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HIGH ORDER SEMI-LAGRANGIAN METHODS
FOR THE BGK EQUATION∗

MARIA GROPPI† , GIOVANNI RUSSO‡ , AND GIUSEPPE STRACQUADANIO§

Abstract. A new class of high-order accuracy numerical methods for the BGK model of the
Boltzmann equation is presented. The schemes are based on a semi-Lagrangian formulation of the BGK
equation; time integration is dealt with DIRK (Diagonally Implicit Runge–Kutta) and BDF methods;
the latter turn out to be accurate and computationally less expensive than the former. Numerical
results and examples show that the schemes are reliable and efficient for the investigation of both
rarefied and fluid regimes in gas dynamics.
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1. Introduction
In the kinetic theory of gases, the dynamics of a monoatomic rarefied gas system is

described by the Boltzmann equation [7]. The numerical approximation of this equation
is not trivial due to the complex structure of the collision operator. The BGK equation,
introduced by Bhatnagar, Gross, and Krook [4] and independently by Welander [29] is
a simplified model of the Boltzmann equation. In the BGK model the collision operator
is substituted by a relaxation operator; the initial value problem reads as

∂f

∂t
+v ·∇xf =QBGK [f ]≡ 1

ε
(M [f ]−f), (x,v,t)∈Rd×R

N ×R
+

f(x,v,0)=f0(x,v),

(1.1)

where d and N denote the dimension of the physical and velocity spaces, respectively,
and ε−1 is the collision frequency, which throughout this paper is assumed to be a fixed
constant for simplicity. M [f ] denotes the local Maxwellian with the same macroscopic
moments of the distribution function f(x,v,t), and is given by

M [f ](x,v,t)=
ρ(x,t)[

2πRT (x,t)
]N/2

exp

(
− (v−u(x,t))2

2RT (x,t)

)
, (1.2)

where R is the ideal gas constant and ρ(x,t)∈R+, u(x,t)∈RN , and T (x,t)∈R+ denote
the macroscopic moments of the distribution function f , that is: density, mean velocity,
and temperature, respectively. They are obtained in the following way:

(ρ,ρu,E)T = 〈fφ(v)〉, where φ(v)=
(
1,v,

1

2
|v|2

)T

and 〈g〉=
∫
RN

g(v)dNv. (1.3)

The physical quantity E(x,t) is the total energy, that is related to the temperature
T (x,t) by the underlying relation:

E(x,t)=
1

2
ρ(x,t)u(x,t)2+

N

2
ρ(x,t)RT (x,t).
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The BGK model (1.1) satisfies the main properties of the Boltzmann equation [4, 29],
such as conservation of mass, momentum, and energy, as well as entropy dissipation. In
details, this is

〈M [f ]φ(v)〉= 〈fφ(v)〉,
∫
RN

QBGK [f ] logfdNv≤0. (1.4)

The equilibrium solutions are clearly Maxwellians, indeed the collision operator vanishes
for f =M [f ]. The BGK model is computationally less expensive than the Boltzmann
equation, due mainly to the simpler form of the collision operator, but it still pro-
vides qualitatively correct solutions for the macroscopic moments near the fluid regime1.
These two aspects, the lower computational complexity and the correct description of the
hydrodynamic limit, explain the interest in the BGK model over the last several years.
Without expecting to be exhaustive, we refer to, for instance, [2, 18, 20, 21, 22, 26, 30]
and the references therein for a more in-depth analysis of both theoretical and numerical
aspects of BGK models. In particular, in the last few years many numerical schemes
have been proposed to solve the BGK equation in an efficient way, by adopting schemes
that are able to capture the limiting behavior of the solution as ε→0 (asymptotic pre-
serving schemes, AP). For example, in [22] the authors use IMEX schemes from [19],
in which the implicit part is L-stable, thus guaranteeing that the schemes project the
numerical solution onto the discrete Maxwellian as ε→0. Such schemes, originating
from the pioneering work by Jin [14], have gained considerable interest since they also
allow the reproduction of the Euler fluid limit at a discrete level. As additional exam-
ples, the very recent paper [9] is concerned with a fast method with AP property based
on splitting techniques, while the AP scheme proposed in [23] takes advantage of the
explicit advancing in time of the macroscopic fields involved in the BGK operator.

The aim of this paper is to develop high order semi-Lagrangian numerical schemes
for the BGK equation. Semi-Lagrangian methods for BGK models have recently re-
ceived increasing interest [11, 24], since they well describe either a rarefied or a fluid
regime. The relaxation operator is treated implicitly, and the semi-Lagrangian treat-
ment of the convective part avoids the classical CFL stability restriction. Moreover,
in this work time integration is dealt with BDF methods along characteristics, which
turn out to be accurate but computationally less expensive than Diagonally Implicit
Runge–Kutta (DIRK) methods introduced in [25] and analyzed in [24].

The paper is organized as follows. In Section 2 the semi-Lagrangian method is
introduced and the first order method is described; in Section 3 higher order methods
are presented, based on BDF or DIRK schemes for time integrations; the possibility to
avoid interpolation is investigated in Section 4. For simplicity, all schemes are described
for the 1+1D BGK model. In Section 5 we describe how to extend the methods to 1D
in space and 3D in velocity in slab geometry (Chu reduction [8]). Numerical results
are shown in Section 6, with the aim of showing the performance and the accuracy of
the proposed methods in various examples. Results and future developments are briefly
commented on in Section 7.

1More precisely, from the BGK model, to zero-th order in ε, one obtains the compressible Euler
equations in the fluid-dynamic limit, while to first order in ε, the moments satisfy equations of com-
pressible Navier–Stokes type, but with the wrong value for the Prandtl number. This problem can be
fixed by resorting to the so-called ES-BGK model [16], but in the present paper we shall restrict to the
classical BGK model.
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2. Lagrangian formulation and first order scheme

We shall restrict to the BGK equation in one space and velocity dimension (namely
d=N =1 in (1.1), (1.2)). In the Lagrangian formulation, the time evolution of f(x,v,t)
along the characteristic lines is given by the following system:

df

dt
=

1

ε
(M [f ]−f),

dx

dt
=v,

x(0)= x̃, f(x,v,0)=f0(x,v), t≥0, x, v ∈ R.

(2.1)

For simplicity, we assume constant time step Δt and uniform grid in physical and veloc-
ity space, with mesh spacing Δx and Δv, respectively, and denote the grid points
by tn=nΔt, xi=x0+ iΔx, i=0, . . . ,Nx, vj = jΔv, j=−Nv, . . . ,Nv, where Nx+1 and
2Nv+1 are the number of grid nodes in space and velocity, respectively, so that [x0,xNx ]
is the space domain. We also denote the approximate solution f(xi,vj ,t

n) by fn
ij .

Relaxation time ε is typically of the order of the Knudsen number, defined as the ratio
between the molecular mean free path length and a representative macroscopic length;
thus, the Knudsen number can vary in a wide range, from order greater than one (in
rarefied regimes) to very small values (in fluid dynamic regimes).

xi−2 xi−1 xi xi+1x̃i
tn

tn+1
fn+1
ij

f̃n
ij

vj > 0

Fig. 2.1. Representation of the implicit first order scheme. The foot of the characteristic does
not lie on the grid, and some interpolation is needed to compute f̃n

ij .

For this reason, if we want to capture the fluid-dynamic limit, we have to use an L-stable
scheme in time. An implicit first order L-stable semi-Lagrangian scheme (Figure 2.1)
can be achieved in this simple way

fn+1
ij = f̃n

ij+
Δt

ε
(M [f ]n+1

ij −fn+1
ij ). (2.2)

The quantity f̃n
ij
f(xi−vjΔt,vj ,t

n) can be computed by suitable reconstruction from
{fn
·j}; linear reconstruction will be sufficient for first order scheme, while higher order

reconstructions, such as ENO or WENO [6], may be used to achieve high order avoiding
oscillations. The convergence of this first order scheme has been studied in [24].
M [f ]n+1

ij is the discrete Maxwellian constructed with the macroscopic moments of fn+1:

M [f ]n+1
ij =M [f ](xi,vj ,t

n+1)=
ρn+1
i√

2πRTn+1
i

exp

(
− (vj−un+1

i )2

2RTn+1
i

)
.
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This formula requires the computation of the discrete moments of fn+1, through a
numerical approximation of the integrals in (1.3). This is obtained in the following
standard way2:

ρn+1
i =

∑Nv

j=−Nv
fn+1
ij Δv,

un+1
i =

1

ρn+1
i

∑Nv

j=−Nv
vjf

n+1
ij Δv,

En+1
i =

∑Nv

j=−Nv

1

2
v2j f

n+1
ij Δv.

(2.3)

From now on, we will denote formulas in (2.3) with the more compact notation:
(ρn+1

i ,(ρu)n+1
i ,En+1

i )=m[fn+1
i· ], where, in general, m[f ] will indicate the approximated

macroscopic moments related to the distribution function f .
Now it is evident that equation (2.2) cannot be immediately solved for fn+1

ij . It is a

non-linear implicit equation because the Maxwellian depends on fn+1 itself through its
moments. To solve this implicit step one can act as follows. Let us take the moments
of equation (2.2); this is obtained at the discrete level multiplying both sides by φjΔv,
where φj ={1,vj ,v2j } and summing over j as in (2.3). Then we have

Δv
∑
j

(fn+1
ij − f̃n

ij)φj =Δv
Δt

ε

∑
j

(M [f ]n+1
ij −fn+1

ij )φj ,

which implies that
∑
j

fn+1
ij φj =

∑
j

f̃n
ijφj ,

because, by definition, the Maxwellian at time tn+1 has the same moments as fn+1 and
we assume that equation (2.3) is accurate enough. This in turn gives

m[fn+1
i· ]
m[f̃n

i· ]. (2.4)

Once the Maxwellian at time tn+1 is known using the approximated macroscopic mo-
ments m[f̃n

i· ], the distribution function fn+1
ij can be explicitly computed as

fn+1
ij =

εf̃n
ij+ΔtMn+1

ij

ε+Δt
. (2.5)

This approach has already been used in [24, 25, 27], and in [22] in the context of Eulerian
schemes.

2The left-hand sides of (2.3) correspond to the moments of the continuous Maxwellian Mn+1
i (v)=

ρn+1
i√

2πRTn+1
i

exp(− (v−un+1
i )2

2RTn+1
i

); the right-hand sides are obtained by taking the discrete moments of

fn+1, and therefore they are not exactly equal to the moments of the discrete Maxwellian Mn+1
ij =

ρn+1
i√

2πRTn+1
i

exp(− (vj−un+1
i )2

2RTn+1
i

). The discrepancy is very small if the distribution function is smooth

and the number of points in velocity space is large enough, because midpoint rule is spectrally ac-
curate for smooth functions having (numerically) compact support. However, for small values of Nv ,
such discrepancy can be noticeable. To avoid this drawback, Mieussens introduced a proper discrete
Maxwellian [18, 17]. The computation of the parameters of such Maxwellian requires the solution of
a non-linear system. A comparison between the continuous and discrete Maxwellian can be found, for
example, in [1]. Here we shall neglect this effect, and assume that, using equation (2.3), Mn+1

ij , and

Mn+1
i (v) have the same moments with sufficient approximation.
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3. High order methods

3.1. Runge–Kutta methods. The scheme of the previous section corresponds
to the implicit Euler method applied to the BGK model in characteristic form. High
order discretization in time can be obtained by Runge–Kutta or BDF methods.

In [25, 27], the relaxation operator has been dealt with an L-stable diagonally im-
plicit Runge–Kutta (DIRK) scheme [15]. DIRK schemes are completely characterized by
the triangular ν×ν matrix A=(alk), and by the coefficients vectors c=(1, . . . ,cν)

T and
b=(b1, . . . ,bν)

T , which are derived by imposing accuracy and stability constraints [15].
DIRK schemes can be represented through the Butcher’s table

c A

bT
.

Here we consider the following DIRK schemes

RK2=
α α 0
1 1-α α

1-α α
, RK3=

1
2 γ 0 0

(1+γ)/2 (1−γ)/2 γ 0
1 1−δ−γ δ γ

1−δ−γ δ γ

which are a second and third order L-implicit schemes, respectively [3]. The coefficient
α is

α=1−
√
2

2
,

while γ is the middle root of 6x3−18x2+9x−1, γ
0.4358665215, and δ=3/2γ2−5γ+
5/4
−0.644363171. Both RK schemes have the property that the last row of the ma-
trix A equals bT , therefore the numerical solution is equal to the last stage value. Such
schemes are called “stiffly accurate”. An A-stable scheme which is stiffly accurate is
also L-stable [15].
Here we illustrate the application of the DIRK schemes RK2 and RK3 to the charac-
teristic formulation of the BGK equation (first equation in (2.1)).
We have to point out that, in a semi-Lagrangian DIRK scheme with ν stages, the
intermediate stage values, that will be denotes by a capital F , are computed along
the ν-characteristics corresponding to each xi and vj (see Figures 3.1 and 3.2). Then
we need two indices, one for the characteristic and one for the stage value. In de-

tail, F
(s,�)
ij will be the �-th stage value along the s-th characteristic. When �=0,

F
(s,0)
ij = f̃(tn,xi−csΔtvj ,vj), where f̃ is a suitable reconstruction of f obtained from

{fn
·j}, that is, F (s,0)

ij are the values of the distribution function at the feet of the char-
acteristics at time tn. High order methods in time are coupled with high order inter-
polation techniques in space; in Appendix A. we show the WENO [6] reconstruction
adopted in this paper.

3.1.1. RK2. The expression of RK2 (see Figure 3.1) applied to the BGK
equation (2.1) is:

fn+1
ij =F

(2,0)
ij +Δt(b1K

(2,1)
ij +b2K

(2,2)
ij ), (3.1)

where

K
(2,�)
ij =

1

ε
(M [F

(2,�)
ij ]−F

(2,�)
ij ), �=1,2,
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x̃(1)x̃(2) x̃(3)

xi−2 xi−1

xi

tn

tn + c1Δt

tn+1
fn+1
ij = F

(2,2)
ij

F
(1,1)
ijF

(1,1)
i−1,jF

(1,1)
i−2,j F

(2,1)
i,j

vj > 0

F
(1,0)
ijF

(2,0)
ij

2nd charac.

1st charac.

Fig. 3.1. Representation of the RK2 scheme. The black circles denote grid nodes, the gray ones
the points where interpolation is needed. Note that since we use a stiffly accurate scheme, the numerical

solution fn+1
ij is equal to the second stage value F

(2,2)
ij .

denotes the RK fluxes on the second characteristic x=xi+vj(t− tn+1), and

F
(2,�)
ij =F

(2,0)
ij +Δt

�∑
k=1

a�kK
(�,k)
ij , �=1,2,

are the stage values along the second characteristic. Moreover F
(2,0)
ij = f̃(tn,xi−

c2Δtvj ,vj).

In order to solve the implicit equation involving F
(2,1)
ij we have first to compute

F
(1,1)
ij on the grid. Indeed, it is worth noticing that the �-th stage value, say F

(2,�)
ij , is

evaluated by solving an implicit equation involving only F
(2,�)
ij , since the previous stage

values have already been computed, due to the triangular structure of the matrix A. In

our case this is not so easy, in particular for F
(2,1)
ij , because the point x̃(3) corresponding

to first stage along the second characteristics in general is not a grid point, and it is
not possible to compute the moments of the Maxwellian at that point in space-time;
indeed, after multiplying by φj and summing over j, the elements of the sum would
be computed in variable space points, so we could not take advantage of the useful
properties of the collision invariants. For this reason, we need two kinds of stage values:

the stage values along the characteristics, F
(2,1)
ij and F

(2,2)
ij , and the stage values on the

grid, F
(1,1)
ij (see Figure 3.1).

Thus, we compute F
(1,1)
ij in the grid node using the implicit first order methods

with time step c1Δt=a11Δt, that is

F
(1,1)
ij =

εF
(1,0)
ij +a11ΔtM

(1,1)
ij

ε+a11Δt
.

The Maxwellian M
(1,1)
ij =M [F

(1,1)
ij ] can be evaluated by means of the macroscopic

moments m[F
(1,0)
i· ], using an argument similar to the one adopted in (2.4). F

(1,0)
i,j =

f̃(tn,xi−c1Δtvj ,vj) can be computed by interpolation.

Once the implicit step is solved, that is, the first stage value F
(1,1)
ij along the grid

is computed, we are able to compute the first stage value F
(2,1)
ij along the second char-

acteristic, by interpolation from the values of F
(1,1)
ij .
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Then the second stage value F
(2,2)
ij can be computed by

F
(2,2)
ij =F

(2,0)
ij +Δt

(
a21K

(2,1)
ij +a22

1

ε
(M [F

(2,2)
ij ]−F

(2,2)
ij )

)
. (3.2)

Equation (3.2) can be solved using the same technique adopted for the implicit first
order scheme: taking the moments of both sides of equation (3.2), we can compute

the moments of F
(2,2)
ij since the elements of the sum on j containing the Maxwellian

M [F
(2,2)
ij ] are now on fixed space points. Indeed

∑
j

(
F

(2,2)
ij −F

(2,0)
ij −Δta21K

(2,1)
ij

)
φj =a22

Δt

ε

∑
j

(
M [F

(2,2)
ij ]−F

(2,2)
ij

)
φj =0,

thus the moments are given by m[F
(2,2)
i· ]=m[F

(2,0)
i· +Δta21K

(2,1)
i· ], so we can compute

M [F
(2,2)
ij ] and solve the implicit step for F

(2,2)
ij .

Notice that fn+1
ij =F

(2,2)
ij , because the scheme is stiffly accurate, i.e., the last row

of the matrix A is equal to the vector of weights.

3.1.2. RK3. The RK3 scheme works in a similar way, and Figure 3.2 shows the
procedure.

xi−3 xi−2 xi−1

x̃(1)x̃(2) x̃(4)x̃(3) x̃(5) x̃(6)

tn

tn + c1Δt

tn + c2Δt

tn+1

fn+1
ij = F

(3,3)
ij

F
(3,2)
ijF

(2,2)
i−3,j F

(2,2)
i−2,j F

(2,2)
i−1,j F

(2,2)
ij

F
(1,1)
i−3,j F

(1,1)
i−2,j F

(1,1)
i−1,j F

(1,1)
ijF

(3,1)
ij

F
(3,0)
ij

vj > 0

F
(1,0)
ijF

(2,0)
ij

F
(2,1)
ij

3rd charac.

2nd charac.

1st charac.

Fig. 3.2. Representation of the RK3 scheme. The black circles denote grid nodes, the gray ones
the points where interpolation is needed. Note that since we use a stiffly accurate scheme, the numerical

solution fn+1
ij is equal to the third stage value F

(3,3)
ij .

Algorithm (RK3)
- Calculate

F
(1,0)
i,j = f̃(tn,x̃(1)=xi−c1vjΔt,vj),

F
(2,0)
i,j = f̃(tn,x̃(2)=xi−c2vjΔt,vj),

F
(3,0)
i,j = f̃(tn,x̃(3)=xi−vjΔt,vj)

by interpolation from {fn
·j};
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- Calculate F
(1,1)
ij in the grid node using the technique (2.4), (2.5), with Δt

replaced by c1Δt. Given F
(1,1)
ij , one can compute F

(2,1)
ij and F

(3,1)
ij , respectively

along the second and the third characteristic, by interpolation from F
(1,1)
·j in

x̃(4)=xi−(c2−c1)vjΔt and x̃(5)=xi−(1−c1)vjΔt, and then evaluate K
(2,1)
ij =

1

ε

(
M [F

(2,1)
ij ]−F

(2,1)
ij

)
and K

(3,1)
ij =

1

ε

(
M [F

(3,1)
ij ]−F

(3,1)
ij

)
;

- Calculate F
(2,2)
ij in the grid node using a procedure similar to the RK2 scheme

described in the previous section with time step c2Δt. Given F
(2,2)
ij , one can

calculate F
(3,2)
ij by interpolation from F

(2,2)
·j in x̃(6)=xi−(1−c2)vjΔt and then

evaluate K
(3,2)
ij =

1

ε

(
M [F

(3,2)
ij ]−F

(3,2)
ij

)
along the third characteristic;

- Now one can update fn+1
ij taking into account that the method is stiffly accu-

rate, using the properties of the collision invariants to solve the implicit step,

fn+1
ij =F

(3,3)
ij =F

(3,0)
ij +Δt

(
b1K

(3,1)
ij +b2K

(3,2)
ij +b3

1

ε
(M [F

(3,3)
ij ]−F

(3,3)
ij )

)
.

3.1.3. Summary of the Runge–Kutta schemes. Three schemes based on
RK are tested in the paper:

- scheme RK2W23: uses WENO23 for the interpolation and RK2, as described
above, for time integration;

- scheme RK3W23: uses WENO23 for the interpolation and RK3, as described
above, for time integration;

- scheme RK3W35: uses WENO35 for interpolation and RK3 for time integra-
tion.

Remark 3.1. In practice, the Runge–Kutta fluxes can be computed from the internal
stages. For example, using RK2, we have

K
(1,1)
ij =

1

ε
(M [F

(1,1)
ij ]−F

(1,1)
ij )=

F
(1,1)
ij −F

(1,0)
ij

a11Δt
.

The latter expression can be used in the limit ε→0.

3.2. BDF methods. In this section we present a new family of high order
semi-Lagrangian schemes, based on BDF. The backward differentiation formulas are
implicit linear multistep methods for the numerical integration of ordinary differential
equations y′=g(t,y) [15]. Using the linear polynomial interpolating yn and yn−1 one
obtains the simplest BDF method (BDF1) that corresponds to backward Euler, used in
Section 2.

Here the characteristic formulation of the BGK model, that leads to ordinary dif-
ferential equations, is approximated by using BDF2 and BDF3 methods, in order to
obtain high order approximation. The relevant expressions, under the hypothesis that
the time step Δt is fixed, are:

BDF2 := yn+1=
4

3
yn− 1

3
yn−1+

2

3
Δtg(tn+1,yn+1), (3.3)

BDF3 := yn+1=
18

11
yn− 9

11
yn−1+

2

11
yn−2+

6

11
Δtg(tn+1,yn+1). (3.4)
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The stability properties of these schemes are adequate to treat the stiffness of the BGK
operator even in the limit ε→0 [15].

Here we apply the BDF methods along the characteristics.

3.2.1. BDF2. The numerical time integration of the first equation in (2.1), to
the second order accuracy adopting BDF strategy, is easily obtained using (3.3):

BDF2 := fn+1
i,j =

4

3
fn,1
ij − 1

3
fn−1,2
ij +

2

3

Δt

ε
(M [f ]n+1

ij −fn+1
ij ), (3.5)

where f
n−(s−1),s
i,j 
f(tn−(s−1),xi−svjΔt,vj) can be computed by suitable reconstruc-

tion from {fn−(s−1)
·j }; high order reconstruction will be needed for BDF2 and BDF3

schemes, and again we make use of WENO techniques [6] for accurate non-oscillatory
reconstruction.

xi−2 xi−1

xi xi+1
tn−1

tn

tn+1
fn+1
ij

vj > 0

fn−1,2
ij

fn,1
ij

x̃2 x̃1

Fig. 3.3. Representation of the BDF2 scheme. The black circles denote grid nodes, the gray ones
the points where interpolation is needed.

To compute the solution fn+1
ij from equation (3.5), also in this case one has to

solve a non-linear implicit equation. We can act as previously done for the backward
Euler method, by taking advantage of the properties of the collision invariants. Thus
we multiply both sides of equation (3.5) by φj and sum over j, getting

∑
j

(
fn+1
ij − 4

3
fn,1
ij +

1

3
fn−1,2
ij

)
φj =

2Δt

3ε

∑
j

(M [f ]n+1
ij −fn+1

ij )φj ,

which implies that

∑
j

(fn+1
ij )φj =

∑
j

(
4

3
fn,1
ij − 1

3
fn−1,2
ij

)
φj ,

so in equation (3.5) we can compute M [fn+1
ij ] with the usual procedure, adopting the

approximated macroscopic moments

(ρn+1
i ,(ρu)n+1

i ,En+1
i )=m

[
4

3
fn,1
i· −

1

3
fn−1,2
i·

]
. (3.6)
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Once the Maxwellian M [fn+1
ij ] is computed, the distribution function value fn+1

ij can
be easily obtained from schemes (3.5) for BDF2. The procedure for BDF2 is sketched
in Figure 3.3 and described in the following algorithm.

Algorithm (BDF2)

- Calculate fn−1,2
ij = f̃(tn−1,x̃2=xi−2vjΔt,vj), f

n,1
ij = f̃(tn,x̃1=xi−vjΔt,vj) by

interpolation from fn−1
·j and fn

·j , respectively;

- Compute the Maxwellian M [fn+1
ij ] using (3.6) and upgrade the numerical solu-

tion fn+1
ij .

A similar algorithm is obtained using BDF3, as we will see in the next subsection.

3.2.2. BDF3. The numerical solution of the BGK equation in (2.1), to the third
order of accuracy using BDF methods, is obtained applying (3.4) to the first equation
in (2.1):

fn+1
i,j =

18

11
fn,1
ij − 9

11
fn−1,2
ij +

2

11
fn−2,3
ij +

6

11

Δt

ε
(M [f ]n+1

ij −fn+1
ij ), (3.7)

where f
n−(s−1),s
i,j can be computed by suitable reconstruction from {fn−(s−1)

·j }.

xi−2 xi−1

xi xi+1
tn−2

tn−1

tn

tn+1
fn+1
ij

vj > 0

fn−2,3
ij

fn,1
ij

fn−1,2
ij

x̃(3) x̃(2) x̃(1)

Fig. 3.4. Representation of the BDF3 scheme. The black circles denote grid nodes, the gray ones
the points where interpolation is needed.

To compute the solution fn+1
ij from equation (3.7) we need again to take moments

of such equation

∑
j

(
fn+1
ij − 18

11
fn,1
ij +

9

11
fn−1,2
ij − 2

11
fn−2,3
ij

)
φj =

6Δt

11ε

∑
j

(M [f ]n+1
ij −fn+1

ij )φj ,

which implies that

∑
j

(fn+1
ij )φj =

∑
j

(
18

11
fn,1
ij − 9

11
fn−1,2
ij +

2

11
fn−2,3
ij

)
φj ,
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so in equation (3.7) we can compute M [fn+1
ij ] with the usual procedure, adopting the

approximated macroscopic moments

(ρn+1
i ,(ρu)n+1

i ,En+1
i )=m

[
18

11
fn,1
i· −

9

11
fn−1,2
i· +

2

11
fn−2,3
i·

]
.

Once the Maxwellian M [fn+1
ij ] is computed, the distribution function value fn+1

ij can be
easily obtained from schemes (3.7) for BDF3. This procedure is sketched in Figure 3.4.

To compute the starting values f1
ij for BDF2 and f1

ij , f
2
ij for BDF3 we have used,

as predictor, Runge–Kutta methods of order 2 and 3, respectively.

3.2.3. Summary of the BDF schemes. Three schemes based on BDF are
tested in the paper:

- scheme BDF2W23: uses WENO23 for the interpolation and BDF2, as described
above, for time integration;

- scheme BDF3W23: uses WENO23 for the interpolation and BDF2, as described
above, for time integration;

- scheme BDF3W35: uses WENO35 for interpolation and BDF3 for time inte-
gration.

At variance with Runge–Kutta methods, BDF methods do not need to compute in-
termediate stage values, and the implicit step for the Maxwellian is solved only once
during a time step. Moreover, we have to interpolate in fewer out-of-grid points (for
instance, we have to perform only 3 interpolations in a time step using BDF3, versus 6
interpolations needed to advance one time step using a DIRK method of order 3). This
makes BDF methods very efficient from a computational point of view.

4. Semi-Lagrangian schemes without interpolation
As we can observe, the cost of the schemes presented above is mainly due to the

interpolation, especially when we use high order interpolation techniques.
In order to reduce the computational cost we look for schemes that avoid interpo-

lation. The key idea is to choose discretization parameters in such a way that all the
characteristics connect grid points in space. This is obtained, for example, by choosing
ΔvΔt=Δx (see Figure 4.1).

xi−2 xi−1 xi
tn

tn+1

v1 = Δv

v2 = 2Δv

v3 = 3Δv

xi−3

Fig. 4.1. Implicit first order scheme without interpolation.

This choice corresponds to solving the equation at each characteristics by implicit
Euler, thus resulting in a first order method in time. In order to increase the order of
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accuracy one can resort to BDF or RK time discretization. BDF2 and BDF3 can be
easily applied in this setting.

The use of higher order RK schemes requires that the stage values lie on the grid as
well. This is obtained by imposing ΔvΔt=sΔx, s∈N. In this case the coefficients of
the vector c must be multiples of 1/s. Moreover we need a L-stable scheme. Imposing
accuracy and stability constraints on the coefficients of the Butcher’s table, together
with the fact that coefficients of the vector c must be multiples of 1/s, we obtain some
DIRK methods of second and third order, using, respectively, s=3 and s=4.

Using schemes that avoid the interpolation, the choice of the time step is determined
by the others discretization steps, and the CFL number is fixed to sNv. This means
that we have very large time step. An example of a Runge–Kutta method that avoids
interpolation is the following

1/3 1/3 0
1 3/4 1/4

3/4 1/4.

This is a second order method, diagonally implicit and L-stable, because it is stiffly-
accurate and A-stable, and allows us to avoid interpolation using s=3.

These schemes are much simpler to implement and therefore each time step can be
advanced very efficiently. However they require a very fine grid in space. A comparison
with more standard semi-Lagrangian methods that make use of interpolation will be
presented in the Section 6 on numerical results.

5. Chu reduction model

These methods have been extended to treat problem in slab geometry, which are
3D in velocity, 1D in space. The technique used is the Chu reduction [8], which, under
suitable symmetry assumption, allows the transformation of a 3D equation (in veloc-
ity) into a system of two equations 1D (in velocity), to which the schemes previously
introduced can be applied.

We consider the application of BGK equation to problems with axial symmetry
with respect to an axis (say, x1≡x), in the sense that all transverse spatial gradients
vanish, and the gas is drifting only in the axial direction. In such cases, distribution
functions f(x,v,t) depend on the full velocity vector v (i.e., molecular trajectories are
three-dimensional) but dependence on the azimuthal direction around the symmetry
axis is such that all transverse components of the macroscopic velocity u vanish (i.e.,
u2=u3=0).

Let us introduce the new unknowns

g1(x,v,t)=

∫
R2

f(x,v,t)dv2dv3, g2(x,v,t)=

∫
R2

(v22+v23)f(x,v,t)dv2dv3, (5.1)

each depending only on one space and one velocity variable v=v1. Multiplication of
(1.1) by 1 and (v22+v23) and integration with respect to (v2,v3)∈R2 yields then the
following system of BGK equations for the unknown vector g=(g1,g2), coupled with
initial conditions

∂gi
∂t

+v
∂gi
∂x

=
1

ε
(M [f ]i−gi), (x,v,t)∈R×R×R+, (5.2)

gi(x,v,0)=gi,0(x,v), i=1,2.
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The BGK system (5.2) describes a relaxation process towards the vector function
(M [f ]1,M [f ]2), which is obtained by Chu transform of (1.2) with N =3 and has the
form

(M [f ]1,M [f ]2)=(M [f ]1,2RTM [f ]1),

where

M [f ]1=
ρ(t,x)√

2πRT (t,x)
exp

(
− (v−u(t,x))2

2RT (t,x)

)
.

The macroscopic moments of the distribution function f , needed to evaluate M [f ]1 are
given in terms of g1 and g2 as:

ρ=

∫
R

g1dv, u=
1

ρ

∫
R

vg1dv,

3RT =
1

ρ

[∫
R

(v−u)2g1dv+

∫
R

g2dv

]
.

The following relation will be useful to solve the implicit step:
∫
R

(v−u)2(M [f ]1−g1)dv+

∫
R

(M [f ]2−g2)dv=0. (5.3)

Indeed

3RTρ=

∫
R

(v−u)2M [f ]1dv+2RT

∫
R

M [f ]1dv,

and also

3RTρ=

∫
R

(v−u)2g1dv+

∫
R

g2dv.

Taking the difference we obtain (5.3).
The discrete version of the first order implicit scheme (in a similar way one can

extend to high order schemes) of (5.2) is

gn+1
s,ij = g̃ns,ij+

Δt

ε
(Mn+1

s,ij −gn+1
s,ij ), s=1,2. (5.4)

To solve the implicit step we have to compute m[gn+1
1,i· ]. The density ρn+1

i and the

momentum (ρu)n+1
i can be easily computed multiplying the first equation of (5.4) by 1

and vj and summing over j. In this way we get

ρn+1
i =Δv

∑
j

g̃n1,ij , (ρu)n+1
i =Δv

∑
j

vj g̃
n
1,ij .

To obtain the temperature Tn+1
i , instead, we have to multiply by (vj−uj)

2 and by 1
respectively the first and the second equation of (5.4), and than summing over j.

Now, using the discrete analogue of (5.3):

Δv
∑
j

(vj−uj)
2(Mn+1

1,ij −gn+1
1,ij )+Δv

∑
j

(Mn+1
2,ij −gn+1

2,ij )=0,
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one can compute the temperature Tn+1
i in this way:

3Rρn+1
i Tn+1

i =Δv
∑
j

(vj−uj)
2g̃n1,ij+Δv

∑
j

g̃n2,ij .

Once the new moments ρn+1
i , (ρu)n+1

i , and Tn+1
i are computed, we can solve the implicit

step and upgrade the numerical solution.

6. Numerical tests
We have considered two types of numerical tests with the purpose of verifying the

accuracy (test 1) and the shock capturing properties (test 2) of the schemes. Different
values of the Knudsen number, represented by the relaxation parameter ε, have been
investigated in order to observe the behavior of the methods varying from the rarefied
(ε
1) to the fluid (ε
10−6) regime. We use units for temperature such that R=1.

In the first part of the section we consider the 1D model and we explore the choice
of the optimal CFL. A comparison between semi-Lagrangian schemes with and without
interpolation is also presented. The second part of the section is devoted to the results
obtained by the method applied to the 1D space-3D velocity case in slab geometry (Chu
reduction).
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Fig. 6.1. L1 error and accuracy order of implicit Euler methods coupled with linear interpolation,
varying ε, using periodic boundary conditions.

6.1. Test 1: regular velocity perturbation. This test has been proposed in
[22]. Initial velocity profile is given by

u=0.1exp(−(10x−1)2)−2exp(−(10x+3)2), x∈ [−1,1].
Initial density and temperature profiles are uniform, with constant value ρ=1 and T =1.

The initial condition for the distribution function is the Maxwellian, computed by
given macroscopic fields. To check the accuracy order the solution must be smooth.
Using periodic or reflective boundary conditions, we observe that some shocks appear
in the solution around the time t=0.35, so the accuracy order has been tested using a
final time tf =0.32, which is large enough to reach thermodynamic equilibrium.
In all tests Nv =20 velocity points have been used, uniformly spaced in [−10,10]. For
the time step, we set Δt=CFLΔx/vmax and we have used CFL=4. The spatial domain
is [−1,1].
We have compared the following methods:

- First order implicit Euler coupled with linear interpolation (see Figure 6.1);
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Fig. 6.2. L1 error and accuracy order of RK2W23 and BDF2W23, varying ε, using periodic
boundary conditions.

- RK2W23 and BDF2W23 as second order methods (see Figure 6.2);

- RK3W23 and RK3W35 (see Figure 6.3), BDF3W23 and BDF3W35 (see Fig-
ure 6.4) as third order methods;

Figures 6.1–6.4 show the L1 error and the rate of convergence related to macro-
scopic density of the schemes using periodic boundary conditions. The same behavior
is observed when monitoring the error in mean velocity and in energy.

Remarks.

- In most regimes the order of accuracy is the theoretical one. More precisely all
schemes maintain the theoretical order of accuracy in the limit of small Knudsen
number, except RK3-based scheme, whose order of accuracy degrades to 2,
with both WENO23 and WENO35 interpolation. Some schemes (RK2W23,
RK3W35, BDF2W23, BDF3W35) present a spuriously high order of accuracy
for large Knudsen number. This is due to the fact that for such large Knudsen
number and small final time most error is due to space discretization, which in
such schemes is of order higher than time discretization.
The most uniform accuracy is obtained by the BDF3W23 scheme.

- Most tests have been conducted with periodic boundary conditions. Similar
results are obtained using reflecting boundary conditions (see Figure 6.5).

6.2. Optimal CFL. The semi-Lagrangian nature of the scheme allows us to avoid
the classical CFL stability restriction. In this way, one can use large CFL numbers in
order to obtain larger time steps, thus lowering the computational cost. How much can
we increase the CFL number without degrading the accuracy?
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Fig. 6.3. L1 error and accuracy order of RK3W23 and RK3W35, varying ε, using periodic
boundary conditions.
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Fig. 6.4. L1 error and accuracy order of BDF3W23 and BDF3W35, varying ε, using periodic
boundary conditions.
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Fig. 6.5. L1 error and accuracy order of RK3 and BDF3 methods coupled with WENO23, varying
ε, using reflective boundary conditions.
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Fig. 6.6. Optimal CFL number. Left: RK2; Right: BDF2. From top to bottom: WENO23,
WENO35.
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Fig. 6.7. Optimal CFL number. Left: RK3; Right: BDF3. From top to bottom: WENO23,
WENO35.

Consistency analysis of semi-Lagrangian schemes [10] shows that the error is composed
by two part: one depending on the time integration and the other depending on the
interpolation. Therefore, if we use a small CFL number, the time step will be small and
the error will be mainly due to the interpolation.

On the other hand, if we use a big CFL number, the error will be mainly due to the time
integration. This argument leads us to think that there is an optimal value of the CFL
number, that allows us to minimize the error. Figures 6.6 and 6.7 show this behavior.
Each picture shows the L2 error of the macroscopic density of the previous smooth
initial data, varying the CFL number from 0.05 to 20. The grid of the CFL values is
not uniform because we want to work with constant time step until the final time, that
for this test is set to 0.3. The error is computed using two numerical solutions, obtained
with Nx=160 and Nx=320. The Knudsen number is fixed to the value 10−4.

When the accuracy in space is not much larger than in time, as in the case of RK2W23,
RK3W23, BDF3W23, an evident optimal CFL number appears, since in such cases
interpolation error and time discretization error balance out.

If space discretization is much more accurate than time discretization, the optimal CFL
number decreases. Note that with the same formal order of accuracy, the optimal CFL
number is larger for schemes based on RK than for schemes based on BDF, because RK
based schemes have a smaller error constant.

6.3. Test 2: Riemann problem. This test allows us to evaluate the capability
of our class of schemes in capturing shocks and contact discontinuities. In particular, we
are interested in the behavior of the schemes in the fluid regime. Here we illustrate the
results obtained for moments, i.e., density, mean velocity and temperature profiles, for
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Fig. 6.8. RK3W35 scheme. Riemann problem in 1D space and velocity case. Left: ε=10−2;
Right: ε=10−6. From top to bottom: density, velocity and temperature.

ε=10−2 and ε=10−6 (see Figures 6.8 and 6.9). The spatial domain chosen is [0,1] and
the discontinuity is taken at x=0.5. The initial condition for the distribution function
is the Maxwellian computed with the following moments: (ρL,uL,TL)=(2.25,0,1.125),
(ρR,uR,TR)=(3/7,0,1/6). Free-flow boundary conditions are assumed. The final time
is 0.16. These tests have been performed using Nv =30 velocity nodes, uniformly spaced
in [−10,10].
As shown in Figures 6.8 and 6.9, the schemes are able to capture the fluid dynamic limit
for very small values of the relaxation time, relevant to regimes in which the evolution
of the moments is governed by the Euler equations.

6.4. Semi-Lagrangian schemes without interpolation. As discussed in
Section 4, semi-Lagrangian schemes avoiding interpolation are very advantageous from
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Fig. 6.9. BDF3W35 Riemann problem in 1D space and velocity case. Left: ε=10−2; Right:
ε=10−6. From top to bottom: density, velocity and temperature.

a computational point of view. In Figure 6.10 we compare the CPU time and the L1

error of the schemes with and without interpolation. At third order of accuracy the
relation between CPU time and error is better for the scheme without interpolation
using Nv =20. The relative effectiveness of such schemes with respect to the ones that
require interpolation decreases when increasing the number of velocities. However, these
results are just indicative, as the schemes should be implemented efficiently.

6.5. Numerical results: Chu reduction. Also for the problem 3D in velocity
we have considered two numerical tests, that are aimed at verifying the accuracy and
the shock capturing properties of the schemes. Different values of the Knudsen number
have been investigated in order to observe the behavior of the methods varying from
the rarefied to the fluid regime.
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Fig. 6.11. L1 error and accuracy order of RK3 and BDF3 methods coupled with WENO23,
varying ε, using reflective boundary conditions related to the 1D space-3D velocity problem.

The initial data for test 1 is the same as the corresponding test problem 1D in velocity,
whereas the data for the second one is different. For the Riemann problem in this
case, the initial condition for the distribution function is again a Maxwellian, having
now the following initial macroscopic moments: (ρL,uL,TL)=(1,0,5/3), (ρR,uR,TR)=
(1/8,0,4/3). As in the previous cases, free-flow boundary conditions are imposed. The
final time is 0.25. This test has been performed using Nv =30 velocity nodes uniformly
spaced in [−10,10].
We will show only the order of accuracy related to the schemes RK3W23 and BDF3W23
(Figure 6.11) using reflective boundary conditions, since we get essentially the same
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Fig. 6.12. 1D space - 3D velocity case. Comparison with the gas dynamics solution. Left:
RK3W35; Right: BDF3W35. From top to bottom: density, velocity and temperature.

results of the 1D case. In this test CFL=2 and the final time is 0.4. Regarding the
Riemann problem we will show a comparison with the solution of the gas dynamics, for
ε=10−6, see Figure 6.12. As shown by the results, also in this case the scheme is able
to capture the fluid dynamic limit for very small values of the relaxation time, relevant
to regimes in which the evolution of the moments is governed by the Euler equations.

7. Conclusions
This paper presents high order shock capturing semi-Lagrangian methods for the

numerical solutions of BGK-type equations.
The methods are based on L-stable schemes for solution of the BGK equations along
the characteristics, and our numerical tests show that they are asymptotic preserving,
namely they capture the solution of the underlying fluid dynamic limit. This is evident



M. GROPPI, G. RUSSO, AND G. STRACQUADANIO 411

for instance in Figure 6.12, where the macroscopic moments of f for small values of ε
(ε=10−6) and the numerical solution of Euler equations are indistinguishable.
The semi-Lagrangian nature of these schemes allows us to avoid the classical CFL
restriction on the time step. In this sense the schemes are competitive with the IMEX
approach [22], even if, in general, interpolation is required.
Two families of schemes are presented, which differ for the choice of the time integrator:
Runge–Kutta or BDF. A further distinction concerns space discretization: some schemes
are based on high order reconstruction, while others are constructed on the lattice in
phase space, thus requiring no space interpolation.
Numerical experiments show that schemes without interpolation can be cost-effective,
especially for problems that do not require a fine mesh in velocity. In particular, BDF3
without interpolation appears to have the best performance in most tests. Such schemes
can be seen as an evolution, towards high accuracy, of the methods used in [12], where
the authors studied applications of GPUs to simulations of rarefied gases using BGK
models. Schemes with simple patterns are suitable for implementation by GPUs. In
this regard, semi-Lagrangian schemes avoiding interpolation seem very suitable for this
kind of simulations.
Future plans include extension of such schemes to problems in several space dimensions
and treatment of more general boundary conditions. Moreover, applications of these
schemes to the numerical approximation of BGK equations for mixtures of rarefied
gases, either inert [2] or reactive [13, 5], are in progress.

Appendix A. In order to obtain high order accuracy and to ensure the shock
capturing properties of the proposed schemes near the fluid regime, a suitable non-
linear reconstruction technique for the computation of f̃n

ij is required. ENO (essentially
non-oscillatory) and WENO (weighted ENO) methods [28] provide the desired high
accuracy and non-oscillatory properties. Both methods are based on the reconstruction
of piecewise smooth functions by choosing the interpolation points on smooth the side
of the function. In ENO methods these points are chosen according to the magnitude
of the divided differences evaluated by two candidate stencils. In WENO methods the
different polynomials defined on the stencils are weighted in such a way that in a smooth
region high order is recovered, and in presence of singularity the smooth side is taken. In
the next two paragraphs we briefly recall the pointwise WENO reconstruction described
in [6].

A.1. A general form of WENO interpolation. Given a set of values
V ={vj}j∈I of a function v on a space grid xj , j∈ I, the aim is to obtain an accurate
reconstruction of v at any point of the space interval.

To construct a WENO interpolation of degree 2n−1 on the interval [xj ,xj+1], we
start from the Lagrange polynomial built on the stencil S={xj−n+1, . . . ,xj+n} and
written in the form:

Q(x)=

n∑
k=1

Ck(x)Pk(x), (A.1)

where the linear weights Ck are polynomials of degree n−1 and the Pk are polynomials
of degree n interpolating V on the stencil Sk={xj−n+k, . . . ,xj+k}, k=1, . . . ,n. The linear
weights Ck have to satisfy, due to (A.1) and to the definition of the polynomials Pk, the
following properties: they should vanish at the nodes outside Sk, and in the nodes of
S the non-zero weights should have unit sum [6]. In the final reconstruction, in order
to guarantee non-oscillatory behavior, the linear weights are replaced by the non-linear
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weights ωk, which are constructed in order to obtain an approximation of the highest
degree according to the smoothness of v. The regularity of v is checked by means of the
smoothness indicators βk, whose expression is:

βk=

n∑
l=1

∫ xj+1

xj

Δx2l−1(P
(l)
k )2dx. (A.2)

The non-linear weights are defined as

ωk(x)=
αk(x)∑
lαl(x)

, (A.3)

where

αk(x)=
Ck(x)

(βk+δ)2
, (A.4)

with δ a properly small parameter, usually of the order of 10−6.
Last, the WENO reconstruction of the values V ={vj}j∈I reads

I[V ](x)=

n∑
k=1

ωk(x)Pk(x).

A.2. Second-third order WENO interpolation (WENO23). To construct
a third order interpolation we start from two polynomials of degree two, such that

I[V ](x)=ωLPL(x)+ωRPR(x),

where PL(x) and PR(x) are second order polynomials relevant to nodes xj−1,xj ,xj+1

and xj ,xj+1,xj+2, respectively. The two linear weights CL and CR are first degree
polynomials in x, and according to the general theory outlined thus far, they read as

CL=
xj+2−x

3Δx
, CR=

x−xj−1

3Δx
;

the expressions of αL, αR, ωL, and ωR may be easily recovered from the general form.
The smoothness indicators have the following explicit expressions

βL=
13

12
v2j−1+

16

3
v2j +

25

12
v2j+1−

13

3
vj−1vj+

13

6
vj−1vj+1− 19

3
vjvj+1,

βR=
13

12
v2j+2+

16

3
v2j+1+

25

12
v2j −

13

3
vj+2vj+1+

13

6
vj+2vj− 19

3
vjvj+1,

and αk and ωk are computed as in (A.4) and in (A.3), respectively.

A.3. Third-fifth order WENO interpolation (WENO35). To construct a
fifth order interpolation we start from three polynomials of third degree:

I[V ](x)=ωLPL(x)+ωCPC(x)+ωRPR(x),

where the third order polynomials PL(x), PC(x), and PR(x) are constructed, respec-
tively, on xj−2, xj−1, xj , xj+1, on xj−1, xj , xj+1, xj+2, and on xj , xj+1, xj+2, xj+3.
The weights CL, CC , and CR are second degree polynomials in x, and have the form

CL=
(x−xj+2)(x−xj+3)

20Δx2
, CC =− (x−xj−2)(x−xj+3)

10Δx2
,
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CR=
(x−xj−2)(x−xj−1)

20Δx2
,

while the smoothness indicators βC and βR have the expressions

βC =
61

45
v2j−1+

331

30
v2j +

331

30
v2j+1+

61

45
v2j+2−

141

20
vj−1vj+

179

30
vj−1vj+1

−293

180
vj−1vj+2− 1259

60
vjvj+1+

179

30
vjvj+2− 141

20
vj+1vj+2,

βR=
407

90
v2j +

721

30
v2j+1+

248

15
v2j+2+

61

45
v2j+3−

1193

60
vjvj+3+

439

30
vjvj+2

−683

180
vjvj+3− 2309

60
vj+1vj+2+

309

30
vj+1vj+3− 553

60
vj+2vj+3,

and βL can be obtained using the same set of coefficients of βR in a symmetric way (that
is, replacing the indices j−2, . . . ,j+3 with j+3, . . . ,j−2) and αk and ωk are computed
as in (A.4) and in (A.3).
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