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A BGK RELAXATION MODEL FOR POLYATOMIC GAS MIXTURES∗

MARZIA BISI† AND MARIA JOSÉ CÁCERES‡

Abstract. We present a BGK approximation of a kinetic Boltzmann model for a mixture of
polyatomic gases, in which non-translational degrees of freedom of each gas are represented by means
of a set of discrete internal energy levels. We also deal with situations, in which even chemical reactions
implying transfer of mass may occur. The consistency of the proposed BGK model is proved in both
inert and reactive frames, and numerical simulations in space homogeneous settings are presented.
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1. Introduction

A kinetic description of rarefied gas mixtures was proposed in scientific literature
several years ago [11, 10], and suitable generalizations to physical situations with non-
conservative collisions, which imply transfer of energy and of mass, have also been
widely investigated both from the analytical and the numerical point of view (see for in-
stance [23, 13, 4, 18] and the references therein). These kinetic models usually describe
the evolution of the distribution functions, f i, of single gases by means of suitable
integro-differential equations of Boltzmann type. However, such equations are quite
awkward to deal with, especially because of energy thresholds appearing in the collision
operators relevant to endothermic interactions, that may occur only if the impinging
kinetic energy overcomes a suitable potential barrier [22]. For this reason, in recent
years interest has been gained by proper extensions to gas mixtures of the relaxation
model proposed for a single gas by Bhatnagar, Gross, and Krook in [2], in which Boltz-
mann collision operator is replaced by ν(M−f) where ν is a collision frequency and
M is a suitable local Maxwellian attractor. Besides BGK-type descriptions for inert
mixtures, considered for instance in [19, 1, 7], relaxation models taking into account
also simple chemical reactions have been deeply investigated [17, 20, 5, 9]. Such mod-
els are able to reproduce the main features of the kinetic Boltzmann equations they
want to approximate: Maxwellian collision equilibria, the correct collision invariants,
and classical H-theorem. In reactive frames, the proof of the consistency of a BGK
approximation is much more involved than in inert situations, since a transcendental
relation between single number densities and global temperature (the so-called mass ac-
tion law of chemistry [4]) has to be fulfilled by the equilibrium states, and consequently
it deeply affects the relations between the fictitious parameters of the Maxwellian attrac-
tors and the actual macroscopic fields. Because of these difficulties, to our knowledge
all non-conservative BGK models for mixtures deal only with monoatomic gases, even
if it is well known that physically meaningful chemical processes usually also involve
polyatomic gases.

Kinetic Boltzmann descriptions for polyatomic gases have been proposed in [21,
16, 12], in which single gases are also endowed with a (discrete or continuous) energy
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variable, to mimic non-translational degrees of freedom. The main aim of this paper
is to build up a consistent BGK approximation of the Boltzmann model presented
in [16], but considering a mixture of Q polyatomic gases Gs, s=1, . . .,Q, each one
with a structure of N > 1 discrete energy levels. At first we will assume that particles
may interact only through binary elastic or inelastic collisions, the inelastic collisions
implying changes of the energy levels of the colliding pair, then we will take into account
more complicated situations also allowing chemical reactions with transfer of mass.
The BGK models we are proposing follow the same lines as [5, 6], and they will be
validated by both analytical proofs and numerical simulations in space homogeneous
frames. We know that a drawback of such a BGK approach is that the corresponding
hydrodynamic equations do not reproduce the correct Prandtl number; to this aim,
quite complicated BGK models of ellipsoidal type have been proposed in the literature
even for an elastically scattering mixture [14] and for a single polyatomic gas [8], but
their extension to polyatomic and reacting gas mixtures is left to future work.

More precisely, the article is organized as follows. In Section 2, the main features of
the kinetic Boltzmann model for polyatomic gases as proposed in [16] are summarized,
forgetting for now chemical reactions. Then, in Section 3 a BGK relaxation model for
(inert) polyatomic gas mixtures is built up in the spirit of [5], determining in a unique
way parameters of the Maxwellian attractors in terms of species-number densities, mass
velocities, and temperatures; moreover, fulfillment of correct H-theorem is analytically
proved. Section 4 deals with possible generalizations of such a BGK model to reactive
frames, in which a suitable mass action law affects collision equilibria and, consequently,
attractor parameters; at first we deal with a binary reacting mixture, for which mass
action law is an explicit relation between number densities of the two gases, then we
consider the case of four reacting species, for which the analytical proof of consistency
of the BGK model turns out to be much more complicated. Finally, Section 5 is devoted
to the presentation of some numerical results in space-homogeneous conditions (both for
inert and reacting polyatomic mixtures); time evolution of distribution functions and
of macroscopic fields is shown in order to illustrate the adherence of the BGK model to
physical expectations, and to test its response to variation of initial data and of internal
energies.

2. Kinetic Boltzmann model for polyatomic gases

We shall start from the kinetic model for internal state transitions as proposed
in [16], in which a mixture of Q gases Gs, s=1, . . .,Q, is considered, each one endowed
with a structure of N > 1 discrete energy levels, in order to mimic non-translational
degrees of freedom. In other words, each polyatomic gas Gs is represented as a mixture
of monoatomic gases, and each particle is characterized by the usual continuous variable
representing its center of mass velocity and also by a discrete variable representing its
internal state. For a proper mathematical treatment, the QN different components are
labeled according to a single index and ordered in such a way that the s-th chemical
species may be regarded as the equivalence class of the indices i which are congruent
to s modulo Q (we shall write simply i≡ s). Each component Ai, 1≤ i≤QN , is then
identified by the energy Ei of its state, while obviously all molecules Ai with i≡ s share
the same mass ms. Energies Ei≥ 0 are assumed to be monotonically increasing with
their index in the frame of each species.

We deal with binary interactions in which a collision between two particles of com-
ponents i and j yields a pair of molecules of the same gas, but with possibly different
energy levels (we neglect for now more complicated chemical reactions also implying
transfer of mass, which will be taken into account in Section 4). The general binary
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interaction may thus be written as

Ai+Aj
�Ah+Ak h≡ i k≡ j. (2.1)

We will denote the net increase of internal energy Eh+Ek−Ei−Ej by ΔEhk
ij , whose

gain or loss must be compensated by an opposite variation of the kinetic energies.
The kinetic equations for the evolution of the distribution functions, f i(x,v,t) may

be cast, as in [16], as

∂f i

∂t
+v ·∇xf

i=
∑

(j,h,k)∈Di

∫∫
Kijhk

i [f ](v,w,n̂′)dwdn̂′, 1≤i≤QN

Kijhk
i [f ](v,w,n̂′)=Θ(g2−δhkij )B

hk
ij (g,n̂ · n̂′)

×

[(
μij

μhk

)3

fh
(
vhk
ij

)
fk
(
whk

ij

)
−f i(v)f j(w)

]
. (2.2)

Here g=v−w= g n̂, and the post-collision velocities are given by vhk
ij = εijv+εjiw+

εkhghkij n̂′ and whk
ij = εijv+εjiw−εhkghkij n̂′, with ghkij =

[
μij

μhk (g
2−δhkij )

]1/2
, εij standing

for the mass ratio mi/(mi+mj) and μij for the reduced mass εijmj. For mechanical
interactions (2.1) it obviously holds μij/μhk=1, but we prefer to write the scattering
operator in the most general form (by means of (2.2)), able to also describe collisions
with mass transfer that will be dealt with in Section 4. Moreover Bhk

ij = gσhk
ij denotes

the collision kernel (σhk
ij is the differential cross section of the interaction Ai+Aj→

Ah+Ak), while δhkij stands for 2ΔEhk
ij /μij ; when the latter is positive, the unit step

function Θ actually introduces a threshold for the collision. Finally, the set Di includes
all possible collisions, namely it is made up by all triplets (j,h,k) with h≡ i and k≡ j.

Major moments of each component Ai (number density ni, drift velocity ui, and
kinetic temperature T i) reconstruct in the usual way [4] the corresponding moments of
each gas Gs and of the whole mixture as

Ns=
∑
i≡s

ni, us=
1

Ns

∑
i≡s

niui, NsKT s=
∑
i≡s

niKT i+
1

3
ms
∑
i≡s

ni(|ui|2−|us|2),

(2.3)
and

n=

Q∑
s=1

Ns, ρ=

Q∑
s=1

msNs,

u=
1

ρ

Q∑
s=1

msNsus, nKT =

Q∑
s=1

NsKT s+
1

3

Q∑
s=1

msNs(|us|2−|u|2)

(2.4)

where K is the Boltzmann constant. Analogous relations hold for the pressure tensor P
and the thermal heat flux q.

The main properties of the collision operator (collision invariants, equilibria, and
H-theorem) are a byproduct of the detailed investigation performed in [16]. In our
frame there exist Q+4 independent collision invariants for the global collision operator,
and they correspond to the preservation of species number densities Ns, of global mass
velocity u, and of total energy, sum of the kinetic contribution and of the internal energy.
Consequently, Q+4 exact non-closed macroscopic conservation equations hold

∂Ns

∂t
+∇x ·(N

sus)=0, s=1, . . .,Q,
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∂

∂t
(ρu)+∇x ·(ρu⊗u+P)=0,

∂

∂t

(
1

2
ρ |u|2+

3

2
nKT +

QN∑
i=1

Eini

)
+∇x ·

[(
1

2
ρ |u|2+

3

2
nKT

)
u

+P ·u+q+

QN∑
i=1

Einiui

]
=0. (2.5)

Collision equilibria are a (Q+4)-parameter family of Maxwellians with a common
drift velocity and temperature

f i
M (v)=ni

(
ms

2πKT

)3/2

exp

[
−

ms

2KT
|v−u|2

]
∀i≡ s, ∀s=1, . . .,Q, (2.6)

with equilibrium number densities related by the constraints

ni=Nsψ(Ei,T ), (2.7)

where

ψ(Ei,T )=
exp
(
−Ei−Es

KT

)
∑
i≡s

exp

(
−
Ei−Es

KT

) =
exp
(
−Ei−Es

KT

)
Zs(T )

. (2.8)

Note that ψ(Ei,T ) represents the fraction of particles of species Gs (s≡ i) that belongs
to the component Ai in any equilibrium configuration. For any component i=1, . . .,QN
we have 0≤ψ(Ei,T )≤ 1, and for any gas Gs it holds

∑
i≡sψ(E

i,T )=1. Moreover, for
any i,j with i≡ j and i< j, we have ψ(Ei,T )>ψ(Ej,T ), hence in any equilibrium state
the highest fraction of particles Gs has the lowest energy level Es.

In space homogeneous conditions, a strict entropy inequality can also be established
in terms of the classical H-functional:

H=

Q∑
s=1

∑
i≡s

∫
f i logf idv, (2.9)

quantifying relaxation rate to the unique collision equilibrium corresponding to the
initial data.

3. BGK relaxation model for polyatomic gas mixtures

BGK approaches for mixtures proposed in the literature are usually non-trivial
generalizations of the classical BGK model for a single gas, since one must take care of
reproducing some further basic principles, as positivity of densities and temperatures of
all interacting species, and “indifferentiability”, namely the requirement that when all
species are identical one must recover the BGK model for a single gas. These fundamen-
tal issues are satisfied by the model proposed in [1] for inert monoatomic gas mixtures
and extended in [5, 6] to reactive frames, and for this reason we build up a BGK model
for polyatomic gases following the same lines. The crucial idea of this kind of relaxation
models consists in replacing the actual i-th Boltzmann collision operator by a single
BGK operator νi(Mi−f i), i=1, . . .,QN , where νi are suitable v-independent macro-
scopic collision frequencies (or inverse relaxation times), and the “attractors” Mi are
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fictitious Maxwellians with macroscopic parameters to be properly determined:

∂f i

∂t
+v ·∇xf

i= νi(Mi−f i), i=1, . . .,QN. (3.1)

AttractorsMi are assumed accommodated at a common auxiliary velocity ũ and tem-
perature T̃

Mi(v)= ñi

(
ms

2πKT̃

)3/2

exp

[
−

ms

2KT̃
|v− ũ|2

]
, (3.2)

while fictitious densities ñi are taken bound together as

ñi= Ñsψ(Ei,T̃ ). (3.3)

Note that the attractors (3.2)–(3.3) are chosen in such a way that they fulfill all equilib-
rium conditions, namely they are Maxwellian distributions with a unique drift velocity
and temperature, and with number densities provided by (3.3), which are the equilib-
rium constraint specific of the polyatomic structure of gases. Therefore, this BGK model
will describe a general relaxation of all components Ai towards an equilibrium configu-
ration, loosing in some sense the details of interactions between different species: in the
Boltzmann equation (2.2) there is a collision operator for each admissible interaction
Ai+Aj

�Ah+Ak, while in the BGK approximation (3.1) the effects on velocity ui and
temperature T i due to collisions with all possible other components have to be included
in the parameters of Mi(ñi,ũ,T̃ ). Relaxation-type kinetic models with attracting dis-
tributions M̃i(ñi,ũi,T̃ i) each having a different fictitious velocity and temperature for
each species have been widely used (for monoatomic mixtures) in a recent past, but
the proof of their consistency from the mathematical point of view still has some open
problems (for instance, for the model proposed in [17] a rigorous proof of H-theorem is
lacking).

Our attractors (3.2) are then defined in terms of the QN+4 auxiliary variables
ñi, ũ, T̃ , related by the constraints (3.3), so that only the Q+4 quantities Ñs, ũ,
and T̃ are actually disposable parameters to be suitably determined to make the BGK
approximation consistent.

Following the procedure described in [1, 5, 6], we impose that the BGK model (3.1)
shares the same collision invariants of the original Boltzmann kinetic model (2.2). This
yields the equations

∑
i≡s

νi
∫
(Mi−f i)dv=0 s=1, . . .,Q, (3.4)

Q∑
s=1

∑
i≡s

νi
∫

msv(Mi−f i)dv=0, (3.5)

Q∑
s=1

∑
i≡s

νi
∫ (

1

2
ms|v|2+Ei

)
(Mi−f i)dv=0, (3.6)

representing preservation of species number densities, global mass velocity, and total
energy, respectively. These are Q+4 equations for the Q+4 unknowns Ñs, ũ, T̃ . The
main part of this section will be devoted to proving that the system (3.4)–(3.6) has a
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unique admissible solution for any choice of collision frequencies νi, masses ms, and
internal energies Ei.

For any s=1, . . .,Q, condition (3.4) provides∑
i≡s

νiñi=
∑
i≡s

νini (3.7)

(relation that will be very useful in the sequel), from which, bearing in mind the con-
straint (3.3) for the auxiliary number densities, we get

Ñs=

(∑
i≡s

νini

)/(∑
i≡s

νiψ(Ei,T̃ )

)
. (3.8)

Thus Ñs are positive quantities, uniquely determined in terms of actual number densi-
ties ni and auxiliary temperature T̃ .

Coming to equation (3.5), it yields

Q∑
s=1

ms
∑
i≡s

νi(ñiũ−niui)=0, (3.9)

that owing to (3.7) provides

ũ=

(
Q∑

s=1

ms
∑
i≡s

νiniui

)/( Q∑
s=1

ms
∑
i≡s

νini

)
, (3.10)

hence ũ is explicitly given as combination of actual number densities ni and mass
velocities ui.

The investigation of constraint (3.6) turns out to be much more complicated, since
it gives the relation

Q∑
s=1

∑
i≡s

νi
[
1

2
msñi|ũ|2+

3

2
ñiKT̃ +Eiñi−

1

2
msni|ui|2−

3

2
niKT i−Eini

]
=0, (3.11)

that resorting again to (3.3) and (3.7) may be cast as

3

2

Q∑
s=1

(∑
i≡s

νini

)
KT̃ +

Q∑
s=1

Ñs
∑
i≡s

νiEiψ(Ei,T̃ )

=
1

2

Q∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
+

3

2

Q∑
s=1

∑
i≡s

νiniKT i+

Q∑
s=1

∑
i≡s

νiEini. (3.12)

This is a transcendental equation for the auxiliary temperature T̃ of the form

F (T̃ )=
1

2

Q∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
+
3

2

Q∑
s=1

∑
i≡s

νiniKT i+

Q∑
s=1

∑
i≡s

νiEini, (3.13)

where

F (T̃ )=

Q∑
s=1

⎛
⎝∑

j≡s

νjnj

⎞
⎠
⎡
⎢⎢⎣32KT̃ +

∑
i≡s

νiEiψ(Ei,T̃ )

∑
j≡s

νjψ(Ej ,T̃ )

⎤
⎥⎥⎦ . (3.14)
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The BGK approximation is consistent if equation (3.13) has a unique solution, since the
auxiliary variable Ñs is determined in a unique way in terms of T̃ (see (3.8)) and ũ is
explicitly given by the expression (3.10). Uniqueness of solution to the transcendental
equation (3.13) is a consequence of the two following lemmas:

Lemma 3.1. For the right-hand side of (3.13) the following lower bound holds:

1

2

Q∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
+
3

2

Q∑
s=1

∑
i≡s

νiniKT i+

Q∑
s=1

∑
i≡s

νiEini≥

Q∑
s=1

(∑
i≡s

νini

)
Es.

(3.15)
As a consequence the right-hand side of (3.13) is positive.

Proof. Since Ei≥Es ∀i≡ s, it suffices to prove that

Q∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
≥ 0, (3.16)

which, bearing in mind the expression (3.10) for ũ, is equivalent to⎛
⎝ Q∑

s=1

ms
∑
j≡s

νjnj

⎞
⎠
(

Q∑
r=1

mr
∑
i≡r

νini|ui|2

)
−

(
Q∑

s=1

ms
∑
i≡s

νiniui

)2

≥ 0.

The left-hand side of this latter formula is nothing but

Q∑
s=1

∑
j≡s

Q∑
r=1

∑
i≡r

msmrνiνjninj
(
|ui|2−ui ·uj

)
=

1

2

Q∑
s=1

∑
j≡s

Q∑
r=1

∑
i≡r

msmrνiνjninj |ui−uj |2

(last equality has been obtained by exchanging the indices s↔ r and i↔ j), and this
concludes the proof.

Lemma 3.2. The function F (T̃ ) defined in (3.14) is a monotonically increasing func-
tion.

Proof. We want to prove that the first derivative F ′(T̃ ) is positive for any admis-
sible values of masses, energies, collision frequencies, and number densities.

After some computations we get

F ′(T̃ )=

Q∑
s=1

⎛
⎝∑

j≡s

νjnj

⎞
⎠
⎧⎪⎨
⎪⎩

3

2
K+

1

KT̃ 2

⎡
⎣∑
j≡s

νj exp

(
−
Ej−Es

KT̃

)⎤⎦
−2

G(T̃ )

⎫⎪⎬
⎪⎭ , (3.17)

where

G(T̃ )=
∑
i≡s

∑
j≡s

νiνj exp

(
−
Ei−Es

KT̃

)
exp

(
−
Ej−Es

KT̃

)[
(Ei)2−EiEj

]
.

Exchanging the indices i↔ j yields

G(T̃ )=
1

2

∑
i≡s

∑
j≡s

νiνj exp

(
−
Ei−Es

KT̃

)
exp

(
−
Ej−Es

KT̃

)
(Ei−Ej)2≥ 0,
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so that F ′(T̃ )> 0.

To conclude the proof of existence and uniqueness of solution to equation (3.13) we
observe that, since energy levels Ei≥ 0 relevant to any gas Gs are assumed increasing
with their index, we get

∑
i≡s

νiEiψ(Ei,T̃ )

∑
j≡s

νjψ(Ej ,T̃ )
=

νsEs+
∑
i≡s
i�=s

νiEiexp

(
−
Ei−Es

KT̃

)

νs+
∑
i≡s
i�=s

νi exp

(
−
Ei−Es

KT̃

) ≥min
i≡s

Ei=Es, (3.18)

therefore

lim
T̃→0

F (T̃ )=

Q∑
s=1

(∑
i≡s

νini

)
Es, lim

T̃→+∞

F (T̃ )=+∞.

In conclusion, we have proved that F (T̃ ) is a strictly increasing function that for posi-
tive T̃ varies from the minimum admissible value for the right-hand side of (3.13) to +∞,
hence existence and uniqueness of solution to equation (3.13) is guaranteed. The BGK
algorithm proposed in this section works then properly, since all auxiliary variables may
be determined in a unique way (through relations (3.8), (3.10), (3.13)) in terms of the
actual macroscopic fields, without no restriction on the collision model, or on energy
level properties.

3.1. Steady states of the BGK model for the homogeneous case. As
regards collision equilibria of the relaxation model (3.1), they are defined by f i=Mi,
∀i=1, . . .,QN , hence they are Maxwellian distributions sharing a common mass velocity
u= ũ and a common temperature T = T̃ , and with number densities ni= ñi satisfying
thus the relations (3.3) (assumed for ñi from the beginning), so that they reproduce
the correct (Q+4)-parameter family (2.6)–(2.7) of collision equilibria deduced from the
original Boltzmann equations.

This BGK model yields immediately by its construction the preservation of the
same conservation equations obtained from the Boltzmann model. In particular, in
space homogeneous conditions, Q+4 conservation laws hold:

Ns=
∑
i≡s

ni=constant, s=1, . . .,Q, ρu=constant,

1

2
ρ |u|2+

3

2
nKT +

Q∑
s=1

∑
i≡s

Eini=constant.

(3.19)

Because of these first integrals, once the initial parameters ni
0, u

i
0, T

i
0 are assigned, the

corresponding equilibrium values ni
M , uM , TM are related to them by

∑
i≡s

ni
M =

∑
i≡s

ni
0 s=1, . . .,Q,

Q∑
s=1

ms
∑
i≡s

ni
MuM =

Q∑
s=1

ms
∑
i≡s

ni
0u

i
0,
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Q∑
s=1

∑
i≡s

[
1

2
msni

M |uM |
2+

3

2
ni
MKTM +Eini

M

]

=

Q∑
s=1

∑
i≡s

[
1

2
msni

0|u
i
0|

2+
3

2
ni
0KT i

0+Eini
0

]
, (3.20)

and, in addition, they have to fulfill the equilibrium constraint (2.7). This system is
actually a special case of conditions (3.7), (3.9), (3.11) already investigated above, with
νi=1 for each gas component, ni

M , uM , TM in place of ñi, ũ, T̃ , and with ni
0, u

i
0, T

i
0

in place of ni, ui, T i. Therefore the proof of existence and uniqueness of a solution is
the same as above, and guarantees that equilibrium values may be uniquely determined
in terms of initial data. In particular, it holds uM =u0, n

i
M =Ns

0 ψ(E
i,TM ), and TM is

given by the solution of an equation of the form (3.12) with νi=1:

3

2
n0KTM +

Q∑
s=1

Ns
0

∑
i≡s

Eiψ(Ei,TM )

=
1

2

Q∑
s=1

ms
∑
i≡s

ni
0

(
|ui

0|
2−|u0|

2
)
+

3

2

Q∑
s=1

∑
i≡s

ni
0KT i

0+

Q∑
s=1

∑
i≡s

Eini
0. (3.21)

3.2. H-Theorem for the BGK model for the homogeneous case. An-
other significant result of the present BGK model is that it is possible to prove that, in
space homogeneous conditions, the physical entropy (2.9) holding at Boltzmann level is
a suitable Lyapunov functional also for the approximated relaxation model (3.1). In-
deed, it has been already proved [16] that such a functional, in the class of admissible
distribution functions f =(f1, . . . ,fQN ) for which conservations (3.19) are in order, at-
tains its minimum exactly at the unique Maxwellian stationary point f

M
relevant to

the conserved quantities: for any f in that class, we have H [f ]>H [f
M
], ∀f �= f

M
. In

order to achieve the H-theorem it suffices then to prove the dissipation property

Ḣ[f ]=

Q∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logf idv< 0 ∀f �= f

M
. (3.22)

We start by proving the following equality:

Lemma 3.3.

Q∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logMidv=0 ∀f. (3.23)

Proof. It can be easily checked that

Q∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logMidv

=

Q∑
s=1

∑
i≡s

νi
∫
(Mi−f i)

[
log ñi+

3

2
logms−

3

2
log(2πKT̃ )−

ms

2KT̃
(|v|2−2ũ ·v+ |ũ|2)

]
dv
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and the right-hand side, bearing in mind conservations (3.4)–(3.6), simplifies to

Q∑
s=1

∑
i≡s

νi(ñi−ni)

[
log ñi+

Ei

KT̃

]
=

Q∑
s=1

∑
i≡s

νi(ñi−ni)

[
logÑs+

Es

KT̃
− log

(
Zs(T̃ )

)]
=0,

(3.24)
where in last equality we resorted again to condition (3.7).

Previous lemma allows to write

Ḣ [f ]=−

Q∑
s=1

∑
i≡s

νi
∫
(f i−Mi) log

f i

Mi
dv (3.25)

and now the usual convexity argument applies for the function (x−1)logx, and we may
conclude that Ḣ [f ]≤ 0, with equal sign if and only if f i=Mi, ∀i, i.e. correspondingly
to the unique collision equilibrium f

M
determined by initial conditions. This completes

the proof of (3.22) and of the H-theorem.

4. Generalization of the BGK approximation to chemically reactive

frames

In this section we consider mixtures of polyatomic gases that, besides elastic and
inelastic mechanical scattering dealt with in previous sections, may undergo also (bi-
molecular and reversible) chemical interactions implying also transfer of mass between
the colliding particles. More precisely, we will include interactions of the type

Ai+Aj
�Ah+Ak

with the input particles (Ai,Aj) belonging to gases (Gs,Gr) and the output particles
(Ah,Ak) belonging to different species (Gp,Gq). Without loss of generality we may
order species in such a way that ΔEpq

sr =Ep+Eq−Es−Er> 0; moreover, notice that
conservation of total mass in each chemical encounter implies ms+mr=mp+mq. The
additional reactive processes entail that collision equilibria of the Boltzmann equations
are again Maxwellian distributions (2.6) with number densities and temperature satis-
fying conditions (2.7), but a further constraint appears relating total number densities
(Ns,N r,Np,N q) of the gases involved in chemical reactions, that is the mass action law
of chemistry [22, 16]. We will emphasize in the sequel how this additional requirement
deeply affects the proof of the consistency of our BGK model. For this reason, we divide
this section in two separate parts.

At first, in Subsection 4.1, we consider a binary mixture (of gases G1, G2), whose
particles are subject to the reaction

Ai+Aj
�Ah+Ak i≡ j≡ 1, h≡k≡ 2, (4.1)

with the assumption ΔE22
11 =2(E2−E1)> 0. Conservation of mass simply yields m1=

m2=m therefore in this very simplified case mass transfer disappears; in this sense this
may not be considered a real chemical process and G1 and G2 should be represented as
two different components of the same gas (G1 in the fundamental state and G2 in an
excited one). However, we believe this case meaningful from the mathematical point of
view, in order to study the effects on the BGK parameters of the simplest mass action
law, that is nothing but a linear relation between N1 and N2, with a temperature
depending coefficient:

N2=
Z2(T )

Z1(T )
e−

E2−E1

KT N1. (4.2)
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Then, we shall consider a more realistic situation, namely a mixture of four gasesGs,
s=1,2,3,4, each one with N different energy levels, subject to a chemical reaction in
which a collision between a pair of species G1 and G2 may give rise to a pair of particles
G3 and G4 and vice versa:

Ai+Aj
�Ah+Ak i �≡ j �≡h �≡k, i+j≡ 3, h+k≡ 3, (4.3)

with ΔE34
12 =E3+E4−E1−E2> 0. Now conservation of mass yields the relation m1+

m2=m3+m4, and mass action law characterizing collision equilibria reads as

N1N2

N3N4
=

(
μ12

μ34

)3/2
Z1(T )Z2(T )

Z3(T )Z4(T )
e

ΔE34
12

KT , (4.4)

that is a transcendental equation involving number densities of all interacting gases.
The further difficulties in the construction of the BGK model for this reactive frame
will be outlined in Subsections 4.2 and 4.3, and also in the relevant numerical simulations
presented in Section 5.

4.1. BGK model for a binary mixture. We start considering a mixture
of two gases G1, G2 subject to the chemical reaction (4.1). Collision equilibria of the
relevant Boltzmann equations are provided by (2.6), (2.7), (4.2), hence they constitute
a 5-parameter family. We aim at building up BGK equations like (3.1)

∂f i

∂t
+v ·∇xf

i= νi(Mi−f i), i=1, . . .,2N, (4.5)

where Maxwellian attractor parameters fulfill the constraints

ñi= Ñsψ(Ei,T̃ ), (4.6)

Ñ2= Ñ1 Z
2(T̃ )

Z1(T̃ )
e−

E2−E1

KT̃ . (4.7)

We want to obtain the auxiliary parameters in terms of the actual ones by imposing that
BGK equations preserve the same collision invariants of the Boltzmann model, that for
the present problem read as

∑
i≡1

νi
∫
(Mi−f i)dv+

∑
i≡2

νi
∫
(Mi−f i)dv=0, (4.8)

m

2∑
s=1

∑
i≡s

νi
∫

v(Mi−f i)dv=0, (4.9)

2∑
s=1

∑
i≡s

νi
∫ (

1

2
m |v|2+Ei

)
(Mi−f i)dv=0; (4.10)

equations (4.9), (4.10) coincide with (3.5), (3.6) for a non reactive mixture, correspond-
ing to preservation of global momentum and energy, while the Q=2 equations for single
gas densities (3.4) are here replaced by a unique equation (4.8) representing conservation
of total density only.

Condition (4.8) provides∑
i≡1

νi(ñi−ni)+
∑
i≡2

νi(ñi−ni)=0, (4.11)
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hence

2N∑
i=1

νiñi=

2N∑
i=1

νini. (4.12)

By inserting the expressions (4.6) into (4.11) we get

Ñ1
∑
i≡1

νiψ(Ei,T̃ )+Ñ2
∑
i≡2

νiψ(Ei,T̃ )=

2N∑
i=1

νini, (4.13)

from which, taking into account (4.7) and the expression of ψ(Ei,T̃ ) given in (2.8), we
get

Ñ1

Z1(T̃ )
=

(
2N∑
i=1

νini

)/
2N∑
i=1

νie−
Ei−E1

KT̃ . (4.14)

Consequently, again from (4.7),

Ñ2

Z2(T̃ )
=

(
2N∑
i=1

νini

)/
2N∑
i=1

νie−
Ei−E2

KT̃ (4.15)

hence, in compact form,

Ñs

Zs(T̃ )
=

(
2N∑
i=1

νini

)
e−

Es−E1

KT̃

/
2∑

s=1

∑
i≡s

νi e−
Ei−E1

KT̃ s=1,2. (4.16)

Equations (4.14), (4.15) (or, equivalently, (4.16)) give the auxiliary number densities
Ñ1, Ñ2 in terms of the actual densities ni and the auxiliary temperature T̃ .

Analogously to previous section, equation (4.9) yields

ũ=

(
2N∑
i=1

νiniui

)/
2N∑
i=1

νini; (4.17)

finally, skipping intermediate details, constraint (4.10) provides, analogously to (3.12),

3

2

(
2N∑
i=1

νini

)
KT̃ +

2∑
s=1

Ñs

Zs(T̃ )

∑
i≡s

νiEie−
Ei−Es

KT̃

=
1

2
m

2N∑
i=1

νini
(
|ui|2−|ũ|2

)
+

3

2

2N∑
i=1

νiniKT i+

2N∑
i=1

νiEini. (4.18)

This is a transcendental equation for T̃ that may be cast as

H(T̃ )=

(
2N∑
i=1

νini

)−1[
1

2
m

2N∑
i=1

νini
(
|ui|2−|ũ|2

)
+

3

2

2N∑
i=1

νiniKT i+

2N∑
i=1

νiEini

]
,

(4.19)
where, taking into account (4.16) for Ñs/Zs(T̃ ),

H(T̃ )=
3

2
KT̃ +

(
2∑

s=1

∑
i≡s

νiEi e−
Ei−E1

KT̃

)/⎛
⎝ 2∑

r=1

∑
j≡r

νj e−
Ej−E1

KT̃

⎞
⎠. (4.20)
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As already done for a non reactive mixture, we are able to prove that H(T̃ ) is an
increasing function of its argument. In fact

H′(T̃ )=
3

2
K+

⎛
⎝ 2∑

r=1

∑
j≡r

νj e−
Ej−E1

KT̃

⎞
⎠

−2

1

KT̃ 2
G(T̃ )

where

G(T̃ ) =
2∑

s=1

2∑
r=1

∑
i≡s

∑
j≡r

νiνj e−
Ei+Ej−2E1

KT̃ [(Ei)2−EiEj ]

=
1

2

2∑
s=1

2∑
r=1

∑
i≡s

∑
j≡r

νiνj e−
Ei+Ej−2E1

KT̃ (Ei−Ej)2≥ 0.

Moreover, since E1<E2 and energy levels of each gas are assumed increasing with their
index, we have

lim
T̃→0

H(T̃ )=E1, lim
T̃→+∞

H(T̃ )=+∞,

and these are exactly the lower and upper bounds of the right-hand side of (4.19),
therefore existence of a unique solution to (4.19) is guaranteed. In conclusion, following
a strategy very similar to the one explained in Section 3 for a non reacting mixture, we
have proved that all auxiliary parameters are well defined in terms of the actual ones.

4.2. BGK model for a four-species mixture. The proof of consistency of
our BGK model turns out to be much more involved if we consider a mixture of four
polyatomic gases Gs, for s=1,2,3,4, with chemical reactions (4.3) in which encounters
between particles of species G1 and G2 may provide as output a pair of gases G3 and G4

or vice versa. For this physical situation equilibria are given by distributions (2.6), with
the constraints (2.7) and (4.4) for the macroscopic parameters, hence they constitute a
7-parameter family. Consequently, we impose that Maxwellian attractor parameters of
our BGK model fulfill the analogous constraints

ñi= Ñsψ(Ei,T̃ ), (4.21)

Ñ1Ñ2

Ñ3Ñ4
=

(
μ12

μ34

)3/2
Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
e

ΔE34
12

KT̃ . (4.22)

Independent collision invariants for the Boltzmann equations correspond to preservation
of global momentum and total (kinetic plus internal) energy, and of three suitable com-
binations of gas densities, for instance N1+N3, N1+N4, N2+N4. Hence, imposing
the same also for the BGK model yields

∑
i≡1

νi
∫
(Mi−f i)dv+

∑
i≡3

νi
∫
(Mi−f i)dv=0, (4.23)

∑
i≡1

νi
∫
(Mi−f i)dv+

∑
i≡4

νi
∫
(Mi−f i)dv=0, (4.24)

∑
i≡2

νi
∫
(Mi−f i)dv+

∑
i≡4

νi
∫
(Mi−f i)dv=0, (4.25)
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4∑
s=1

∑
i≡s

νi
∫

msv(Mi−f i)dv=0, (4.26)

4∑
s=1

∑
i≡s

νi
∫ (

1

2
ms|v|2+Ei

)
(Mi−f i)dv=0. (4.27)

Equations (4.23)–(4.25) provide∑
i≡s

νi(ñi−ni)+
∑
i≡r

νi(ñi−ni)=0 (s,r)= (1,3), (1,4), (2,4).

Linear combinations of these equalities yield

4N∑
i=1

νiñi=

4N∑
i=1

νini (4.28)

and

4∑
s=1

ms
∑
i≡s

νiñi=

4∑
s=1

ms
∑
i≡s

νini. (4.29)

More precisely, bearing in mind the expression (4.21), conditions (4.23)–(4.25) allow to
express three among the auxiliary number densities (i.e. Ñ2, Ñ3, Ñ4) in terms of the
fourth one (Ñ1), the auxiliary temperature T̃ and the actual number densities ni:

Ñ2 =
1∑

i≡2

νiψ(Ei,T̃ )

{∑
i≡2

νini−
∑
i≡1

νini+

(∑
i≡1

νiψ(Ei,T̃ )

)
Ñ1

}
,

Ñ3 =
1∑

i≡3

νiψ(Ei,T̃ )

{∑
i≡3

νini+
∑
i≡1

νini−

(∑
i≡1

νiψ(Ei,T̃ )

)
Ñ1

}
,

Ñ4 =
1∑

i≡4

νiψ(Ei,T̃ )

{∑
i≡4

νini+
∑
i≡1

νini−

(∑
i≡1

νiψ(Ei,T̃ )

)
Ñ1

}
,

(4.30)

that may be written in a compact form as

Ñs

Zs(T̃ )
=

1∑
i≡s

νie−
Ei−Es

KT̃

{∑
i≡s

νini−λs
∑
i≡1

νini+λs

(∑
i≡1

νie−
Ei−E1

KT̃

)
Ñ1

Z1(T̃ )

}
(4.31)

where λs are the stoichiometric coefficients λ1=λ2=1, λ3=λ4=−1.
Momentum conservation (4.26), analogously to previous sections and taking into

account (4.29), yields

ũ=

(
4∑

s=1

ms
∑
i≡s

νiniui

)/(
4∑

s=1

ms
∑
i≡s

νini

)
, (4.32)

while energy conservation (4.27) provides an equation very similar to (4.18)

3

2

(
4N∑
i=1

νini

)
KT̃ +

4∑
s=1

Ñs

Zs(T̃ )

∑
i≡s

νiEi e−
Ei−Es

KT̃
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=
1

2

4∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
+

3

2

4N∑
i=1

νiniKT i+

4N∑
i=1

νiEini. (4.33)

At this point (and this is the main difference with respect to the inert case and the
binary mixture), last equality (4.33) together with the mass action law (4.22) are a set
of two transcendental equations for the two unknown fields Ñ1 and T̃ , and the rest of
this subsection will be devoted to proving that, for any values of actual parameters and
collision frequencies, equations (4.22)–(4.33) have a unique admissible solution

(Ñ1,T̃ )∈
{
Ñ1> 0, T̃ > 0 : Ñ2> 0, Ñ3> 0, Ñ4> 0

}
,

where Ñ2, Ñ3, Ñ4 are provided by (4.30). For future convenience it is better to write
the system which is investigated using as unknown variables T̃ and

Y 1=
Ñ1

Z1(T̃ )

∑
i≡1

νie−
Ei−E1

KT̃ . (4.34)

With these notations, equations (4.33) and (4.22) may be cast as

3

2

(
4N∑
i=1

νini

)
KT̃ +

4∑
s=1

Y s

∑
i≡s

νiEie−
Ei−Es

KT̃

∑
j≡s

νj e−
Ej−Es

KT̃

=Λ, (4.35)

Y 1Y 2

Y 3Y 4
=

(
μ12

μ34

)3/2

∑
i≡1

νie−Ei/KT̃
∑
j≡2

νje−Ej/KT̃

∑
h≡3

νhe−Eh/KT̃
∑
k≡4

νke−Ek/KT̃
(4.36)

where Λ is simply the right-hand side of (4.33), thus it is a known explicit function of
the actual parameters (and is independent from our unknown fields), and

Y s=
Ñs

Zs(T̃ )

∑
i≡s

νie−
Ei−Es

KT̃ =
∑
i≡s

νini−λs
∑
i≡1

νini+λsY 1 s=2,3,4. (4.37)

We note that by inserting expressions (4.37) into (4.35), this becomes a linear equation in
the unknown Y 1, so it is possible to obtain a (very complicated, but explicit) expression
for Y 1 in terms of T̃ . Skipping calculation details, we get

Y 1=
∑
i≡1

νini+S(T̃ ) (4.38)

with

S(T̃ )=
N (T̃ )

D(T̃ )
, (4.39)

where the numerator N takes the form

N (T̃ )=Λ−
3

2

4∑
s=1

(∑
i≡s

νini

)
KT̃ −

4∑
s=1

(∑
i≡s

νini

)∑
i≡s

νiEie−
Ei−Es

KT̃

∑
j≡s

νj e−
Ej−Es

KT̃

, (4.40)
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and the denominator D is given by

D(T̃ )=
4∑

s=1

λs

∑
i≡s

νiEi e−
Ei−Es

KT̃

∑
j≡s

νj e−
Ej−Es

KT̃

. (4.41)

Therefore there remains only one transcendental equation, which comes from mass ac-
tion law (4.36); using (4.37) and (4.38), it may be cast as

G(T̃ )=

(
μ12

μ34

)3/2

, (4.42)

where

G(T̃ )=

[∑
i≡1

νini+S(T̃ )

]⎡⎣∑
j≡2

νjnj+S(T̃ )

⎤
⎦

[∑
h≡3

νhnh−S(T̃ )

][∑
k≡4

νknk−S(T̃ )

]
∑
h≡3

νhe−
Eh−E3

KT̃

∑
k≡4

νke−
Ek−E4

KT̃

∑
i≡1

νie−
Ei−E1

KT̃

∑
j≡2

νje−
Ej−E2

KT̃

e−
ΔE34

12

KT̃ .

(4.43)
We must prove that equation (4.42) admits a positive solution in the range for which
all densities, hence all Y s, are positive; this means that we have to prove existence and
uniqueness of a solution to (4.42) in the set

A=

{
T̃ > 0 : max

(
−
∑
i≡1

νini, −
∑
i≡2

νini

)
<S(T̃ )<min

(∑
i≡3

νini,
∑
i≡4

νini

)}
.

(4.44)
The proof will be divided into several steps:

- at first we prove that in any interval (T̃1,T̃2)⊆A in which the sign of the de-
nominator D(T̃ ) does not change, the function S(T̃ ) is strictly monotone;

- then, we actually notice that A is a connected set of R+ and, except for a very
particular choice of initial data, the sign of D(T̃ ) does not change in A;

- finally we prove that G(T̃ ) is strictly monotone in A and it ranges from 0 to
+∞, providing does a unique solution to equation (4.42).

Let us start by the first point:

Lemma 4.1. In any interval (T̃1,T̃2)⊆A in which the sign of D(T̃ ) (given in (4.41)) does
not change, the function S(T̃ ) (given in (4.39)) is strictly monotone: more precisely,
S(T̃ ) is increasing if D(T̃ )< 0, and S(T̃ ) is decreasing if D(T̃ )> 0.

Proof. Since S(T̃ )=N (T̃ )/D(T̃ ) with N and D given in (4.40) and (4.41), respec-
tively, we have

S ′(T̃ )=
1

D2(T̃ )

(
N ′(T̃ )D(T̃ )−N (T̃ )D′(T̃ )

)
=
N ′(T̃ )

D(T̃ )
−S(T̃ )

D′(T̃ )

D(T̃ )
. (4.45)

It can be easily checked that

D′(T̃ )=

4∑
s=1

λs 1[∑
k≡s

νk e−
Ek−Es

KT̃

]2 1

KT̃ 2

∑
i≡s

∑
j≡s

νiνj
[
(Ei)2−EiEj

]
e−

Ei−Es

KT̃ e−
Ej−Es

KT̃
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hence, by exchanging indices i↔ j,

D′(T̃ )=

4∑
s=1

λsF s(T̃ ) (4.46)

where

F s(T̃ )=
1

2KT̃ 2

1[∑
k≡s

νk e−
Ek−Es

KT̃

]2∑
i≡s

∑
j≡s

νiνj(Ei−Ej)2e−
Ei−Es

KT̃ e−
Ej−Es

KT̃ ≥ 0. (4.47)

On the other hand, owing to analogous arguments,

N ′(T̃ )=−
3

2
K

4∑
s=1

(∑
i≡s

νini

)
−

4∑
s=1

(∑
i≡s

νini

)
F s(T̃ )< 0. (4.48)

Coming back to (4.45) we get

S ′(T̃ ) = −
1

D(T̃ )

{
3

2
K

4∑
s=1

(∑
i≡s

νini

)
+

4∑
s=1

(∑
i≡s

νini

)
F s(T̃ )+S(T̃ )

4∑
s=1

λsF s(T̃ )

}

= −
1

D(T̃ )

{
3

2
K

4∑
s=1

(∑
i≡s

νini

)
+

4∑
s=1

[∑
i≡s

νini+λsS(T̃ )

]
F s(T̃ )

}

(4.49)
where the contents of the curly brackets are strictly positive for T̃ ∈A, hence the sign
of S ′(T̃ ) is opposite to the one of D(T̃ ), and this concludes the proof.

From the proof of the previous lemma, we note that the numerator N is a strictly
decreasing function (see (4.48)) ranging from

lim
T̃→0

N (T̃ )=Λ−
4∑

s=1

∑
i≡s

νiniEs

=
1

2

4∑
s=1

ms
∑
i≡s

νini
(
|ui|2−|ũ|2

)
+

3

2

4N∑
i=1

νiniKT i+

4∑
s=1

∑
i≡s

νi(Ei−Es)ni> 0

(see also Lemma 3.1) to

lim
T̃→+∞

N (T̃ )=−∞,

therefore S(T̃ ) admits a unique root T̃ �∈A. In order to avoid special singularities in
the definition of S(T̃ ), we neglect here the very particular situation in which initial
data, internal energies and collision frequencies are chosen in such a way that even
D(T̃ �)=0: in this case T̃ =T � would be a trivial solution of (4.35), and correspondingly
equation (4.36) would become an algebraic second order equation for the unknown Y 1.

As concerns D(T̃ ), using the same technique as in (3.18) we note that

lim
T̃→0

D(T̃ )=−ΔE34
12 < 0, lim

T̃→+∞

D(T̃ )=
4∑

s=1

λs

∑
i≡s

νiEi

∑
j≡s

νj
. (4.50)
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The sign of limT̃→+∞D(T̃ ) depends on internal energies and collision frequencies; in

any case, if there is a change of sign in the function D(T̃ ) (namely a value T̃ � �= T̃ � such
that D(T̃ �)=0), we have limT̃→T̃ � S(T̃ )=±∞, hence in a suitable neighborhood of T̃ �

the constraint (4.44) is certainly not fulfilled, thus this zone is not of interest for our
physical problem. Therefore we may assert that in each interval (T̃1,T̃2)⊆A, the sign
of D(T̃ ) does not change. Consequently, we may prove the following:

Lemma 4.2. The set A defined in (4.44) is a connected set of R+; in other words, if
T̃1,T̃2∈A (with T̃1<T̃2), then also each T̃ ∈R+ such that T̃1<T̃ < T̃2 belongs to the set
A.

Proof. First of all notice that in each maximal connected subset (T̃a,T̃b)
(i.e. “connected component”) of A the function S(T̃ )=N (T̃ )/D(T̃ ) is a continu-
ous and strictly monotone function ranging from its infimum admissible value, that
is max

(
−
∑

i≡1ν
ini, −

∑
i≡2ν

ini
)
if T̃a �=0 or S(0)< 0 if T̃a=0, to its supremum:

min
(∑

i≡3ν
ini,

∑
i≡4ν

ini
)
. Hence there is a suitable value in (T̃a,T̃b) making the

function S vanish; this is of course T̃ �, the unique root of N (T̃ ), and this implies that
the set A is connected.

Finally, we may prove the last step:

Lemma 4.3. In the set A, the function G(T̃ ) ranges from 0 to +∞ in a strictly monotone
way: more precisely, G(T̃ ) increases if D(T̃ )< 0, and decreases if D(T̃ )> 0.

Proof. Skipping details, it can be shown that the derivative of G(T̃ ) may be cast
as

G′(T̃ )

=G(T̃ )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S ′(T̃ )

4∑
s=1

1∑
i≡s

νini+λsS(T̃ )
−

1

KT̃ 2

4∑
s=1

λs

∑
i≡s

νi(Ei−Es)e−
Ei−Es

KT̃

∑
j≡s

νj e−
Ej−Es

KT̃

+
ΔE34

12

KT̃ 2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=G(T̃ )

⎧⎪⎪⎨
⎪⎪⎩S

′(T̃ )

4∑
s=1

1∑
i≡s

νini+λsS(T̃ )
−

1

KT̃ 2
D(T̃ )

⎫⎪⎪⎬
⎪⎪⎭

(4.51)
and, also bearing in mind Lemma 4.1, the content of the curly brackets has a sign
opposite to the one of D(T̃ ). Moreover, notice that for T̃ ranging in the interval A=
(T̃min,T̃max) defined in (4.44), the function G(T̃ ) varies (in a monotonic way) from 0 to
+∞. This is true even if T̃min=0 since limT̃→0G(T̃ )=0. Therefore existence of a unique
solution to (4.42) in the range (4.44) is guaranteed.

4.3. H-Theorem for the homogeneous case. To conclude this section we
show that, in space homogeneous conditions, the H-Theorem also holds when chemical
reactions are considered. At the Boltzmann level, it has been already proved [16] that the
physical entropy (2.9) attains its minimum exactly at the unique Maxwellian stationary
point f

M
relevant to the conserved quantities: H [f ]>H [f

M
], ∀f �= f

M
. Therefore,

H-theorem is proved if the entropy production is negative:

Ḣ[f ]=

4∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logf idv< 0 ∀f �= f

M
.
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To obtain the sign of entropy production we follow a well known strategy (as in Sub-
section 3.2), whose principal ingredient is the following equality (as Lemma 3.3 for the
case without chemical reactions):

Lemma 4.4.

4∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logMidv=0 ∀f. (4.52)

Proof. We can generalize the calculations done in [5] to the case of several
energy levels. Using the conservation equations (4.23)–(4.27) and the fact that equations
(4.23)–(4.25) can be rewritten as:

∑
i≡s

νi(ñi−ni)=λs
∑
i≡1

νi(ñi−ni),

it can be easily checked that

4∑
s=1

∑
i≡s

νi
∫
(Mi−f i) logMidv

=

4∑
s=1

∑
i≡s

νi(ñi−ni)

[
logÑs+

Es

KT̃
− log

(
Zs(T̃ )

)
+

3

2
logms

]

=
∑
i≡1

νi(ñi−ni)

4∑
s=1

λs

[
logÑs+

Es

KT̃
− log

(
Zs(T̃ )

)
+

3

2
logms

]

=
∑
i≡1

νi(ñi−ni)log

[
Ñ1Ñ2

Ñ3Ñ4

(
m3m4

m1m2

)3/2
Z3(T̃ )Z4(T̃ )

Z1(T̃ )Z2(T̃ )
e−

ΔE34
12

KT̃

]
=0,

where last equality holds because of the constraint (4.22).

And again, using this lemma we can write

Ḣ [f ]=−
4∑

s=1

∑
i≡s

νi
∫
(f i−Mi) log

f i

Mi
dv (4.53)

and the usual convexity argument applies for the function (x−1)logx giving us Ḣ[f ]≤ 0,

with equal sign if and only if f i=Mi, for all i, i.e., correspondingly to the unique
collision equilibrium f

M
determined by initial conditions. This completes the proof of

the H-theorem.

5. Numerical simulations

In this section we report some calculations in order to check the response of the BGK
model proposed in the previous sections both for inert and for reactive situations. Some
preliminary test cases will be shown only for illustrative purposes, while the comparison
between Boltzmann and BGK descriptions for physically meaningful problems, such as
traveling shock waves or Riemann problem, is left as future work.

At first, we specialize our BGK equations to gases drifting only along the axial
direction (with respect to x1=x), but with distribution functions still depending on the
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three-dimensional velocity vector v. As pointed out in [3], in this frame it is convenient
to introduce the new unknowns

Φi=

∫
R

∫
R

f idv2dv3, Ψi=

∫
R

∫
R

(v22+v23)f
idv2dv3, i=1, . . .,QN, (5.1)

depending only on one space and one velocity variable. With these new unknowns, the
fundamental macroscopic fields may be reconstructed as

ni=

∫
R

Φidv, ui=
1

ni

∫
R

vΦidv,

3KT i

mi
=

1

ni

[∫
R

(v−ui)2Φidv+

∫
R

Ψidv

]
, i=1, . . .,QN,

(5.2)

while the BGK equations for Φi, Ψi, for i=1, . . .,QN , read as

∂Φi

∂t
+v

∂Φi

∂x
= νi(M i−Φi)

∂Ψi

∂t
+v

∂Ψi

∂x
= νi

(
2KT̃

mi
M i−Ψi

)
,

(5.3)

where

M i(v)= Ñs
exp
(
−Ei−Es

KT̃

)
Zs(T̃ )

(
ms

2πK T̃

)1/2

exp

[
−

ms

2KT̃
(v− ũ)2

]
, (5.4)

and Ñs, ũ and T̃ are the auxiliary parameters of our BGK model.
In this paper we simulate only the space homogeneous version of system (5.3), using

a third order TVD (Total Variation Diminishing) Runge–Kutta explicit method which
describes its evolution on time. In this way, we can get the distribution functions for ev-
ery time step and, consequently, all the macroscopic quantities, by simple integrations of
the distribution functions. Moreover, the evolution on time of the entropy functional is
obtained using the solutions f i, which are approximated by means of an explicit Runge–
Kutta scheme, since the collision operator (namely right-hand side of equation (3.1))
can be approximated through the macroscopic quantities. To define auxiliary macro-
scopic quantities we follow the described algorithms in Section 3, for the case with only
mechanical interaction, and Section 4, where chemical effect is also taken into account.
We recall that for inert mixtures expressions of Ñs and ũ are given in (3.8) and (3.10),
respectively, while temperature T̃ is provided by the transcendental equation (3.13); in
the case of four reactive gases, ũ has the same expression (see (4.32)), number densities
are provided by (4.30) and (4.38) (with Y 1 defined in (4.34)), while temperature is
defined through the transcendental equation (4.42). Thus, in both cases we must solve
a trascendental equation and we do it numerically using the bisection method. Notice
that the numerical scheme to solve the equation (4.42) has an additional ingredient (not
necessary for equation (3.13)): we need to find the solution of the equation in the range
of values of T̃ which are in A (see (4.44)). This means that, for the bisection method, at
every time step the left and the right T̃ values have to be suitably determined in order
to restrict our analysis to the admissible set A. To do that, we start with a small value
of T̃ which is increasing, with a tiny step, until it satisfies

max

(
−
∑
i≡1

νini, −
∑
i≡2

νini

)
<S(T̃ ).
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Fig. 5.1. Reference test, for Maxwellian initial data.

Top: Time evolution of the distribution functions Φ8 and Ψ8 until the steady states.

Bottom: Left: Evolution of the number densities. Right: Evolution of the temperatures.

This value is fixed as left value, a, for the bisection method. To obtain the right value, b,
we proceed in analogous way, starting with a plus a small positive quantity, which is
increasing, with a tiny step, until it is satisfying

S(T̃ )<min

(∑
i≡3

νini,
∑
i≡4

νini

)
;

last value fulfilling this inequality is taken as right value b.

The analytical proofs performed in Sections 3 and 4 hold independently from the
choice of collision frequencies νi involved in the BGK operator. On the other hand,
in numerical simulations relaxation parameters νi are essential quantities which mea-
sure the rate at which BGK equations drive distributions towards equilibrium, hence
they should be somehow related to the rate of convergence predicted by the original
Boltzmann equations. As already assumed in numerical simulations relevant to dif-
ferent BGK models for mixtures [15, 3], we impose here that averaged loss terms of
Boltzmann equations equal the BGK ones. More precisely, for a non reacting mixture
we impose

1

ni

∑
(j,h,k)∈Di

∫∫∫
(Kijhk

i )−[f ](v,w,n̂′)dvdwdn̂′=
1

ni
νi
∫

f i(v)dv, 1≤i≤QN
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Fig. 5.2. Reference test, for initial data given by sums of Maxwellians.

Top: Time evolution of the distribution functions Φ8 and Ψ8 until the steady states, for the reference

test with initial data given by sums of Maxwellians.

Bottom: Left: Steady state of Ψ8; Right: Entropy functional: comparison between the reference test

with Maxwellian initial data and the test with initial data given by sums of Maxwellians. Lines relevant

to the original reference case are denoted by a subscript t.

where (Kijhk
i )− denotes the second (negative) summand in Kijhk

i given in (2.2), hence

νi=
1

ni

∑
(j,h,k)∈Di

∫∫∫
Θ(g2−δhkij )Bhk

ij (g,n̂ · n̂′)f i(v)f j(w)dvdwdn̂′, 1≤i≤QN.

(5.5)
For all exothermic collisions, namely for all encounters Ai+Aj→Ah+Ak such that
ΔEhk

ij ≤ 0, we assume that differential cross sections are of Maxwell molecule type:

∫
Bhk

ij (g,n̂ · n̂′)dn̂′=constant= νhkij , (5.6)

and, for symmetry reasons, νkhji = νhkij . The differential cross sections Bij
hk relevant to

the reverse (endothermic) collisions are related to the exothermic ones by means of the
micro-reversibility condition [16]

(μij)2gBhk
ij (g,n̂ · n̂′)= (μhk)2ghkij Θ(g2−δhkij )B

ij
hk(g

hk
ij ,n̂ · n̂′),

hence it can be easily checked that

∫
Bij

hk(g,n̂ · n̂
′)dn̂′=

(
μij

μhk

)3/2
√
1−

δijhk
g2

νhkij . (5.7)
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Fig. 5.3. Test 1.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference test and test 1.

Middle: Comparison between the densities and the velocities of the reference test and test 1.

Bottom: Left: Comparison between the temperatures of the reference test and test 1. Right: Evolution

of the temperatures for test 1.

Therefore, the integrals appearing in (5.5) result immediately in νhkij nj for the exother-
mic collisions, while the endothermic ones have to be managed numerically; however,
an explicit solution is possible if we replace distributions by Maxwellian shapes char-
acterized by actual number densities ni, mass velocity u, and temperature T , and this
will be the choice adopted here. Skipping all intermediate details, if we set

Dex
i =

{
j,h,k≤QN : h≡ i, k≡ j, ΔEhk

ij ≤ 0
}
,

Den

i =
{
j,h,k≤QN : h≡ i, k≡ j, ΔEhk

ij > 0
}
,

(5.8)
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Fig. 5.4. Test 2.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference test and test 2.

Middle: Comparison between the densities and the velocities of the reference test and test 2.

Bottom: Left: Comparison between the temperatures of the reference test and test 2. Right: Evolution

of the densities for test 2.

collision frequencies in our numerical examples for inert mixtures will be

νi=
∑

(j,h,k)∈Dex

i

νhkij nj+
∑

(j,h,k)∈Den

i

νijhkn
j e−

ΔEhk
ij

KT (5.9)

(ratios between reduced masses simplify to 1 since there is no transfer of mass). Anal-
ogously, to analyze the BGK model with chemical reaction we set:

Dex-mechanical

i =
{
j,h,k≤ 4N : h≡ i, k≡ j, ΔEhk

ij ≤ 0
}
,

Dex-chemical

i =
{
j,h,k≤ 4N : i �≡ j �≡h �≡k, i+j≡ 3, h+k≡ 3, ΔEhk

ij ≤ 0
}
,

Den-mechanical

i =
{
j,h,k≤ 4N : h≡ i, k≡ j, ΔEhk

ij > 0
}
,
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Fig. 5.5. Test 3.

Top: Left: Mass Action Law: RHS and LHS of (4.22) and of (4.4). Right: Conservation of sum of

total densities.

Bottom: Left: Conservation of ρu. Right: Evolution of νi.

Den-chemical

i =
{
j,h,k≤ 4N : i �≡ j �≡h �≡k, i+j≡ 3, h+k≡ 3, ΔEhk

ij > 0
}
, (5.10)

and collision frequencies in our simulations will be

νi=
∑

(j,h,k)∈Dex-mechanical

i

νhkij nj+
∑

(j,h,k)∈Dex-chemical

i

νhkij nj

+
∑

(j,h,k)∈Den-mechanical

i

νijhkn
je−

ΔEhk
ij

KT +
∑

(j,h,k)∈Den-chemical

i

νijhkn
j

(
μhk

μij

)3/2

e−
ΔEhk

ij
KT . (5.11)

In our examples we consider for simplicity a mixture of four gases, each one endowed
with two energy levels (a fundamental state and an excited one); of course all could be
extended to an higher number of mechanically interacting species and of energy levels.
Masses of the four gases are m1=11.7, m2=3.6, m3=8 and m4=7.3, while collision
frequencies of the exothermic interactions are taken as νhkij = i+j

20(h+k) . With this choice,

several numerical tests have been done, and some illustrative ones are reported here
below.

Reference test:
In the reference test we consider, initial conditions are given by Maxwellian shapes
characterized by velocities

u1
0=0.2 u2

0=0.1 u3
0=0.3 u4

0=0.4

u5
0=0.3 u6

0=0.1 u7
0=0.2 u8

0=0



322 BGK MODEL FOR POLYATOMIC GAS MIXTURES

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5
Solution φ6

v

φt
6

φ6

−5 0 5
0

1

2

3

4

5

6
Solution ψ6

v

ψt
6

ψ6

0 0.2 0.4 0.6 0.8 1
5

6

7

8

9

10

11

12

13

14
Comparison between number densities for gas 2

time

nt
2

n2

nt
6

n6

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Comparison between velocities for gas 2

time

ut
2

u2

ut
6

u6

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5
Comparison between temperatures for gas 2

time

Tt
2

T2

Tt
6

T6

0 0.2 0.4 0.6 0.8 1
−470

−465

−460

−455

−450

−445
Evolution of the entropy functional

time

Entropyt

Entropy

Fig. 5.6. Test 3.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference test and test 3.

Middle: Comparison between the densities and the velocities of the reference test and test 3.

Bottom: Comparison between the temperatures and the entropy functional of the reference test and

test 3.

and temperatures

T 1
0 =1 T 2

0 =3.5 T 3
0 =2 T 4

0 =2.5

T 5
0 =3 T 6

0 =1.5 T 7
0 =5 T 8

0 =4.5

while initial number densities and internal energies are reported in the following table:

n1
0=11 n2

0=9 n3
0=10 n4

0=7 n5
0=10 n6

0=8 n7
0=9 n8

0=6
E1=3 E2=2 E3=4 E4=7 E5=5 E6=4 E7=6 E8=9

Consequently, u0≈ 0.23 and T0≈ 2.8. Figure 5.1 shows the evolution in time, until the
steady state, of the unknowns Φ8 and Ψ8 describing the distribution of the second energy
level (the most excited one) of the gas G4, and also the evolution of the densities and the
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temperatures for every gas at both energy levels. We see that equilibrium temperature
holds TM ≈ 3 higher than the initial one, hence this mixture (with the chosen initial
data) is macroscopically slightly exothermic, with transformation of internal energy
into thermal energy.

We repeat then the reference test starting from initial distributions f i
0 given by sums

of two Gaussians symmetric with respect to ui
0, with the same macroscopic densities

and temperatures reported above. Figure 5.2 shows the behaviour of Φ8 and Ψ8 in
this case, and it compares the steady state (that of course is exactly the same) and the
evolution of the entropy functional for initial data given by single Maxwellians or by
sums of Gaussians. In this comparison and also in the other tests we will describe below,
quantities relevant to the original reference case (with Maxwellian initial distributions)
are denoted by a subscript t.

Test 1: We modify now the reference case considering different values for the internal
energies:

n1
0=11 n2

0=9 n3
0=10 n4

0=7 n5
0=10 n6

0=8 n7
0=9 n8

0=6
E1=3 E2=2 E3=4 E4=7 E5=10 E6=12 E7=8 E8=9

Figure 5.3 illustrates the results relevant to this test, also in comparison with the refer-
ence test case. Steady states are again Maxwellian distributions with (constant) mean
velocity u≈ 0.23, but equilibrium temperature and, consequently, number densities,
change with respect to the reference plots. More precisely, since energies in the second
level have been increased, also equilibrium temperature increases to TM ≈ 4.055 provid-
ing thus equilibrium densities of the excited levels lower (and, because of conservation
of global Ns, the ones of the fundamentals states higher) than the ones of the reference
test. This mixture is thus really exothermic, since during the evolution a lot of particles
de-excite, and transform their internal energy into thermal one.

Test 2: Now, with respect to the reference case, we modify (precisely, we increase)
densities of the excited energy levels:

n1
0=11 n2

0=9 n3
0=10 n4

0=7 n5
0=13 n6

0=11 n7
0=12 n8

0=9
E1=3 E2=2 E3=4 E4=7 E5=5 E6=4 E7=6 E8=9

This test is described and compared to the reference one in Figure 5.4. Changing initial
densities provides a different mass velocity u≈ 0.22, and a different global temperature,
ranging from T0≈ 2.9 to TM ≈ 3.18. As noticed since Section 2 relevant to the Boltzmann
description, in any equilibrium configuration for a mixture of polyatomic gases we have
the highest fraction of each gas Gs belongs to the fundamental (de-excited) level, and
we show here that this fact is true even if we choose as initial situation the reverse one,
in which highest number densities characterize the excited components.

Test 3: Finally, we consider the same initial conditions as for the reference test, but we
assume that the four gases are subject also to the chemical reaction with transfer of mass
described in Subsection 4.2. Simulations of this reactive case are shown in Figures 5.5
and 5.6. First, Figure 5.5 confirms numerically the Mass Action Law and the conser-
vation of the sums of total densities N1+N3, N1+N4, N2+N4 and of ρu; moreover,
it shows the evolution of the collision frequencies νi versus time. Last, in Figure 5.6
we present a comparison between the reference test, without chemical collisions, and
test 3. Mean velocity does not change, while equilibrium temperature is now TM ≈ 3.2.
As concerns the evolution of number densities, we note that the chemical reaction can
produce loss of monotony (see n6). It would be of course interesting to extend such
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simulations of reactive polyatomic mixtures to several different situations, varying for
instance the order of magnitude of the involved collision frequencies, changing thus the
dominant processes in the evolution (elastic scattering, or excitation/de-excitation of
interacting particles, or chemical reactions). Such investigation, together with compar-
isons with experimental data or with numerical simulations of the Boltzmann system,
is left to future work.
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