptions:

for the elliptic problem (2): F ∈L2(Ω)

for the heat equation (2): F ∈L2(0,T ;L2(Ω)), f ∈L2(Ω)

for the wave equation (2): F ∈L2(0,T ;L2(Ω)), f ∈H1
0 (Ω), g∈L2(Ω).

It is well known, that under these assumptions (2), (2), and (2) have each a unique
(weak) solution in the appropriate functional spaces.

2.1. Homogenization theory. By classical results in homogenization theory
the solutions of all three model problem converge to a homogenized solution u0 as ε→0.
These limits solve the so-called homogenized problems, given by{

Find u0∈H1
0 (Ω), such that

B0(u0,v)=(F,v) ∀v∈H1
0 (Ω),

(2.5)

for the elliptic problem (2),⎧⎪⎨
⎪⎩
Find u0 : [0,T ]→H1

0 (Ω), such that(
∂tu

0(t),v
)
+B0(u0(t),v)=(F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

u0(0)=f in Ω,

(2.6)

for the heat equation (2.1), and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find u0 : [0,T ]→H1
0 (Ω), such that(

∂ttu
0(t),v

)
+B0(u0(t),v)=(F (t),v) ∀v∈H1

0 (Ω), 0<t<T,

u0(0)=f in Ω,

∂tu
0(0)=g in Ω.

(2.7)

for the wave equation (2). In brief summary: The variational formulations of the
homogenized equations of all three model are given by replacing the bilinear form Bε

with the homogenized bilinear form B0 defined as

B0(v,w)=

∫
Ω

a0(x)∇v(x) ·∇w(x)dx ∀v,w∈H1
0 (Ω).
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Here a0 is the standard homogenized matrix, which is also symmetric and satisfies
(2). We recall that in the periodic case, i.e. aε(x)=a(x/ε), where a is Y -periodic and
Y =[0,1]d the d-dimensional unit cube, the homogenized matrix is constant and given
by

a0i,j =

∫
Y

a(x)(ej+∇χj(x)) ·eidx, (2.8)

where ei denotes the i-th canonical basis vector of Rd and χi solves the cell problem∫
Y

a(x)∇χi(x) ·∇z(x)dx=−
∫
Y

a(x)ei ·∇z(x)dx, ∀z(x)∈W 1
per(Y ). (2.9)

The proofs of the above statements and further details about homogenization can be
found in, e.g., [10, 13].

3. Multiscale method
Like standard FE-HMM our scheme is a non-conforming FEM on a coarse (macro-

scopic) mesh. On the macroscopic level there are no essential changes compared with
the former FE-HMM schemes. However, on the microscopic level, the use of a hyperbolic
micro problem to estimate the effective bilinear form is a novel approach.

First of all we introduce the notation we will use. Let TH be a triangulation of Ω
into either simplicial or quadrilateral elements K. We assume that all elements K ∈TH
are affine equivalent to a reference element K̂. The affine mapping from K̂ to K is
denoted by FK . We denote the macro finite element spaces by

S�(Ω,TH)=
{
vH ∈H1(Ω) :vH |K ∈R�(K),∀K ∈TH

}
and S�

0(Ω,TH)=S�(Ω,TH)∩H1
0 (Ω), where R�(K)=P�(K), the space of polynomials of

degree 	 if K is a simplex, or R�(K)=Q�(K), the space of polynomials of maximal
degree 	 if K is a parallelogram.

Furthermore, we choose a quadrature formula (x̂j ,ω̂j)
J
j=1 on K̂, where x̂j and ω̂j

denote the quadrature nodes and weights, respectively. To preserve the order of conver-
gence we impose the following classical assumptions on the quadrature formula, cf. [12]

ω̂j >0 ∀j∈{1,2, . . . ,J},
J∑

j=1

ω̂j |∇p̂(x̂j)|2≥ λ̂‖∇p̂‖L2(K̂) ∀p̂(x̂)∈R�(K̂) with λ̂>0,

∫
K̂

p̂(x̂)dx̂=

J∑
j=1

ω̂j p̂(x̂j) ∀p̂(x̂)∈R�̃, (3.1)

where 	̃=max(2	−2,	) if K̂ is a simplicial finite element, or 	̃=max(2	−1,	+1) if K̂
is a rectangular finite element. For each K ∈TH let (xK,j ,ωK,j) denote the appropriate
quadrature formula on K given by xK,j =FK(x̂j) and ωK,j = |detDFK |ω̂j .

To achieve an arbitrary high order for the modeling error, we will use averaging
kernels. These kernels were first used in the HMM context to solve highly oscillatory
ordinary differential equations (see [20]). Later they were used in the FD-HMM schemes
described in [7,19]. We recall the definition of the kernel space from [7]. A function lies
in the Kernel space K

p,q, if

k(q+1)∈BV (R), suppk⊂ [−1,1], and

∫
R

k(x)xrdx=

{
1, r=0,

0, 1≤ r≤p.
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The simplest averaging corresponds to a constant kernel, i.e., k= 1/2 in [−1,1]. In this
case q=−1.

In this work we assume that all the kernels are symmetric, i.e. k(x)=k(−x) for all
x∈R. Note that this assumption is only used for the error analysis. The algorithm
itself works also for nonsymmetric kernels. We will use scaled kernels given by kη(x)=
η−1k(x/η) for η>0 with support [−η,η]. Furthermore, for a d-dimensional setting we
use the same notation to mean

kη(x)=η−dk
(x1

η

)
k
(x2

η

)
· · ·k
(xd

η

)
.

As described in the introduction a FE-HMM scheme consists of a macro and a
micro solver. Since the macro solver does not differ very much from the macro solver
of standard FE-HMM, we will only discuss it briefly in the following subsection.

3.1. Macrosolver. The FE-HMM schemes are given for the elliptic problem
(2) by {

Find uH ∈S�
0(Ω,TH) such that

BH(uH ,vH)=(F,vH) for all vH ∈S�
0(Ω,TH),

(3.2)

for the heat equation (2) by⎧⎪⎨
⎪⎩
Find uH : [0,T ]→S�

0(Ω,TH) such that

(∂tuH ,vH)+BH(uH ,vH)=(F,vH) for all vH ∈S�
0(Ω,TH), 0<t<T,

uH(0)=fH in Ω,

(3.3)

and for the wave equation (2) by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find uH : [0,T ]→S�
0(Ω,TH) such that

(∂ttuH ,vH)+BH(uH ,vH)=(F,vH) for all vH ∈S�
0(Ω,TH), 0<t<T,

uH(0)=fH in Ω,

∂tuH(0)=gH in Ω,

(3.4)

where the bilinear form is defined as

BH(vH ,wH)=
∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇v̄h(x) ·∇w̄h(x)dx.

The summation goes over all K ∈TH and 1≤ j≤J . By v̄h and w̄h we denote the average
of the micro solution vh and wh over the sampling time interval [−τ,τ ], i.e.

v̄h(x)=

∫ τ

−τ

kτ (t)vh(t,x)dt, (3.5)

with the obvious changes for w̄h. The micro solutions vh and wh defined on Iδ =(−δ,δ)d

are specified in the next section. Furthermore, kτ and kη are scaled averaging kernels
of a kernel k∈K

p,q.

3.2. Micro solver and hyperbolic micro problem. For the micro problem
we consider the FE space

Ss(Iδ,Th)={zh∈W (Iδ) :zh|Q∈R(Q),∀Q∈Th} ,
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where for a periodic coupling W (Iδ)=W 1
per(Iδ), and for a Dirichlet coupling W (Iδ)=

H1
0 (Iδ). Furthermore, we use the suggestive notation vh∈vH,lin+Ss(Iδ,Th) to denote

that vh−vH,lin∈Ss(Iδ,Th).
The hyperbolic micro problem reads as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find vh : [−τ,τ ]→vH,lin+Ss(Iδ,Th) such that

(∂ttvh,zh)+

∫
Iδ

aε(xK,j+x)∇vh(x) ·∇zh(x)dx=0

for all zh∈Ss(Iδ,Th),−τ ≤ t≤ τ,

vh(0)=vH,lin(x) and ∂tvh(0)=0 in Iδ,

where vH,lin(x)=vH(xK,j)+∇vH(xK,j) ·x. From the definition it is clear that vh and
thus v̄h depend on K and j. For the ease of reading we do not reflect this dependence
in the notation. Note that we center the sampling domain for every quadrature node
xK,j at the origin. This shift is taken into account be evaluating aε at xK,j+x. Using
sampling domains centered at xK,j is also possible and would lead to an equivalent
scheme. Our choice, however, simplifies the subsequent analysis a little, since fewer
shifts are needed.

We would like to emphasize again that the use of a hyperbolic micro problem is the
crucial difference between the FE-HMM we propose and the former FE-HMM that uses
an elliptic micro problem instead. Since the wave equation and its FEM approximation
provide a finite speed of propagation, the influence of the boundary condition vanishes
by choosing δ such that no information may travel from boundary into the averaging
domain [−η,η]d. Hence, the choice of the boundary condition has only a minor relevance
compared with standard FE-HMM, see [26]. The convergence results in the next section
hold for periodic and for Dirichlet coupling condition as well.

4. Error analysis

The analysis of FE-HMM schemes relies in a decomposition of the overall error
into a macro, a micro, and a modeling error. For this decomposition we introduce two
additional bilinear forms. Firstly, the discretized homogenized bilinear form is given by

B0
H(vH ,wH)=

∑
K∈TH

J∑
j=1

ωK,ja
0(xK,j)∇vH(xK,j) ·∇wH(xK,j). (4.1)

This corresponds to a classical FEM approximation of the homogenized equation with
numerical quadrature. However, since the homogenized tensor a0 is usually not known
a priori we can not use it in an actual computation. Note that in addition we compute
neither a0 nor B0 with our FE-HMM scheme. They are used only for the error analysis.
Secondly, the semidiscrete FE-HMM formulation is given by

B̃H(vH ,wH)=
∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇v̄(x) ·∇w̄(x)dx, (4.2)

where v̄ and w̄ are the time averages of the solutions of the non-discretized counterpart
of the micro problem. In more detail, we have

v̄(x)=

∫ τ

−τ

kτ (t)v(t,x)dt, (4.3)
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where v solves ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find v : [−τ,τ ]→vH,lin+W (Iδ) such that

(∂ttv,z)+

∫
Iδ

aε(xK,j+x)∇v ·∇zdx=0

for all z∈W (Iδ),−τ ≤ t≤ τ,

v(0)=vH,lin(x) and ∂tv(0)=0 in Iδ.

(4.4)

Clearly, w̄ is defined accordingly. Again, due to the finite speed of propagation the
boundary condition does not influence B̃H if δ is chosen sufficiently large compared to
η and τ . By sufficiently large, we mean that

δ≥η+τ
√
β, (4.5)

where β is the boundedness constant of aε, see (2). Due to the finite speed of propagation
of waves, the solution inside the region Iη×(−τ,τ) where the local averaging takes place,
will not be affected by the boundary conditions imposed on the boundary of Iδ if (4)
holds. In this case, the micro problem (4) can be replaced by the following infinite
domain problem without any influence on B̃H .⎧⎪⎨

⎪⎩
∂ttv(t,x)=∇·(aε(x)∇v(t,x)) in R

d,−τ ≤ t≤ τ

v(0,x)=vH,lin(x) in R
d,

∂tv(0,x)=0 in R
d.

(4.6)

This formulation simplifies the error analysis below, since we do no longer have to deal
with boundary conditions for the micro problem.

By u0
H we denote the FEM approximation of the analytically homogenized problem

and by ũH the solution of the semidiscrete FE-HMM. To be more precise, u0
H is the

solution to (3.1), (3.1), or (3.1), where BH is replaced with B0
H , and ũH is the solution

of the corresponding equations, where BH is replaced with B̃H . The convergence proof
of the FE-HMM can now be outlined as follows.

Due to the triangle inequality we have∥∥u0−uH

∥∥≤∥∥u0−u0
H

∥∥︸ ︷︷ ︸
=eMAC

+
∥∥u0

H − ũH

∥∥︸ ︷︷ ︸
=eMOD

+‖ũH −uH‖︸ ︷︷ ︸
=eMIC

, (4.7)

The macro error eMAC can be bounded using standard convergence results for FEM
with numerical integration. However, to estimate the modeling error eMOD and the
micro error eMIC we use Strang-type lemmas.

4.1. Strang-type lemmas. Strang-type lemmas were originally considered
to handle nonconforming FEM arising by the use of quadrature formulas to evaluate
integrals in standard FEM; see [9, 11, 24]. While the elliptic version can be considered
as a classical result, generalized versions for the heat and the wave equation were only
proven recently. Here we summarize these results in a unified setting.

For the following three Strang-type lemmas let V be a closed subset of H1
0 (Ω) and

f,g∈V be given as above. We assume that the two bilinear forms B1 and B2 on V are
coercive and bounded, i.e., there are 0<α̃≤ β̃ such that

α̃‖v‖2H1(Ω)≤Bi(v,v) and |Bi(v,w)|≤ β̃‖v‖H1(Ω)‖w‖H1(Ω) ,
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for i=1,2 and for all v,w∈V . Furthermore, we introduce the difference over V between
two bilinear forms given by

dV (B1,B2)= sup
v,w∈V \{0}

|B1(v,w)−B2(v,w)|
‖v‖H1(Ω)‖w‖H1(Ω)

.

The classical elliptic Strang-type lemma can now be written as follows.

Lemma 4.1. Let F ∈L2(Ω) and u1, u2 be the unique solutions of{
Find u1∈V , such that

B1(u1,v)=(F,v) ∀v∈V,

and {
Find u2∈V , such that

B2(u2,v)=(F,v) ∀v∈V.

Assume that ui∈H1(Ω) for i=1,2. Then

‖u1−u2‖H1(Ω)≤CdV (B1,B2),

where C depends on ‖ui‖H1(Ω), but is independent of dV (B1,B2).

The version of the Strang-type lemma for the heat equation in [6] is more general,
since the bilinear form may also depend on time. Here we simplify the result by only
considering time-independent coefficients aε, i.e., bilinear forms that are constant in
time.

Lemma 4.2. For given T >0 let F ∈L2(0,T ;L2(Ω)) and u1, u2 be the unique solutions
of ⎧⎪⎨

⎪⎩
Find u1 : [0,T ]→V , such that

(∂tu1(t),v)+B1(u1(t),v)=(F (t),v) ∀v∈V Ω, 0<t<T,

u1(0)=f in Ω,

and ⎧⎪⎨
⎪⎩
Find u2 : [0,T ]→V , such that

(∂tu2(t),v)+B2(u2(t),v)=(F (t),v) ∀v∈V Ω, 0<t<T,

u2(0)=f in Ω.

Assume that ∂k
t ui∈L2(0,T ;H1(Ω)) for k=0,1 and i=1,2. Then

‖u1−u2‖L∞(0,T ;H1(Ω))≤CdV (B1,B2).

where C depends on
∥∥∂k

t ui

∥∥
L2(0,T ;H1(Ω))

, k=0,1, but is independent of dV (B1,B2).

For the wave equation we finally have the following version from [4].

Lemma 4.3. For given T >0 let F,∂tF ∈L2(0,T ;L2(Ω)) and u1, u2 be the unique solu-
tions of ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Find u1 : [0,T ]→V , such that

(∂ttu1(t),v)+B1(u1(t),v)=(F (t),v) ∀v∈V Ω, 0<t<T,

u1(0)=f in Ω,

∂tu1(0)=g in Ω,
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and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Find u2 : [0,T ]→V , such that

(∂ttu2(t),v)+B2(u2(t),v)=(F (t),v) ∀v∈V Ω, 0<t<T,

u2(0)=f in Ω,

∂tu2(0)=g in Ω.

Assume that ∂k
t ui∈L2(0,T ;H1(Ω)) for k=0,1,2 and i=1,2. Then

‖∂t(u1−u2)‖L∞(0,T ;L2(Ω))+‖u1−u2‖L∞(0,T ;H1(Ω))≤CdV (B1,B2),

where C depends on
∥∥∂k

t ui

∥∥
L2(0,T ;H1(Ω))

, k=0,1,2, but is independent of dV (B1,B2).

Combining these lemmas with (4) we get∥∥u0−uH

∥∥≤∥∥u0−u0
H

∥∥︸ ︷︷ ︸
=eMAC

+CdV (B
0
H ,B̃H)︸ ︷︷ ︸

=eMOD

+CdV (B̃H ,BH)︸ ︷︷ ︸
=eMIC

,

where ‖·‖ denotes the norm specified in the lemmas 4.1, respectively 4.2 or 4.3. More-
over, the space V equals here the macro FE space S�(Ω,TH). The remaining principal
task is now to bound the differences between the bilinear forms. However, since BH

relies on averaging kernels, we will first recall some of their useful properties.

4.2. Averaging kernels. The computation of the bilinear form in FE-HMM
involves averaging a highly oscillatory function over the microscopic domain Iδ. For
a fixed oscillation length ε, the high frequencies of the oscillatory function is filtered
out by using an averaging operator. The use of general averaging kernels allows us to
achieve high order convergence rates in terms of ε/η, where η<δ represents the size of
the support of the kernel. Now we present a lemma, namely [8, Lemma 2.3], which
shows that this averaging can be made as accurate as we like. Here we cite it in a
simplified version adapted to our setting.

Lemma 4.4. Let ϕ be a 1-periodic continuous function and denote its average over one

period by ϕ=
∫ 1

0
ϕ(t)dt. Then we have for k∈K

p,q

∣∣∣∣
∫
R

kη(t)ϕ
( t
ε

)
dt−ϕ

∣∣∣∣≤C ‖ϕ‖L∞(R)

(
ε

η

)q+2

,

where the constant C does not depend on ε, η, ϕ.

Later in the analysis we need to apply the averaging operator to functions in many
dimensions. Later in the analysis we will use the corollary, which generalizes Lemma
4.4 to higher dimensions. The result follows by a simple induction over the dimension
d.

Corollary 4.5. Let Φ be a Y -periodic continuous function and denote its average
over one period by Φ=

∫
Y
Φ(x)dx. Then, we have for k∈K

p,q

∫
Rd

kη(x)Φ
(x
ε

)
dx=Φ+γ

( ε
η

)q+2

,

where |γ|≤C ‖Φ‖L∞(Rd) and C is independent of ε, η, and Φ.
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To compute the FE-HMM bilinear form BH , we need the local time average of the
solution of a second order wave equation in the sampling domain Iδ. In [8, Lemma
2.3, Theorem 4.1], the authors proved that the time averages of solutions of second
order wave equations with periodic coefficients solve PDEs of elliptic type. The right-
hand side of the resulting elliptic PDE converges to the time average of the right-hand
side of the hyperbolic PDE with O(ε/τ)q convergence rate. Here, we provide a lemma
which improves the convergence rate to O(ε/τ)q+2 when the right-hand side of the wave
equation is time-independent.

Lemma 4.6. Assume that a∈ (C∞(Rd))d×d is Y -periodic, symmetric, and uniformly
elliptic and bounded (cf. (2)). Furthermore let Φ∈C∞(Rd) be a Y -periodic function
with Φ=0, k∈K

p,q with an even q, and w the solution of the problem⎧⎪⎨
⎪⎩
∂ttw(t,x)=∇·(a(x)∇w(t,x))+Φ(x), for x∈R

d,t>0

w(0,x)=0, for x∈R
d

∂tw(0,x)=0, for x∈R
d.

Let the local time average w̄ be defined as

w̄(x) :=

∫
R

kτ (t)w
( t
ε
,x
)
dt.

Then for 0<ε≤ τ the local time average w̄ satisfies

∇·(a(x)∇w̄(x))=−Φ(x)+
( ε
τ

)q+2

R(x), (4.8)

where R is Y -periodic with zero average, i.e. R̄=0, and

‖R‖H1(Y )≤C ‖Φ‖L2(Y ) . (4.9)

Proof. We represent by {λ2
j ,ϕj} the eigenvalue and eigenvector pair of the op-

erator L :=−∇·(a∇). The eigenvalues are strictly positive except for λ2
0=0, and the

eigenvectors {ϕj}∞j=0 are smooth periodic functions such that

ϕ̄j =

{
1, j=0

0, j >0.

Moreover, the eigenfunctions form an orthonormal basis for the periodic functions in
L2(Y ) (see [22]). Now, we start with an eigenfunction expansion of the terms w(t,x)
and Φ(x). Since a and Φ are periodic, w will also be periodic. Furthermore, by the zero
initial data of w we conclude that w(t, ·)=0. Hence,

w(t,x)=

∞∑
j=1

wj(t)ϕj(x), Φ(x)=

∞∑
j=1

φjϕj(x).

We use the orthogonality of the eigenvectors and put the above expressions into the
wave equation. This gives {

w′′
j (t)+λ2

jwj(t)=φj ,

wj(0)=w′
j(0)=0.
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Since φj is a constant, we can write the solution wj explicitly as

wj(t)=
φj

λ2
j

(1−cos(λjt)) .

Now we define

cj :=
( ε
τ

)−q−2
∫
R

κτ (t)cos
(λjt

ε

)
dt.

Then

w̄(x)=

∞∑
j=1

φj

λ2
j

ϕj(x)−
( ε
τ

)q+2 ∞∑
j=1

φj

λ2
j

cjϕj(x),

and

L[w̄](x)=

∞∑
j=1

φj

λ2
j

L[ϕj ](x)−
( ε
τ

)q+2

L

⎡
⎣ ∞∑
j=1

φj

λ2
j

cjϕj

⎤
⎦(x)

=

∞∑
j=1

φjϕj(x)+
( ε
τ

)q+2

R(x)=Φ(x)+
( ε
τ

)q+2

R(x),

where

R(x)=L

⎡
⎣ ∞∑
j=1

φj

λ2
j

cjϕj

⎤
⎦(x).

To get an H1 estimate of R, we use the fact that q is even and apply the operator Lq/2+1

to R. This gives

L
q/2+1 [R]=

∞∑
j=1

φjcjλ
q+2
j ϕj(x).

Then by standard elliptic regularity and Parseval’s identity it follows that

‖R‖2H1(Y )≤‖R‖2Hq+2(Y )≤C

∥∥∥∥∥∥
∞∑
j=1

φjcjλ
q+2
j ϕj

∥∥∥∥∥∥
2

L2(Y )

=C

∣∣∣∣∣∣
∞∑
j=1

φ2
jc

2
jλ

2q+4
j

∣∣∣∣∣∣ .
Moreover, by Lemma 4.4 we get

|cj |≤
( ε
τ

)−q−2

C ′
(

ε

τλj

)q+2

=C ′ 1

λq+2
j

,

where C ′ does not depend on λj ,τ,ε. From here, we obtain

‖R‖2H1(Y )≤CC ′

⎛
⎝ ∞∑

j=1

φ2
j

⎞
⎠2

≤ C̃ ‖Φ‖2L2(Y ) .

Note that C̃ may depend on p and q, but not on τ or ε.
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4.3. Modeling error. In this section, we state our main result. In particular,
we prove that the modeling error defined in (4) can be made arbitrarily small by using
a kernel with higher q, i.e., higher regularity properties.

Theorem 4.7. Let B0
H and B̃H be given by (4) and (4), respectively. Suppose that

the averaging kernel k used in the definition of B̃H lies in K
p,q with even q, η= τ , and

δ≥η+τ
√
β. Furthermore, let aε(x) be given by aε(x)=a(x/ε), where a∈ (C∞(Rd))d×d

is Y -periodic, symmetric, elliptic, and bounded (cf. (2)). Then

dV (B
0
H ,B̃H)≤C

(
ε

η

)q+2

,

where V =S�(Ω,TH) and C is a constant independent of ε and η.

Proof. Our first goal is to rewrite v̄ (resp. w̄) defined in (4) in terms of vH and the
periodic continuations of the solutions χi of the cell problem (2.1), which we denoted
by χi as well. Afterwards, we insert this reformulation into the definition of the bilinear
form, B̃H , of the semidiscrete FE-HMM formulation.

Due to the assumption on δ, the micro problem (4) can be replaced by the infinite
domain problem (4) without any influence on B̃H , as explained earlier. We denote the
solution of (4) by v and introduce its scaled and adjusted counterpart

V (t,x)=ε−1(v(tε,xε)−v(0,xε)). (4.10)

We see that V satisfies⎧⎪⎨
⎪⎩
∂ttV (t,x)=∇·(a(x)(∇V (t,x)+∇vH(xK,j)) in R

d,−τ ≤ t≤ τ,

V (0,x)=0 in R
d,

∂tV (0,x)=0 in R
d,

and consider the time average of V

V (x)=

∫ τ

−τ

kτ (t)V
( t
ε
,x
)
dt.

Now, we can apply Lemma 4.6 with the identifications

w=V and Φ=∇·(a(x)∇vH(xK,j)).

Formula (4.6) in Lemma 4.6 immediately gives

∇·(a(x)∇V (x))=−∇·(a(x)∇vH(xK,j))+
( ε
τ

)q+2

Rv(x).

Furthermore, we can rewrite the time average as

V (x)=

d∑
i=1

χi(x)∂xi
vH(xK,j)+

( ε
τ

)q+2

ev(x),

where ev is the zero average solution of the periodic problem

∇·(a(x)∇ev(x))=Rv(x). (4.11)
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Inserting v from (4.3) into (4) we get

v̄(x)=ε

∫ τ

−τ

kτV
( t
ε
,
x

ε

)
dt+v(0,x)

=vH,lin(x)+ε

d∑
i=1

χi
(x
ε

)
∂xi

vH(xK,j)+ε
( ε
τ

)q+2

ev

(x
ε

)
. (4.12)

To simplify the subsequent analysis we use the abbreviation

v∗H(x)=vH,lin(x)+ε

d∑
i=1

χi
(x
ε

)
∂xivH(xK,j). (4.13)

Therefore,

∇v̄(x)=∇v∗H(x)+
( ε
τ

)q+2

∇ev

(x
ε

)
(4.14)

and

∇v∗H(x)=∇vH(xK,j)+
d∑

i=1

∇χi
(x
ε

)
∂xi

vH(xK,j). (4.15)

Here ∇ev(x/ε)=∇yev(y)|y=x/ε and ∇χi(x/ε) should be interpreted similarly. Note that
due to the periodicity of χi, the gradient of v∗H is εY -periodic as well. With obvious
changes, the above considerations hold for wH as well. We insert (4.3) into (4) to get

B̃H(vH ,wH)= B̃1
H(vH ,wH)+

( ε
τ

)q+2

B̃2
H(vH ,wH),

where

B̃1
H(vH ,wH)=

∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇v∗H(x) ·∇w∗

H(x)dx

and

B̃2
H(vH ,wH)=

∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇v∗H(x) ·∇ew

(x
ε

)
dx

+
∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇w∗

H(x) ·∇ev

(x
ε

)
dx

+
( ε
τ

)q+2∑
K,j

ωK,j

∫
Iδ

kη(x)a
ε(xK,j+x)∇ev

(x
ε

)
·∇ew

(x
ε

)
dx.

We will now bound B̃1
H . Since aε, ∇w∗

H , and ∇v∗H are εY -periodic, we can apply
Corollary 4.5 to get

B̃1
H(vH ,wH)=

∑
K,j

ωK,j

∫
Y

a(x)∇v∗H(εx) ·∇w∗
H(εx)dx+

( ε
η

)q+2∑
K,j

ωK,jγK,j

=
∑
K,j

ωK,ja
0∇vH(xK,j) ·∇wH(xK,j)+

( ε
η

)q+2∑
K,j

ωK,jγK,j

=B0
H(vH ,wH)+

( ε
η

)q+2∑
K,j

ωK,jγK,j .
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In the second equality we used (4.3) and the formula (2.1) for the homogenized matrix.
From Corollary 4.5 we have that the constants γK,j are bounded by

|γK,j |≤C ‖a(x)∇v∗H(εx) ·∇w∗
H(εx)‖L∞(Rd)

≤C |∇vH(xK,j)| |∇wH(xK,j)| ,

where we absorbed the contribution of a and χi into the constant C. Then by the
Cauchy–Schwartz inequality, by the assumption (3) on the quadrature formula, and the
Poincaré inequality it follows that∣∣∣∑

K,j

ωK,jγK,j

∣∣∣≤C
∑
K,j

ωK,j |∇vH(xK,j)| |∇wH(xK,j)|

≤C
(∑

K,j

ωK,j |∇vH(xK,j)|2
)1/2(∑

K,j

ωK,j |∇wH(xK,j)|2
)1/2

≤C ‖vH‖H1(Ω)‖wH‖H1(Ω) .

Hence we have

B̃1
H(vH ,wH)=B0

H(vH ,wH)+C
( ε
η

)q+2

‖vH‖H1(Ω)‖wH‖H1(Ω) .

It remains to show, that B̃2
H is bounded from above. Here we show the estimate of

the last term in B̃2
H . The proof of the first two terms in B̃2

H follows similarly. First we
use Corollary 4.5 to see that

∑
K,j

ωK,j

∫
Iδ

Kη(x)a
ε(x)∇ev

(x
ε

)
·∇ew

(x
ε

)
dx

=
∑
K,j

ωK,j

∫
Y

a(y)∇ev(y) ·∇ew(y)dy+
( ε
η

)q+2 ∑
K∈TH

J∑
j=1

ωK,jγK,j .

Then by elliptic regularity of equation (4.3) and by the estimate (4.6) in Lemma 4.6 we
get

‖ev‖Hr+2(Y )≤C‖Rv‖Hr(Y )≤C |∇vH(xK,j)| , r=0,1.

Therefore ∣∣∣∣
∫
Y

a(y)∇ev(y) ·∇ew(y)dy

∣∣∣∣≤‖a∇ev‖L2(Y )‖∇ew‖L2(Y )

≤C ‖ew‖H1(Y )‖ev‖H1(Y )

≤C |∇vH(xK,j)| |∇wH(xK,j)| .

Moreover, if d=1,2,3 then Hr(Y ) ↪→C(Y ) for r> d/2≥1.5. Hence, with r=2 we have

|γK,j |≤ |a∇ev ·∇ew|∞≤|a∇ev|∞ · |∇ew|∞≤C ‖a∇ev‖H2(Y )‖∇ew‖H2(Y )

≤C ‖ev‖H3(Y )‖ew‖H3(Y )≤C |∇vH(xK,j)| |∇wH(xK,j)| .
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4.4. Fully discrete a priori error analysis. Combining the previous results,
we eventually get the following convergence result for the FE-HMM with hyperbolic
micro problems.

Theorem 4.8. Suppose that u0 is the solution of the homogenized problems (2.1),
(2.1), or (2.1) and uH the corresponding FE-HMM solutions solving (3.1), (3.1), or
(3.1). Suppose that the assumptions of Theorem 4.7 hold. Then

∥∥u0−uH

∥∥≤C

(
H�+

(
ε

η

)q+2

+

(
h

ε

)s
)
,

where C does not depend on ε, η, h, or H. Note that the norm in the statement is the
same norm as in the corresponding Strang-type lemmas 4.1, 4.2, or 4.3.

Proof. As mentioned before, we start by splitting the error into three parts and
apply the Strang type lemmas 4.1, 4.2, and 4.3 to the latter two. Thus, we have∥∥u0−uH

∥∥≤∥∥u0−u0
H

∥∥+∥∥u0
H − ũH

∥∥+‖ũH −uH‖
≤
∥∥u0−u0

H

∥∥+CdV (B
0
H ,B̃H)+CdV (B̃H ,BH).

While the first term, i.e. the macro error, can be bounded by classical results for FEM
[9,11,24], we use Theorem 4.7 to bound the second one. Hence, it remains to bound the
last term which accounts for the micro error. To simplify the notation we denote by

BK,j(v,w)=

∫
Iδ

kη(x)a
ε(xK,j+x)∇v ·∇wdx

the contribution corresponding to quadrature node xK,j to the FE-HMM bilinear form.
The discrete and the semidiscrete FE-HMM bilinear form can thereby be rewritten as

BH(vH ,wH)=
∑
K,j

ωK,jBK,j(v̄h,w̄h) and B̃H(vH ,wH)=
∑
K,j

ωK,jBK,j(v̄,w̄)

and consequently

B̃H(vH ,wH)−BH(vH ,wH)=
∑
K,j

ωK,j

(
BK,j(v̄,w̄)−BK,j(v̄h,w̄h)

)
.

By (4.3) and (4.3), v̄ can be written as

v̄=v∗H(x)+ε
( ε
τ

)q+2

ev

(x
ε

)
.

where ev solves the periodic problem (4.3). Similarly, v̄h is given by

v̄h=v∗H,h(x)+ε
( ε
τ

)q+2

ev,h

(x
ε

)
,

where v∗H,h−vH,lin∈Ss(Iδ,Th) is an approximation of v∗H −vH,lin, and ev,h is an approx-
imation of ev. Hence,∣∣BK,j(v̄,w̄)−BK,j(v̄h,w̄h)

∣∣≤ ∣∣BK,j(v
∗
H ,w∗

H)−BK,j(v
∗
H,h,w

∗
H,h)

∣∣
+
( ε
τ

)q+2 ∣∣BK,j(ev,w
∗
H)−BK,j(ev,h,w

∗
H,h)

∣∣
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+
( ε
τ

)q+2 ∣∣BK,j(v
∗
H ,ew)−BK,j(v

∗
H,h,ew,h)

∣∣
+
( ε
τ

)2q+4 ∣∣BK,j(ev,ew)−BK,j(ev,h,ew,h)
∣∣ .

Since the first term is the leading order quantity in the micro error, we give an estimate
of this term only. The higher order terms, bounded by (ε/τ)q+2, can be estimated
similarly. We split the leading error term∣∣BK,j(v

∗
H ,w∗

H)−BK,j(v
∗
H,h,w

∗
H,h)

∣∣≤ ∣∣BK,j(v
∗
H −v∗H,h,w

∗
H)
∣∣+ ∣∣BK,j(v

∗
H,h,w

∗
H,h−w∗

H)
∣∣

using the standard triangular inequality and bound the first term on the right-hand side
by,

∣∣BK,j(v
∗
H −v∗H,h,w

∗
H)
∣∣= ∣∣∣∣
∫
Iδ

kη(x)a
ε(xK,j+x)∇

(
v∗H −v∗H,h

)
·∇w∗

Hdx

∣∣∣∣
≤Cη−d

∥∥∇(v∗H −v∗H,h

)∥∥
L2(Iδ)

‖∇w∗
H‖L2(Iδ)

≤Cη−dhsmax
i

∥∥∥εχi
( ·
ε

)∥∥∥
Hs+1(Iδ)

|∇vH(xK,j)|ηd/2 |∇wH(xK,j)|

≤C

(
h

ε

)s

|∇vH(xK,j)| |∇wH(xK,j)| .

In the last line we used the fact that |Iδ|=O(ηd). The same bound holds for the second
term because of the symmetry of BK,j . As in the proof of the modeling error, we
apply the Cauchy–Schwarz inequality and use the assumptions of the quadrature rule
to obtain

∑
K,j

ωK,j

∣∣BK,j (v
∗
H ,w∗

H)−BK,j

(
v∗H,h,w

∗
H,h

)∣∣≤C

(
h

ε

)s

‖vH‖H1(Ω)‖wH‖H1(Ω).

5. Numerical results
The goal of this section is twofold. On the one hand, we give numerical results cor-

roborating the theory on the control of the modeling error. On the other hand, we show
that FE-HMM with hyperbolic micro problems can be used even in situations beyond
the scope of the convergence analysis above, e.g. in nonperiodic media. To demonstrate
the flexibility and versatility of the method we consider an elliptic, a parabolic, and a
hyperbolic example with Dirichlet, Neumann, or periodic boundary conditions. Fur-
thermore, we alternate the macro and the micro solver, the quadrature formula, and
the averaging kernel between the examples.

5.1. Modeling error. We provide numerical results showing that the modeling
error can be arbitrarily reduced by taking smoother kernels. In the spirit of Theorem
4.7 we consider first the difference between the bilinear forms B0

H and BH in one and
two dimensions. To this end let

aε(x)=1.1+0.5 sin
(
2π

x

ε

)
in one dimension and

aε(x)=
(
1.1+0.5 sin

(
2π

x1

ε

))(
1.1+0.5 sin

(
2π

x2

ε

))
.
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in two dimensions. For both coefficients the exact homogenized coefficients can be com-
puted analytically [21]. Since both bilinear forms consist of a sum over all quadrature
point, we restrict our analysis to a single summand. Namely, we compute∣∣BK,j(v̄h,w̄h)−a0(xK,j)∇vH(xK,j) ·∇wH(xK,j)

∣∣ ,
where v̄h and w̄h, defined in (3.1), are the averages of micro solution constrained by vH
and wH , respectively.

We choose xK,j =0, vH =wH =x and fix the size of the averaging domain in space
and time, while refining the small scale parameter ε. For the one-dimensional example
shown on the left-hand side of Figure 5.1 we set η= τ =0.03 and h= ε/40. For the two-
dimensional example shown on right-hand side we set η= τ =0.01 and h= ε/15. The
FE-HMM bilinear form is computed twice, once with a kernel k∈K

3,5 and once with
k∈K

3,7. We recover the expected convergence rate O((ε/η)q+2) experimentally (see
Figure 5.1). The oscillations in the convergence curves can be explained as follows: If
η is an integer multiple of ε the averaging is more accurate, but even if η/ε is not an
integer FE-HMM converges as ε→0.

Difference between homogenized and FE-HMM bilinear form
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3,7

Fig. 5.1. Difference between the homogenized and the FE-HMM bilinear form for one (left) and
two (right) dimensions. We fix η and τ and let the small scale parameter ε tend to zero. For a kernel
k∈K

3,5 we observe convergence of order 7 and for k∈K
3,7 convergence of order 9. These results are

in good agreement with the statement of Theorem 4.7.

To show that the results from the first experiment carry over to the actual modeling
error we consider now the elliptic model problem (2) in Ω=[0,1], where

aε(x)=
√
2+sin

(
2π

x

ε

)
with ε= 1/1000 and F (x)=π2 sin(πx). Because our main interest is the modeling error
we compute the difference between the FEM approximation u0

H of the homogenized
equation and the FE-HMM solution uH . Both solutions are computed with P1 FE on
the same uniform macro mesh with H= 1/64. To reduce the micro error we solve the
micro problems with high accuracy on a mesh with h= ε/1000. Instead of diminishing ε
as in the previous example we increase η, while ε remains fixed. In addition δ must be
adapted as well. More precisely, we set τ =6ε and

δ=η+τ
√
2.5. (5.1)
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This guarantees that no information from the boundary conditions interferes with the
averaging procedure, since aε(x)<2.5 for all x∈Ω. On the left-hand side of Figure 5.2
we show the L2-difference between u0

H and uH computed with a kernel k∈K
3,5. We

observe a convergence rate of order 7, as expected. The error we observe originates
from the spatial approximation (FEM discretization of the micro problem and spatial
averaging). In comparison the time averaging process results only in very small errors
in this setting.

On the right-hand side of Figure 5.2 we show an excerpt of the same graph. Ad-
ditionally, we display the modeling error of a standard FE-HMM scheme as described
in [2]. There, elliptic cell problems are used and no averaging kernels are involved.
Since δ is not an integer multiple of ε, we use a Dirichlet coupling condition. For
the elliptic FE-HMM we used the same discretization parameters for the macro and
the micro solver. Using elliptic micro problems the modeling error decays but very
slowly compared to the modeling error obtained by using hyperbolic micro problems.
One remarkable exception should be well noted: If the size of the sampling domain
Iδ is an integer multiple of ε the modeling error vanishes completely for periodic
media [2, Proposition 14]. Because δ is given by (5.1) there is no case, where δ/ε is
an integer. Nevertheless, we see clearly that the modeling error is minimal where this
ratio equals almost 12 or 13. Thus, we do not expect that in the second graph of
Figure 5.2 the error of the elliptic FE-HMM vanishes. If δ/ε was an integer, we would
still see the micro error emerging from the discretization of the micro problem. In this
particular case it is advantageous to use elliptic micro problems. However, in more
general situations, where the periodicity is not known, or in a non-periodic medium,
the enhanced controllability of the modeling provided by the use of FE-HMM with
hyperbolic micro problems might be worth while.

Remark 5.1. Comparing our FE-HMM with hyperbolic micro problems with stan-
dard elliptic FE-HMM in terms of computational cost note first, that the macro solver
is exactly the same for both cases. Hence, the same number of micro problems must
be solved for both types of FE-HMM and since for both of them the micro problems
are independent of each other a possible parallelization for the hyperbolic FE-HMM as
straight forward as for standard FE-HMM. The difference is only due to solution of the
micro problem. While for standard FE-HMM an elliptic problem must be solved for
every quadrature node in the macro mesh, we need to solve hyperbolic problems. In
addition slightly bigger sampling domains must be chosen, such that errors from inac-
curate coupling conditions between macro and micro solution do not interfere. Note,
that in standard FE-HMM there is no similar possibility to exclude this error source
completely.

5.2. Elliptic problem. We consider the elliptic model problem (2) in Ω=[0,1]2

with homogeneous Dirichlet boundary conditions and a source given by

F (x)=10 exp
(
−10

(
(x1−0.5)2+(x2−0.5)2

))
.

The multiscale tensor is given by

aε(x)=

(
41

40
+

9

40
sin

(
2π

x1

ε

))(
5

4
+

3

4
sin

(
2π

x1

ε

))
,

and we set ε= 1/100. Because aε is scalar, periodic and has separated variables x1

and x2, we can compute the homogenized tensor a0(x)=diag(5/4,41/40), for all x∈Ω
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Fig. 5.2. Difference between the FE-HMM solution uH and the discrete homogenized solution u0
H

(left) and the comparison between the FE-HMM with elliptic and hyperbolic micro problems (right).
We use a kernel κ∈K

3,5, and for a fixed ε we study the convergence as η and τ grow. We observe
convergence of order 7 (left plot). Moreover, the FE-HMM with hyperbolic micro problems leads to
much smaller error, if the micro domain is large enough, in comparison to standard FE-HMM with
elliptic micro problems (right).

(see [21]) Note, that even though aε is scalar valued and thus isotropic for every x∈Ω,
the homogenized tensor is anisotropic.

We compare the FE-HMM solution uH with the discretized homogenized solution
u0
H both computed with Q1 FE on a uniform mesh with meshsize H=0.1 and a four

point Gauss–Legendre quadrature formula given by the reference nodes and weights

x̂j =

(
3±

√
3

6
,
3±

√
3

6

)
and ω̂j =

1

4
for j=1, . . . ,4

on the reference element K̂=[0,1]2. For the micro solver we use Q1 FE, too. In
this example we would like to show again, that the FE-HMM with hyperbolic micro
problems provides reliable solutions, even without knowing the exact length of the
period. Therefore, we set η= τ =2.6ε and the size of the sampling domain δ=6.711ε.
Furthermore, we use a symmetric kernel k∈K

3,9.

In Figure 5.3 we see that uH approximates well the homogenized solution, even
though the small scale oscillations are not resolved with the coarse macro mesh. More
precisely, the relative H1-error between u0

H and uH is 8.28 ·10−3.

5.3. Parabolic problem. Because we use FEM for the macro solver, the whole
FE-HMM scheme can be as easily applied to complex geometry as standard FEMs.
Here, we use the computational domain Ω depicted in Figure 5.4 and solve the heat
equation (2) with no internal source, i.e. F =0. To model a uniformly distributed heat
distribution at t=0, we set f =0. For t>0 we are heating from the left boundary ΓD

1 ,
while enforcing the original temperature at the right boundary ΓD

2 . Hence, we impose
the following Dirichlet boundary condition:

u(x,t)=

{
0, for x∈ΓD

0 and all t>0,

1, for x∈ΓD
1 and all t>0.
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Fig. 5.3. Poisson equation: FE-HMM solution uH (right) and FEM solution of the homogenized
equation with analytically computed tensor a0 (left). The solutions coincide well, despite δ, the size of
the sampling domain, being not an integer multiple of ε.

We assume that the remaining boundary ΓN is perfectly insulated. Thus, we impose
there a homogeneous Neumann boundary condition. The thermal diffusivity is modeled
by

aε(x)=

(
1.1+

1

2
sin

(
2π

x1

ε

))(
1.1+

1

2

(
sin

(
2π

√
2x2

ε

)
+sin

(
2π

x2

ε

)))
,

with ε= 1/40=0.025. Note, that aε is only ε-periodic in the x1-direction, but not in x2.

0 1 2 3 4
0

1

2

Ω

ΓD
1

ΓD
0 ΓD

1 ={0}× [0,1],

ΓD
0 ={4}× [1,2],

ΓN =∂Ω\(ΓD
0 ∪ΓD

1 )

Fig. 5.4. Heat equation: Sketch of the computational domain Ω. While imposing Dirichlet bound-
ary conditions on ΓD

0 and ΓD
1 , we impose a homogeneous Neumann condition on ΓN .

Since a0 can not be computed analytically in this case, we compare the FE-HMM
solution with a direct numerical simulation (DNS), computed on a grid, that resolves all
the oscillations of aε. To do so we used a triangular mesh with almost 700 000 elements
and piecewise linear FE. For the FE-HMM however we used for the macro solver P1 FE,
too, but on a coarse mesh with only 138 elements. The other discretization parameters
were chosen as follows: For linear finite elements it is enough to use the midpoint rule as
quadrature formula. Hence, we only have to solve one micro problem per macroscopic
element. We set the size of the sampling domain δ=3.59ε and used Q1 FE on a regular
mesh with meshsize h= δ/72. For the averaging we used k∈K

5,5 with η= τ =1.25ε.
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The spatial discretization of the heat equation, be it by FEM or FE-HMM, leads
to system of first order ordinary differential equations that must be discretized as well.
Here, we chose for the time-stepping the well known Crank–Nicolson scheme. Due to
the stability of this implicit scheme, we could use the same timestep for the FE-HMM
and the DNS solution. In Figure 5.5 we show three snapshots of the heating process.
At t=1.0 a stable state has been reached. For a closer inspection this final state is
shown again in Figure 5.6. The overall behavior of the FE-HMM and the DNS solution
coincide well. However, the contour lines of the DNS solution display a microscopic
wiggling behavior reflecting the multiscale structure of the underlying media. Since
FE-HMM approximates the homogenized solution we do not recover these microscopic
effects, as expected.

F
E
-H

M
M

t=0.2 t=0.5 t=1.0

D
N
S

Fig. 5.5. Heat equation: Snapshots at t=0.2, t=0.5, and t=1.0 of the FE-HMM solution (top)
and the DNS solution (bottom) show the close agreement of the FE-HMM with the true (DNS) solution.
For the FE-HMM the mesh that we use is depicted as well. The mesh used for the DNS computation
has over 5 000 times more elements.

t=1.0
FE-HMM DNS

Fig. 5.6. Heat equation: Contour plot of the stable state reached at t=1.0 of the FE-HMM
solution (left) and the DNS solution (right). The wiggles of the contour lines in the DNS solution,
clearly observable on the zoom at (1.25,1), are caused by the heterogeneities of the diffusivity. Since
FE-HMM approximates the homogenized solution, these microscopic effects are not recovered. Yet, the
overall behavior is well captured.
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5.4. Hyperbolic problem. For the final example we solve the one-dimensional
wave equation (3.1) propagating through a complicated media given by

aε(x)=1+
1

4

(
sin(πx)+sin

( 2πx

ε(1−0.5 cos(4x))

)
,

)

with ε= 1/1000. Not only is aε highly oscillatory, but also the local average and the wave
length of the oscillations vary over the computational domain Ω=[−1,1] (see Figure
5.7). As initial data we choose the Gaussian pulse f(x)=exp(−100x2) and g(x)=0
and set periodic boundary conditions.
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1.5

x

aε(x)

−1 −0.5 0 0.5 1

0.5

1

1.5

·10−3

x

Oscillations length

Fig. 5.7. Wave equation: Multiscale coefficient aε(x) with a zoom at x=0.8 (left). Its oscillation
length is not constant but varies (right).
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Fig. 5.8. Wave equation: Snapshots at t=0.6, t=1.2, and t=1.8 of the FE-HMM solution (red)
and the DNS solution (black). Note that uH and the effective behavior of uε coincide.

Similarly to the previous example for the heat equation, we compare the FE-HMM
solution with a DNS computed on refined mesh. Here, however, we use cubic FE for
both, the macro and the micro solver. For the spatial discretization we use a uni-
form mesh with macro meshsize H= 1/20 and micro meshsize h=10−4. For the time-
stepping we choose an explicit leap-frog scheme. Note that the CFL condition couples
the timestep with the macro meshsize H. This means that larger timesteps are al-
lowed compared with DNS discretization using standard FEM with a mesh that resolve
all scales. This leads to an additional saving of computational costs. The FE-HMM
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parameters are chosen here as set as η= τ =10ε and δ=22.25ε. Compared with the
other examples η, τ , and thus δ are chosen slightly bigger. This choice accounts for the
variability of the oscillation length in the media.

In Figure 5.8 we show the reference solution uε and the FE-HMM solution uH

at three different times. Again, we observe that uH approximates well the effective
behavior of uε. Once again, we would like to stress, that the spatial discretization
of the FE-HMM scheme is exactly the same for all three examples above. Only the
timestepping scheme must be adapted to the problem at hand.

6. Conclusion

We have proposed and analyzed a FE-HMM method for numerical approximation
of homogenized solutions of linear multiscale PDEs. In particular, we consider elliptic,
parabolic, and second order hyperbolic problems in heterogeneous media. The proposed
method uses a second order hyperbolic PDE as the micro model, whereas the macro
model is adjusted to the type of the underlying original problem. The modeling error
of typical FE-HMM schemes are limited by an O(ε/η) error. The FE-HMM developed
here reduces the modeling error up to arbitrary rates in ε/η, without increasing the
computational cost in terms of ε in comparison to previous studies. Higher order rates
are achieved by using smoother kernels while computing the bilinear form. Although,
the present theory is restricted to the periodic media, numerical results confirm that
the method performs well in one- and two-dimensional non-periodic media as well.
Finally, we emphasize that the analysis for the parabolic and the hyperbolic problems
are valid only for time independent coefficients and further studies are needed to treat
the modeling error in the time dependent setting.
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