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ZERO RELAXATION LIMIT TO RAREFACTION WAVES FOR
GENERAL 2x2 HYPERBOLIC SYSTEMS WITH RELAXATION*

BAOYING YANG! AND HUIHUI ZENG#

Abstract. For the general 2 X 2 hyperbolic conservation laws with relaxation, the convergence to
the rarefaction wave of the equilibrium equation as the relaxation parameter tends to zero is proved,
and the convergence rate is given.
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1. Introduction

The purpose of this paper is to study the zero relaxation limit towards the rarefac-
tion wave of the equilibrium equation for the following general 2 x 2 genuinely nonlinear
strictly hyperbolic conservation laws with relaxation

up+ f(u,0) =0, v+ 9g(u,0), =€ 1O (u,v), (1.1)

where u and v are real functions of the time variable ¢ >0 and the spatial variable x € R,
f, g, and ® are real functions of u and v, € >0 is the small relaxation parameter. The
relaxation term is assumed to satisfy

D, (u,v) <0, @(u,v.(u))=0, (1.2)

for all (u,v) under consideration. Here and thereafter A, (u,v) and A, (u,v) are denoted
as the partial derivatives of the function A(u,v) with respect to the first and second
independent variables. Let Aj(u,v) and Aa(u,v) be the distinct characteristic wave
speeds of the corresponding homogeneous system of (1.1):

up+ f(u,v)s =0, v +g(u,v); =0. (1.3)
We will seek global smooth solutions to (1.1) with the initial value of the form
(u(x,0),v(x,0)) = (ug(x),vo(z)) = (us,vy) as x— oo, (1.4)

where u4 and vy are given constants.
Formally, as € tends to zero, the system is in equilibrium and the equilibrium equa-
tion corresponding to (1.1) is given by

ur+ fio(u)z =0, v=uv,(u), where fi(u)=f(u,v.(u)). (1.5)
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444 RELAXATION LIMIT TO RAREFACTION WAVES

Assume that f.(u) is strictly convex and u_ <wuy. The Riemann problem of the equi-
librium equation for v with the initial value

w(z,0)=u_, <0, u(z,0)=uy, x>0, (1.6)

admits a centered rarefaction wave solution u”(x/t). Denote A.(u)= f.(u). Without
loss of generality, we assume

Ac(us) <0<\, (us). (1.7)

Indeed, this can be achieved by the following transformation:

M)+ Au(us)
! |

t—t and x—x—

In the present work, we will justify this relaxation limit from the solution of (1.1)
and (1.4) to the equilibrium solution (u",v,(u")), under the following sub-characteristic
condition (cf. [26])

A (u,v) < Ai(u) < Ao (u,v), (1.8)

for all (u,v) under consideration.

Relaxation phenomena arise and are important in many physical situations such as
kinetic theory of gases, gas flow with thermal nonequilibrium, water waves, elasticity
with memory and traffic flows (cf. [6,7,33,37,43]). The zero relaxation limit problem
is always a challenging physics motivated problem, in particular in the presence of
initial layers, shock layers and boundary layers. Unlike vanishing viscosity problems of
viscous conservation laws (in particular the compressible Navier—Stokes equations) for
which important progress has been made and a satisfactory theory has been established
(cf. [3-5, 10, 12-14, 16-18, 20, 21, 36, 45, 48]), not much results are available for zero
relaxation problems. Compared with the viscosity, the relaxation is more stiffed and less
dissipative. The study of zero relaxation limit problems have been restricted to various
specific physical models (cf. [1,8,9,15,23,30,31,39,42,44]) or the semi-linear Jin—Xin
model proposed in [22] for the numerical computation of hyperbolic conservation laws
(cf. [2,11,34,38,41,47,50]). For the general nonlinear hyperbolic systems, much less
results of zero relaxation limits are available.

For the general 2 x 2 hyperbolic conservation laws with relaxation (1.1) which was
first studied in [26], the zero relaxation limit was studied in [24] by assuming that there
is a uniform L°°-bounds for the solutions of the relaxation systems by the method of
compensated compactness, and in [49] by establishing the uniform BV bounds for a
class of initial data. To the best of our knowledge, there has been no results on the
zero relaxation limit for the general 2 x 2 relaxation system (1.1) for general initial data
without assuming a priori uniform bounds on solutions. For the equilibrium equation
(1.5), the basic nonlinear waves are shock waves and rarefaction waves. The purpose of
this paper is to give a rigorous justification of the zero relaxation limit for the general
2 x 2 nonlinear hyperbolic conservation laws with relaxation towards the rarefaction
waves of (1.5). The basic ideas and techniques are energy estimates and rescaling
arguments as in [45]. However, due to its full generality of the nonlinearity of the
left-hand side of (1.1), it is quite technically involved to prove such a zero relaxation
limit.

Before stating our main result, we review some previous results closely related to
this work, besides the above mentioned results. The long time convergence to rarefaction



B. YANG AND H. ZENG 445

waves for some relaxation systems are studied in [28,29,35,51,52] for fixed relaxation
parameters. For the nonlinear Boltzmann equation, the long time convergence and zero
dissipation limit to rarefaction waves are investigated in [27] and [25,46], respectively.
The convergence of solutions for the Boltzmann equation to the Riemann solutions for
compressible Euler equations is given in [19] as the mean free path tends to zero. In the
present work, we prove that when the solution to equilibrium equation (1.5) is a weak
centered rarefaction wave and the relaxation parameter is sufficiently small, the Cauchy
problem of system (1.1) with the well-prepared initial data admits a global-in-time
smooth solution that converges towards the rarefaction wave with detailed convergence
rates uniformly away from ¢ =0 as the relaxation parameter tends to zero. It should be
remarked that in the study of zero dissipation limit problems, most of previous results
are also based on the analysis of the well-prepared initial data (which may depend on the
dissipation parameter) by ignoring initial layers. The main novelty of this paper is that
our results are for the general 2 x 2 strictly hyperbolic system with a general relaxation
system under natural assumptions, which includes some frequently discussed models
in the literature, such as p-systems and Jin-Xin models (see the references mentioned
above).
The main result of this paper is as follows.

THEOREM 1.1.  Suppose that (1.2) and (1.8) are satisfied, f,(u,v)#0 and fi(u) is
strictly convex. Assume that (1.7) holds and vy =v,(uy). Let u"(x/t) be the centered
rarefaction wave solution to (1.5) and (1.6). Then there exist small positive constants
N9 and €y such that for any fived € € (0,e0], we can construct a global smooth solution
(u,v)(z,t) with initial value (3.4) to the relazation system (1.1) satisfying

(u—u",v—v,(u")) € C((0,+00); L*(R)),

0 L7l 0 T2 (1'9)
(U, g, V,01) € CY([0,+00); H (R)) and  (ug,vi) € CY([0,400); L*(R)),

provided that
0<uy—u_ <np. (1.10)

The solution also satisfies that (u,v)(x,t) converges to (u”,v.(u"))(x/t) pointwise except
at (0,0), as e—0. Furthermore, for any given positive constant h, there is a constant
Cy, >0, independent of €, so that

supl|(u—u", v (") ()| o 2) < /| mel. (111)
t>h

REMARK 1.2.  The initial value (3.4) is a small perturbation of (u",v.(u")) and in
equilibrium (i.e., ®(u(x,0),v(x,0))=0). Indeed, we can deal with the non-equilibrium
initial value by introducing a correction term due to the decay properties of the relax-
ation term (i.e., ®, <0).

REMARK 1.3. In the study of the zero dissipation limit to rarefaction waves, the
condition on the strength of waves, (1.10), can be removed for specific models, such as
Navier—Stokes equations, the Boltzmann equation, etc., which satisfy some good specific
structure conditions. The model we consider is a general hyperbolic system, so condition
(1.10) is needed.

REMARK 1.4.  The convergence rate shown in (1.11) is the same as that obtained
in [46] for the study of the Boltzmann equation, which was improved by [25] using a
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different scaling. In our case, no matter which scaling is used the convergence rate
cannot vary due to the generality of the system (1.1) (see Remark 3.5 for details).

The rest of the paper is organized as follows. In Section 2, we construct a smooth
rarefaction wave which approximates the centered rarefaction wave based on the inviscid
Burgers’ equation, reformulate problem (1.1) with respect to the perturbation around
the approximate wave and linearize the reformulated problem. Section 3 is devoted to
the proof of the main result.

2. Preliminaries
Throughout the rest of paper, we use the following notation.

1) C will denote a positive constant which does not depend on the data. They are
referred as universal and can change from one inequality to another one. Also we use
C. to denote a certain positive constant depending on quantity <.

2) We will employ the notation a <b to denote a <Cb, where C' is the universal
constant as defined above.

3) We will use the notation

J= [ 1=z and o= =) leecey.

2.1. Approximate rarefaction waves. In this subsection, we construct smooth
rarefaction waves which approximate centered rarefaction waves. Consider

wy +ww, =0,

w_, <0, (2.1)
w(x’O):{’LUJ,_ x>0

If w_ <w,y, then (2.1) has the centered rarefaction wave solution w" (z,t) =w" (%) given
by

X

w—, Z<w_,
x x

w'(z,t) = e w_§¥§w+,
x

Wy, ;>U}+.

To construct a smooth rarefaction wave solution of the Burgers’ equation which approx-
imates the centered rarefaction wave, we set for each 6 >0,

ws(z)=w(z/d)=(wy+w-_)/2+tanh(xz/d)(wsy —w_)/2
and solve the following initial value problem
wetww, =0, w(x,0)=ws(x). (2.2)

Next, we state certain properties for the smooth rarefaction wave (see, for instance [45],
for the proof).

LEMMA 2.1. For each >0, (2.2) has a unique global smooth solution wj(xz,t), such
that the following hold:

(a) w_ <w§(z,t) <wy and 0<Opw§(z,t) <Clwy—w_)d ! forx€R,t>0,5>0.
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(b) The following estimates hold for all t>0,5>0, and p€ [1,00]:

102w5 (-, 8) ]| o < C(wy —w )P (541) 7P,

wg ()| e < +1)" 0 , ws(x,t)| <40™ "0, wy(x,t),
07wy C(o+t)~ 1o~ P 02w 5~ Oy
|03w5 (-, t)|| L <C(6+1)"Lo—2F1/P,

(¢) There exist a constant dy € (0,1), such that for § € (0,d0], t >0,
[ (-,8) —w"(-/t)]| = < Ct(In(1+1) +|1nd]).

Set w+ = Ay (us+), we define the smooth approximation u§(x,t) of the centered rar-
efaction wave u”(z/t) by

A (uf(a,6) =i (). (2.3)
Clearly, it holds that
O (us) + A (us)0p A (us) =0 and dyus+ 0y fi(us) =0, (2.4)
because of the strict convexity of f.(u). Due to Lemma 2.1, the following lemma holds.
LEMMA 2.2. The function uj(x,t) constructed by (2.3) has the following properties:

(a) u_ <uf(z,t)<uy and 0<Oyuf(z,t) <C(uy—u_)6~" forx€R,t>0,5>0.
(b) The following estimates hold for all >0, >0, and p€ [1,00]:

102t ()| Lo < Clug —u_ ) /P(64) 1P,

us(,t)||Le < +t) 0 , us(z,t)| <Co™ " Orus(x,t
OFuj C(0+t)~ 177 |02u; Co~ ' Opuj
02ub (-, 1) Lr < C(64+1) 16— 2H1/P,

(¢) There exist a constant 6o € (0,1) such that for § € (0,d0], t>0,
[ (-,8) =" (/1) || oo < CE1(In(14) + [ In ).
According to Lemma 2.2, we can derive from (1.7) and (1.10) that
M) < Co. (25)
This, together with the sub-characteristic condition (1.8) and smallness of 7, gives
X (15,0 (1) Ao (5,02 (15)) <0, (2.6)

2.2. Reformulation of the problem. To prove Theorem 1.1, we construct
the solution to (1.1) as the perturbation around the approximate rarefaction wave
(uf,vs(us)). Consider the Cauchy problem of (1.1) with the following smooth initial
data

(u, v)(z,t=0)=(uj, v§)(x,0), where v5=uv,(u§). (2.7)
Set the perturbation

(z,m)(y,7) = (u—uf,v—v5) (x,t) with (y,7)=¢ *(z,t). (2.8)
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Then, it follows from (1.1), (2.4), and (2.7) that

zr + [ f(us+ 2,05 +m) — f(ug,v5)], =0,
myr+[g(us +2,v5 +m) — g(ug,v5)], = [P(us +2,v5 +m) — B(uz,v5)] +ex,

(= m)(y:7=0)=(0, 0),
where
ex = (05) F (05,05, — 9 0505,
For any smooth function B(u,v), we denote
Q1(8) = Bu5 + 2,05 +m) — B(u5§), Qa(B)=Q1(8) ~ (Buz+fum).
Qs(8)=@2(8) ~ 5 (Buu?” + 2Burzm-+ Buu®);
which satisfies

@i <lzl+Iml, Qe Slel*+Iml?,  and  |Qs|S[2P +[ml.

(2.10)

(2.11)

(2.12)

Here and thereafter, all the quantities appearing in the coefficients are evaluated at

(uf,v5). So, system (2.9) can be rewritten as

ZT+(fuZ+f’Um)y:Jl7

My +(guz+gom), — (Puz+Pym) = J,
where
Ji=—[Q1(fu)zy +Q1(fo)my] = [Q2(fu) +Q2(fo)vi (ug)]ug,
= 2 a4 2oy Fon(m?)] = [@2(Fi)2 + @a(Fu)m)
—[Q2(fu) + Qa2 fo)vi (uf)]ug,
and

J2 =Q2(®) — [Q1(9u) 2y + Q1(g0)my] — [Q2(gu) + Q2(gu) V% (ug)| us, +e1
:% [@uuzz +2<I>m)zm+<l>wm2] +Q3(P)
—[Q1(gu) 2y +Q1(g0)my] — [Q2(gu) + Q2(gu) vl (uf)]ug, +e1.
It follows from (2.13), —®, (fv¢;1(2.13)2)y that
Zrr + (A +A2)2yr F A1 A2zyy — Dy |:Z7- + ()\*z)y}
=Jir+ gud1y = P Ji1 = o (7 fo2)  + T3+ it s,

where

JS = [_fuy‘r - fuyyg'u +¢’U(®;1ffuguy)y] z

(2.13)

(2.14)

(2.15)

(2.16)
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+ [_nyT + (foGuy)y — foyygo + ‘I)tz(@;l)yfvgvy] m,
Ji= [~ Fur = 2fuyGo + FoyGu~+2foGuy + @u(®y 1)y fugu] 2y

+ [ for +2f oGy — FoyGo+ Pu(@y )y fogu] my, (2.17)
Js == fuyzr +@u (2,1)  fomr.

We will work on the Cauchy problem of equation (2.16), which is a wave equation for
z, with the initial data

z(y,0)=0 and z:(y,0)=0

to derive the estimates on z, by viewing m and its derivatives as error terms. To deal
with m, we rewrite (2.9) as

my == fy H(uf + 2,05 +m) [27 + fu (0§ + 2,05 +m)z,]
— fo g+ 2,05 +m) [Qu(fu) + Qu (fu) V] (uf)] uj,, (2.18)
m="1 [mr +(guz +gom), — J2:| — 31D, 2.
3. Proof of Theorem 1.1

Proof. First, we seek a global (in time) solution (z,m) to the reformulated problem
(2.9) and (2.10) in the space defined as

X(Ole) = {(va)Kzam) € CO([Ole];H2(R))7 (Z.,-,m,,-) € CO([Ole];Hl(R))a
(ZTTamTT) € CO([OaTl];LQ(R))7 (ZyamyaZTamT) € L2(0771;H1(R))a
(ZTTamTT) ELQ(OaTl;LQ(R))}
with 0 <7 <+o0. The local existence and uniqueness of smooth solutions to (2.9) and

(2.10) can be obtained as in [32], while the global existence will follow from the following
a priori estimates.

PROPOSITION 3.1 (a priori estimates).  Suppose that problem (2.9) and (2.10) has a
solution (z,m) € X (0,71) for some 71 >0. There exist positive constants e; <1, £ <1/20,
& and C, independent of €, § and 11, such that if

O<e<e, eZR<F<er, (3.1)

sup |[(m,z,my, 2y, 27 ) (-, 7)|| oe < &, (3.2)
T€[0,71]

for small €1 and &, then

sup ” (zvZy7ZT7ZTT7ZTy7zyy7m7my7mT7mTT7mTy7myy) ('7T)||2

T€[0,71]
T1 T1

[ [ rmtyagdr s [y ) ) P
0 0

[N Grrzrny e oy, o) dr < Ce/5) (33
0

REMARK 3.2 (the choice of §).  One can derive from (3.3) and the fact ||| g <||- || g2
that

H(u—uf, v—05) ()l = | (z, m) ()| e < C(e/0)V/1.
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This, together with (c) of Lemma 2.2, gives

=, 0=, @) (D)l < | (=, v —0F) ()| =

| (" —uf, vx(u") = 0§) (1) || e <O (I(1+8) +|Ind]) + Ce/6) /.

Here C is a positive constant independent of €. To obtain the best rate of convergence
with the method used in this paper, one has to choose § =¢l/°.

Once Proposition 3.1 is proved, one can take 6 =¢'/®, so that (3.3) and the fact

)

I llee <||- || g2 imply that there exists a positive constant C' independent of € such that
” (szyaz'ram’myvm'r) (',’7’)”[,00 < 061/57 T72>0.

(Indeed, this verifies the a prior assumption (3.2).) Therefore, there exists a global
solution (u,v)(z,t) (t>0) to the Cauchy problem of (1.1) with the initial data

(u, v)(@,t=0)=(uf, v, (uf))(2,0), §=€"7 (3-4)
which satisfies (1.9) and
I (w5, 0—5) ()| < CEVB, 120, (3.5)

where § =€'/® and C' is a certain constant independent of e. With the help of (c) of
Lemma 2.2 and (3.5), one obtains (1.11) and finishes the proof of Theorem 1.1. O

REMARK 3.3 (bounds for (1.9)). For each fixed small positive €, it follows from (3.3),
(2.8), Lemma 2.2, and the definitions of " and uj that

[(u—u", v—v,(u"))(-,1)] < Ce/1O <1+t’1/21n(1+t)) , >0,
|| (um7ut7umx7u1t7utt7vm7vt7vml‘>vl‘t7vtt) (7t)|| SCEa t207

where C'is a positive constant and C¢ is also a positive constant depending on e which
may goes to infinity as € tends to zero. For instance, for all ¢ >0,

o (2,8 | 22 <|lufy (2,6) 2 +e |2y (e )2

S0(61/5_~_t)71€71/104_0673/10S(](?,/lo_

To prove Proposition 3.1, which can be derived from Lemmas 3.7 and 3.8, we notice
the following facts. It follows from the initial value (2.10) and the system (2.9) that

(2,27,24)(4,0) = (0,0,0) and (m,my,m-)(y,0)=(0,0,e1(y,0)), (3.6)
where e; is defined by (2.11). It follows from Lemma 2.2, (3.1), (2.4) and (2.5) that

0<uj, <Ce*, |uj,|<Cnouf, <Ce* and |uf,,|<Ce*uj,. (3.7)
Moreover, it follows from the strict convexity of f,(u) that

Ot < (A (u5)), <O, (3.8)
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3.1. Lower-order estimates.
LEMMA 3.4. Suppose that the assumptions in Proposition 3.1 hold. Then for any ¢ >0,

1 1 /7 1 /7
5/(|<I>v\z2+2z7z—2jlz) (y’T)dy+§/0 /\)\1>\2|22dyd7+§/0 /|<I>v\)\*yz2dyd7

<¢ sup /zQ(y,s)der/ /zf_dydTJr(EoJre”)/ /ugym2dyd7'
s€[0,7] 0 0

+(50+6V”)/ /(m3+m5)dyd7+0§61/25_1/2, T€[0,71]. (3.9)
0

Proof. Multiply equation (2.16) by z, integrate the resulting equation with respect
to the spatial and temporal variables and use (1.2), (2.6), and (3.6) to get

1 i 1 /7
5/(|<I>v\z2+2z72—2jlz) (y,T)der/ /|A1>\2\deydT+§/ /|<I>v|)\*yz2dyd7
0 0

:/ /[272_+(/\1 +A2)zyzr + (M +)\2)yzzT+()\1)\2)yzzy] dydr
0
—/ /[leT-i-Jl(gUZ)y—(I);lfvjz((bvz)y—((bvjl—J3—J4—J5)Z] dydT,
0

due to ®,; + APy, =0; which implies, with the aid of the Cauchy inequality, the small-
ness of ¢, (3.7), and (3.8), that

1 1 /7
5/(|<I>v\22+2;;7272(]12) (y,T)dy+§/ /\)\1)\2|Z§dyd7
0

1 T
+*/ /\@U|/\*yz2dydr
4 Jo

§/ /(zz—i-JlQ—l-|(J3+J4+J5)z|)dyd7+
0

/ /@UledydT
0

We want to bound P;. It follows from (2.14) and (2.12) that

/ /cbglvaz(cbvz)ydydT
0

[T S (2l [m) L2yl + [my]) + g, (2% +m?), (3.11)
which, together with (3.2) and (3.7), gives
/Jlgdygé'g/[z§+m§+u§y(z2+m2)] dy.
It follows from (2.17) that
sl | Jal 5| S (ugy |+ gy ) (1ml + o) 4y (2] + Imy | + oz |+ m2 ), (3.12)
which implies, using (3.7) and (3.2), that

/ ((Js -+ Jat Js)z| dy

<& / (g 2+ gy D2y +€° ( / (22 +m2+ 22 +m2)dy+ / uzyzzdy) |
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Then, we have
P [ [ 12+ Eollug, o+ el dyr
+(5§+6“)/0T/[ugy(m2+22)+(z§+mz+mi)}dydT.
We are to bound P,. Note that
/‘DglvaQ(q)vz)ydy:/‘I);lfvqu)uy?«’dy+/vaQZydy:Pm + Pao.
It follows from (2.15) that

[ 2| S (14 ugy ) (2% +m?) + (Jz] +[ml) (2 |+ [my |) + gy,
which gives, using (3.2) and (3.7), that

1P| < / | ol 21y < o / [uf, (22 4+ m?) + 22+ m2] + / 2l dy.

In view of (2.15), we rewrite Pay as
P _1L D22+ 20 ., m? d ) d
22*2 [ wu? + wwZM~+Loyym ]fvzy y+ Q3( )fvzy Y
— [ 1110012+ @1l0)m, )+ Q{9+ Qata)et ()], oy

+/€1fv2ydy=P221 + Paga + Pagz + Paoy.

Easily, Pys3 and Psoy can be bounded by

|P223|§50/[ugy(ZZ-i-mz)—i—Zi-i-mi],

Parl=| [essumyan|=| [(cssudyzato| [ (s, +1u )l
It follows from the fact || 3|2 <||8|l||3, and (3.2) that
|P222|§/(|Z|3+|m|3)|Zy|dy§(HZ||2Loo+||m||2Loo)HZyHllle
S lzlllzy -+ lImlllmg Dz 120 < (20 + lml®) (llzg 1+ 1y %)
S (Il +lmy ) =85 [ (3 mi)ay.
For P»yq, we first note that
‘ / <1>uuz2fvzydy] = ‘; / <<I>wfv)yz3dy] séo [us, 2y

It follows from (2.18),, (3.7), (3.20), and (3.21) that

/@uvszvzydy‘
5'/<I>wfv<l>vl@uz2zydy‘+/[|mT+Zy|+|my|+(22+m2)+u§y] |22y |dy

Seo+ ) [ug 2y €+ e) [ (n24 23+ dy

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Here we have used the following estimate
Im+@, '@,z = ‘@;1 [m7+(guz+gq,m)y —Jg} ‘
< UmTH‘|Zy|+|my|+(22+m2)+ugy]7
due to (2.18),, (3.15), and (3.2). Similarly,
‘/q)vvafvzydy‘
5‘/<I>vva(<1>;1<1>uz)2zydy'+/[|m7|+|zy+my+(22+m2)+u§y] |22y |dy
b [ D+l g+ 2 ) 403, 2y
S(Eo+e) [[uh, 2y (Eater) [ (s em)dy+ [ Jug, Pl dy
Then, we have
|P221|g(50+e”)/ugyz2dy+(50+e")/(mi+z§+m§)dy+/|ugy|2|zy\dy. (3.22)
This, together with (3.17)-(3.20), gives
|P22\5(5‘0+e“)/ugy(z2+m2)dy+(€o+e”)/(mi+z§+m§)dy
[ sy Pl [ (1, a5 ) oA
which implies, with the aid of (3.14) and (3.16), that
PrsEo+e) [ [, emtydydrs [ [ (ug, 2 ) ol
+(50+e”)/or/(mi—kzi—kmi)dydwi—/or/ugy|2|zy|dyd7. (3.23)
For Ps, it follows from (2.14) that
/ @ dyzdy = / Dy [Fun(22)y + 2w (1) + fon(m?), ] 2dy
~ [ulQah)zy + Qaltymy ey [ ©,1Qa(h)+ Qalh)ol (u5)) i, ey

1

:i/(ﬁv [fuu22+2fuvzm+fvvm2} Zydy
1

+§/[(‘I)vfuu)yZQ+2(q)vfuv)yzm+(q)vav)ym2] zdy

—/‘I)v [Q2(fu)zy +Q2(fo)my] Zdy—/q’u [Q2(fu) +Q2(fo)vi (u5)] us, 2dy.

In a similar way to the derivation of (3.22), we have

rsE+e) [ [us2rmtayars [ [Pz ayar
0 0
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+(€o+e“)/ /(mz—i—z;—l—mz)dydr (3.24)
0

Finally, it follows from (3.8), (3.10), (3.13), (3.23), (3.24), the Cauchy inequality,
and the smallness of & and e that

%/(I%\zzwzfzf?hz)( T)dy+ < / /\A Ao|22dydr + = / /|<1> Ay 22dydr

5/ /zidydTJr(EoJre”)/ /ugmedydTJr/ /\ugy|4dyd7
0 0 0
+(50+6“)/ /(m3+m§)dydr+/ /(|u§y\2+|u§yy\)\z|dyd7. (3.25)
0 0

It follows from Lemma 2.2, the fact ||3]|3 <||8]||8y]| and Young’s inequality that

/ /\ugy|4dyd7:/ <e3/ugm|4dx) d7§/ E(5+t)3dt <2572, (3.26)
0 0 R 0

s ) el
< / 2l e ( / <uz;y|2+|ugyy|)dy) dr

56/0 =212 1=y 12 (5 +er) " dr

0 0

0,7
NS (/ zy|2d7—|—sup||z||2> —|—C’g61/2571/27 (3.27)
0 [0,7]

for any positive constant ¢. Substituting (3.26) and (3.27) into (3.25) gives (3.9). This
finishes the proof of Lemma 3.4. O

REMARK 3.5. If we use the scaling (y,7) =¢ ¥ (z,t) with v € (0,1] constant, instead
of (y,7)=¢"1(x,t) as chosen in (2.8), we can obtain, using a similar method to the
derivation of (3.9), that for any ¢ >0,

1
2/( YHD, 2%+ 22,2 —2J12) (y,T)dy + = / /|)\1)\2|z dydr

+%e”71/ /|<I>v|)\*y22dyd7
,Sgsup/ vl 2dy—|—/ / 2clydr—|— Eoe” 1+ / /uéy 2dydr
[0,7]

+(50+6”)/ /(m,zr—i—mi) dydr +C.e /26712 7e[0,m],
0
provided that for all 7€ [0, 7],

e HI(z,m) ()P + 1 (my2) () e + €207 |12 (1) |70 < &5
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This implies that the basic energy estimate is bounded by €'/2§~1/2, no matter which
scaling is chosen. And the other estimates are based on this one. So, the bounds of the
norm of (z,m) cannot be improved by using different scaling arguments.

LEMMA 3.6. Suppose that the assumptions in Proposition 3.1 hold. Then for all T €
[077—1]7

/(22—|—z§+23)(y,7')dy—|—/0 /(ugy22—|—z72_—|—z§) dydr
SEO/mQ(y,T)dy—l—(&)—&—e“)/o /(ugme—i—mi—i—mi) dydr + (¢/8)/2. (3.28)

Proof. Multiply Equation (2.16) by —®_ 1z, integrate the resulting equation with
respect to the spatial and temporal variables and use (1.2), (2.6), and (3.6) to get

1 T
3 / @51 (27 + A1 A=) (y,7)dy + / / 23dydr
0
1 T
:5/0 /[(@;um)ﬂ;— (@71 O+ 2), + (@71 22

—2(®; A A2)y2r 2y dydT—/ /()\*yz—l—)\*zy)szydT—/ /cb;l[JlT
0 0
gy — Doy~ By (B, o) +J3+J4+J5} 2, dydr,

which implies, using (3.7), the Cauchy inequality, and smallness of ¢, that
U1 (22 4 [ dal22 dy+ 2 [ [ 2aya
5 | v |(ZT+‘ 1 2|Zy) (y7T) y+§ . Z ayar

< {625/0 /(z§+/\*y32) dyd7-+/0 /AfzidydT]

+/ /[|J1|2+|J3+J4+J5\2] dydT-i-‘/ /‘I);lJszTdydT
0 0

/ /q);lgUJIyZTdydT / /((b;lvaQ)szdydT
0 0

For @2, it follows from (3.11), (3.12), and (3.7) that

+ +

= ZQZ-. (3.29)

Q25 (€5 +&5) / / 22 —i—m; + 22 +m2 +uf, (2* +m?)] dydr.
0
For Qs, it follows from (2.14) that

Q33

/OT/q)v_lQl(fu)zTszdydT
' u Yy v yl||~T dyd
+/O /I(Ql(f ), 2y Q) 1y |2 dydr

+ ’ /0 T / O, Q1 (fo)myrz-dydT

+ /0 /‘ [[Q2(fu) +Q2(fu)v. (ug)]ugy]T‘|zT|dydT:iQ3i.
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In view of (3.7) and (3.2), we see that

Q31 < ’/ / lQ1(f)) o 2dydr <50/ /z dydr,

Q33 550/ /(zf+m3+z§+m§)dydr,
0

Q34 550/ / [uf, (m*+2°) + 22+ m2] dydr.
0
It follows from (2.18), that
Myr == [ (W5 + 2,05 +1m) 277 = (f77 fu) (UG + 2,05 +m) 2y
= [ s+ 205 +m)] 2 = [ fud (s + 2,05 +m)] 2,
= £ (W 2,05 +m) [Q1(fu) + Qu(fo)vl (uf)] gy ]

which implies

Qsz,v’// TLQL(fo) o (s + 2,05 +m) 2z 2o dydT

+] / [ #0252y

—1—(62”—&—50)/ /[ugy (m2+z2)+zf+mf+zﬂ dydr
0

ggo/zz(y,T)dy+(62“+Eo)/ /[ugy (m2+22)+z$+mz+z§] dydr.
0

Here we have used the following estimates:
| Qa2+ m)sr s dyr
—5 [ QUL (st 2 m) 2] 9.y
—7/ / O Q1 (fo) fy (s + 2,05 +m)} 22 dydr,

[ QU £+ 2005+ )z
[ [ 197 QU R+ 2 ] 2y

Then, we have

(3.30)

(3.31)

Q3 550/23(y,7')dy+(62”+€0)/ /[ugy (m2+22)+z3+m3+z5+m§} dydr.
0

Similarly,

Q4§50/z§(y,7')dy+(62“+50)/ /[ugy (m?+2%) + 22+ m2 + 2, +m]| dydr,
0

Qs Sgo/zi(yﬁ)dy+(e2“+é’o)/ /[ugy (m2+z2)+zf+mf+z§+mﬂ dydr
0

+/0 /(|u§y\2+|u§yy\)\zT|dyd7'.
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Therefore, it follows from (3.29) that

1 B 1 [7
§/|<I>1)1|(z72_+|/\1)\2|z§) (y,T)derf/ /deydT
<& / (22 +22)(ym)dy + / / N222dydr+ / / i 2+ u5 ) |2 |dydr
0

e [ f g, ) 2o ey,
0

which, together with (3.26), the Cauchy inequality, and smallness of € and &, implies

1 1 /7
1/|‘I’;1|(272-+|/\1)\2|25)(ya7)dy+1/ /szl/dT
0

§/ /)\fz,jdydr+62672+(62“4—50)/ /[ugy (m?+2%) +m2 +z) +m; ] dydr.
0 0
(3.32)

It follows from (3.9)+ K'(3.32) with suitably large constant K that for any ¢ >0,
/(z2+z§+zf) (y,T)dy—f—/T/(ugyzQ—sz—kzi)dydT
§/|(le)(y, |dy+§sup/ 2dy+/ /)\zzgdydT
—l—(é'o—l—e")/o /(ugym2—i—mi—l—mi)dydr—i—Cgel/Qé_l/Q,
due to the smallness of € and &). In view of (3.11), we see that

/ |(112)(y.7)|dy < o / (22 +m?)(y.7)dy,

which gives (3.28), by using (2.5) and the smallness of 7y and choosing suitably small
¢. This finishes the proof of Lemma 3.6. 0

LEMMA 3.7. Suppose that the assumptions in Proposition 3.1 hold. Then,
(z,m, 2y, my, 20, me ) (5 7) |12+ / /uw 22 +m?)dydr
+/ [(zysmy, 2rymr ) (7)1 2dT < (/)2 T€[0,m]. (3.33)
0
Proof. It follows from (2.13),_ that

My — @ymy = (P4 2), + Porm — (guz +gom),, +Jor. (3.34)

Multiply the equation above by m, and integrate the resulting equation with respect
to the spatial and temporal variables and use (1.2) to get

1 T
5 [miwndys [ [ o zyar
0
1 T
:§/m3(y70)dy+/ /[(q)uz)T—&-q)va]deydT
0
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T T 4
+/ /(guz—l—gvm)TmdeydT—l—/ /JngTdydT:ZRi. (3.35)
0 0 i=1
For Ry, it follows from (3.6) and Lemma 2.2 that
Rl S [ 0 0)Pdy Ses .
For Rs, it follows from (3.7) and the Cauchy inequality that for any ¢ >0,

|R2\§e“/ /[ugy(m2+z2)+m3] dyd7'+/ /(cmi+0§zf)dydr.
0 0

For R3, note that

T T 1
RSZ/ /guzrmy‘rdyd’rf/ /|:(gu7-z+gvrm)ym7+2gvym72-:| dydr
0 0

=R31+ R3»

In view of (3.30), we can obtain, suing a similar way to the derivation of (3.31), that
|Ra1] f,/zf(yy)dy—k (2" +&) /OT/ [ug, (m?+2%) + 22 +m? + 2| dydr.
It follows from the Cauchy inequality and (3.7) that
Raal 5 [ [, (+22) 434 24 3] dy
Thus,
\R3|gfzf(y,r)dy+(e2“+€o)/T/ [ug, (m?+2%) + 22 +m2 + 22 +m? ] dydr.
For Ry, notice from (2.15) that
Ry= / / Qo(®) ~ [Qa(gu) + Qalgu)0l, ()], + er]modydr.
/0 [Q1(9u)zy +Q1(gv)my] M dydr = Ryt + Ryo.
It follows from (3.2), (3.7), and the Cauchy inequality that for any ¢ >0,
|Ra1| S&o /OT/ [ugy (m2 +22) + 22 +mﬂ dydr

+§/OT/m3dydT+C'§ /OT/ (Jug, [* + gy, |*) dydr.

Similar to deriving (3.31), we have

|Ryo| <

{Q1 9), 2+ (@1(g2), my]m — 5 (@1(00)),m
—<Q1<gu>>yzfm7}dym|+ " / Q1(gu)2rmyrdydr

550/23(y,7)dy+(62”+50)/ /[ugy (m2+22)+z3+m3+z§] dydr.
0
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Then, it holds that for any ¢ >0,
|R4|§50/23(y,r)dy+g/ /midyd7+0<e25—2
0
+(62“+50)/0 /[UEy (m?+2) + 22 +m? + 22] dydr.

Substituting these calculations into (3.35) to give

/mi(y,f)der/ /midydT
0

g/zz(y,T)dy—i—/ /zfdydT—i—(e“—i—&))/ /[ugy (m2+22)+z§+m5] dydr+ed™ .
0 0
(3.36)

With the estimates for m,, we can bound m and m, as follows. It follows from
(2.18), (3.7), and (3.2) that

Imy| S lzr| + 2y | +ug, (Im]+]2]),
Im| < |m7-\—|—|zy|—|—\my|—|—\z|+ugy+ (€2K+50) |m|;

which implies, with the aid of the smallness of € and &, that

2
Imy| < lze |+ 12y +ufy 2]+ €5 me |+ (u, ),
Im| S lme |+ |27 |+ [2y | + 2] +ug,.-

Clearly,
/ /(mg—i—ugme)dyde// /[ZZ+272.+ugy22+62nm3+(ugy)3:| dydr,
0 0
/(m§+m2)(y,7)dy§/[zi—sz—i—zz—kmf—i—(ugy)ﬂ (y,7)dy. (3.37)

Put (3.37), into (3.36) to yield

/m (y, 7 dy+/ / u(;ym —|—m +m )dydT
§/zz(y,7)dy+/0 /(ugy22+zf+z§) dydr+e5~1,
which, together with (3.37),, implies
/(m2+m3+m§)(y,T)der/OT/(ugym2+m3+m§)dyd7
5/(z2+z3+z§) (y,T)dy+AT/(u§yz2+z3—|—z§) dydr +e5~*, (3.38)
due to

/ /\ugy|3dyd7§e(5—1 and /|ugy(y,7)|2dy§e(5—1, 7>0.
0

So, we prove (3.33) by a suitable linear combination of (3.28) and (3.38). This finishes
the proof of Lemma 3.7. ]



460 RELAXATION LIMIT TO RAREFACTION WAVES

3.2. Higher-order estimates. In order to verify the a priori assumption (3.2),
we need to estimate the higher-order derivatives. For this purpose, we apply 0. to
equation (2.16) to obtain

Zrrrt )\1)\227yy - (I)UZTT = ()\1)\2)7- Zyy +(I)v'rz7' + [CI)'U ()\*Z)y - ()\1 + )\2)Zy’r:|
[ Tir 4 gudiy = @u Ty = B (1 fuT2) 4 Js+ Ju-+J5| = (RES), (3.39)

We use this equation to derive the following estimates.

LEMMA 3.8. Suppose that the assumptions in Proposition 3.1 hold. Then,
|| (zr-r;Zryyzyy;mTT7mTy7myy)('7T)||2
+/ H (ZTT’ZTyaZyyvmf'r;mTyamyy) ('77—)”2d7—§ (6/5)1/2a TE [0,7‘1]. (3'40)
0

Proof.  Multiply equation (3.39) by z,., integrate the resulting equation with
respect to the spatial and temporal variables and use (1.2) and (2.6) to get

+/ /|<I>U|z3TdydT
s=0 0

! 1
:/ / |:()\1)\2)yZTTZTy - 5()\1/\2)7-272.y + (RHS)ZTT] dydT
0

1
5 [ G udalad,) o)y

With the aid of (3.33), we apply the techniques used in the proof of Lemma 3.6 to
obtain

[ ) wndys [ [ 2ayar
0
5(6/5)1/2+(6”+5o)/0 | (Zrys 2yys My mry) (5 7) |2 dr. (3.41)

Multiply Equation (3.39) by z,, integrate the resulting equation with respect to the
spatial and temporal variables and use (1.2), (2.6) and (3.6) to get

1 T
/<2|<I>U|zf+zz”> (y,7)dy+/0 /\)\1)\2|23ydyd7
T 1
:/ /|:Z72_T+(>\1/\2)y2’7-z7-y2‘I>UTZ72_+(RHS)ZT:| dydr.
0

With the aid of (3.33) and (3.41), we can show
/(sz—i-zf.y) (y,T)dy+/O /(sz+zEy) dydr

SEoll (zyysmiry,myy) (1) IIP + (e/6) /2 + (6”’+50)/0 [ 2y sy ) (-, 7) | 2d.
(3.42)

It follows from (2.16) and (2.6) that
2o =(022) @y 20+ (0n2), | = (e + O+ 22201}

FOa2) ™ [Jar o guedy = Buy = By (€3 foula) Ty Ja+Js
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This, together with (3.42) and (3.33), implies

-
||(Zyy,zry,zw)(-ﬁ)ll2+/ | (2yys 27y 20) () P
0

<&l (mTyvmyy) ('37—)”2 + (6/5)1/2 + (€" +60)/0 [ (mTTvayvmyy) ('37—)”2d7—'

Similarly, we can get the estimates for m,, and m,, by taking d, and 9; on (2.18),,
respectively. With all these estimates at hand, we can bound m., by use of (3.34).
Finally, we obtain (3.40) and finish the proof of Lemma 3.8. o
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