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EXPLORING THE EFFECTS OF SOCIAL PREFERENCE,
ECONOMIC DISPARITY, AND HETEROGENEOUS

ENVIRONMENTS ON SEGREGATION∗

NANCY RODRÍGUEZ† AND LENYA RYZHIK‡

Abstract. It is believed that social preference, economic disparity, and heterogeneous environ-
ments are mechanisms that lead to segregation. However, it is difficult to unravel the exact role of
each mechanism in a complex social system. We introduce a versatile, simple and intuitive particle-
interaction model that allows one to separate the effect of each of these factors. As the population size
and number of groups with different economic status approach infinity, we derive various macroscopic
models for the population density. Through the analysis of the continuous limits, we conclude that,
within this range of models, social preference is a necessary but not always sufficient mechanism for
segregation. On the other hand, when combined with the environment and economic disparity (which
on the their own also do not cause segregation), social preference does enhance segregation.
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1. Introduction
The separation along the lines of age, race, religious affiliation, and social status, to

name a few, has been a ubiquitous phenomenon throughout time and cultures [3,5,24].
It appears that social segregation is a fundamental characteristic of human nature, and
yet there is still much we do not understand of the mechanisms behind it, in spite of
the vast literature on this subject (see, for example, [10,11,19,23,24,27] and references
within). Much of this research was sparked by the pioneering work of Shelling in [24],
which made the case that social preference alone facilitates segregation by studying
simple mathematical models. Modeling social preferences is generally difficult, as they
vary dramatically across cultures, generations, and even neighborhoods within a city.
Although there is a large literature in this area, the results are often inconclusive [2].
For example, some research shows that misery likes company, in other words, people like
to be around people who are less well-off than themselves [16]. On the other hand, it is
typical that residential areas are, generally, segregated along income lines [8]. This mo-
tivates the need to go beyond social preferences and consider economic disparity, along
with heterogeneous environments, where certain dwelling locations are more desirable
than others, as reasons for social segregation. It is clear that the choice of where peo-
ple live is highly influenced by location, housing density, reputation of neighborhoods,
amenities, and security [9, 12, 26], but is limited by their economic power. The recent
work of Gauvin and collaborators in [11] provides a mathematical framework for this
phenomenon. The agent-based model considered in this reference involves individuals
heterogeneous in their ability to pay for a certain residence, and includes interactions
between potential sellers and buyers. Through the use of numerical and linear stabil-
ity analysis the authors conclude that social segregation was possible only if the social
preference to be near people of similar or higher income was sufficiently strong. This
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364 SOCIAL AND ECONOMIC SEGREGATION

model included market matching and the complicated dynamics prevented the authors
from deriving a continuous model.

Here, we introduce a basic (intentionally bordering on simplistic) interacting-
particle model that can take into account different social factors, as well as provide
the flexibility to model the environment, such as city amenities, educational systems,
public transportation, and highways, but is amenable to mathematical analysis. Similar
interacting-particle systems are widely used in physics (see, for example, [17]), and have
recently been popularized to model aggregation [6, 20, 21,25].

We focus on three basic mechanisms believed to play a role in segregation: social
preference, economic disparity, and a heterogeneous environment. The dynamics in-
volves individuals of variable socio-economic status who navigate through a prescribed
environment. The economic status is accounted for by the ease with which each individ-
ual navigates the environment—their mobility. In terms of social preference, we assume
that individuals favor being surrounded by others with similar mobility. Hence, the role
of mobility is two-fold: (1) it measures the ease with which a certain economic class can
navigate an environment, and (2) it provides a mechanism of segregation through social
preference.

While individual behavior is important, certain macroscopic patterns arise when
we observe the bulk behavior of the system. To study them, we derive the continuous
limit of the interacting-particle model. We first consider the case when the mobility is
discrete, which is a crude way to describe the interaction between various social groups.
This leads to a system of partial differential equations of the Keller–Segel type with
repulsion (see, for example, [7] and references therein for other problems where such
equations arise)). Next, we allow the mobility to be continuous, leading to a reaction-
advection-diffusion equation in R

d+1 where d-dimensions come from the physical space
and time, and the additional dimension represents the mobility space. The rigorous
justification of the continuous models is a technical and non-trivial issue beyond the
scope of this paper.

A clear benefit of the continuous model is the ability to carry out the mathematical
analysis of its qualitative behavior. We observe that in many of the macroscopic models
the social preference alone does not lead to social segregation. In particular, if the
initial distribution is socially diverse, it will maintain its social diversity. On the other
hand, mobility and the environment enhance segregation, but only when some social
preference is present. Of course, the present work only touches the tip of the iceberg, as
there are many generalizations that need to be made in order to move toward a realistic
mathematical understanding of social segregation.

Outline: We summarize the results in Subsection 1.1. In Section 2 we introduce the
interacting-particle system for two groups with distinct mobility and formally derive
various systems of PDEs. Section 3 is devoted to the proofs of the main results (The-
orem 1.3, Theorem 1.4 and Theorem 1.10). In Section 4 we introduce the interacting-
particle model for groups with continuous mobility and derive the formal PDE for this
system. In Section 5 we discuss and illustrate some numerical experiments.

1.1. Models and results. We now introduce the models and state the corre-
sponding results, postponing the derivations of the models until later. We consider two
cases: (1) mobilities are discrete—the population includes individuals that are either
disadvantaged or affluent—this setting could be easily modified to include any finite
number of groups, and (2) a continuous range of mobilities—this describes the more
realistic continuous spectrum of socio-economic classes in the population.
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1.1.1. Background and notation. We assume that interactions between indi-
viduals are governed by a prescribed interaction potential. A system with N individuals
whose interactions are governed by a non-negative potential VN (x)≥0, x∈Rd, leads to
the evolution equations

d

dt
xk
N (t)=

1

N

N∑
j=1,j �=k

∇VN (xk
N (t)−xj

N (t)) fork=1, . . . ,N. (1.1)

In (1.1), xk
N (t) represents the physical position of individual k at time t. As the number

of individuals increases, the strength and range of interaction can vary and we make the
typical assumption that the potential VN (x) is a rescaled version of a fixed potential
V (x):

VN (x)=NβV (Nβ/dx) forβ∈ [0,1].
In what follows, we denote by Ω a bounded subset of Rd or all of Rd. Also, for any

f ∈C2
0 (R

d) and probability measure μ we denote

〈μ,f〉=
∫
Ω

fdμ(x).

The mass of a function h(x) will be denoted by∫
Ω

h(x)dx=M [h]. (1.2)

We use ∗ to denote the standard convolution:

K ∗u(x)=
∫
Ω

K(x−y)u(y)dy.

For any function ρ(x) we denote by ρ#(x) its symmetric non-increasing rearrangement
of ρ(x). We keep in mind that∣∣∣∣ρ#(x)∣∣∣∣

p
= ||ρ(x)||p for p∈ [1,∞) (1.3)

and that for G(x) symmetric and non-increasing∫
R2

G(x−y)h(x)g(y)dxdy≤
∫
R2

G(x−y)h#(x)g#(y)dxdy, (1.4)

see for example [15].

1.1.2. Discrete economic status. Let u(x,t),v(x,t) :Ω× [0,∞)→ [0,∞) rep-
resent the densities of the groups with the mobilities Γ1�Γ2, respectively. The most
general systems of partial differential equations we obtain as the macroscopic limits of
the interacting-particle system (see (2.2)) are, in the non-local case:

ut=σΔu+ηΔu2+∇·(u∇G∗(v−u))+Γ1∇·(u∇A(x)) in Ω, (1.5a)

vt=σΔv+ηΔv2+∇·(v∇G∗(u−v))+Γ2∇·(v∇A(x)) in Ω, (1.5b)

u(x,0)=u0(x)≥0andv(x,0)=v0(x)≥0 for t=0, (1.5c)

(σ∇u+η∇u2+u∇G∗(v−u)+Γ1∇A(x)) ·n=0on ∂Ω, (1.5d)

(σ∇v+η∇v2+v∇G∗(u−v)+Γ2∇A(x)) ·n=0on ∂Ω, (1.5e)
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where η,σ≥0 are the diffusivities (linear and nonlinear, respectively) and n is the out-
ward normal derivative at the boundary of Ω; and in the local case:

ut=σΔu+λ1Δu2+λ2∇·(u∇v)+Γ1∇·(u∇A(x)) in Ω, (1.6a)

vt=σΔv+λ1Δv2+λ2∇·(v∇u)+Γ2∇·(v∇A(x)) in Ω, (1.6b)

u(x,0)=u0(x)≥0andv(x,0)=v0(x)≥0 for t=0, (1.6c)

(σ∇u+λ1∇u2+λ2u∇v+Γ1u∇A(x)) ·n=0on ∂Ω, (1.6d)

(σ∇v+λ1∇v2+λ2v∇u+Γ2v∇A(x)) ·n=0 on ∂Ω, (1.6e)

with λ1,λ2>0. The derivation of these systems can be found in Section 2. For the
applications of interest, it is suitable to consider non-negative initial data u0(x) and
v0(x). The no-flux boundary conditions imply that the total number of individuals in
the city is preserved in time. The derivation of these systems is quite standard. We
present it in some detail in Section 2, in order to differentiate the regimes that lead to
the local or non-local interaction terms.

On the non-local model. The two diffusive terms in (1.5a) and (1.5b) are ofa
different origin. The linear diffusion comes from the unpredictable human behavior
(modeled as random noise), and the nonlinear diffusion comes from need of individuals
to have some personal space (leading to an overcrowding effect). The convolution term
models the long-range attraction to the individuals of the same group and long-range
repulsion from the individuals in the other group, with the interaction potential G(x).
The scalar field A(x) describes the spatially heterogeneous environment, and the popula-
tion densities are advected by the gradient of A(x), with the velocity being proportional
to Γ1 for u(x,t) and Γ2 for v(x,t). The assumption that Γ1�Γ2 reflects the economic
disparity between the populations. System (1.5) preserves mass and non-negativity,
that is ∫

Ω

u(x,t)dx=M [u0(x)] and

∫
Ω

v(x,t)dx=M [v0(x)], (1.7)

and u(x,t),v(x,t)≥0 for all x∈Ω and t>0. This system is, formally, the gradient flow
of the free energy

F(t) :=E(t)+W(t)+S(t)+L(t). (1.8)

Here, the entropy, which comes from the two dispersal mechanisms, is

E(t) :=
∫
Ω

η
(
u2+v2

)
+σ(u logu+v logv)dx,

the interaction energy, which comes from the long-range attraction for the intra-group
interactions, is

W(t) :=−1

2

∫
Ω

∫
Ω

G(x−y)(u(x,t)u(y,t)+v(x,t)v(y,t))dxdy,

the segregation energy, which describes the long-range repulsion for inter-group interac-
tions, is

S(t) :=
∫
Ω

∫
Ω

u(x,t)G(x−y)v(y,t)dxdy,
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and the environment energy, which comes from the environment landscape, is

L(t) :=
∫
Ω

A(x)(Γ1u(x,t)+Γ2v(x,t)) dx.

The segregation energy, S(t), provides an explicit measure of how segregated the system
is. A state is completely segregated if∫

Ω

∫
Ω

u(x,t)G(x−y)v(y,t)dxdy=0, (1.9)

that is, if the two groups do not interact at all, minimizing the segregation energy. The
first observation is that (1.5) dissipates the total energy.

Proposition 1.1 (Formal energy dissipation). Let u(x,t) and v(x,t) be solutions to
(1.5) then

F(t)+
∫ t

0

D(s)ds≤F(0), ∀ t>0, (1.10)

where the energy dissipation is

D(s)=
∫
Ω

u |∇(2ηu+σ logu+G∗(v−u)+Γ1A(x))|2 dx

+

∫
Ω

v |∇(2ηv+σ logv+G∗(u−v)+Γ2A(x))|2dx. (1.11)

The computation leading to (1.10) is standard (see, for example, [4]). To analyze the
different roles of social preference, the environment, and economic disparity we first
consider the case when dispersal is due only to Brownian motion, i.e., η=0. Another
simple observation is that if economic disparity is not included in the model then a
population, which is initially socially diverse, will remain diverse for all time.

Proposition 1.2 (Lack of segregation). Let σ>0, η=0, and Γ1=Γ2=0. If u(x,t)
and v(x,t) are solutions to (1.5) with initial conditions u0(x)=v0(x) then u(x,t)=v(x,t)
for all (x,t)∈Ω×(0,∞).

More can be said when diffusion dominates the system: linearizing (1.5), with σ>0,
η=0, and Γ1=Γ2=0, around the states u≡v≡1 gives the linear system

ut=σΔu+ΔG∗(v−u), (1.12a)

vt=σΔv+ΔG∗(u−v), (1.12b)

which is linearly stable if

σ>2Ĝ(ξ), (1.13)

for all ξ >0, where Ĝ is the Fourier transform of G. Thus, we expect that, when (1.13)
is satisfied, the “perfectly mixed” state u≡v≡1 is non-linearly stable, so that there
will be social diversity in the long run, rather than segregation. Here is a result in this
direction.

Theorem 1.3 (Preservation of social diversity). Let u(x,t),v(x,t) be solutions to system
(1.5) with σ,η≥0, Γ1=Γ2=0. Furthermore, assume that the initial conditions u0(x)
and v0(x) satisfy

M [u0(x)]=M [v0(x)]=M. (1.14)
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Then, for σ>C(|Ω| ,G) sufficiently large the following estimate holds

||u−v||2L2 + ||u+v− s̄||2L2 ≤
(
||u0(x)−v0(x)||2L2 + ||u0(x)+v0(x)− s̄||2L2

)
e−Ct, (1.15)

where C(σ, ||ΔG||L∞(Ω) ,M) and

s̄ :=
1

|Ω|
∫
Ω

(u+v)dx=
2M

|Ω| . (1.16)

Thus, in the long time limit, the population density of affluent individuals is close to
that of the disadvantaged individuals throughout the city. On the other hand, when
(1.13) is violated we expect (at least, partially) segregated states in the long time limit.

Condition (1.14) is not necessary and is solely made to simplify the statement and
the proof of the theorem. In general, if

M [u0(x)]=Mu and M [v0(x)]=Mv,

then the following estimate holds,

||u−v−s̄1||2L2+||u+v− s̄||2L2 ≤
(
||u0(x)−v0(x)− s̄1||2L2 + ||u0(x)+v0(x)− s̄||2L2

)
e−Ct,

with

s̄1=
1

|Ω|
∫
Ω

(u−v)dx.

The next observation is that in an environment where the resources or amenities
in a city are non-uniform, such as in mono-centric cities, disparity in mobility leads to
segregation: if Γ1�Γ2, then u(x,t) will be concentrated in areas where A(x) is large
and v(x,t) will be concentrated in areas where u(x,t) is low. We observe this behavior
numerically, and prove a corresponding result for the non-local system with potentials
that are close to the delta kernel: given a potential G(x), set

Gδ(x) :=
1

δd
G

(
1

δ
x

)
.

Theorem 1.4 (Segregated steady state for non-local system). Assume that A(x)∈
C1(Ω), G(x)∈L1(Rd), η=0, and u0(x),v0(x)∈L1(Ω). There exists δ0>0 such that for
δ<δ0 there exist constants, c1,c2>0 and continuous functions uδ(x) and vδ(x) which
satisfy

u(x)= c1 exp

{
− 1

σ
(Γ1A(x)+Gδ ∗(v(x)−u(x))

}
, (1.17a)

v(x)= c2 exp

{
− 1

σ
(Γ2A(x)+Gδ ∗(u(x)−v(x))

}
, (1.17b)

and are steady-state solutions of system (1.5). Furthermore, the following hold:∫
Ω

uδ(x)dx=M [u0(x)] and

∫
Ω

vδ(x)dx=M [v0(x)]. (1.17c)
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From (1.17) we observe that social preference is necessary for segregation but not
sufficient. Indeed, without the social preference, when Gδ =0, the ground states would
have the form:

u(x)= c1 exp

{
−Γ1

σ
A(x)

}
, (1.18a)

v(x)= c2 exp

{
−Γ2

σ
A(x)

}
, (1.18b)

and would have qualitatively similar profiles.
The proof of Theorem 1.4 relies on the assumption that the dispersal is due only to

random noise. The steady-state solutions in R
d when the dispersal includes the over-

crowding effect, are the critical points of the energy functional (1.8) with η>0. As the
parabolic system (1.5) conserves mass, it is reasonable to look for minimizers in the set

YMu,Mv
:=

{
(u,v)∈ (L1

+(R
d)×L1

+(R
d))∩(L2(Rd)×L2(Rd)) : ||u||1=Mu, ||v||1=Mv

}
,

(1.19)

for Mu,Mv >0. The next result states that the energy minimizers in the set above are
indeed steady state solutions to (1.5).

Proposition 1.5 (Stationary solutions via energy minimization). Let (u,v)∈YMu,Mv

be a minimizer of F [u,v], then (u,v) satisfies

∇(2ηu+G∗(v−u))=0,

∇(2ηv+G∗(u−v))=0,

a.e. in x∈Rd.

Proposition 1.6 (Regularity of steady-states). Let (u0(x),v0(x))∈YMu,Mv
then the

solutions (u(x,t),v(x,t)) to (1.5) with σ=Γ1=Γ2=0 satisfy∫
R

u |∇u|2+v |∇v|2 dx<∞, a.e. t>0. (1.20)

In particular, any steady-state solutions to (1.5) with σ=Γ1=Γ2=0, (u,v), satisfies
(1.20) and both u and v are C2 on their support.

A formal analysis of (1.8) gives us hints at the behavior of solutions to system (1.5)
and also to the existence of minimizers in YMu,Mv . The choice of interaction potential
affects the system in two key ways: the strength of its pull at the origin and its decay
as |x|→∞. The former provides a measure of the risk of finite-time blow-up of the
solutions. The latter provides a pull of mass when it is trying to escape to infinity. In
other words, if the pull is too weak (and we can additionally rule out finite-time blow
up) we expect that no minimizers will exist.

In this work we only consider interaction potentials that guarantee that (1.5) is
a diffusion dominated system. Consider what happens to the energy as we rescale
u(x) and v(x) into delta functions, uλ=λdu(λx) and vλ=λdv(λx). We obtain the
rescaled energy,

F [uλ,vλ]=ηλd
(
||u||22+ ||v||22

)
−1

2

(∫
R

G

(
x−y

λ

)
(u(x)u(y)+v(x)v(y)−2u(x)v(y))dxdy

)

≥λdη
(
||u||22+ ||v||22

)
−||G||∞ (M2

u+M2
v ).
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Taking the limit as λ→∞ gives F [uλ,vλ]→∞. From this heuristic, we expect the
solutions to exists globally and the natural question to ask then is if the solutions weak*
converge to zero or if there exists a nontrivial ground state. Next, let us analyze what
happens to the energy as the mass of a sequence in YMu,Mv

spreads out and the center
of mass of u(x) and v(x) shift further away from each other. Take (u(x),v(x))∈YMu,Mv

and consider the mass invariant scaling with a shift

uλ(x)=λdu(λ(x−xλ)) and vλ(x)=λdv(λ(x+xλ)),

where {xλ}λ>0 is a sequence in R
d with limλ→0 |xλ|=∞. This time we are interested

in what happens when λ→0,

F [uλ,vλ]=ηλd(||u||22+ ||v||22)−
λd

2

∫ 1

0

∫
Rd

1

λd
G

(
x−y

λ

)
(u(x)u(y)+v(x)v(y)) dxdy

+λd

∫ 1

0

∫
Rd

1

λd
G

(
x−y

λ
+2xλ

)
u(x)v(y)dxdy.

Note that as λ→0 the second term scales as λd

2 ||G1||1 (||u||22+ ||v||22). Thus, if
||G1||1<2η the energy is always non-negative and we can find a suitable subsequence
of YMu,Mv

that weak* converges to zero. Thus, we conclude

inf
u,v∈YMu,Mv

F [u,v] := IMu,Mv
≤0.

Lemma 1.7 (Complete segregation). Any non-trivial minimizer of F [u,v], (u∗,v∗)∈
YMu,Mv

, must have disjoint supports. In particular, if supp(G)⊂BR(0) then
dist(supp(u∗), supp(v∗))≥2R and

S[u∗,v∗]=0. (1.21)

Theorem 1.8 (Nonexistence of minimizers). Let G∈L1(Rd), Mu,Mv >0. If ||G||1<2η
or G has unbounded support then there are no minimizers of F [u,v] in YMu,Mv .

On a final note, making a rigorous connection between the interacting-particle model
and the continuous system (1.5) requires the global well-posedness of (1.5). The global
well-posedness result for weak-solutions, which is the best we can hope for when σ=0
due to the degenerate diffusion, is stated below. However, we leave the proof for a more
technical paper in preparation.

Theorem 1.9 (Global well-posedness). Let σ=0 and G(x)∈C2(Ω)∩W 1,2(Ω) be
admissible. Let u0(x),v0(x)∈L∞(Ω) be non-negative initial conditions. System (1.5)
has weak solutions u(x,t),v(x,t)∈L∞(Ω×(0,T )) for any T >0.

Note that when σ>0 the solutions are classical.

On the local model. As mentioned earlier, it is important to understand how the
assumptions on the microscopic interactions affect the large population limit, which is
one reason to consider the local model. We have the following version of Theorem 1.4
for the local system.

Theorem 1.10 (Segregated steady state for the local system). Let A(x)∈L∞(Ω), λ1=
0, and u0(x),v0(x)∈L1(Ω). There exist two positive constants, c1,c2, and continuous
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functions, ū(x) and v̄(x), which are positive and satisfy

ū(x)= c1 exp

{
− 1

σ
(Γ1A(x)+λ2v̄(x))

}
, (1.22a)

v̄(x)= c2 exp

{
− 1

σ
(Γ2A(x)+λ2ū(x))

}
, (1.22b)

that are steady-state solutions of system (1.6). Additionally, the following holds:∫
Ω

ū(x)dx=M [u0(x)] and

∫
Ω

v̄(x)dx=M [v0(x)]. (1.22c)

It is worth noting that the local and global well-posedness for (1.6) is still an open
problem.

1.1.3. Continuous income spectrum. So far, we have assumed that the mo-
bility is discrete. The models discussed above can be easily extended to a continuous
mobility spectrum. Starting from the interacting-particle model, we not only take the
limit as the number of individuals approach infinity, but also as the number of groups,
each with a different mobility, approaches infinity. We will assume that the mobility y
is an independent variable, normalized so that y∈ [0,1]. It is helpful to define a mobility
threshold, κ∈ [0,1], as a parameter that measures the line between attraction and re-
pulsion based on mobility. An individual with mobility y1 is attracted to an individual
with mobility y2 if |y1−y2|≤κ, while the individuals repulse each other if |y1−y2|>κ.
The interactions can be governed, for example, by the potential H(y)G(x), where

H(y)=κ |y|−1, (1.23)

determines the attractive or repulsive nature of the interaction, and G(x) determines
the strength of the interaction due to the spatial distance between the individuals. The
population density u(x,y,t) at location x∈Rd, with mobility y∈ [0,1] at time t, satisfies
the following partial differential equation

∂tu(x,y,t)=η∇x·(u(x,y,t)∇xū(x,t))

−∇x·
(
u(x,y,t)∇x

[∫ 1

0

∫
Rd

H(y− ỹ)G(x− x̃)u(x̃, ỹ,t))dx̃dỹ+yA(x)

])
,

(1.24)

where ∇x denotes the spatial gradient and

ū(x,t)=

∫ 1

0

u(x,y,t)dy. (1.25)

Notice that the first term on the right-hand side of (1.24) is reminiscent of porous-
media diffusion. Indeed, the equation is advecting u(x,y,t) down the gradients of ū(x,t),
which provides a measure for the total population density. Equation (1.24), with no-
flux boundary conditions, conserves mass and non-negativity and also rearranges the
mobility.

1.1.4. Crime, safety, and economic disparity. As we have mentioned, one
benefit of the models we introduce in this work is the freedom to explore the effects of
heterogeneous environments. As an example, we consider a scalar field A(x,t) which
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measures the probability that a criminal act will occur at location x and time t. In this
setting, we can explore various hypotheses related to the interconnection between crime
hotspots, defined to be spatio-temporal areas of high density of criminal activity, and
the local economic status of the population. One objective is to recreate the phenomena
of the concentration of crime hotspots in low-income neighborhoods, a trend which has
been observed recently [13, 14]. It is important to note that crime is an extremely
complex phenomena and it would be naive to identify the model we propose below
as reality. In fact, we do not account for the complex issues that poverty can create,
which may also play a role in the increase of crime, such as lack of employment and
education. The goal is to identify possible mechanisms, which do not assume that
poverty leads to crime, but can recreate the phenomenon of unusually high crime in
extremely disadvantaged neighborhoods. This does not imply that such mechanisms
are the cause of the high crime rates, but indicates that they are worth understanding.
While the role the government plays with regards to crime is not exactly clear, we assume
that its objective is to minimize the “fear of crime” [22]. Research done in this area
points to the inability of individuals to rationally calculate the objective danger. For
instance, certain subpopulations tend to be more fearful of crime than others (see [22]
and references within).

Given a distribution of the population at time t we consider an influence field, I(x,t),
which measures the economic power of a certain location at that time, and let p(x,t)
be the distribution of police resources at time t. The insecurity functional at time t,
U(x,t), depends on I(x,t) and measures how unsafe the population feels. For example,
under the assumption that people get used to crime, (people who live in a high-crime
neighborhood are less phased by a single criminal activity whereas the insecurity of the
people who live in a safe neighborhood will significantly increase with a single criminal
activity), one may consider

U(p(x,t))=
√
δ+exp(−αp(x,t))I(x,t) or

U(p(x,t))=
√
δ+exp(−αp(x,t))exp(I(x,t)),

(1.26)

where δ>0 is a parameter that measures the minimum amount of insecurity and α>0
measures the effectiveness of the police recourses. We assume that the police aims to
minimize the functional

F (p)=

∫
Ω

[ε |∇p(x,t)|2+U(p(x,t))]dx, (1.27)

where the first term is a regularization to provide some smoothness. Taking into ac-
count the normalization due to a fixed total amount of police resources, the variational
formulation for the distribution of the police resources, given the population income
distribution I(x,t) is:

min
p≥0

F (p), (1.28a)

subject to

∫
Ω

p(x,t)=1. (1.28b)

Given the optimal use of resources, p∗(x,t), which satisfies (1.28), we assume an inverse
relationship between A(x,t) and p∗(x,t). For example,

A(x,t)=exp{−αp∗(x,t)} .
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From a prescribed distribution of the population we generate the influence field and
given this field we then use a gradient decent scheme to solve (1.28). Numerically, we
observe the development of “safe-havens,” regions with very low values of A(x,t), in
ares where there is high economic power, refer to Figure 5.4b for an illustration.

2. Discrete mobility model
In this section, we consider discrete mobilities, corresponding to a discrete number

of social classes.

2.1. Interacting particle model. We consider two distinct groups, of N1,2

individuals, with the mobilities Γ1�1, Γ2�1, that exhibit different inter-group and
intra-group interactions. The individual dynamics is governed by three rules:

(A1) overcrowding effect: although individuals from the same group are attracted in
the long-range, the desire for some personal space leads to local (short-range)
repulsion.

(A2) social preference segregation: individuals are attracted to those in their own
group and repulsed from those in the other group, leading to long-range attrac-
tion between individuals of the same group and repulsion between individuals
in different groups.

(A3) environment field A(x): individuals are attracted to either low or high values
of the scalar field, A(x), depending on what A(x) represents. For example,
if A(x) represents the quality of the educational system then individuals have
the preference to be in areas where A(x) is high. On the other hand, if A(x)
represents the crime density then individuals have the preference to be in areas
with small values of A(x). The velocity of each individual is proportional to its
mobility.

We assume that for the intra-group interactions the short-range repulsion is governed
by the interaction potential VN (x) and the long-range mobility segregation is governed
by the interaction potential GN (x), of the form

VN (x)=NγvV1(N
γv/dx) and GN (x)=NγgG1(N

γg/dx), (2.1)

with γv,γg ∈ [0,1), respectively. The parameters, γv and γg determine the strength
and range of the interactions as the number of individuals in the system increases.
Combining these effects, we obtain the following system of ODEs for the positions xk

i (t)
with i=1,2 :

d

dt
xk
i (t)=−

1

Ni

Ni∑
j=1,j �=k

(
∇VNi

(xk
i (t)−xj

i (t))−∇GNi
(xk

i (t)−xj
i (t))

)

− 1

Nl

Nl∑
j=1

∇GNl
(xk

i (t)−xj
l (t))−Γi∇A(xk

i (t)), (2.2)

for k=1, . . . ,Ni, l=1,2, and i �= l. The dynamics of both groups are identical except for
the difference in mobility. This model can be easily extended to n groups.

2.2. Continuum limit for the two-population model. In order to analyze
the continuous limit (large N1,2), we define the empirical measures

Xi(t)=
1

Ni

Ni∑
j=1

δxj
i (t)

for i=1,2. (2.3)
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From a macroscopic perspective, we assume that there is a function ui(x,t)∈Rd×(0,∞),
which represent the density distribution of the two groups at time t:

lim
Ni→∞

〈Xi(0),f〉= 〈ui0 (·) ,f〉 and lim
Ni→∞

〈Xi(t),f〉= 〈ui (·,t) ,f〉 ∀t>0, (2.4)

for i=1,2. Since the formal derivation of the continuous limit is standard and is similar
to the derivation of (1.24) in Section 4, we omit the details but mention that the type
of limiting equations that one obtains depends on the assumptions made on the scaling
parameters. One obtains two types of continuous models. First, a non-local model comes
about when γv ∈ (0,1) and γg =0:

VN (x)=NγvV1(N
γv/dx) and GN (x)=G1(x).

For simplicity, from now on we will denote V =V1 and G=G1. “Physically”, this means
that individuals within the same group are repulsed locally and attracted long-range,
describing the balance of individuals’ social nature and the need for personal space. On
the other hand, individuals are repulsed at a long-range from individuals belonging to
another group. The local equilibrium hypothesis states that locally the individuals are
distributed in a uniform manner—the typical distance between individuals in group one
close to a location x is (N1u(x,t))

−1, and similarly for group two [20, 21]. From these
assumptions one obtains the weak form of system (1.5) with σ=0, η=M [V ]/2, and
(u1,u2) replaced by (u,v). On the other hand, if we assume that both γv ∈ (0,1) and
γg ∈ (0,1), then we obtain the local system of equations (1.6) with σ=0,

λ1=
1

2
(M [V ]−M [G]) and λ2=

1

2
M [G]. (2.5)

The mass of the attractive potential G(x) (the segregation potential) relative to that of
the repulsive potential V (x) determines the sign of λ1. For well-posedness of the system
(1.6), one has to assume that diffusion overpowers aggregation so that λ1>0.

2.3. Individual preference through random noise. Thus far, we have as-
sumed that all individuals follow the exact same rules of interaction. In reality, however,
individuals have personal preferences that do not necessarily follow the deterministic
dynamics. We may account for personalized preferences through a random noise, in
which case the position of the individuals{

xk
i (t)

}
t>0

, k=1, . . . ,Ni, and i={1,2} ,

is described as a stochastic process described by a stochastic differential equation

dxk
i (t)=

[
T (x1(t),x2(t))+ΓiA(xk

i (t))
]
dt+σdW k

i (t),

for k=1, . . . ,Ni and i={1,2}. Here W k
i is a family of independent standard Wiener

processes. The function T includes all of the intra-group and inter-group interactions
we have considered above. Following the formal derivations of [18], which is easily
adapted to systems, we obtain the general models (1.5) and (1.6) (once again (u1,u2)
is replaced by (u,v)). We refer the interested reader to [18] for more details.

3. Social diversity vs. segregation
In this section, we explore whether a population preserves social diversity or moves

toward a segregated state.
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Social diversity. Here, we prove Theorem 1.3.

Proof. (Theorem 1.3.) Let u(x,t) and v(x,t) be solutions to system (1.5) with
Γ1=Γ2=η=0, and define

w=u−v and s=u+v− s̄,

where s̄ is defined in (1.16). First, assume that η=0:

wt=σΔw−∇·(s∇G∗w)− s̄ΔG∗w, (3.1a)

st=σΔs−∇·(w∇G∗w), (3.1b)

with initial conditions

w(x,0)=u0(x)−v0(x) ands(x,0)=u0(x)+v0(x)− s̄,

and no-flux boundary conditions. Multiplying (3.1a) by w(x,t) and (3.1b) by s(x,t) we
obtain the estimates

d

dt

(
||w||2L2(Ω)+ ||s||2L2(Ω)

)
=−σ

(
||∇w||2L2 + ||∇s||2L2

)
+

∫
Ω

s(∇G∗w)∇wdx

+

∫
Ω

w(∇G∗w)∇sdx−
∫
Ω

s̄(ΔG∗w)wdx :=−I1+I2+I3+I4.

Note that both w(x,t) and s(x,t) have mean zero mass, the latter due to (1.14) and
the former due to its definition. Therefore, we can apply Poincaré inequality to I1 and
obtain

−I1<−Cpσ
(
||w||2L2(Ω)+ ||s||2L2(Ω)

)
. (3.2)

Next, we integrate by parts the term I2 and add it to I3 to obtain

I2+I3=−
∫
Ω

sw(ΔG∗w) dx≤ 1

2
||ΔG||L∞(Ω) ||w||L1(Ω)

(
||w||2L2(Ω)+ ||s||2L2(Ω)

)
. (3.3)

The final bound seen in (3.3) is obtained by the use of Young’s inequality for convolutions
and the Cauchy–Schwarz inequality. For the last term we obtain

I4≤ s̄ ||ΔG||L1(Ω) ||w||2L2(Ω) . (3.4)

Thus, combining (3.2)–(3.4) we obtain

d

dt

(
||w||2L2(Ω)+ ||s||2L2(Ω)

)
≤
(
−Cpσ+

1

2
||ΔG||L∞(Ω) ||w||L1(Ω)+ s̄ ||ΔG||L1(Ω)

)
||w||2L2

+

(
−Cpσ+

1

2
||ΔG||L∞(Ω) ||w||L1(Ω)

)
||s||2L2(Ω) .

Choosing σ> 1
Cp

(
1
2 ||ΔG||L∞(Ω) ||w||L1(Ω)+ s̄ ||ΔG||L1(Ω)

)
we obtain the differential in-

equality:

d

dt
y≤−Cy, y(0)= ||u0(x)−v0(x)||2L2 + ||u0(x)+v0(x)− s̄||2L2 , (3.5)

where y= ||w||2L2 + ||s||2L2 and C=C(σ,s̄,G,M). Integrating (3.5), we obtain estimate
(1.15).
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Segregation due to mobility disparity and environment: the nonlocal
case. This section is devoted to the proof of Theorem 1.4. The first step is to establish
that (1.17) has a non-trivial solution (u0,v0)∈C1(Ω)×C1(Ω) for any c1,c2>0 when
δ=0. Second, we invoke the implicit function theorem to show that the same holds in
a small neighborhood of δ=0. Finally, we prove that there are constants c1,c2>0 such
that (1.17c) holds.

Proof. Without loss of generality assume that σ=1.

Step 1: Define fi(x)=exp{−ΓiA(x)} for i=1,2, and g(x)=f1(x)f2(x). Note that

u(x)v(x)= c1c2g(x),

and since c1c2g(x)>0 we can express v in terms of u

v(x)=
c1c2g(x)

u(x)
.

This reduces the problem to solving the following fixed point problem

u(x)= c1f1(x)e
u(x)− c1c2g(x)

u(x) .

For x̄∈Ω fixed this is equivalent to solving u=aeu−
b
u where a and b are positive con-

stants, which always has a non-trivial solution as

lim
u→0+

f ′′(u)=0,

where we define f(u) :=aeu−
b
u . Repeating this process for all x∈Ω gives a solution

(u0(x),v0(x)) to (1.17). Moreover, u0 and v0 inherit the regularity of A(x) and there
exist K,ε1>0 such that ε1<u0(x),v0(x)<K.

Step 2: Let F (δ,u) : [0,∞)×C1(Ω)→C1(Ω) defined by

F (δ,u) :=u(x)−c1f1(x)exp

{
Gδ ∗

(
u(x)− c1c2g(x)

u(x)

)}
.

Note that F is a C1 map, F (0,u0)=0 and DuF (0,u0)v :C
1(Ω)→C1(Ω) defined by

DuF (0,u0)v=h(x)v,

where h(x)<∞ and strictly bounded from 0, is an isomorphism. Then the implicit
function theorem defines a unique mapping (δ,uδ) for δ near 0 and uδ near u0 such that
F (δ,uδ)=0.

Step 3: In the previous step we proved the existence of uδ(x) and vδ(x) for any
positive and finite constants c1 and c2. Next we prove the claim that for any given
0<M1,M2<∞ there are corresponding c1 and c2 that allow uδ(x) and vδ(x) to satisfy
(1.17c). Recall that we want∫

Ω

vδ(x)dx= c1c2

∫
Ω

g(x)

uδ(x)
dx=M2,

which gives that c2=
M2

c1
∫
Ω

g(x)
uδ(x)

dx
. Now, consider the mass of uδ(x)

∫
Ω

uδ(x)dx= c1

∫
Ω

f1(x)exp

⎧⎨
⎩G∗

⎛
⎝uδ(x)− M2∫

Ω
g(y)
uδ(y)

dy

g(x)

uδ(x)

⎞
⎠
⎫⎬
⎭ dx.



N. RODRÍGUEZ AND L. RYZHIK 377

Again, when c1=0 we see that M [uδ(x)]=0. In addition, we have the following lower
bound for the mass of uδ(x):

∫
Ω

uδ(x)dx≥ c1

∫
Ω

f1(x)exp

⎧⎨
⎩− M2∫

Ω
g(y)
uδ(y)

dy

∫
G(x−y)

g(y)

uδ(y)
dy

⎫⎬
⎭ dx

≥ c1e
−Γ1Amax exp{−M2 ||G||L∞} . (3.6)

As before, this implies that we can choose c1 sufficiently large such that M [uδ(x)]>M1.
By continuity, we conclude the proof.

Energy minimizers. Here, we look at the energy minimizers of (1.8) and their
connection to the steady-state solutions to system (1.5). We begin with the proof of
Lemma 1.7.

Proof. (Lemma 1.7.) Suppose there exists (u∗,v∗)∈YMu,Mv
with

supp(u∗)∩supp(v∗) �=∅, (3.7)

such that F [u∗,v∗]= IMu,Mv
. By (3.7) it must be the case that

S(u∗,v∗)>0.

Let u#(x) be the symmetric decreasing rearrangement of u(x) (similarly for v(x)) and
consider the sequence

un(x) :=u#(x+xn) andvn(x) :=v#(x−xn),

for {xn} a sequence in R
d satisfying limn→∞ |xn|=∞. Recall that ||u||2= ||un||2 for all

n and furthermore by the Riesz rearrangement inequality (1.4), we know that

−W(un,vn)≤−W(u,v).

Finally, we have that

lim
n→∞S(un,vn)=0.

Thus, there exists an N sufficiently large so that F(uN ,vN )<F(u∗,v∗), which is a
contradiction.

Remark 3.1. Note that for (1.21) to hold it is necessary that G(x) have bounded
support.

It is useful to rewrite the energy (1.8) with σ=0 as

F [u,v](x)=F1(u)+F1(v)+S(u,v), (3.8)

where

F1(w)=η

∫
w2 dx− 1

2

∫∫
G(x−y)w(x)w(y)dxdy. (3.9)

Let us define liminfw∈YM
F1[w] := IM , where YM =

{
u∈L1∩L2 : ||u||1=M

}
.

We now state a result which reduces the problem of finding minimizers to (1.8) in
YMu,Mv

for Mu,Mv >0 to finding minimizers of (3.9) in YM for M>0.

Lemma 3.2 (Reduction of minimizer problem). Let G have compact support, i.e.
supp(G)⊂BR(0) for some R>0.
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(i) If the infimum of F1 in YM for M>0 is achieved by a function with compact
support, then there exist a minimizer (u,v)∈YMu,Mv ∩C2

0 (Ω)×C2
0 (Ω) of F . In

particular, if (u∗,v∗) such that u∗∈YMu
is a minimizer of F1(u) and v∗∈YMv

is a minimizer of F1(v) with bounded support then there exists x1∈Rd such that
(u∗(·+x1),v

∗(·−x1)) is a minimizer of F in YMu,Mv
.

(ii) If all minimizers of F1 in YM for M>0 have unbounded support then F does not
achieve its minimum in YMu,Mv for any Mu,Mv >0.

(iii) Any (u∗,v∗)∈YMu,Mv which minimizes F [u,v] must minimize F1 individually.

Proof. The proof of (i) is clear. To prove (ii), recall that any minimizer of F must
have compact support, thus we assume for contradiction that there exits a minimizer
(u,v)∈YM1,M2

. Since u cannot be a minimizer for F1 then

F1(u)+F1(v)>F1(u
∗)+F1(v

∗)

where (u∗,v∗)∈YMu,Mv
are both minimizer of F1. Now, define

un=(u∗)#(·−xn) and vn=(v∗)#(·+xn)

for a sequence {xn}⊂R
d. Let N be such that |xN | is sufficiently large with

S(uN ,vN )<F1(u)+F1(v)−F1(u
∗)−F1(v

∗).

From this we conclude that F(uN ,vN )<F(u,v) which is a contradiction. The proof of
(iii) is the same as that of (ii).

We are now ready to prove Proposition 1.5.

Proof. By Proposition 3.1 in [1] we know that any minimizer u∈Ym of F1 satisfies

u∇·(2ηu−G∗u)=0 a.e. in R
d.

This in conjunction with the fact that any minimizer (u,v)∈YMu,Mv of F [u,v] must have
disjoint support, specifically the support of u and the support of v must be separated
by 2R if supp(G)⊂BR(0). This gives the result.

Proof. (Proposition 1.6.) From Proposition 1.1 with σ=Γi=0 we obtain that

F(t)+
∫ t

0

∫
Ω

u |∇(2ηu+G∗(v−u)|2+v |∇(2ηv+G∗(u−v)|2 dxds≤F(0), (3.10)

for all t>0. Thus, we have

4η2
∫
Ω

u |∇u|2+v |∇v|2 dx+4η

∫
Ω

u∇u∇G∗(u−v)

+v∇v∇G∗(u−v)dx+

∫
Ω

(u+v) |∇G∗(u−v)|2dx<∞,

for almost every t>0. An application of Cauchy-Schwarz inequality gives (1.20). Ad-
ditionally, if (u,v) are steady-state solutions then they satisfy

u |∇(2ηu+G∗(v−u)|2+v |∇(2ηv+G∗(u−v)|2=0,

for almost all x∈Rd. This implies that

2ηu+G∗(v−u)=C1 and 2ηv+G∗(u−v)=C2,
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for some constants C1,C2 almost everywhere on every connected component of the
support. By properties of the convolution we have that u and v inherit the regularity
of G.

Proof. (Theorem 1.8.) For an interaction potential G(x) with unbounded support
we follow a similar argument of that given in the proof of Lemma 1.7. Taking the
distance between the center of mass of a sequence un and sequence vn to infinity will
decrease the segregation energy to zero and a minimizer will never be achieved. Thus,
without loss of generality, let us take G(x) to have compact support with ||G||1<2η.
Assume that there exists a minimizer (u,v)∈YMu,Mv

, we have the lower bound

F(u,v)≥
(
||u||22+ ||v||22

)(
η− ||G||1

2

)
.

if ||G||<2 then F(u,v)>0 which is a contradiction as IM1,M2 ≤0.

Segregation due to mobility disparity and environment – the local case.
In this section, we prove Theorem 1.10, which requires the following lemma.

Lemma 3.1. Let A(x)∈L∞(Ω). There are solutions, ū(x), v̄(x)∈L1(Ω), to

u(x)= c1 exp

{
− 1

σ
(Γ1A(x)+λ2v(x))

}
, (3.11a)

v(x)= c2 exp

{
− 1

σ
(Γ2A(x)+λ2u(x))

}
. (3.11b)

In addition, for any M1,M2>0 we may choose c1 and c2 such that

c1

∫
Ω

ū(x)dx=M1 and c2

∫
Ω

v̄(x)dx=M2. (3.12)

Proof. (Lemma 3.1.) The proof is in two steps: in the first step we prove existence
of a fixed point of system (3.11) when c1 and c2 are arbitrary positive constants and in
the second step we prove that two such constants exist so that (3.12) holds.

Step 1: We set σ=1 and λ2=1 without loss of generality. For a fixed x̄∈Ω, we set
the constants c̃1= c1e

−Γ1A(x̄) and c̃2= c2e
−Γ2A(x̄), so that

u(x̄)= c̃1 exp{−c̃2 exp{−u(x̄)}} . (3.13)

Note that given u(x̄) we can find v(x̄) using (3.11b). First, observe that for u(x̄)=0 the
left-hand side of (3.13) is smaller than the right-hand side. However, for u(x̄)>c̃1 the
right-hand side is smaller than the left-hand side. Thus, by continuity and the inter-
mediate value theorem, there exists a positive fixed point ū(x̄), and, correspondingly,
v̄(x̄)>0, that satisfy (3.11) for x̄. Following this procedure for all x∈Ω, we obtain the
existence of functions ū(x) and v̄(x) which satisfy (3.11) in all of the domain. Moreover,
the fixed points can be chosen so that ū(x) and v̄(x) are continuous.

Step 2: Next, we prove that there exists c1 and c2 such that (3.12) holds. Note that
ū(x) and v̄(x) which satisfy (3.11) with finite c1,c2 are in L∞(Ω) and consequently in
L1(Ω). For simplicity, we define

f(x)= e−Γ1A(x) and g(x)= e−Γ2A(x).
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As we want M [ū(x)]=M1 and M [v̄(x)]=M2 we set∫
Ω

v̄(x)dx= c2

∫
Ω

g(x)e−ū(x) dx=M2,

which solving for c2 gives

c2=
M2∫

Ω
g(x)e−ū(x) dx

. (3.14)

Therefore, given M2>0 we may set c2 as above, and insert expression (1.17b) into
(1.17a). This will give a single equation for the function ū(x), parametrized by the
constant c1, and our task is to show that there exists c1>0 so that M [ū(x)]=M1.
Consider the mass of ū(x):∫

Ω

ū(x)dx= c1

∫
Ω

f(x)exp{−c2g(x)exp{−ū(x)}} dx

= c1

∫
Ω

f(x)exp

{
− M2∫

Ω
g(y)e−ū(y) dy

g(x)exp{−ū(x)}
}
dx, (3.15)

where we have used (3.14). Note that if c1=0, then M [ū(x)]=0. In addition, we have
the following lower bound for the mass of ū(x)∫

Ω

ū(x)dx= c1

∫
Ω

f(x)exp

{
− M2∫

Ω
g(y)e−ū(y) dy

g(x)exp{−ū(x)}
}
dx

≥ c1e
−Γ1Amax exp

{
− M2κ

e−Γ2Amax

}
μ

{
x∈Ω: e−ū(x)≤κ

∫
Ω

e−ū(y) dy

}
, (3.16)

for any κ≥1 and Amax is the maximum value of A in Ω. Now, we have the bound

μ

{
x∈Ω

∣∣∣∣e−ū(x)≥κ

∫
Ω

e−ū(y) dy

}
≤γ |Ω| , (3.17)

for κ≥1 and γ <1 such that

κγ |Ω|>1.

Thus, we have the bound∫
Ω

ū(x)dx≥ c1e
−Γ1Amax exp

{
− M2κ

e−Γ2Amax

}
|Ω|(1−γ). (3.18)

Note that γ and κ only depend on the size of Ω. From (3.18) we conclude that for c1
sufficiently large (and depending on M2) we have M [ū(x)]>M1. Thus, by continuity
there exists a c1 such that M [ū]=M1 and c2 is then determined from (3.14). With this
we conclude the proof.

We are now ready to prove Theorem 1.10.

Proof. (Theorem 1.10.) Inspired by the Fokker–Plank type nature of the system
(1.6), we rewrite it

ut=σ∇·
(
e−

1
σ (Γ1A(x)+λ2v(x))∇·

(
e

1
σ (Γ1A(x)+λ2v(x))u

))
, (3.19a)

vt=σ∇·
(
e−

1
σ (Γ2A(x)+λ2u(x))∇·

(
e

1
σ (Γ2A(x)+λ2u(x))v

))
, (3.19b)
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with the initial conditions u(x,0)=u0(x) and v(x,0)=v0(x) and no-flux boundary con-
ditions. From (3.19), we observe that ū(x) and v̄(x), satisfying (3.11), are steady-state
solutions to (1.6) for any c1,c2>0 (setting σ=λ2=1). Therefore, we are left to ver-
ify that they satisfy the no-flux boundary conditions (1.6d) and (1.6e) and the mass
property (1.22c). Taking the gradient of ū(x) and v̄(x) from (3.11) we observe that

σ∇ū(x)= ū(x)∇(−Γ1A(x)+λ2v̄(x)),

σ∇v̄(x)= v̄(x)∇(−Γ2A(x)+λ2ū(x)),

guaranteeing that the no-flux boundary conditions are satisfied for ū(x) and v̄(x). Fi-
nally, from Lemma 3.1 we can set M1=M [u0(x)] and M2=M [v0(x)] and with this we
conclude.

4. Continuous income spectrum–the macroscopic equations
In this section, we consider the case where the mobility of individuals is continuous,

corresponding to a continuous spectrum of incomes in the population. The dynamics
of individuals is governed similarly to the case of discrete mobility with some modifica-
tions. First, since the mobility is continuous, an individual will be attracted to another
individual if the difference in their mobility (representing the difference in economic
status) is within the mobility threshold, κ, (see Section 1.1.3) and they are repulsed
otherwise. This brings about a second change, which is that everyone has a short-range
repulsion from everyone else regardless of their mobility.

We begin with n different groups, each with Ni agents, for i=1, . . . ,n, which exhibit
intra-group and inter-group interactions. Every member of group i has mobility yi∈
[0,1]. Moreover, we assume for simplicity that yi=

i
n so that the mobility is uniformly

distributed. As in the two-population case, we denote by xk
Ni

(t)∈Rd the spatial position
of the k-th individual in group i which has Ni members. The short-range repulsion
dynamics is governed by the potential VN (x) and the mobility segregation is governed
by the potential H(y)GN (x). Recall that H(yi−yj) measures the difference in mobility
between individuals in groups i and j. The sign of H determines whether the individuals
are attracted or repulsed from each other. The interaction potential GN (x) takes the
physical positioning of the two individuals into account and determines the strength
and direction of the interaction. Finally, individuals are advected by the velocity field,
∇xA(x), with the speed proportional to the mobility.

Combining the above interactions yields the system of evolution equations

dxk
Ni

(t)

dt
=− 1

n

n∑
j=1

1

N

N∑
l=1

∇x

[
VN (xk

Ni
(t)−xl

Nj
(t))+H(yi−yj)GN (xk

Ni
(t)−xl

Nj
(t))

]

−yi∇xA(xk
Ni

(t)), (4.1)

for k=1, . . . ,Ni, and i=1, . . . ,n. We let the number of particles in each group be the
same, Ni=N , for all i=1, . . . ,n (although we continue to use Ni to differentiate inter-
group interactions). Let Y k

Ni
(t) :=(xk

Ni
(t),yi) and define the empirical measure

YN,n(t)=
1

Nn

n∑
i=1

N∑
k=1

δY k
Ni

(t). (4.2)

Assume that there are functions u(x,y,t)∈Rd× [0,1]× [0,∞) such that for all f ∈
C2

0 (R
d+1)

〈YnN (t),f〉→〈u(x,y,t),f〉 as n,N→∞.
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Define

gN,n(x,y,t) :=
1

nN

n∑
j=1

N∑
l=1

∇x

(
VN (x−xl

Nj
(t))+H(y−yj)GN (x−xl

Nj
(t))−yA(x)

)
,

then (4.1) can be written as

dxk
Ni

(t)

dt
=−∇xgN,n

(
x,

i

n
,t

)
, (4.3)

for k=1, . . . ,N and i=1, . . . ,n. Let f ∈C2
0 (R

d+1) then for N and n finite we have

〈YN,n(t),f(x,y)〉= 1

nN

n∑
i=1

N∑
k=1

f

(
xk
Ni

(t),
i

n

)
. (4.4)

Taking the time derivative of (4.4), substituting in the evolution equation (4.3), and
integrating gives

〈YN,n(t),f(x,y)〉= 〈YN,n(0),f(x,y)〉+
∫ t

0

〈YN,n(s),−∇xgN,n ·∇xf〉 ds. (4.5)

Consider for simplicity the one-dimensional case, and denote h′=∂xh. Then we may
write

∂xgN,n(x,y,t)=
1

nN

n∑
j=1

N∑
l=1

[
V ′
N (x−xl

Nj
(t))−H

(
y− j

n

)
G′

N (x−xl
Nj

(t))

]
+yA′(x).

The only problematic term in (4.5) is the integral in time, which in one dimension is

〈YN,n(t),−∇xgN,n·∇xf〉=− 1

(nN)2

n∑
i,j=1

N∑
k,l=1

f ′(xk
Ni

(t))V ′
N (xk

Ni
(t)−xl

Nj
(t))

− 1

(nN)2

n∑
i,j=1

N∑
k,l=1

f ′(xk
Ni

(t))H

(
i

n
−j

n

)
G′

N (xk
Ni

(t)−xl
Nj

(t))

+
1

nN

n∑
i=1

N∑
k=1

yiA
′(xk

Ni
(t))f ′(xk

Ni
(t)) := I1+I2+I3. (4.6)

Since we are assuming short-range repulsion and long-range mobility segregation we
take γv ∈ (0,1) and γg =0. Consider an individual x and their interactions with individ-
uals from group i (which has mobility yi). Due to the local equilibrium hypothesis, we
expect that as N→∞ the distances between individuals near x in group i at time t are
approximately

1

Nu(x,yi,t)
. (4.7)

Using this in (4.7), we obtain

I2=− 1

(nN)2

n∑
i,k=1

N∑
j,l=1

f ′(xj
Ni

(t),yi)H(yi−yk)G
′
N (xj

Ni
(t)−xl

Nk
(t))

=

〈
YnN (t),f ′(·) 1

nN

n∑
k=1

N∑
l=1

H(·−yk)GN (·−xl
Nk

(t))

〉
.
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Now, assuming that G′
N (x) decays sufficiently fast as |x|→∞, by (4.7) we can approx-

imate the position of the individuals of group k by l/Nu(xl,
k
n ,t) for l=−N/2, . . . ,N/2.

This gives the approximation

1

nN

n∑
k=1

N/2∑
l=−N/2

H(·−yk)GN (·−xl
Nk

(t))≈
∫ 1

0

∫
R

H(·− ỹ)G′(·− x̃)u(x̃, ỹ,t)dx̃dỹ. (4.8)

For I1, by symmetrization and the Taylor expansion of f ′, we obtain

I1=
1

2(nN)2

n∑
i,j=1

N∑
k,l=1

[f ′(xk
Ni

(t))−f ′(X l
Nj

(t))]V ′
N (xk

Ni
(t)−xl

Nj
(t))

=

〈
YN,n(t),f

′′ 1

2(nN)

n∑
j=1

N∑
l=1

V ′
N

(
xk
Ni

(t)−xl
Nj

(t)
)
(xk

Ni
(t)−xl

Nj
(t))

〉
.

By the local equilibrium hypothesis we have xk
Ni

(t)−xl
Nj

(t)≈ l
Nu(·, kn ,t)

. Using (2.1) and

denoting V1(x)=V (x), we obtain

1

nN

n∑
k=1

N∑
l=1

V ′
nN (·−xl

Nk
(t))(·−xl

Nk
)≈ 1

n

N∑
k=1

⎛
⎝Nγv

N

N/2∑
l=−N/2

V ′
(

Nγv l

Nu(·, kn ,t)

)
Nγv l

Nu(·, kn ,t)

⎞
⎠

≈−M [V ]

∫ 1

0

u(·,y,t)dy.

Here, we approximated the Riemann sum by an integral. Recall that u(x,t) defined in
(1.25) measures the population density at location x and time t over all mobilities. The
term that is contributed by the environment, I3, is derived similarly and we omit these
steps. Combining the above calculations gives the weak version of (1.24).

5. Numerical results

Numerical simulations for the interacting-particle model. We performed
numerical simulations of the interacting-particle system with multiple groups of varying
economic status. Figure 5.1a illustrates the equilibrium state when only the dynamic
rules (A1) and (A2) are considered. We observe a degree of segregation but some social
diversity is preserved. On the other hand, the inclusion of the effects of a monocen-
tric environment, where all resources are concentrated in the city center, leads to an
exaggerated segregation state. Individuals with a higher mobility live in the center of
the city while the other groups form regions surrounding the city center with increasing
distance to the city center as the mobility decreases.

Numerical solutions to the local continuous limit. Figure 5.3 illustrates
numerical solutions to (1.6) where the environment, A(x), represents a city with two
main regions where all amenities are located, see Figure 5.2a. Initially, both populations
(disadvantaged individuals and affluent individuals occupy the same space) – this is
illustrated in Figure 5.2b and Figure 5.2c. In Figure 5.3a and Figure 5.3b we observe
the steady-state solutions for u(x,t) and v(x,t), respectively, when there is no mobility
or environmental influence. We observe that due to the social preference u(x,t) and
v(x,t) occupy different spaces. On the other hand when we include mobility and the
environment we observe that u(x,t) occupies the space, where A(x) is large and v(x,t)
occupies the rest of the domain – see Figures 5.3c and 5.3d. Finally, Figures 5.3a
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(a) Γ1=Γ2=Γ3=0 (b) Γ1=1,Γ2= .5,Γ3=0

(c) Γ1=5,Γ2=2.5,Γ3=0 (d) Γ1=10,Γ2=5,Γ3=0

Fig. 5.1: Results of numerical simulations of the interacting particle system with three sub-populations
with mobilities, Γ1,Γ2, and Γ3, and an initial random distribution. Figure 5.1a illustrates the equi-
librium distribution when only social preference is taken into account. Figures 5.1b, 5.1c, and 5.1d
illustrates the equilibrium state when both the environment and economic disparity are taken into
account with increasing mobility gap.

(a) A(x) (b) u(x,0) (c) v(x,0)

Fig. 5.2

and 5.3b illustrate the case when the social preference is zero and we see that v(x,t)
disperses.

Crime, safety, and economic disparity As mentioned in the introduction it is
well known that poor neighborhoods have a disproportionate amount of crime [13,14]. In
this section we briefly describe how one can explore the effect of segregation along income
lines on crime hotspots using a mathematical model. The results yield distributions of
crime that are qualitatively similar to empirical observations of crime density. We
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(a) λ2=1,Γ1=Γ2=0: u (b) λ2=1,Γ1=Γ2=0: v

(c) λ2=1,Γ1=1,Γ2=0: u (d) λ2=1,Γ1=1,Γ2=0: v

(a) λ2=0,Γ1=1,Γ2=0: u (b) λ2=0,Γ1=1,Γ2=0: v

Fig. 5.3: Numerical solutions to (1.6) with the heterogeneous environment illustrated in Figure 5.2a
and initial conditions for u(x,t) and v(x,t) illustrated in Figures 5.2b and 5.2c respectively with varying
λ2 and Γ1 (Γ2=0).

summarize the assumptions for this model:

(i) The police enforcement aims to minimize feelings of insecurity.

(ii) There are limited resources.

(iii) Insecurity is higher among people that have more resources and have a lower
tolerance for criminal activity.

Given a distribution of individuals with prescribed mobilities, we calculate the in-
fluence field, I(x), by adding delta functions which are are centered at every location
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where an individual lives and with a mass that depends on the mobility of the indi-
vidual. Once we obtain the influence field, the objective is to find the distribution of
the police resources, p(x), that minimizes the functional (1.27), as described in (1.28).
This is done numerically with the use a gradient descent method, which requires a soft
version of the constrain (1.28b). Thus, we minimize

F (t)=

∫
Ω

ε
(
|∇p(x)|2+U(p(x))

)
dx+

1

ε

(∫
Ω

p(x)dx−1

)2

, (5.1)

for ε�1, which gives more weight to the terms that requires the constraint on the total
amount of the police enforcement to be satisfied.

(a) Distribution of the population (b) Distribution of the police resources

Fig. 5.4

Figure 5.4a illustrates the distribution of the population from which we generate
an influence field, I(x). Figure 5.4b illustrates the optimal distribution of resources
obtained based on the given I(x). We observe the development of safe-havens for regions
with a high influence field, where the crime fields are very low. While this does not
generate the crime hotspots, it essentially removes the possibility of hotspots in regions
of high influence. The next step, which we leave for a separate publication is to couple
the environment attractiveness field, A(x), we have considered in the PDE models, to
the amount of crime (which would be described via the local police resources) produced
via the above minimization procedure. This will lead to a coupled system of PDEs for
the population density and the police enforcement.
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