
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 2, pp. 415–441

GRAVITY WATER FLOWS WITH DISCONTINUOUS VORTICITY
AND STAGNATION POINTS∗

CALIN IULIAN MARTIN† AND BOGDAN–VASILE MATIOC‡

Abstract. We construct small-amplitude steady periodic gravity water waves arising as the free
surface of water flows that contain stagnation points and possess a discontinuous distribution of vorticity
in the sense that the flows consist of two layers of constant but different vorticities. We also describe
the streamline pattern in the moving frame for the constructed flows.

Key words. Irregular vorticity, stagnation points, gravity waves.

AMS subject classifications. 35J60, 76B03, 76B15, 47J15.

1. Introduction
We present here a study of steady periodic traveling water waves that propagate

at the free surface of a two-dimensional inviscid and incompressible fluid of finite depth
allowing for stagnation points and for a discontinuous distribution of vorticity. More
precisely, we consider water waves interacting with two vertically superposed currents
of different constant vorticities.

Confined first to the investigation of waves of small amplitude, which can be sat-
isfactorily approximated by sinusoidal curves within the linear theory, the examination
of periodic traveling water waves arising as the free surface of an irrotational flow with
a flat bed originates in the beginning of the 19th century. The description of waves that
are flatter near the trough and have steeper elevations near the crest necessitates a non-
linear approach, which was in fact conducted within the last few decades and led to the
first rigorous results concerning the existence of wave trains in irrotational flow, see, for
instance, the case of Stokes waves [34] and the flow beneath them (particle trajectories
and behavior of the pressure) cf. [2, 3, 6, 8].

To go beyond irrotational flows and to treat wave current interactions one needs to
incorporate vorticity into the problem, cf. [4, 16, 32]. However, the difficulties generated
by the presence of the vorticity have prevented a rigorous mathematical development,
which appeared only relatively recently in [7], where the existence of small and large
amplitude steady periodic gravity water waves with a general (continuous) vorticity
distribution was proved.

Of high significance is the investigation of steady periodic rotational waves interact-
ing with currents that possess a rough – that is discontinuous or unbounded – vorticity.
Discontinuous vorticities model sudden changes in the underlying current: numerical
simulations of such flows being quite recent [18, 19]. Unbounded vorticities on the other
hand can describe turbulent flows in channels (see the empirical law on [1, p. 106]) and
are also relevant in the setting of wind generated waves that possess a thin layer of high
vorticity adjacent to the wave surface [30, 31]. The discontinuous vorticity distribution
was considered in the groundbreaking paper [9], where the existence of steady two-
dimensional periodic gravity water waves of small and large amplitude on water flows

∗Received: August 11, 2014; accepted (in revised form): February 28, 2015. Communicated by Paul
Milewski.

†Institut für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Österreich
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with an arbitrary bounded (but discontinuous) vorticity was proved. Small amplitude
capillary–gravity waves with discontinuous but bounded vorticity were constructed in
[25, 29]. Waves with unbounded vorticity were first shown to exist in [26] but only when
allowing for surface tension as a restoring force. This situation appears in many physical
settings one of which being that of wind blowing over a still fluid surface and giving rise
to two-dimensional small amplitude wave trains driven by capillarity [17] which grow
larger and turn into capillary–gravity waves.

Another striking occurrence in water flows is the presence of stagnation points,
that is points where the steady velocity field vanishes, thus making the analysis more
intricate, since the usual Dubreil-Jacotin transform which converts the original free
boundary problem into a problem in a fixed domain, is no longer applicable. There is a
short list of papers dealing with existence of water flows allowing for stagnation points
and for a non-vanishing continuous vorticity, cf. [10, 13, 14, 20, 35] for gravity waves and
[22, 23, 24, 28] for waves with capillarity. Under consideration in this paper is a more
involved setting where, in addition to permitting stagnation points (whose existence in
the fluid is proven), we also allow for a discontinuous distribution of the vorticity. To
our best knowledge the incorporation of both stagnation points and of a discontinuous
vorticity is a feature that was not rigorously analyzed before.

The governing equations are the Euler equations of motion, together with boundary
conditions on the free surface and on the flat bed of the water flow. The discontinuous
vorticity that we consider here is of the following type: we assume that the flow has a
layer of constant vorticity γ2 adjacent to the free surface above another layer of constant
vorticity γ1 neighboring the flat bed. Of course, the interesting situation (that we pursue
here) is when γ1 �=γ2. The unknowns here are the free surface, the interface separating
the regions of different vorticities (which can be seen as an internal wave due to the
discontinuity in vorticity), the velocity field and the pressure function. In a first step
we reduce the number of unknowns by means of the stream function whose utilization
converts the problem into a transmission problem along the line of discontinuity of
vorticity with fewer unknowns. The second step that we undertake is to consider a
flattening transformation which has the advantage that changes the free boundary value
problem into a problem in a fixed domain, thus making it more tractable for the analysis.
For studying the latter resulting problem we employ the Crandall–Rabinowitz theorem
on bifurcation from simple eigenvalues.

The dispersion relation that we obtain – which is a formula giving the speed at
the free surface of the bifurcation inducing laminar flows in terms of the two vorticities
γ1,γ2, the thickness of the two rotational layers and the wavelength – generalizes the
one in [10] obtained in the case of a water flow with constant vorticity and allowing
for stagnation points. The intricacy of the dispersion relation – a third order algebraic
equation – allows us to prove existence of water waves of small wavelength arising as
the free surface of water flows with rotational layers of different constant vorticities
and containing stagnation points, cf. Theorems 3.4–3.6, 4.2, 4.3. We present also the
streamline pattern -in the moving frame for the solutions, cf. figures 3.1-3.3. Our results
especially show that the ratio of the amplitudes of the surface wave and that of the
internal wave – and the fact that the surface wave and the internal wave are in phase
or anti-phase – is highly influenced by the vorticities of the currents and by the speed
at the free surface of the bifurcation inducing laminar flows.

We briefly outline the content of the paper. We present in Section 2 the governing
equations together with the analytic setting we work within. Moreover, we also find the
dispersion relation whose analysis is undertaken in Section 3 for the case γ2>0, while
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the more singular case γ2=0 is treated in Section 4. The appendix contains several
technical lemmas.

2. The governing equations
Under consideration is a two-dimensional steady periodic flow, moving under the

influence of gravity, such that the surface waves propagate in the positive x-direction.
The water flow occupies the domain Ω bounded below by the flat bed y=−d, with
d>0, and above by the free surface y=h(x), which is a small perturbation of the flat
free surface y=0. In a reference frame moving with the wave speed c>0, the equations
of motion in Ω are Euler’s equations⎧⎨⎩

(u−c)ux+vuy = −Px,
(u−c)vx+vvy = −Py−g,

ux+vy = 0,
(2.1a)

where (u,v) denotes the velocity field, P stands for pressure and g is the gravity constant.
The equations of motion are supplemented by the boundary conditions, which, ignoring
surface tension effects, are ⎧⎨⎩

P = P0 on y=h(x),
v = (u−c)h′ on y=h(x),
v = 0 on y=−d,

(2.1b)

with P0 being the constant atmospheric pressure.
We are interested in solutions to the problem (2.1), for which the vorticity ω :=uy−

vx of the flow presents discontinuities of the following type: we assume that, adjacent
to the free surface, the water flow possesses a layer

Ω(f,h) :={(x,y) :x∈R,−d2+f(x)<y<h(x)},
of constant vorticity γ2, situated above another layer

Ω(f) :={(x,y) :x∈R,−d<y<−d2+f(x)},
which is adjacent to the flat bed and is of constant vorticity γ1, that is

ω :=

{
γ1, in Ω(f),
γ2, in Ω(f,h).

(2.1c)

We assume throughout the text that γ1 �=γ2 and that d2>0, d−d2=:d1>0. We
note that, additionally to (u,v,P,h), we have a further unknown: the function f whose
graph separates the two currents of different vorticities. By Helmholtz’s law, the vor-
ticity is constant along streamlines of the steady flow, and as a consequence of this
y=−d2+f has to be a streamline of the flow. This streamline can be viewed as an
internal wave due to the jump in vorticity.

With the help of the stream function ψ, introduced (up to an additive constant)
via the relation ∇ψ=(−v,u−c) we can reformulate (2.1a)–(2.1c) as the free-boundary
problem ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δψ2=γ2 in Ω(f,h),
Δψ1=γ1 in Ω(f),
ψ2=0 on y=h(x),
ψ2=ψ1 on y=−d2+f(x),
ψ1=m on y=−d,

(2.2a)
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subjected to the conditions{
∂yψ2=∂yψ1 on y=−d2+f(x),

|∇ψ2|2+2g(d+h)=Q on y=h(x),
(2.2b)

where the constant −m represents the relative mass flux and Q∈R is related to the
hydraulic head. Moreover, ψ1 :=ψ

∣∣
Ω(f)

and ψ2 :=ψ
∣∣
Ω(f,h)

, so that from the fourth

equation of (2.2a) and the first equation of (2.2b) we see that the ∇ψ (hence also the
velocity field) is continuous across the interface y=−d2+f(x).

Given α∈ (0,1), it is not difficult to see that any solution

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
of (2.2) defines a solution

(u,v,P,(f,h))∈ (C1−
per(Ω)

)3×(C3+α
per (R)

)2(
(u,v)

∣∣
Ω(f)

,(u,v)
∣∣
Ω(f,h)

)∈ (C2+α
per

(
Ω(f)

))2×(C2+α
per

(
Ω(f,h)

))2(
P
∣∣
Ω(f)

,P
∣∣
Ω(f,h)

)∈C2+α
per

(
Ω(f)

)×C2+α
per

(
Ω(f,h)

)
of (2.1). The subscript per stands for functions that are periodic in the horizontal
variable, meaning that all the functions considered above are L-periodic with respect
to x, with L>0 being fixed.

We first determine laminar flow solutions to problem (2.2), that is water flows with
a flat free surface and parallel streamlines, meaning that they present no x-dependence.
Of interest are laminar flows that contain stagnation points, more precisely laminar
flows that contain streamlines consisting entirely of stagnation points. Then we study
when non-laminar solutions bifurcate from the laminar flows and describe the qualitative
picture of the streamline pattern for the bifurcating solutions.

Laminar flow solutions. Because the stream function is constant along the streamline
y=−d2+f(x), we use the value of the stream function

ψ1=ψ2=λ on y=−d2+f(x), (2.3)

to parametrize a family of laminar solutions to (2.2a). Setting f ≡h≡0 we obtain from
(2.2a) that the stream function ψ0 := (ψ0

1 ,ψ
0
2) satisfies

ψ0
1(y)=

γ1y
2

2
+

(
γ1(d+d2)

2
+

λ−m

d1

)
y+

λd

d1
+

γ1dd2
2

−md2
d1

, y∈ [−d,−d2]

ψ0
2(y)=

γ2y
2

2
+

(
γ2d2
2

− λ

d2

)
y, y∈ [−d2,0].

The equations of (2.2b) are equivalent to

m=
λd

d2
+d1

γ1d1+γ2d2
2

, Q=
(γ2d2

2
− λ

d2

)2
+2gd. (2.4)

In the following we choose the constants m and Q in (2.2a) and (2.2b) to be given by
(2.4), the constant λ introduced via (2.3) being left as a parameter. Hence, each λ∈R

determines a unique laminar solution ((f,h),ψ1,ψ2) :=(0,ψ0
1 ,ψ

0
2) of (2.2) when m and Q

are defined by (2.4). These are the laminar solutions, from which we study bifurcation.
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Conditions for stagnation. We note that the laminar flows determined above possess
stagnation points – that is water particles that travel horizontally with the wave speed
– if and only if

∂yψ
0
2(−d2) ·∂yψ0

2(0)≤0 or ∂yψ
0
1(−d) ·∂yψ0

1(−d2)≤0. (2.5)

If (2.5) holds true, then there exists y0∈ [−d,0] such that

∂yψ
0
i (y0)=0 for i=1or 2.

The streamline y=y0 consists only of stagnation points, and we expect that the solutions
to (2.1) that bifurcate from these laminar solutions possess stagnation points too, cf.
[12, 35]. The first inequality ensures stagnation in the layer adjacent to the wave surface,
and is equivalent to

Λ(Λ−γ2d2)≤0, (2.6)

respectively the condition for stagnation in the bottom layer is

(Λ−γ2d2)(Λ−γ1d1−γ2d2)≤0. (2.7)

Hereby, we set

Λ :=
γ2d2
2

− λ

d2
. (2.8)

The constant Λ has a physical interpretation: it is the relative horizontal speed at the
free surface for the laminar flow determined by λ, that is Λ=∂yψ

0
2

∣∣
y=0

. For this reason

we define λ via (2.8) and use Λ as parameter.

The functional analytic setting. With Λ as parameter, we are left to seek special
values of Λ such that branches of non-laminar solutions to (2.2) bifurcate from the curve
of laminar flows. For this, we need to recast (2.2) in a suitable analytic setting.

In the following α∈ (0,1) is a fixed Hölder exponent. Because the equations of (2.2a)
and (2.2b) are posed on manifolds that depend on the unknown functions (f,h), it is
suitable to transform the problem (2.2) on fixed manifolds. For this, we set Ω1 :=Ω(0),
Ω2 :=Ω(0,0) and define the mappings

Φf :Ω1→Ω(f), Φf (x,y)=

(
x,

d1+f(x)

d1
y+

d

d1
f(x)

)
,

Φ(f,h) :Ω2→Ω(f,h), Φ(f,h)(x,y)=

(
x,

h(x)−f(x)+d2
d2

y+h(x)

)
.

It is easy to see that Φf and Φ(f,h) are C3+α-diffeormorphisms for each (f,h)∈O, by
which

O :={(f,h)∈ (C3+α
e,per(R)

)2
:−d<−d2+f <h},

the subscript e referring to the fact that we consider only even function in x. Using
these diffeomorphisms, we define the linear elliptic operators

A(f) :C3+α
e,per(Ω1)→C1+α

e,per(Ω1), A(f)w1 :=Δ(w1 ◦Φ−1
f )◦Φf ,

A(f,h) :C3+α
e,per(Ω2)→C1+α

e,per(Ω2), A(f,h)w2 :=Δ(w2 ◦Φ−1
(f,h))◦Φ(f,h),
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and the boundary operators

B1 :R×O×C3+α
e,per(Ω2)→C2+α

e,per(R),

B2 :R×O×C3+α
e,per(Ω1)×C3+α

e,per(Ω2)→C2+α
e,per(R),

respectively through

B1(Λ,(f,h),w2) :=
(
|∇(w2 ◦Φ−1

(f,h))|2 ◦Φ(f,h)+2g(d+h)−Q
)∣∣∣

y=0
,

B2(Λ,(f,h))[w1,w2] :=
[(
∂y(w2 ◦Φ−1

(f,h))
)◦Φ(f,h)−

(
∂y(w1 ◦Φ−1

f )
)◦Φf

]∣∣∣
y=−d2

.

Remark 2.1. Let Λ∈R, ((f,h),ψ1,ψ2)∈O×C3+α
per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
, and as-

sume that λ,m,Q are defined by (2.3), (2.4), and (2.8). Then, the tuple ((f,h),ψ1,ψ2)
solves problem (2.2) if and only if

(i) w1 :=ψ1 ◦Φf ∈C3+α
e,per(Ω1) is the unique solution of the Dirichlet problem⎧⎨⎩

A(f)w1=γ1 in Ω1,
w1=λ on y=−d2,
w1=m on y=−d.

(2.9)

(ii) w2 :=ψ2 ◦Φ(f,h)∈C3+α
e,per(Ω2) is the unique solution of the Dirichlet problem⎧⎨⎩

A(f,h)w2=γ2 in Ω2,
w2=0 on y=0,
w2=λ on y=−d2.

(2.10)

(iii) B1(Λ,(f,h),w2)=B2(Λ,(f,h))[w1,w2]=0 in C2+α
e,per(R).

Thanks to Remark 2.1 we can recast the problem (2.2) as a nonlinear and nonlocal
equation with (Λ,(f,h)) as unknown. In order to proceed, we first establish the following
result.

Lemma 2.2. Given (Λ,(f,h))∈R×O, we let w1 :=w1(Λ,(f,h)) and w2 :=w2(Λ,(f,h))
denote the unique solution of (2.9) and (2.10), respectively, with λ given by (2.8). Then,
we have wi∈Cω

(
R×O,C3+α

e,per(Ωi)
)
,i=1,2.

Proof. We prove just the real-analyticity of the solution operator w1, the claim for
w2 following similarly. By elliptic theory, see [15], we see that w1 :R×O→C3+α

e,per(Ω1)
is well-defined. Moreover, we have that

F(Λ,(f,h),w1(Λ,(f,h)))=0 for all (Λ,(f,h))∈R×O,

thus F ∈Cω
(
R×O×C3+α

e,per(Ω1),C
1+α
e,per(Ω1)×(C3+α

e,per(R))
2
)
is the operator defined by

F(Λ,(f,h),w1) :=(A(f)w1−γ1,w1

∣∣
y=−d2

,w1

∣∣
y=−d

).

Taking into account that Fréchet derivative

∂w1
F(Λ,(f,h),w1((Λ,(f,h))))[z] := (A(f)z,z

∣∣
y=−d2

,z
∣∣
y=−d

)

is an isomorphism, the assertion follows from the implicit function theorem.
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Because Bi,i=1,2, depend real-analytically on their arguments too, we obtain from
Lemma 2.2 and Remark 2.1 that the problem (2.2) is equivalent to the nonlinear and
nonlocal equation

Φ(Λ,(f,h))=0, (2.11)

by which Φ :=(Φ1,Φ2)∈Cω
(
R×O,

(
C2+α

e,per(R)
)2)

is the operator defined by

Φ(Λ,(f,h)) :=(B1(Λ,(f,h),w2(Λ,(f,h))),B2(Λ,(f,h))[w1(Λ,(f,h)),w2(Λ,(f,h))]).
(2.12)

The laminar flow solutions to (2.2) correspond to the trivial solutions (Λ,0)∈R×O of
(2.11). In order to find other solutions, we use the theorem on bifurcations from simple
eigenvalues due to Crandall and Rabinowitz [11].

Theorem 2.3 (Crandall and Rabinowitz). Let X,Y be real Banach spaces and let the
mapping Φ∈Cω(R×X,Y) satisfy:

(a) Φ(Λ,0)=0 for all Λ∈R;

(b) There exists Λ∗∈R such that Fréchet derivative ∂xΦ(Λ∗,0) is a Fredholm oper-
ator of index zero with a one-dimensional kernel and

Ker∂xΦ(Λ∗,0)=span{x0} with 0 �=x0∈X;

(c) The transversality condition

∂ΛxΦ(Λ∗,0)[x0] �∈ Im∂xΦ(Λ∗,0).

Then, (Λ∗,0) is a bifurcation point in the sense that there exists ε>0 and a real-analytic
curve (Λ,x) : (−ε,ε)→R×X consisting only of solutions to the equation Φ(Λ,x)=0.
Moreover, as s→0, we have that

Λ(s)=Λ∗+O(s) and x(s)=sx0+O(s2).

Furthermore, there exists an open set U ⊂R×X with (Λ∗,0)∈U and

{(Λ,x)∈U :Φ(Λ,x)=0,x �=0}={(Λ(s),x(s)) : 0< |s|<ε}.

In order to apply this abstract bifurcation result, we need to compute the Fréchet
derivative of the operator Φ. To this end we state the following lemma.

Lemma 2.4. Let Λ∈R be given. The Fréchet derivative ∂(f,h)Φ(Λ,0) is the matrix
operator

∂(f,h)Φ(Λ,0)=

(
A11 A12

A21 A22

)
∈L((C3+α

e,per(R)
)2
,
(
C2+α

e,per(R)
)2)

.

Given 1≤ i,j≤2, the operator Aij ∈L(C3+α
e,per(R),C

2+α
e,per(R)

)
is the Fourier multiplier

with symbol mij(Λ) :=(mij
k (Λ))k∈N defined by

m11
k (Λ)=−2Λ(γ2d2−Λ)

Rk

sinh(Rkd2)
, (2.13)

m12
k (Λ)=2

[
g+γ2Λ−Λ2 Rk

tanh(Rkd2)

]
, (2.14)
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m21
k (Λ)=γ2−γ1+(Λ−γ2d2)

[ Rk

tanh(Rkd1)
+

Rk

tanh(Rkd2)

]
, (2.15)

m22
k (Λ)=−Λ

Rk

sinh(Rkd2)
(2.16)

for k∈N, by which Rk :=2kπ/L. For k=0 the right-hand side of (2.13)-(2.16) should
be understood as the limit of the expressions when letting Rk→0.

Proof. See Appendix.

With the help of Lemma 2.4 we are now able to determine when the Fréchet deriva-
tive ∂(f,h)Φ(Λ,0) is a Fredholm operator.

Lemma 2.5. Let Λ∈R be given. We have:

(i) If Λ∈{0,γ2d2}, then ∂(f,h)Φ(Λ,0) is not a Fredholm operator.

(ii) If Λ �∈ {0,γ2d2}, then ∂(f,h)Φ(Λ,0) is a Fredholm operator of index zero.

Proof. In order to prove (i), we infer from (2.13) and (2.14) that for Λ=0 we have

∂(f,h)Φ1(Λ,0)[(f,h)]=2gh for all (f,h)∈ (C3+α
e,per(R)

)2
,

meaning that Im∂(f,h)Φ1(Λ,0)=C3+α
e,per(R). Since C3+α

e,per(R) is not a closed subspace of
C2+α

e,per(R), the assertion is evident. Furthermore, if Λ=γ2d2 �=0, then

∂(f,h)Φ2(Λ,0)[(f,h)]=(γ2−γ1)f+Kh for all (f,h)∈ (C3+α
e,per(R)

)2
,

by which

K
∑
k∈N

bk cos(Rkx)=−Λ
∑
k∈N

Rk

sinh(Rkd2)
bk cos(Rkx).

It is easy to see that K(C3+α
e,per(R)

)⊂C∞
e,per(R), hence Im∂(f,h)Φ2(Λ,0)=C3+α

e,per(R).

Therefore, Im∂(f,h)Φ(Λ,0) is not a closed subspace of
(
C2+α

e,per(R)
)2
. This proves (i).

To prove (ii), we choose Λ �∈ {0,γ2d2} and set

D(k,Λ) :=m11
k (Λ)m22

k (Λ)−m12
k (Λ)m21

k (Λ), k∈N.

From (2.13)–(2.16) it is clear that there exists k0∈N such that D(k,Λ) �=0 for all k≥k0.
Defining the symbols m̃ij(Λ) by m̃ij

k (Λ)=mij
k (Λ) for k≥k0 and 1≤ i,j≤2 and

m̃11
k (Λ)= m̃22

k (Λ)=1, m̃12
k (Λ)= m̃21

k (Λ)=0 for 0≤k≤k0−1,

we see that ∂(f,h)Φ(Λ,0) is a compact perturbation of the operator

T :=

(
Ã11 Ã12

Ã21 Ã22

)
∈L((C3+α

e,per(R)
)2
,
(
C2+α

e,per(R)
)2)

,

where Ãij ∈L(C3+α
e,per(R),C

2+α
e,per(R)

)
is the Fourier multiplier with m̃ij(Λ), 1≤ i,j≤2.

Because D̃(k,Λ) := m̃11
k (Λ)m̃22

k (Λ)−m̃12
k (Λ)m̃21

k (Λ) �=0 for all k∈N, we can define the
formal inverse of T by

S :=

(
B̃11 B̃12

B̃21 B̃22

)
.
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Here, B̃ij is the Fourier multiplier corresponding to the symbol bij , 1≤ i,j≤2, by which

b11k :=
m̃22

k (Λ)

D̃(k,Λ)
, b12k :=− m̃12

k (Λ)

D̃(k,Λ)
, b21k :=− m̃21

k (Λ)

D̃(k,Λ)
, b22k :=

m̃11
k (Λ)

D̃(k,Λ)
for k∈N.

Using now [21, Theorem 2.1], we see that a Fourier multiplier∑
k∈N

αk cos(Rkx)→
∑
k∈N

λkαk cos(Rkx)

belongs to L(C2+α
e,per(R),C

3+α
e,per(R)

)
if

sup
k∈N

|kλk|<∞ and sup
k∈N

k2|λk+1−λk|<∞.

Because of this, it is a matter of direct computation to see that the operators B̃ij belong
to L(C2+α

e,per(R),C
3+α
e,per(R)

)
for all 1≤ i,j≤2. Hence, T is an isomorphism, and therefore

∂(f,h)Φ(Λ,0) is a Fredholm operator of index zero.

Because of Lemma 2.5 (i) it is clear that we cannot apply the Crandall–Rabinowitz
bifurcation theorem at (Λ,0) with Λ∈{0,γ2d2}. As a consequence of this, the laminar
flows from which we show that non-laminar waves bifurcate will not possess stagnation
points at the wave surface or on the interface separating the two layers of constant
vorticity, cf. (2.6), (2.7), but only inside the layers. This is different from the case of
internal waves propagating between two layers of constant but different density, where
in the presence of capillarity stagnation points may be located also on the internal wave,
cf. [27].

It is now evident that potential bifurcation values for Λ �∈ {0,γ2d2} are to be looked
for among the solutions to

D(k,Λ)=0 (2.17)

for some integer k≥1. Since in Theorem 2.3 the Fréchet derivative ∂(f,h)Φ(Λ,0) needs
to be a Fredholm operator of index zero with a one-dimensional kernel, we need to find
Λ such that (2.17) has exactly one root 1≤k∈N. Plugging the expressions (2.13)-(2.16)
in (2.17), we rediscover the dispersion relation

Λ3− 1

Rk

[
γ2

(
Rkd2+

sinh(Rkd2)cosh(Rkd1)

cosh(Rkd)

)
+γ1

sinh(Rkd1)cosh(Rkd2)

cosh(Rkd)

]
Λ2

+tanh(Rkd)
[γ2

2d2−g

Rk
+γ2(γ1−γ2)

sinh(Rkd1)sinh(Rkd2)

R2
k sinh(Rkd)

]
Λ

+g
tanh(Rkd)

R2
k

[
(γ1−γ2)

sinh(Rkd1)sinh(Rkd2)

sinh(Rkd)
+γ2d2Rk

]
=0, (2.18)

found also in [25, Equation (5.11)] (with σ=0). This relation has been analyzed in the
setting of flows without stagnation points in [5] for γ1 �=0=γ2 and in [9] for γ1=0 �=γ2.
Herein, we assume only that γ1 �=γ2 and restrict the analysis to the complementary case
when stagnation points are included.

In studying the dispersion relation (2.18) we will make use of the following remark,
which allows us to restrict our attention to a few of relevant cases, the remaining ones
being analogous.
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Remark 2.6. Note that (2.18) possesses the following symmetry property: k is a
solution to (2.18) for some Λ �∈ {0,γ2d2} and (γ1,γ2)∈R

2 if and only if k is a solution
of (2.18) for −Λ �∈ {0,−γ2d2} and (−γ1,−γ2)∈R

2. Because additionally the inequalities
(2.6) and (2.7) are invariant under the transformation (Λ,(γ1,γ2)) �→ (−Λ,(−γ1,−γ2)),
we are left only with the two cases:

(i) γ2>0 and γ1 �=γ2;

(ii) γ2=0 and γ1<0.

3. Analysis of the dispersion relation: the case γ2>0 and γ1 �=γ2
Because the dispersion relation is highly nonlinear in k, the study of the roots of

(2.18) when keeping Λ fixed seems to be very difficult. Therefore, we consider the inverse
problem of determining the zeros Λ1, Λ2, Λ3 of this cubic equation when keeping k fixed,
and then study the properties of the mappings k �→Λi(k), 1≤ i≤3. We will do this for
small wavelength L, because then we can use asymptotic expansions and Cardano’s
formula in order to determine the roots Λi of (2.18). This small wavelength regime
corresponds to the setting t→∞, where

t :=Rk=
2πk

L
∈R.

Plugging in t for Rk, the equation (2.18) can be written in the more concise form

Λ3+A(t)Λ2+B(t)Λ+C(t)=0. (3.1)

We will show in the sequel that Equation (3.1) has three real roots when t is sufficiently
large. To this end, we first note that the coefficient functions A=A(t), B=B(t), and
C=C(t) and their first derivatives have the following asymptotic expansions for t→∞:

A=−γ2d2− γ1+γ2
2t

+o
( 1

t2

)
, A′=

γ1+γ2
2

· 1
t2

+o
( 1

t3

)
,

B=
γ2
2d2−g

t
+

γ2(γ1−γ2)

2t2
+o
( 1

t3

)
, B′=−γ2

2d2−g

t2
− γ2(γ1−γ2)

t3
+o
( 1

t4

)
,

C=
gγ2d2

t
+

g(γ1−γ2)

2t2
+o
( 1

t3

)
, C ′=−gγ2d2

t2
− g(γ1−γ2)

t3
+o
( 1

t4

)
.

(3.2)

Letting z :=Λ+A/3, we find that z solves the depressed cubic equation

z3+pz+q=0, (3.3)

with

p

3
=

B

3
− A2

9
=− (γ2d2)

2

9
+

γ2d2(2γ2−γ1)−3g

9t
+

4γ1γ2−7γ2
2 −γ2

1

36t2
+o
( 1

t3

)
and

q

2
=
A3

27
− AB

6
+

C

2

=− (γ2d2)
3

27
+γ2d2

6g+γ2d2(2γ2−γ1)

18t
−
[
γ2d2

γ2
1 −γ1γ2+γ2

2

36
+

g(2γ2−γ1)

3

] 1
t2

+
9γ2(γ

2
1 −γ2

2)−(γ1+γ2)
3

216

1

t3
+o
( 1

t4

)
.
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Observe that the discriminant for (3.3) is

D :=
(p
3

)3
+
(q
2

)2
=−9g(γ2d2)

4

243t
+O
( 1

t2

)
<0 for t→∞,

property which implies, cf. [33], that (3.3), and hence also (3.1), has three real roots.
They are given by the relation z= rcos(β), which implies

r=

√
−4p

3
=

2γ2d2
3

− γ2d2(2γ2−γ1)−3g

3γ2d2t
+O
( 1

t2

)
(3.4)

and β is one of the solution of

cos(3β)=−q

2

√
−27

p3
=1− 33g

2(γ2d2)2t
+O
( 1

t2

)
.

Thus, choosing β :=3−1arccos
(−(q/2)

√−27/p3
)
we see that β(t)↘t→∞ 0 and the roots

of (3.1) are

Λ1= rcos(β)− A

3
,

Λ2= rcos
(
β− 2π

3

)
−A

3
=−rcos

(
β+

π

3

)
− A

3
,

Λ3= rcos
(
β+

2π

3

)
−A

3
=−rcos

(
β− π

3

)
− A

3
.

(3.5)

Together with (3.2) and (3.4), it follows at once that for t→∞ we have

Λ1(t)→γ2d2, Λ2(t)→0, Λ3(t)→0. (3.6)

Let us also observe that since C(t)>0 for t→∞, it must hold that Λ2(t)Λ3(t)<0 for
t→∞. Moreover, it is clear from (3.5) that Λ2(t)>Λ3(t), hence

Λ2(t)>0>Λ3(t) for t→∞.

3.1. Existence of water flows bifurcating from Λ1. In order to consider
the bifurcation problem for (2.11), we need to first study the properties of the mapping
[t �→Λ1(t)].

Lemma 3.1. There is a constant t0≥0 such that the function

[[t0,∞)� t �→Λ1(t)∈ (0,∞)]

is strictly monotone.

Proof. Let φ(t,Λ) :=Λ3+A(t)Λ2+B(t)Λ+C(t) for Λ∈R and t≥0. Since for
t→∞ we have

φΛ(t,Λ1(t))=(Λ1(t)−Λ2(t))(Λ1(t)−Λ3(t))>0, (3.7)

we conclude that Λ1 is differentiable with respect to t. On the other hand

t2Φt(t,Λ1(t))= t2
(
Λ2
1(t)A

′(t)+Λ1(t)B
′(t)+C ′(t)

)−−−→
t→∞

(γ2d2)
2(γ1−γ2)

2
.

Since Λ′
1(t)=−φt(t,Λ1(t))/φΛ(t,Λ1(t)), we see that Λ′

1 has the same sign as γ2−γ1.
The constant t0 is defined as t0 := inf{t>0 : |Λ′

1|>0 on (t,∞)}.
From Lemma 3.1 it follows at once that
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• if γ1<γ2, then Λ1(t) satisfies (2.6) for t≥ t0;

• if γ1>γ2, then Λ1(t) satisfies (2.7) for t≥ t0.

We look now for bifurcation solutions when choosing Λ1 as the bifurcation point.
Therefore, we choose t0>0 in Lemma 3.1 large enough to guarantee additionally that

inf
[t0,∞)

Λ2
1> sup

[t0,∞)

(
Λ2
2+Λ2

3

)
,

D(0,Λ1(t)) �=0 for all t≥ t0.
(3.8)

Let

L0 :=2π/t0, (3.9)

fix L≤L0, and set Λ1 :=Λ1(2π/L). Then, since φ(2π/L,Λ1)=0, we get D(1,Λ1)=0.
Due to the choice of t0, the equation D(·,Λ1)=0 has no solutions k∈N other than k=1.
Consequently, since Λ1 �∈ {0,γ2d2}, the derivative ∂(f,h)Φ1(Λ1,0) is a Fredholm operator
with a one-dimensional kernel

Ker∂(f,h)Φ1(Λ1,0)=span
{(

m22
1 (Λ1),−m21

1 (Λ1)
)
cos(2πx/L)

}
. (3.10)

In order to apply Theorem 2.3 to this particular setting, it remains to study whether the
transversality condition is satisfied. To this end, we obtain the following characterization
of Im∂(f,h)Φ1(Λ1,0).

Lemma 3.2. Let L0 be given by (3.9), L≤L0, and set Λ1 :=Λ1(2π/L). Then, we have

Im∂(f,h)Φ(Λ1,0)=
{
(ξ,η)=

(∑
k∈N

ξk cos(Rkx),
∑
k∈N

ηk cos(Rkx)
)
: ξ1=

m11
1 (Λ1)

m21
1 (Λ1)

η1

}
.

(3.11)

Proof. To prove the claim, let (f,h)=
(∑

k∈N
ak cos(Rkx) ,

∑
k∈N

bk cos(Rkx)
)
be

such that ∂(f,h)Φ(Λ1,0)(f,h)=(ξ,η). Then, obviously{
m11

1 (Λ1)a1+m12
1 (Λ1)b1=γ1,

m21
1 (Λ1)a1+m22

1 (Λ1)b1=η1.

Because D(1,Λ1)=0, we find from (2.13)–(2.16) that

m11
1 (Λ1)

m21
1 (Λ1)

=
m12

1 (Λ1)

m22
1 (Λ1)

=:μ �=0.

Hence, (ξ,η) is an element of the set defined by the right-hand side of (3.11). Because

the latter set is a closed subspace of
(
C2+α

e,per(R)
)2

of codimension one that contains
Im∂(f,h)Φ(Λ1,0), the conclusion follows from Lemma 2.5.

We are now at the point of showing the transversality condition (c) from Theo-
rem 2.3.

Lemma 3.3. We have that

∂Λ(f,h)Φ(Λ1,0)
[(
m22

1 (Λ1),−m21
1 (Λ1)

)
cos(2πx/L)

]
/∈ Im∂(f,h)Φ(Λ1,0).
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−L/2 0 L/2

•• •

0 L/2 L

•• •

Fig. 3.1. This figure illustrates the streamlines in the moving frame for the solutions found in The-
orem 3.4 for γ1>γ2>0 (left) and γ1<γ2,γ2>0 (right), cf. Lemmas A.1–A.2. The thick streamlines
represent the wave surface, the internal wave, and the flat bad, respectively. The blue streamlines are
separatrices which bound the critical layer and the dashed line consists of points where the y-derivative
of the stream function vanishes. This line contains in both cases exactly three stagnation points: two
located at x=0 and x=L, and a third one inside the critical layer at x=L/2.

Proof. Since for a,b∈R, it holds that

∂Λ(f,h)Φ(Λ1,0)
[
(a,b)cos(2πx/L)

]
=
(
am11

1,Λ(Λ1)+bm12
1,Λ(Λ1),am

21
1,Λ(Λ1)+bm22

1,Λ(Λ1)
)
cos(2πx/L),

we are left to show that

m22
1 (Λ1)m

11
1,Λ(Λ1)−m21

1 (Λ1)m
12
1,Λ(Λ1)

�=m11
1 (Λ1)

m21
1 (Λ1)

(
m22

1 (Λ1)m
21
1,Λ(Λ1)−m21

1 (Λ1)m
22
1,Λ(Λ1)

)
,

or equivalently that

m22
1 (Λ1)m

11
1,Λ(Λ1)−m21

1 (Λ1)m
12
1,Λ(Λ1) �=m12

1 (Λ1)m
21
1,Λ(Λ1)−m11

1 (Λ1)m
22
1,Λ(Λ1).

Hence, we need to show that DΛ(1,Λ1) �=0. Recalling the definition of the mapping φ
from the proof of Lemma 3.1, we have that D(1,Λ)=φ(2π/L,Λ), and therefore

DΛ(1,Λ1)=ΦΛ(2π/L,Λ1(2π/L))>0,

which is the desired property.

Theorem 3.4 (Bifurcation from Λ1). Let γ2>0, γ1 �=γ2 and let α∈ (0,1) be given.
Furthermore, let L0 be the constant defined by (3.9) and L≤L0. Then, there exists
a real-analytic curve (Λ,(f,h)) : (−ε,ε)→ (0,∞)×O consisting only of solutions to the
problem (2.11). This curve contains exactly one trivial solution of (2.11), and for s→0
we have that

Λ(s)=Λ1+O(s), (f,h)(s)=s
(
m22

1 (Λ1),−m21
1 (Λ1)

)
cos(2πx/L)+O(s2),

which implies Λ1 :=Λ1(2π/L). The flow determined by (Λ(s),(f,h)(s)),s∈ (−ε,ε), con-
tains a critical layer consisting of closed streamlines very close to the internal wave
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(i) in the layer adjacent to the wave surface if γ1<γ2, or

(ii) in the bottom layer if γ1>γ2.

Moreover, the amplitude of the internal wave is much larger than that of the surface
wave, cf. Figure 3.1.

Proof. It remains only to show that the amplitude of the internal wave is much
larger than that of the surface wave. To this end, we note that due to D(1,Λ1)=0, we
have

−m22
1 (Λ1)

m21
1 (Λ1)

=−m12
1 (Λ1)

m11
1 (Λ1)

−−−→
L→0

sign(γ1−γ2)∞,

since

lim
L→0

m12
1 (Λ1)

m11
1 (Λ1)

= lim
t→∞

g+γ2Λ1(t)−Λ2
1(t)

t

tanh(td2)

−Λ1(t)(γ2d2−Λ1(t))
t

sinh(td2)

=sign(γ2−γ1)∞.

This concludes the proof.

3.2. Existence of water flows bifurcating from Λ2. For t→∞ we have that

• Λ2(t) satisfies (2.6);

• if γ1d1+γ2d2≤0, then Λ2(t) satisfies also (2.7).

Letting φ=φ(t,Λ) be the function defined in the proof of Lemma 3.1, we note that
for large t we have

φΛ(t,Λ2(t))=(Λ2(t)−Λ1(t))(Λ2(t)−Λ3(t))<0.

Hence, Λ2 is differentiable with respect to t. Moreover, it follows from (3.2) that

t2φt(t,Λ2(t))−−−→
t→∞ −gγ2d2,

and therefore Λ′
2(t)=−φt(t,Λ2(t))/φΛ(t,Λ2(t))<0 when t is large. Defining

t0 := inf{t>0 : Λ′
2<0 on (t,∞)},

we see that [[t0,∞)� t �→Λ2(t)∈ (0,∞)] is decreasing. In view of this property, we can
choose t0>0 large enough to guarantee that

sup
[t0,∞)

Λ2< inf
[t0,∞)

Λ1,

D(0,Λ2(t)) �=0 for all t≥ t0.
(3.12)

Then, we set

L0 :=2π/t0, (3.13)

we fix L≤L0, and define Λ2 :=Λ2(2π/L). Recalling that φ(2π/L,Λ2)=0, we obtain that
D(1,Λ2)=0. In fact, the equation D(·,Λ2)=0 has k=1 as the only integer solution,
cf. (3.12). Because of Λ2∈ (0,γ2d2), ∂(f,h)Φ1(Λ2,0) is a Fredholm operator with a one-
dimensional kernel

Ker∂(f,h)Φ1(Λ2,0)=span
{(

m22
1 (Λ2),−m21

1 (Λ2)
)
cos(2πx/L)

}
.
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Using the same arguments as in the proof of UH Lemma 3.2, we see that

Im∂(f,h)Φ(Λ2,0)=
{
(ξ,η)=

(∑
k∈N

ξk cos(Rkx),
∑
k∈N

ηk cos(Rkx)
)
: ξ1=

m11
1 (Λ2)

m21
1 (Λ2)

η1

}
.

Moreover, the transversality condition

∂Λ(f,h)Φ(Λ2,0)
[(
m22

1 (Λ2),−m21
1 (Λ2)

)
cos(2πx/L)

]
/∈ Im∂(f,h)Φ(Λ2,0)

reduces to showing that DΛ(1,Λ2)=φΛ(2π/L,Λ2(2π/L)) �=0, relation which holds true.
We conclude with the following result.

−L/2 0 L/2

•• •

•• •
.

−L/2 0 L/2

•• •

Fig. 3.2. This figure illustrates the streamlines in the moving frame for the solutions found
in Theorem 3.5 for γ1d1+γ2d2>0 (left) and γ1d1+γ2d2≤0 (right), cf. Lemmas A.3–A.4.

Theorem 3.5 (Bifurcation from Λ2). Let γ2>0, γ1 �=γ2 and let α∈ (0,1) be given.
Furthermore, let L0 be the constant defined by (3.13) and L≤L0. Then, there exists
a real-analytic curve (Λ,(f,h)) : (−ε,ε)→ (0,∞)×O consisting only of solutions to the
problem (2.11). This curve contains exactly one trivial solution of (2.11), and for s→0
we have that

Λ(s)=Λ2+O(s), (f,h)(s)=s
(
m22

1 (Λ2),−m21
1 (Λ2)

)
cos(2πx/L)+O(s2),

by which Λ2 :=Λ2(2π/L). The flow determined by (Λ(s),(f,h)(s)),s∈ (−ε,ε), contains
a critical layer consisting of closed streamlines

(i) in the layer adjacent to the wave surface if γ1d1+γ2d2>0;

(ii) in each of the layers if γ1d1+γ2d2≤0.

The vortex in the top layer is located right beneath the wave surface. Moreover, the
amplitude of the internal wave between the two layers is much smaller than that of the
surface wave, cf. Figure 3.2.

Proof. It remains only to show that the amplitude of the surface wave is much
larger than that of the internal wave. This follows from (2.15),(2.16), as we have

−m21
1 (Λ2)

m22
1 (Λ2)

−−−→
L→0

−∞,

and the proof is completed.
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3.3. Existence of water flows bifurcating from Λ3. Since 0>Λ3(t)−−−→
t→∞ 0

we see that Λ3(t) satisfies (2.7) provided that γ1d1+γ2d2<0. Because for large t

φΛ(t,Λ3(t))=(Λ3(t)−Λ1(t))(Λ3(t)−Λ2(t))>0,

the function Λ3 is differentiable with respect to t. Since t2φt(t,Λ3(t))−−−→
t→∞ −gγ2d2, we

conclude that Λ′
3(t)>0 when t is large. Defining t0 := inf{t>0 : Λ′

3>0 on (t,∞)}, we
see that [[t0,∞)� t �→Λ3(t)∈ (−∞,0)] is increasing. In view of this property, we can
choose t0>0 large enough to guarantee that

D(0,Λ3(t)) �=0 for all t≥ t0. (3.14)

Let

L0 :=2π/t0, (3.15)

choose L≤L0, and define Λ3 :=Λ3(2π/L). Since φ(2π/L,Λ3)=0, we get that k∈N

solves D(k,Λ3)=0 if and only if k=1. Moreover, since Λ3<0, ∂(f,h)Φ1(Λ3,0) is a
Fredholm operator with a one-dimensional kernel

Ker∂(f,h)Φ1(Λ3,0)=span
{(

m22
1 (Λ3),−m21

1 (Λ3)
)
cos(2πx/L)

}
.

As in Lemma 3.2, we find that

Im∂(f,h)Φ(Λ3,0)=
{
(ξ,η)=

(∑
k∈N

ξk cos(Rkx),
∑
k∈N

ηk cos(Rkx)
)
: ξ1=

m11
1 (Λ3)

m21
1 (Λ3)

η1

}
,

the transversality condition

∂Λ(f,h)Φ(Λ3,0)
[(
m22

1 (Λ3),−m21
1 (Λ3)

)
cos(2πx/L)

]
/∈ Im∂(f,h)Φ(Λ3,0)

being equivalent to DΛ(1,Λ3)=φΛ(2π/L,Λ3(2π/L)) �=0. This shows that all the as-
sumptions of Theorem 2.3 are satisfied. Consequently, we have the following result.

Theorem 3.6 (Bifurcation from Λ3). Let γ2>0, α∈ (0,1), and assume γ1d1+γ2d2<
0. Furthermore, let L0 be the constant defined by (3.15) and L≤L0. Then, there exists
a real-analytic curve (Λ,(f,h)) : (−ε,ε)→ (0,∞)×O consisting only of solutions to the
problem (2.11). This curve contains exactly one trivial solution of (2.11), and for s→0
we have that

Λ(s)=Λ3+O(s), (f,h)(s)=s
(
m22

1 (Λ3),−m21
1 (Λ3)

)
cos(2πx/L)+O(s2),

by which Λ3 :=Λ3(2π/L). The flow determined by (Λ(s),(f,h)(s)),s∈ (−ε,ε), contains a
critical layer consisting of closed streamlines in the layer adjacent to the bed. Moreover,
the amplitude of the internal wave between the two layers is much smaller than that of
the surface wave, cf. Figure 3.3.

Proof. The claim concerning the amplitude of the surface and internal waves
follows from (2.15),(2.16), as we have

−m21
1 (Λ2)

m22
1 (Λ2)

−−−→
L→0

∞.

This completes the proof.
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−L/2 0 L/2

•• •

−L/2 0 L/2

•• •

Fig. 3.3. This figure illustrates the streamlines in the moving frame for the solutions found
in Theorem 3.6 (left) and Theorems 4.2 and 4.3 (right), cf. Lemmas A.5–A.6.

4. Analysis of the dispersion relation: the case γ2=0 and γ1<0
Because of γ2=0, the inequality (2.6) reduces to Λ=0 situation when ∂(f,h)Φ(Λ,0) is

not even a Fredholm operator, cf. Lemma 2.5. For this reason we consider the bifurcation
problem for (2.11) just for values of Λ which satisfy (2.7). Hence, the flows that we
construct will have stagnation points only in the bottom layer.

With the notation from Section 3, we determine for the depressed cubic equation
(3.3) that

D=
(p
3

)3
+
(q
2

)2
=−g3

27
t−3+O

(
t−4
)
<0 for t→∞,

hence (3.1) has again three positive roots. They are given by the relation z= rcos(β),
from which

r=

√
−4p

3
=2

√
g

3
t−1/2+

γ2
1

36

√
3

g
t−3/2+O

(
t−5/2

)
, (4.1)

and β is one of the solutions to

cos(3β)=−q

2

√
−27

p3
=−γ1

√
3

g
t−1/2+

10γ3
1

72g

√
3

g
t−3/2+O

(
t−5/2

)
.

Setting β :=3−1arccos
(−(q/2)

√−27/p3
)
, we see that β(t)−−−→

t→∞ π/6 and the roots of

(3.1) are

Λ1= rcos(β)− A

3
,

Λ2= rcos
(
β− 2π

3

)
−A

3
=−rcos

(
β+

π

3

)
− A

3
,

Λ3= rcos
(
β+

2π

3

)
−A

3
=−rcos

(
β− π

3

)
− A

3
.

(4.2)

It now easily follows from (3.2), (4.1), and (4.2) that Λi−−−→
t→∞ 0 for i∈{1,2,3} and that

Λ3<Λ2<0<Λ1 for t→∞. Thus, we can find t0>0 such that

γ1d1<Λ3<Λ2<0<Λ1 on [t0,∞),

D(0,Λi(t)) �=0 for all t≥ t0, i=2,3.
(4.3)
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In view of γ1<0, the relation (2.7) is equivalent to Λ∈ (γ1d1,0) and therefore just flows
bifurcating from negative Λ may contain stagnation points. For this reason, we only
investigate in the following the functions Λ2 and Λ3.

Lemma 4.1. There exists t0>0 such that (4.3) holds and Λi : [t0,∞)→ (−∞,0), i=2,3,
are both increasing functions.

Proof. Note first that φΛ(t,Λ2(t))<0 and φΛ(t,Λ3(t))>0 for t≥ t0. Therefore,
the functions Λi, i=2,3, are differentiable on [t0,∞). Moreover, it is easy to see from
(4.1) and (3.2) that

lim
t→∞t5/2φt(t,Λ3(t))= lim

t→∞t5/2Λ3(t)B
′(t)=−g3/2.

Hence, we may chose t0 large to ensure the assertion for the mapping Λ3.
This argument does no longer work for Λ2 as cos(β+π/3)−−−→

t→∞ 0. Hence, we have

to determine an expansion for cos(β+π/3). Let

z0 :=

√
3

2
− γ1

6

√
3

g
t−1/2,

and observe that

|cos(β)−z0| |cos2(β)+z0 cos(β)+z20 |=|4cos3(β)−3cos(β)−4z30+3z0|

=
∣∣∣cos(3β)+γ1

√
3

g
t−1/2

∣∣∣+O(t−1)=O(t−1).

Hence cos(β)= z0+O(t−1) for t→∞. It is now easy to see that for t→∞ we have

sin(β)=
1

2
+

γ1
2
√
g
t−1/2+O(t−1),

from which it follows easily that

Λ2(t) :=
5γ1
6

t−1+O(t−3/2) and Λ3(t) :=−√
gt−1/2− γ1

6
t−1+O(t−3/2). (4.4)

The expansion (4.4) combined with (3.2) shows that

lim
t→∞t3φt(t,Λ2(t))= lim

t→∞t3
(
Λ2(t)B

′(t)+C ′(t)
)
=−gγ1/6>0,

relation which proves the claim.

Theorem 4.2 (Bifurcation from Λ3). Let γ2=0, γ1<0, and α∈ (0,1). Furthermore,
let L0 :=2π/t0 and L≤L0. Then, there exists a real-analytic curve (Λ,(f,h)) : (−ε,ε)→
(0,∞)×O consisting only of solutions to problem (2.11). This curve contains exactly
one trivial solution of (2.11), and for s→0 we have that

Λ(s)=Λ3+O(s), (f,h)(s)=s
(
m22

1 (Λ3),−m21
1 (Λ3)

)
cos(2πx/L)+O(s2),

which implies Λ3 :=Λ3(2π/L). The flow determined by (Λ(s),(f,h)(s)),s∈ (−ε,ε), con-
tains a critical layer consisting of closed streamlines in the layer adjacent to the bed just
below the internal wave. Moreover, the amplitude of the internal wave between the two
layers is much smaller than that of the surface wave, cf. Figure 3.3.
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Proof. Because t :=2π/L≥ t0, we know from (4.3) and Lemma 2.5 that
∂(f,h)Φ1(Λ3,0) is a Fredholm operator. To determine its kernel we need to solve
D(k,Λ3)=φ(kt,Λ3)=0. As Λ3=Λ3(t), we see that D(1,Λ3)=0, while (4.3) ensures
that D(0,Λ3)=0. Recalling Lemma 4.1, we see that D(k,Λ3) �=0 for all k≥2. Indeed,
for k≥2, Λ3(kt)>Λ3, and if Λ3=Λ2(kt), then Λ3=Λ2(kt)>Λ2(t)>Λ3, a contradiction.
Hence, ∂(f,h)Φ1(Λ3,0) is a Fredholm operator with a one-dimensional kernel

Ker∂(f,h)Φ1(Λ3,0)=span
{(

m22
1 (Λ3),−m21

1 (Λ3)
)
cos(2πx/L)

}
.

Similarly, as before we have

Im∂(f,h)Φ(Λ3,0)=
{
(ξ,η)=

(∑
k∈N

ξk cos(Rkx),
∑
k∈N

ηk cos(Rkx)
)
: ξ1=

m11
1 (Λ3)

m21
1 (Λ3)

η1

}
,

and one can verify that the transversality condition

∂Λ(f,h)Φ(Λ3,0)
[(
m22

1 (Λ3),−m21
1 (Λ3)

)
cos(2πx/L)

]
/∈ Im∂(f,h)Φ(Λ3,0)

is also satisfied. We are thus in a position to apply Theorem 2.3. Gathering (2.15),
(2.16), and (4.4), we infer that

−m21
1 (Λ3)

m22
1 (Λ3)

−−−→
L→0

∞,

which finishes the proof.

When considering bifurcation from Λ2 the situation is more complicated because
the derivative ∂(f,h)Φ1(Λ2,0) may possess a two-dimensional kernel if Λ3(2πk/L)=
Λ2(2π/L) for some L≥L0 and some integer k≥2. When this happens, the integer
k is unique, cf. Lemma 4.1, so that we can conclude the existence of a curve of bifur-
cating solutions from Theorem 4.2. When Λ3(2πk/L) �=Λ2(2π/L) for all k≥2, we can
again apply Theorem 2.3.

Theorem 4.3 (Bifurcation from Λ2). Let γ2=0, γ1<0, and let α∈ (0,1). Further-
more, let L0 :=2π/t0 and L≤L0.

(i) Assume that Λ3(2πk/L) �=Λ2(2π/L) for all integers k≥2. Then, there exists
a real-analytic curve (Λ,(f,h)) : (−ε,ε)→ (0,∞)×O consisting only of solutions
to the problem (2.11). This curve contains exactly one trivial solution of (2.11),
and for s→0 we have that

Λ(s)=Λ2+O(s), (f,h)(s)=s
(
m22

1 (Λ2),−m21
1 (Λ2)

)
cos(2πx/L)+O(s2),

by which Λ2 :=Λ2(2π/L).

(ii) Assume that Λ3(2πk/L)=Λ2 for some integer k≥2. Then the assertion of
Theorem 4.2 holds true, but with L replaced by L/k.

The flow determined by (Λ(s),(f,h)(s)),s∈ (−ε,ε), contains a critical layer consisting
of closed streamlines in the layer adjacent to the bed just beneath the internal wave.
Moreover, the amplitude of the internal wave between the two layers is much smaller
than that of the surface wave, cf. Figure 3.3.

Proof. Setting t :=2π/L≥ t0, we know from (4.3) and Lemma 2.5 that
∂(f,h)Φ1(Λ2,0) is a Fredholm operator. To determine its kernel we need to solve
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D(k,Λ2)=Φ(kt,Λ2)=0. A solution of this equation is k=1 as Λ2=Λ2(t). Equation
(4.3) ensures additionally that D(0,Λ2)=0. Because Λ3 is increasing to zero, there may
exist a (unique) integer k≥2 such that Λ3(2πk/L)=Λ2(2π/L), hence D(k,Λ2)=0. In
this case we are in the situation (ii) and the proof is obvious. If Λ3(2πk/L) �=Λ2(2π/L)
for all integers k≥2, then we are in the case (i) and the proof is similar to that of
Theorem 4.2.

Remark 4.4. Since the properties of the functions Λi(t), for i=1,2,3 were essential
in finding the branches of solutions to the water wave problem, we summarize them in
the Table 4.1 below.

− γ1>0 γ1=0 γ1<0

γ2>0
Λ3<0<Λ2<Λ1

Λ1→γ2d2, Λi→0, i∈{2,3}

γ2=0
Λ3<0<Λ2<Λ1<γ1d1
Λi→0, i∈{1,2,3} − γ1d1<Λ3<Λ2<0<Λ1

Λi→0, i∈{1,2,3}

γ2<0
Λ3<Λ2<0<Λ1

Λ3→γ2d2, Λi→0, i∈{1,2}

Table 4.1. Properties of the roots Λi,i∈{1,2,3}, of the dispersion relation (2.18) in dependence
of the vorticity constants γi,i∈{1,2} for γ1 �=γ2 and for large Rk =2πk/L. Our analysis is dedicated
to the cases: (i) γ2>0 and γ1 �=γ2; and (ii) γ2=0 and γ1<0. The analysis in the other two cases:
(iii) γ2<0 and γ1 �=γ2; and (iv) γ2=0 and γ1>0 is similar to that for (i) and (ii), respectively (see
Remark 2.6).

Appendix A. We present herein the proof of Lemma 2.4 and additionally we
rigorously prove that the streamline pattern for the solutions that we found is as shown
in Figures 3.1–3.3, respectively. To this end, we first determine explicit expressions
for the elliptic and boundary operators introduced right before Remark 2.1. Given
(f,h)∈O, it is easy to see that

A(f)=∂xx−2
d+y

d1+f
f ′∂xy+

|(d+y)f ′|2+d21
(d1+f)2

∂yy−(d+y)
(d1+f)f ′′−2f ′2

(d1+f)2
∂y, (A.1)

A(f,h)=∂xx−2
d2h

′+(h−f)′y
h−f+d2

∂xy+
|d2h′+(h−f)′y|2+d22

(h−f+d2)2
∂yy

−
[d2h′′+(h−f)′′y

h−f+d2
−2

d2h
′(h−f)′+(h′−f ′)2y

(h−f+d2)2

]
∂y, (A.2)

respectively, given (w1,w2)∈C3+α
e,per(Ω1)×C3+α

e,per(Ω2) and Λ∈R, we have that

B1(Λ,(f,h),w2)=
[
|∂xw2|2− 2d2h

′

h−f+d2
∂xw2∂yw2+

d22(1+h′2)
(h−f+d2)2

|∂yw2|2
]∣∣∣

y=0

+2g(d+h)−Q(Λ), (A.3)

B2(Λ,(f,h))[w1,w2]=
d2

h−f+d2
∂yw2

∣∣∣
y=−d2

− d1
d1+f

∂yw1

∣∣∣
y=−d2

. (A.4)
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Proof. (Proof of Lemma 2.4.) Since

∂(f,h)Φ(Λ,0)[(f,h)]=

(
∂fΦ1(Λ,0)[f ] ∂hΦ1(Λ,0)[h]

∂fΦ2(Λ,0)[f ] ∂hΦ2(Λ,0)[h]

)

we only need to determine the entries in the matrix ∂(f,h)Φ(Λ,0).

The derivative ∂fΦ1(Λ,0): Using the definition of Φ1, we see that

∂fΦ1(Λ,0)[f ]=2
[ f
d2

|∂yψ0
2 |2+∂yψ

0
2∂y(∂fw2(Λ,0)[f ])

]∣∣∣
y=0

, (A.5)

by which ∂yψ
0
2

∣∣
y=0

=Λ and z :=∂fw2(Λ,0)[f ] is, in view of (2.10), the solution of the

Dirichlet problem {
Δz=−∂fA(0,0)[f ]ψ0

2 in Ω2,

z=0 on ∂Ω2.
(A.6)

A routine calculation shows now that

∂fA(0,0)[f ]ψ0
2 =

2γ2f

d2
+
(γ2
d2

y2+
Λ

d2
y
)
f ′′.

Expanding f and z(y),y∈ [−d2,0], by their Fourier series, we have

f =
∑
k∈N

ak cos(Rkx) and z(y)=
∑
k∈N

akAk(y)cos(Rkx) .

The coefficients Ak solve, in view of (A.6), the following boundary value problem{
A′′

k−R2
kAk=− 2γ2

d2
+R2

k

(
γ2

d2
y2+ Λ

d2
y
)
in (−d2,0),

Ak(−d2)=Ak(0)=0,

and therefore

Ak(y)=(Λ−γ2d2)
sinh(Rky)

sinh(Rkd2)
−
(γ2
d2

y2+
Λ

d2
y
)
.

Using the relation (A.5) we obtain now that

∂fΦ1(Λ,0)[f ]=
∑
k∈N

m11
k ak cos(Rkx) ,

by which (m11
k )k∈N is defined by (2.13).

The derivative ∂hΦ1(Λ,0): We have that

∂hΦ1(Λ,0)[h]=2
[
− h

d2
|∂yψ0

2 |2+∂yψ
0
2∂y(∂hw2(Λ,0)[h])

]∣∣∣
y=0

+2gh,

with z :=∂hw2(Λ,0)[h]) solving the Dirichlet problem{
Δz=−∂hA(0,0)[h]ψ0

2 in Ω2,

z=0 on ∂Ω2,
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cf. (2.10). Recalling (A.2), we compute that

∂hA(0,0)[h]ψ0
2 =−2γ2

d2
h−
(γ2
d2

y2+
γ2d2+Λ

d2
y+Λ

)
h′′.

Using Fourier expansions as before, that is

h=
∑
k∈N

bk cos(Rkx) and z(y)=
∑
k∈N

bkBk(y)cos(Rkx) for y∈ [−d2,0],

we obtain that the coefficients Bk satisfy{
B′′

k −R2
kBk=

2γ2

d2
−R2

k

(
γ2

d2
y2+ γ2d2+Λ

d2
y+Λ

)
in (−d2,0),

Bk(−d2)=Bk(0)=0.

The solution of this boundary value problem is

Bk(y)=−Λ
( sinh(Rky)

tanh(Rkd2)
+cosh(Rky)

)
+

γ2
d2

y2+
γ2d2+Λ

d2
y+Λ,

and the desired representation for the derivative ∂hΦ1(Λ,0) follows at once.

The derivative ∂fΦ2(Λ,0): From the definition of Φ2 we obtain that

∂fΦ2(Λ,0)[f ]=
[ f
d2

∂yψ
0
2+

f

d1
∂yψ

0
1+∂y

(
∂fw2(Λ,0)[f ]−∂fw1(Λ,0)[f ]

)]∣∣∣
y=−d2

,

by which, in the equality above, z :=∂fw1(Λ,0)[f ] solves the Dirichlet problem{
Δz=−∂fA(0)[f ]ψ0

1 in Ω1,
z=0 on ∂Ω1.

In view of (A.1), we compute that

∂fA(0)[f ]ψ0
1 =− 2γ1f

d1
−
[γ1
d1

y2+
(d+d2

d1
γ1+

Λ−γ2d2
d1

)
y+

dΛ

d1
+

dd2(γ1−γ2)

d1

]
f ′′.

Expanding f and z(y),y∈ [−d,−d2], by their Fourier series

f =
∑
k∈N

ak cos(Rkx) and z(y)=
∑
k∈N

akCk(y)cos(Rkx) ,

we find that the coefficient Ck is the solution of{
C ′′

k −R2
kCk=

2γ1

d1
−R2

k

[
γ1

d1
y2+

(
d+d2

d1
γ1+

Λ−γ2d2

d1

)
y+ dΛ

d1
+ dd2(γ1−γ2)

d1

]
in (−d,−d2),

Ck(−d)=Ck(−d2)=0,

whence

Ck(y)=Λ
sinh((d+y)Rk)

sinh(Rkd1)
+

γ1
d1

y2+
(d+d2

d1
γ1+

Λ−γ2d2
d1

)
y+

dΛ

d1
+

dd2(γ1−γ2)

d1
.

The representation of ∂fΦ2(Λ,0) as a Fourier multiplier now easily follows.



C.I. MARTIN AND B.V. MATIOC 437

The derivative ∂hΦ2(Λ,0): Observing that

∂hΦ2(Λ,0)[h]=
γ2d2−Λ

d2
h+∂y(∂hw2(Λ,0)[h])|y=−d2

,

the desired representation for ∂hΦ2(Λ,0) follows by using the expression for ∂hw2(Λ,0)[h]
determined in the second part of this proof.

In the remaining part we establish the Lemmas A.1–A.6 that provide the justifica-
tion for the streamlines pattern, as seen from a reference frame moving with the wave,
as shown in Figures 3.1–3.3. Because the proofs of Lemmas A.1–A.6 use similar argu-
ments, we present herein only the proof for Lemma A.1. For this, it is important to
note that because there is no time dependence in problem (2.1) (or (2.2)), the particle
trajectories and the streamlines corresponding to the solutions found in Theorems 3.4–
3.6, 4.2, and 4.3 coincide with the level curves of the corresponding stream function.
They are parametrized by solutions to the system of ordinary differential equations{

x′=u−c=ψy,
y′=v=−ψx,

(A.7)

stagnation points of the flows corresponding to equilibria of (A.7). Hence, our task is
to determine the level curves of the stream function. The direction of motion of the
particles along the level curves is determined by the sign of u−c or v.

Lemma A.1. Assume that γ1>γ2>0 and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on the bifurcation
curve found in Theorem 3.4. Provided that s is small enough, the following assertions
are true:

(i) f ′>0 and h′>0 on (0,L/2);

(ii) ∂xψ2<0 in {(x,y)∈Ω(f,h) : x∈ (0,L/2)} and ∂yψ2>0 in Ω(f,h);

(iii) ∂xψ1<0 in {(x,y)∈Ω(f) : x∈ (0,L/2)};
(iv) There is a smooth curve {(x,ξ(x)) :x∈ [0,L/2]} with −d<ξ(x)<−d2+f(x) for

all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ1(x,ξ(x))=0, ∂yψ1(x,y)<0 for all
y∈ [−d,ξ(x)), and ∂yψ1(x,y)>0 for all y∈ (ξ(x),−d2+f(x)];

(b) ξ is strictly decreasing on [0,L/2];

(c) The function [x �→ψ1(x,ξ(x))] is strictly decreasing on [0,L/2].

Proof. Since Λ(0)=Λ1∈ (γ2d2,γ1d1+γ2d2), for small s it holds Λ(s)∈ (γ2d2,γ1d1+
γ2d2). Recalling that

f(s)=sm22
1 (Λ1)cos

(
2π

L
x

)
+O(s2), h(s)=−sm21

1 (Λ1)cos

(
2π

L
x

)
+O(s2), (A.8)

with m22
1 (Λ1)<0 and m21

1 (Λ1)>0, the claim (i) follows by using the same arguments
as in the proof of [35, Lemma 4.2].

For (ii), we see first that ∂yψ
0
2 =γ2y+Λ1>γ2y+γ2d2>0 in Ω2. Therefore, ∂yψ2>0

in Ω(f,h) provided that s is small. Using now (i) and the fact that ψ is constant on
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∂Ω(f,h), and even with respect to x, it is easy to see that ∂xψ2≤0 on the boundary
of the set {(x,y)∈Ω(f,h) : x∈ (0,L/2)}. Observing that ∂xψ2(x,h(x))<0 for all x∈
(0,L/2) and Δψx=0 in Ω(f,h), elliptic maximum principles ensure that ∂xψ2<0 in
{(x,y)∈Ω(f,h) : x∈ (0,L/2)}. The claim (iii) is obtained in a similar manner.

For (iv), we remark that

∂yψ
0
1

∣∣
y=−d

<0, ∂yψ
0
1

∣∣
y=−d2

>0, ∂yyψ
0
1 >0 in Ω1.

Hence, for small s the function ψ1 satisfies the similar inequalities

∂yψ1

∣∣
y=−d

<0, ∂yψ1

∣∣
y=−d2+f

>0, ∂yyψ1>0 in Ω(f). (A.9)

Hence, for each x∈ [0,L/2], there exists a unique ξ(x)∈ (−d,−d2+f(x)) such that
∂yψ1(x,ξ(x))=0. Due to the third inequality in (A.9) we conclude from the implicit
function theorem that ξ is smooth and

∂xyψ1(x,ξ(x))+ξ′(x)∂yyψ1(x,ξ(x))=0 for all x∈ [0,L/2]. (A.10)

We are going to determine now the sign of ∂xyψ1. To this end note that ψ1=w1 ◦
Φ−1

f where w1∈C3+α
e,per(Ω1) is the unique solution of the problem (2.9), that is w1 :=

w1(Λ(s),(f,h)(s)). By the chain rule we get

∂xyψ1=− d1f
′

(d1+f)2
∂yw1 ◦Φ−1

f +
d1

d1+f
∂xyw1 ◦Φ−1

f − d21f
′y

(d1+f)3
∂yyw1 ◦Φ−1

f

+
dd1ff

′

(d1+f)3
∂yyw1 ◦Φ−1

f − dd1f
′

(d1+f)2
∂yyw1 ◦Φ−1

f .

On the other hand we have the following expansion

w1(Λ(s),(f,h)s))=w1(Λ1,0)+∂Λw1(Λ1,0)[Λ(s)−Λ1]+∂fw1(Λ1,0)[f(s)]+O(s2)

in C3+α
e,per(Ω1). Observing that

∂yw1 ◦Φ−1
f =∂yψ

0
1+O(s),

∂xyw1 ◦Φ−1
f =∂xy(∂fw1(Λ1,0)[f ])+O(s2),

∂yyw1 ◦Φ−1
f =γ1+O(s),

⎫⎬⎭ in C2+α
e,per

(
Ω(f)

)
,

a lengthy calculation leads us to

∂xyψ1=−sm22
1 (Λ1)L1Λ1

cosh(L1(d+y))

sinh(L1d1)
sin(L1x)+O(s2) in C1+α

e,per

(
Ω(f)

)
.

A similar argument to the one used in (i) shows that ∂xyψ1>0 in Ω(f) if s>0 is
sufficiently small. The latter property together with (A.9) and (A.10) implies that
ξ′<0 in x∈ (0,L/2). This proves the claim in (b). Since (c) is an obvious consequence
of (iii) we have completed the proof.

It follows now readily from Theorem 3.4 and Lemma A.1 that the streamline pattern
in the moving frame for the non-laminar solutions found in Theorem 3.4 for γ1>γ2 is
as in Figure 3.1 (left image). The next lemma justifies the right image of Figure 3.1.

Lemma A.2. Assume that γ1<γ2,γ2>0 and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on the bifurcation
curve found in Theorem 3.4. Provided that s is small enough, the following assertions
are true:
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(i) f ′>0 and h′<0 on (0,L/2);

(ii) ∂xψ1>0 in {(x,y)∈Ω(f) : x∈ (0,L/2)} and ∂yψ1<0 in Ω(f);

(iii) ∂xψ2>0 in in {(x,y)∈Ω(f,h) : x∈ (0,L/2)};
(iv) There is a smooth curve {(x,ξ(x)) :x∈ [0,L/2]} with −d2+f(x)<ξ(x)<h(x)

for all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ2(x,ξ(x))=0, ∂yψ2(x,y)<0 for all
y∈ [−d2+f(x),ξ(x)), and ∂yψ2(x,y)>0 for all y∈ (ξ(x),h(x)];

(b) ξ is strictly decreasing on [0,L/2];

(c) The function [x �→ψ2(x,ξ(x))] is strictly increasing on [0,L/2].

The next lemma provides a justification for the left image of Figure 3.2.

Lemma A.3. Assume that γ2>0,γ1d1+γ2d2>0 and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on the bifurcation
curve found in Theorem 3.5. Provided that s is small enough, the following assertions
are true:

(i) f ′>0 and h′<0 on (0,L/2);

(ii) ∂xψ1>0 in {(x,y)∈Ω(f) : x∈ (0,L/2)} and ∂yψ1<0 in Ω(f);

(iii) ∂xψ2>0 in in {(x,y)∈Ω(f,h) : x∈ (0,L/2)};
(iv) There is a smooth curve {(x,ξ(x)) :x∈ [0,L/2]} with −d2+f(x)<ξ(x)<h(x)

for all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ2(x,ξ(x))=0, ∂yψ2(x,y)<0 for all
y∈ [−d2+f(x),ξ(x)), and ∂yψ2(x,y)>0 for all y∈ (ξ(x),h(x)];

(b) ξ is strictly decreasing on [0,L/2];

(c) The function [x �→ψ2(x,ξ(x))] is strictly increasing on [0,L/2].

We provide now a justification for the right image of Figure 3.2.

Lemma A.4. Assume that γ2>0,γ1d1+γ2d2≤0 and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on the bifurcation
curve found in Theorem 3.5. Provided that s is small enough, the following assertions
are true:

(i) f ′>0 and h′<0 on (0,L/2);

(ii) ∂xψ1>0 in {(x,y)∈Ω(f) :x∈ (0,L/2)};
(iii) ∂xψ2>0 in in {(x,y)∈Ω(f,h) :x∈ (0,L/2)};
(iv) There is a smooth curve {(x,ξ1(x)) :x∈ [0,L/2]} with −d<ξ1(x)<−d2+f(x)

for all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ1(x,ξ1(x))=0, ∂yψ1(x,y)>0 for all
y∈ [−d,ξ1(x)), and ∂yψ1(x,y)<0 for all y∈ (ξ1(x),−d2+f(x)];

(b) ξ1 is strictly increasing on [0,L/2];

(c) The function [x �→ψ1(x,ξ1(x))] is strictly increasing on [0,L/2].
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(v) There is a smooth curve {(x,ξ2(x)) :x∈ [0,L/2]} with −d2+f(x)<ξ2(x)<h(x)
for all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ2(x,ξ2(x))=0, ∂yψ2(x,y)<0 for all
y∈ [−d2+f(x),ξ2(x)), and ∂yψ2(x,y)>0 for all y∈ (ξ2(x),h(x)];

(b) ξ2 is strictly decreasing on [0,L/2];

(c) The function [x �→ψ2(x,ξ2(x))] is strictly increasing on [0,L/2].

We consider now the non-laminar flows corresponding to the bifurcation solutions
found in Theorem 3.6 and prove the following result which justifies the left image of
Figure 3.3.

Lemma A.5. Assume that γ2>0,γ1d1+γ2d2<0 and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on the bifurcation
curve found in Theorem 3.6. Provided that s is small enough, the following assertions
are true:

(i) f ′<0 and h′<0 on (0,L/2);

(ii) ∂xψ2<0 in {(x,y)∈Ω(f,h) : x∈ (0,L/2)} and ∂yψ2<0 in Ω(f,h);

(iii) ∂xψ1<0 in {(x,y)∈Ω(f) : x∈ (0,L/2)};
(iv) There is a smooth curve {(x,ξ(x)) :x∈ [0,L/2]} with −d<ξ(x)<−d2+f(x) for

all x∈ [0,L/2] and additionally satisfying:

(a) Given x∈ [0,L/2], it holds that: ∂yψ1(x,ξ(x))=0, ∂yψ1(x,y)>0 for all
y∈ [−d,ξ(x)), and ∂yψ1(x,y)<0 for all y∈ (ξ(x),−d2+f(x)];

(b) ξ is strictly increasing on [0,L/2];

(c) The function [x �→ψ1(x,ξ(x))] is strictly decreasing on [0,L/2].

Finally, we have the following result which justifies the right image of Figure 3.3.

Lemma A.6. Assume that γ2=0, γ1<0, and let

((f,h),ψ1,ψ2)∈
(
C3+α

per (R)
)2×C3+α

per

(
Ω(f)

)×C3+α
per

(
Ω(f,h)

)
be a solution of (2.2) that is determined by a point (Λ(s),(f,h)(s)) on one of the bifur-
cation curves found in Theorems 4.2 and 4.3. Then, the assertions from Lemma A.5
hold verbatim.
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