
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 1, pp. 147–186

STATIONARY SOLUTIONS WITH VACUUM FOR A
ONE-DIMENSIONAL CHEMOTAXIS MODEL WITH NONLINEAR

PRESSURE∗

FLORENT BERTHELIN† , DAVID CHIRON‡ , AND MAGALI RIBOT§

Abstract. In this article, we study a one-dimensional hyperbolic quasilinear model of chemotaxis
with a nonlinear pressure and we consider its stationary solutions, in particular with vacuum regions.
We study both cases of the system set on the whole line R and on a bounded interval with no-flux
boundary conditions. In the case of the whole line R, we find only one stationary solution, up to a
translation, formed by a positive density region (called bump) surrounded by two regions of vacuum.
However, in the case of a bounded interval, an infinite of stationary solutions exists, where the number
of bumps is limited by the length of the interval. We are able to compare the value of an energy of
the system for these stationary solutions. Finally, we study the stability of these stationary solutions
through numerical simulations.
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1. Introduction
The movement of cells, bacteria or other microorganisms following the gradient

of a chemical concentration, known as chemoattractant, has been widely studied in
mathematics in the last two decades [20, 30]. Partial differential equations models
have been proposed to describe the complex behavior of such system, whose two main
unknowns are the density of cells or bacteria and the concentration of chemoattractant.
One of the most considered models is the Patlak–Keller–Segel system [22, 29] where the
evolution of the density of cells is described by a parabolic equation of drift-diffusion
type, and the concentration of a chemoattractant is generally given by a parabolic or
elliptic equation, depending on the different regimes to be described. The behavior of
this system is well known now, at least for linear diffusions: in the one-dimensional
case, the solution is always global in time [25], while in two and more dimensions the
solutions exist globally in time or blow up according to the size of the initial data, see
[7, 8]. However, a drawback of this model is that the diffusion leads alternatively to
a fast dissipation or an explosive behavior, while in general we are interested in the
creation of patterns, like in the vasculogenesis process.

In order to improve the modeling of the phenomena we deal with, two kinds of
modifications of the Keller–Segel equation can be considered. The first one is to intro-
duce a non linear pressure, as in [23, 6]. In that case the Keller–Segel-like system with
nonlinear diffusion reads as: {

∂tρ=∂x
(
∂xp(ρ)−χρ∂xφ

)
,

δ∂tφ=D∂xxφ+aρ−bφ,
(1.1)
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where ρ is the density of cells, φ is the concentration of chemoattractant and χ,D, a and
b are given positive parameters. If δ=1, we consider a parabolic-parabolic model and
in the case where δ=0, we deal with a parabolic-elliptic model. The coupling between
the two equations can be described as follows: the drift term χ(ρφx)x stands for the
movement of the cells towards the gradient of concentration of the chemoattractant,
whereas the source term aρ indicates that the chemoattractant is produced by the cells
themselves. The function p is a phenomenological, density dependent function, which
is given by the pressure law for isentropic gases

p(ρ)=
ε

2
ργ , γ >1, ε>0, (1.2)

which takes into account the fact that cells do not interpenetrate since they have a non-
zero volume. Overcrowding may also be prevented by the modeling of a volume-filling
effect, see [19, 28]. Note also that in the paper [3], an existence result of weak global
in time solutions for the system (1.1) with τ =1 is studied in the 2D case and for the
linear pressure p(ρ)=ρ, using the flow-gradient structure.

Let us also mention a series of recent papers dealing with more general potentials,
leading to integro-differential equations: in [5], the authors study compactly supported
steady states and their stability for a Keller–Segel type system with more general poten-
tials on the whole line R. An adapted numerical scheme to this problem is developed in
[9] using the gradient flow structure and interesting numerical simulations are presented.
Moreover, in [33], the authors focus on the case γ=3 and the stability of compactly
supported stationary solutions called “clump solutions”, taking potentials defined as a
convolution with some given, exponential or characteristic, kernels. In [2], the author
considers any value of γ and any convolution kernel satisfying some given properties and
he is able to prove the existence of stationary solutions as global minimizers of some free
energy. This strategy is also studied for the case γ=2 and general kernels in [4], where
properties of the stationary solutions are made precise, see the beginning of Section 3.

The second type of modifications consists in studying hyperbolic-parabolic or
hyperbolic-elliptic models, which are more likely to show fine transient behaviors.
We consider consequently a quasilinear hyperbolic model of chemotaxis introduced by
Gamba et al. [17] to describe the early stages of the vasculogenesis process. In this
model, three unknowns are present: the density of cells ρ(x,t), their momentum ρu(x,t)
and the concentration φ(x,t) of the chemoattractant. The model reads as

⎧⎨
⎩

∂tρ+∂x(ρu)=0,
∂t(ρu)+∂x(ρu

2+p(ρ))=χρ∂xφ−αρu,
δ∂tφ=D∂2

xxφ+aρ−bφ,
(1.3)

where D,χ,α>0, a,b≥0 are constants. The term αρu represents the damping force
and the pressure p is still given by the pressure law for isentropic gases (1.2). This
model of chemotaxis has been introduced to describe the results of in vitro experiments
performed by Serini et al. [32] using human endothelial cells which, randomly seeded on
a matrigel, formed complex patterns with structures depending on the initial number
of cells.

However, as far as we know, only a few analytical results exist for system (1.3). In
[12, 13], the authors prove the global in time existence of solutions if the initial data is a
small perturbation of a small enough constant stationary solution. This proof is valid for
the Cauchy problem set on the whole line R, when the vacuum is not reached. The main
difficulty relies in the fact that some vacuum regions, i.e., where the density vanishes,
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appear in finite time and that the hyperbolic system (1.3) becomes degenerate in such
a case. Although vacuum regions can be avoided in gas dynamics models, it is of great
importance to have such a possibility in models for aggregation [15, 14], for collective
behavior of particles [24] or for biology, where some regions may be clear of any cells,
as in the vasculogenesis process. Some related results are given in [21] about the local
existence of solutions for the compressible Euler equations with damping and vacuum,
but without chemotaxis or in [18] where they study the 1D compressible Euler–Poisson
equations with moving physical vacuum boundary condition in order to to describe the
motion of a self-gravitating inviscid gaseous star. However, many articles deal with the
study of stationary solutions with vacuum of the Euler–Poisson system in the context
of polytropic gaseous stars [11, 31].

As for the numerical point of view, some interesting numerical simulations in 2D
and 3D can be found in [1] and [10]. In [27], an adapted numerical scheme based on
unwinding technique was developed in order to efficiently compute the time behavior of
the solutions of system (1.3) in 1D. This scheme was proved to preserve the positivity
of solutions and a discrete version of stationary solutions of (1.3). Some numerical
simulations for different values of γ show that we asymptotically find a wide range
of stationary solutions and that most of them seem stable. This numerical scheme
was improved in [26] considering the large time-large damping limit of (1.3) towards
the Keller–Segel system (1.1) with δ=0, leading to an asymptotic-preserving scheme.
Some numerical simulations enable the comparison of the asymptotic behavior of the
hyperbolic system (1.3) and the asymptotic behavior of the parabolic system (1.1) and
surprisingly, these behaviors may be different. However, the validation of the scheme is
not so obvious and a first computation of some stationary solutions with vacuum in the
case γ=2 was made in [27] in order to validate the numerical simulations.

In this article, we push forward these computations in order to have a very precise
idea of all the possible configurations of stationary solutions. We also compute an
energy for all these solutions and compare them. More precisely, we consider stationary
solutions for (1.3) either on the whole line R or on a bounded domain Ω⊂R with no-flux
boundary conditions

∂xρ=0, ∂xφ=0, ρu=0 on ∂Ω. (1.4)

In both cases, the momentum ρu vanishes and the two density functions ρ and φ would
satisfy the following system, assuming β≥0 as b=Dβ2:

{
∂xp(ρ)=χρ∂xφ,
D∂2

xxφ+aρ−Dβ2φ=0.
(1.5)

We also impose that the densities remain non-negative, namely

ρ,φ≥0 (1.6)

and that they have the following regularities

ρ∈C0(Ω), φ∈C2(Ω).

assuming constant in space stationary solutions are obvious solutions to Equation (1.5).
Now, let us consider stationary solutions with vacuum. In the following, we will call
“bump” a region with a non-negative density surrounded by two regions of vacuum and
“half bump” will be a bump cut in its middle and stuck to an extremity of the interval.
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Unless in the degenerate case γ=1 [16], where the solutions remain always strictly
positive, the value of the parameter γ is not clear in the biological context and we have
to keep all the values of γ strictly larger than 1 under consideration, since vacuum may
appear for all these cases. Note that the previous mentioned numerical results are valid
for different values of γ >1. However, we mainly focus in this article on the pressure
(1.2) for γ=2, which is the only case with exact and tractable analytical expressions
for the solutions of system (1.5). In particular, the first equation of (1.5) simplifies as
ερ∂xρ=χρ∂xφ which leads to ρ=0 or ερ=χφ−K withK constant. These two relations
give two types of intervals: the ones where ρ is null and the ones where ρ is strictly
positive. We may then find some conditions to construct a solution with a transition
between these two types of intervals. Among them, the following relation between the
parameters of the system is necessary: aχ−bε>0. Otherwise, when aχ−bε≤0, only
the already mentioned constant solutions exist. Note that the case of the whole line
R has been treated in [4] for γ=2 and in [2] for more general potentials and that the
above-mentioned conditions can be recovered from theses articles. However, we are
able in this paper to give an explicit expression of the compactly supported stationary
solutions and to extend the study to a bounded interval. From these conditions, we
may prove the following results.

First, on the whole line R, once the mass of the solution is fixed, there exists a
unique stationary solution up to a translation, made of one bump. Then, on a bounded
interval [0,L], things are much more complicated: first, once the length L of the interval
is fixed, only a finite number of configurations are possible. More precisely, we can
construct (at least) one k half bumps solution under the following condition linking the

length of the domain and the parameters of the system: L≥ kπ

ω
, where ω2=

aχ

Dε
−β2.

Notice that, in this formula, a bump corresponds to two half bumps. Now, if the length
of the domain is large enough and once the mass of the solution is fixed, we can construct
two half bumps, one on the right and one on the left of the interval and we can also
construct a unique bump. However, a striking fact is that there exists a continuum of
two bumps solutions, parametrized by the length of vacuum in the interval. For the
two bumps solution, we can also find a continuum of two half bumps solutions or of one
bump and a half bump solutions. Some of these stationary solutions are displayed in
Figure 4.1.

Finally, we may analytically compare the energy of all these stationary solutions
and we show that the constant solution has the larger energy, whereas the half bump
solution, when it exists, has the smallest energy and we expect, therefore, this solution to
be the stable one. The numerical simulations presented in the last section exhibit some
sets of parameters for which the half bump seems to be indeed the only stable solution.
However, for some other sets of parameters, a wide range of stationary solutions look
stable in our numerical experiments.

This article is organized as follows: In Section 2, we give two preliminaries for the
following study, that is to say, we define a suitable energy for system (1.3) and we also
study the condition to have a transition between a region with a positive density and a
region with a null density. In Section 3, we are then able to prove that, in the case of
the whole line R, the only stationary solution is the one composed of one bump. The
case of a bounded interval with no-flux boundary conditions is much more complicated
and is detailed in Section 4: In this section, we prove the existence of different types of
stationary solutions, we compute the energy of each of these solutions and we compare
them. Finally in Section 5, we present a numerical study of the stability of the previous
mentioned stationary solutions.
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2. Preliminaries
We begin this article with some preliminaries which will be useful in the following.

In Subsection 2.1, we give an energy estimate and in Subsection 2.2, we study in details
under which condition we may find a transition between a region with positive density
and a region with a vanishing density.

2.1. Energy estimate. Let us define the energy density

j(ρ,u,φ)(x,t)=
1

2
ρu2+Γ(ρ)−χρφ+

χDβ2

2a
φ2+

χD

2a
(∂xφ)

2, (2.1)

where

ρΓ′′(ρ)=p′(ρ). (2.2)

In particular for γ=2, when p(ρ)=
ε

2
ρ2, we have Γ(ρ)=

ε

2
ρ2=p(ρ).

Energy for a stationary solution. We begin by computing an expression of energy
for the stationary solutions, which will enable us later on to compare the stationary
states one to another. In the case of a stationary solution satisfying system (1.5) and
u=0, the energy is therefore defined as:

J =

∫
Ω

Γ(ρ)−χρφ+
χDβ2

2a
φ2+

χD

2a
(∂xφ)

2dx, (2.3)

where Ω is a subset of R. In the following, we will consider the case Ω=R or the case
Ω=[0,L]. Notice that for a H1(Ω) solution of (1.5), the following equality holds

0=

∫
Ω

φ(D∂2
xxφ+aρ−Dβ2φ)dx=−

∫
R

D(∂xφ)
2dx+

∫
Ω

φ(aρ−Dβ2φ)dx

that is to say,

∫
Ω

χDβ2

2a
φ2+

χD

2a
(∂xφ)

2dx=

∫
Ω

χ

2
φρdx.

Thanks to this last equality, we may simplify (2.3) and we find the following expression
for the energy of a stationary state:

J =

∫
Ω

Γ(ρ)− χ

2
φρdx. (2.4)

Energy estimate. In the following proposition, we prove an energy estimate.

Proposition 2.1. Let us consider some smooth enough functions (ρ,u,φ) solutions
of system (1.3) set on Ω⊂R. We have the following energy dissipation estimate for all
(x,t)∈Ω×R

+

∂tj(ρ,u,φ)+∂x

(
1

2
ρu3+uΨ(ρ)−χαρuφ− χD

a
∂tφ∂xφ

)

=−αρu2− χ

a
δ(∂tφ)

2≤0, (2.5)

where j is defined in Equation (2.1), Γ in Equation (2.2), and

Ψ(ρ)=ρΓ′(ρ). (2.6)
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Proof. From the first equation of system (1.3), we get

∂t(
1

2
ρu2)+∂x(

1

2
ρu3)=u

(
∂t(ρu)+∂x(ρu

2)
)

and, thus, the second equation of (1.3) implies

∂t(
1

2
ρu2)+∂x(

1

2
ρu3)=u(−∂xp(ρ)+χρ∂xφ−αρu) . (2.7)

Noticing that

ρu∂xφ=∂x(ρuφ)−φ∂x(ρu)=∂x(ρuφ)+φ∂tρ=∂x(ρuφ)+∂t(ρφ)−ρ∂tφ,

Equation (2.7) can be rewritten as

∂t(
1

2
ρu2−χρφ)+∂x(

1

2
ρu3−χρuφ)=−u∂xp(ρ)−αρu2−χρ∂tφ. (2.8)

Now, we can compute

∂tΓ(ρ)+∂x(uΨ(ρ))=(Ψ′(ρ)−Γ′(ρ))u∂xρ+(Ψ(ρ)−Γ′(ρ)ρ)∂xu,

which thanks to (2.2) and (2.6) becomes

∂tΓ(ρ)+∂x(uΨ(ρ))=p′(ρ)u∂xρ. (2.9)

Combining equations (2.8) and (2.9), we have

∂t(
1

2
ρu2−χρφ+Γ(ρ))+∂x(

1

2
ρu3−χρuφ+uΨ(ρ))=−χρ∂tφ−αρu2. (2.10)

Considering now the third equation of system (1.3), we obtain

∂t

(
χb

2a
φ2+

χD

2a
(∂xφ)

2

)
+∂x

(
−χD

a
∂tφ∂xφ

)

=
χb

a
φ∂tφ+

χD

a
∂xφ∂

2
txφ−

χD

a
∂2
xtφ∂xφ−

χD

a
∂tφ∂

2
xxφ

=
χ

a
∂tφ

(
bφ−D∂2

xxφ
)
=

χ

a
∂tφ(aρ−δ∂tφ). (2.11)

Finally, the addition of equations (2.10) and (2.11) gives the energy estimate (2.5),
which concludes the proof.

We write now the dissipation of the energy.

Proposition 2.2. Let us consider some smooth enough functions (ρ,u,φ) solutions
of system (1.3) set on the interval Ω⊂R. The functional

J(ρ,u,φ)=

∫
Ω

ρu2+Γ(ρ)−χρφ+
χDβ2

2a
φ2+

χD

2a
(∂xφ)

2dx

is bounded from below on the domain where ρ≥0,

∫
Ω

ρ=m, say by jm, and then we

have the following dissipation, for any T >0:

∫ T

0

∫
Ω

ρu2(t,x)+
χ

a
(∂tφ)

2(t,x)dxdt≤
∫
Ω

j(ρ,u,φ)(0,x)dx+jm.
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Proof. We set J+(ρ,u,φ)=J(ρ,u,φ)+

∫
Ω

χρφdx. First, we notice that

∣∣∣∣
∫
Ω

χρφdx

∣∣∣∣≤‖ρ‖L1‖φ‖L∞ =m‖φ‖L∞

since ρ≥0 and
∫
Ω
ρ=m. Now, by Sobolev imbedding,

‖φ‖L∞ ≤C1‖φ‖H1 ≤C2

√
J+(ρ,u,φ),

therefore

J(ρ,u,φ)≥J+(ρ,u,φ)−χm‖φ‖L∞ ≥J+(ρ,u,φ)−χC2

√
J+(ρ,u,φ). (2.12)

Since the function x �→x−χC2
√
x is bounded from below on R

+, so is J . The integration
of (2.5) with the boundary condition (1.4) gives

∫ T

0

∫
Ω

ρu2(t,x)+
χ

a
(∂tφ)

2(t,x)dxdt+

∫
Ω

j(ρ,u,φ)(T,x)dx

=

∫
Ω

j(ρ,u,φ)(0,x)dx,

which completes the proof.

As already mentioned, we are not aware of any existence result including vacuum
regions for the Cauchy problem associated with (1.3), neither for smooth solutions nor
for weak solutions. Propositions 2.1 and 2.2 assume the existence of a smooth enough
solution to (1.3).

If we work on a bounded domain, it can be easily shown, using (2.12), that J has
at least one minimizer (under the constraint

∫
ρ=m). Even though we have at hand

a global solution to the Cauchy problem (1.3), the dissipation terms and the energy
possibly provide bounds for ρ in L2, but this is presumably not sufficient to guarantee
that a weak limit of (ρ,u,φ) as t goes to +∞ is a solution of (1.5). Therefore, it
is not clear that the dissipation terms give enough information to analyse the large-
time behavior of (1.3). Finally, it is easy to show that the functional J (without the
constraints ρ≥0 and

∫
ρ=m) is convex when aχ

Dε−β2≤0. The functional J (with the
constraints ρ≥0 and

∫
ρ=m) is however probably not convex in the (interesting) case

aχ
Dε−β2>0. In all cases, we have to pay attention to the fact that the solutions we
are interested in have vacuum regions, hence the constraint ρ≥0 is saturated in some
regions.

2.2. Study of the transitions between vacuum and positivity region. We
consider in this subsection a stationary solution (ρ,φ) satisfying system (1.5) for γ=2,
i.e., with a pressure equal to

p(ρ)=
ε

2
ρ2, (2.13)

that is to say,

{
ερ∂xρ=χρ∂xφ,
D∂2

xxφ+aρ−Dβ2φ=0,
(S)
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and we study under which condition a transition may occur between an interval where
ρ is positive and an interval where ρ vanishes. The aim is to describe what happens in
the case of a stationary “bump”, that is to say, a region with ρ positive, surrounded by
two vanishing regions.

Proposition 2.3. Let M>0. We consider a solution (ρ,φ) satisfying system (S)
on an interval Ω⊂R, with ρ∈C0(Ω), φ∈C2(Ω), ρ, φ≥0, and such that

∫
Ω

ρ(x)dx=M .

We assume that ω2def=
aχ

Dε
−β2>0.

(i) If ρ>0 on an interval I=]x̄,x̄+ l[⊂R, then

⎧⎪⎨
⎪⎩

φ(x)=−Acos(ω(x− x̄))+B sin(ω(x− x̄))+
aK

Dεω2
,

ρ(x)=−Aχ

ε
cos(ω(x− x̄))+

Bχ

ε
sin(ω(x− x̄))+

β2K

εω2
;

(2.14)

with A,B,K some constants depending on I.

(ii) If ρ=0 on an interval J =]x̄−d,x̄[ ⊂R, then

φ(x)=P+eβ(x−x̄)+P−e−β(x−x̄), (2.15)

with P+,P− constants depending on J .

(iii) If we consider a transition at a point x̄ between J =]x̄−d,x̄[, where ρ vanishes,
and I=]x̄,x̄+ l[, where ρ is strictly positive, the constants of equations (2.14) and (2.15)
satisfy the following inequalities:

A,B,P+≥0, P−≤P+. (2.16)

(iv) The maximum length of the interval I=]x̄,x̄+ l[ where ρ is positive is given by
the following formula:

l=
2

ω

(
π−arctan(

B

A
)

)
. (2.17)

(v) If we now consider the transition at a point x̄+ l between I=]x̄,x̄+ l[, where ρ
is strictly positive, and J ′=]x̄+ l, ȳ[, where ρ vanishes, and if we denote by (P ′)+,(P ′)−

the constants such that

φ(x)=(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ)

on J ′, then

(P ′)+=P−eβ(ȳ−x̄−l) and (P ′)−=P+e−β(ȳ−x̄−l). (2.18)

(vi) Finally, the mass of a solution defined by expression (2.14) on an interval
I=]x̄,x̄+ l[, with l given by Equation (2.17), is equal to

M =
2Aχ

εω

(
π−arctan(

B

A
)+

B

A

)
. (2.19)
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x x + lx − d

P , P
+ −

 

A, B, K

Fig. 2.1. Notations for a transition between vacuum and positivity region.

Proof.
(i) Firstly, let us consider the case where ρ>0 on an interval I=]x̄,x̄+ l[⊂R. From

the first equation of (S), ρ∈C1(I). Therefore, using expression (2.13) of the pressure
we have on this interval that{

p′(ρ)∂xρ=ερ∂xρ=χρ∂xφ,
D∂2

xxφ+aρ−Dβ2φ=0.

Thus ∂x(ερ−χφ)=0 and, for some constant K (depending on I)

ρ=
1

ε
(χφ−K). (2.20)

Inserting this expression into the second equation of (S) gives
D∂2

xxφ+
a

ε
(χφ−K)−Dβ2φ=0,

that is to say,

∂2
xxφ+

( aχ

Dε
−β2

)
φ=

aK

Dε
. (2.21)

It follows that the sign of the coefficient
aχ

Dε
−β2 will be crucial, and we focus in this

proposition on the case, denoted by Case (P): aχ

Dε
−β2=ω2>0. The general solution

of (2.21) is then given by (2.14).

(ii) Secondly, let us consider the case where ρ=0 on an interval J =]x̄−d,x̄[⊂R.
The first equation of (S) is satisfied and the second one becomes

∂2
xxφ−β2φ=0,

whose solution is given by (2.15).

(iii) We pursue the computations in Case (P) and we study the transition at a point
x̄ between J =]x̄−d,x̄[ (where ρ vanishes) and I=]x̄,x̄+ l[ (where ρ is strictly positive).
From the expressions given in Equation (2.14) and (2.15) and using the continuity of
ρ,φ,∂xφ at x̄, we find the following equalities linking the different constants one to
another:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−Aχ

ε
+

β2K

εω2
=0,

−A+
aK

Dεω2
=P++P−,

Bω=β(P+−P−),

that is to say

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A=
β2

χω2
K,

A
ω2

β2
=P++P−,

Bω=β(P+−P−).

(2.22)



156 STATIONARY SOLUTIONS WITH VACUUM

Now, let us find some sign conditions for the constants. On the right side of x̄, ρ is
strictly positive, thus ρ′(x̄+)≥0 which gives B≥0 and thus P+−P−≥0. Moreover,
constraints (1.6), namely ρ,φ≥0, imply in particular φ(x̄)≥0, that is P++P−≥0
and thus A≥0. Now P+−P−≥0 and P++P−≥0 imply P+≥0. Summing up, the
conditions are then

A,B,P+≥0, P−≤P+.

(iv) Conversely, we are looking now on which interval ρ remains strictly positive and
what is the right extremity of this interval. Using relations (2.22), we may rewrite the
expression (2.14) for ρ as

ρ(x)=
Aχ

ε
(1−cos(ω(x− x̄)))+

Bχ

ε
sin(ω(x− x̄)). (2.23)

We distinguish three cases:

Case (I): If A=0 and B>0, then ρ(x)>0 if x∈]x̄,x̄+π/ω[ and ρ(x̄+π/ω)=0.

Case (II): If A>0 and B=0, then ρ(x)>0 if x∈]x̄,x̄+2π/ω[ and ρ(x̄+2π/ω)=0.
Case (III): If A>0 and B>0, simple computations lead to the following expression:

ε

χ
ρ(x)=Asin(ω(x− x̄))

(
tan(ω(x− x̄)/2)+

B

A

)
, (2.24)

thus ρ(x)>0 if x∈]x̄,x̄+π/ω[, whereas (2.14) gives ρ(x̄+π/ω)>0. Furthermore, equa-
tion (2.24) also gives ρ(x)>0 on ]x̄+π/ω,x∗[ and ρ(x∗)=0 with

ω(x∗− x̄)/2=π−arctan(
B

A
).

We remark that, since φ= 1
χ (ερ+K) on I with K≥0, we also have φ>0 whenever

ρ>0.
Summing up cases (I), (II), and (III), we obtain from this study the length l of the

interval I=]x̄,x̄+ l[ where ρ is positive, namely:

l=x∗− x̄=
2

ω

(
π−arctan(

B

A
)

)
for A≥0,B≥0.

Remark that from this expression, we recover cases (I) and (II), that is to say,

l=π/ω if A=0,B>0, l=2π/ω if A>0,B=0.

(v) Now, let us go further and study the transition at x̄+ l from a region I=]x̄,x̄+ l[
where ρ is positive to a region J ′=]x̄+ l, ȳ[ where ρ vanishes. From (2.15), the functions
on the region J ′ are of the form ρ(x)=0 and

φ(x)=(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ).

Following the previous technique, we use the continuity of φ and ∂xφ at point x̄+ l and
we obtain⎧⎨

⎩
K

χ
=(P ′)+eβ(l−ȳ+x̄)+(P ′)−e−β(l−ȳ+x̄),

Aω sin(ωl)+Bωcos(ωl)=β(P ′)+eβ(l−ȳ+x̄)−β(P ′)−e−β(l−ȳ+x̄).
(2.25)
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Notice that the continuity of ρ gives no extra condition here.
Using expression (2.17), it is straightforward to show that

Aω sin(ωl)+Bωcos(ωl)=−Bω.

Note (see (2.22) and (2.25)) that both couples (X=P+,Y =P−) and (X=
(P ′)−e−β(l−ȳ+x̄),Y =P−=(P ′)+eβ(l−ȳ+x̄)) satisfy the linear system⎧⎨

⎩
X+Y =

K

χ
,

β(X−Y )=Bω.
(2.26)

By unicity (β �=0) of the solution to (2.26), we get formula (2.18).

(vi) The final step is to find a formula for the mass of the bump as a function of
the constants A and B. From (2.23) and (2.17), a simple computation gives, in the case
when A>0,

M =

∫ x̄+l

x̄

ρ(x)dx

=
χ

ε

∫ x̄+ 2
ω (π−arctan(B

A ))

x̄

A(1−cos(ω(x− x̄)))+B sin(ω(x− x̄))dx

=
2Aχ

εω

(
π−arctan(

B

A
)+

B

A

)
.

It is extended by continuity when A=0 by:

M =
2Bχ

εω
. (2.27)

Remark 2.4. In the following, we call Case (P), the case of the previous proposition

where
aχ

Dε
−β2=ω2>0. We can follow the sketch of the previous proof in the other

cases. However, the result differs and it is impossible to construct a bump in those
cases. More precisely,

Case (N ):
aχ

Dε
−β2=−ω2<0. The general solution of (2.21) is then

⎧⎪⎨
⎪⎩

φ(x)=Acosh(ω(x− x̄))+B sinh(ω(x− x̄))− aK

Dεω2
,

ρ(x)=
Aχ

ε
cosh(ω(x− x̄))+

Bχ

ε
sinh(ω(x− x̄))− β2K

εω2
.

For the transition between J and I at a point x̄, relations (2.22) and inequalities (2.16)
remain unchanged. However, the expression of ρ in I=]x̄,x̄+ l[ becomes

ρ(x)=
Aχ

ε
(cosh(ω(x− x̄))−1)+

Bχ

ε
sinh(ω(x− x̄))

and thus never vanishes for x>x̄.
Case (Z): aχ

Dε
−β2=0. The general solution of (2.21) is then

⎧⎪⎨
⎪⎩

φ(x)=A+B(x− x̄)+
aK

2Dε
(x− x̄)2,

ρ(x)=
Aχ−K

ε
+

Bχ

ε
(x− x̄)+

Kβ2

2ε
(x− x̄)2.
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Relations (2.22) become

⎧⎪⎨
⎪⎩

Aχ−K

ε
=0,

A=P++P−,
B=β(P+−P−),

that is to say,

⎧⎨
⎩

Aχ=K,
A=P++P−,
B=β(P+−P−).

Then, we shall have ρ≥0 in [x̄,x̄+ l] only if B≥0, and then

ρ(x)=
Bχ

ε
(x− x̄)+

Kβ2

2ε
(x− x̄)2

always remains positive.

Remark 2.5. In the case when γ �=2, Equation (2.20) is replaced by

χφ=
ε

γ
ργ+K

for some constant K. Reporting in the second equation of system (S) gives, with the
condition φ≥K/χ,

∂2
xxφ+

a

D

(γ(χφ−K)

ε

) 1
γ −β2φ=0,

that we may recast under the form of a Newton type equation

2∂2
xxφ+

d

dφ

{ 2aε2

Dχ(γ+1)

(γ(χφ−K)

ε

) γ+1
γ −β2φ2

}
=0.

We know from numerical simulations [27, 26] that stationary solutions with vacuum
also exist in this case. However, exhibiting them analytically is much more complicated
than in the case γ=2 since no explicit computations are available.

3. Stationary problem (S) on R

In this section, we consider the case where a solution of system (S) is defined on the
whole line R. We first construct a single bump as a stationary solution of the system

in the Case (P), when aχ

Dε
−β2=ω2>0, then we will show that we cannot find any

solution with a higher number of bumps.
Let us mention that these results can also be found in [2] and [4]. More precisely,

in [2], the author studies the existence of stationary solutions on the whole line R by
searching global minimizers of a free energy for any power γ of p and in the case of a
general potential G. He proves the existence of radially symmetric and non increasing
minimizers when γ >2. This result still holds in the case γ=2, which is a critical case, if
a sufficient condition between ‖G‖1 and ε is satisfied. This condition is the same as the

condition
aχ

Dε
−β2>0 mentioned above in the case of a Poisson potential, as considered

here. The situation we are studying corresponds to the case where m=2 and G is the

fundamental solution of the elliptic equation ∂2
xxφ−β2φ=− a

D
ρ. Moreover, in [4], the

authors concentrate on the case γ=2 and they prove the non-existence of solutions for
the particular case when ‖G‖1=ε. They give some characterizations of the stationary
solutions, namely that the support of the density is a connected set and they make
precise the uniqueness of the stationary solution. Notice that in our case, we are able to
give an explicit expression of the stationary solution and that we give a slightly different
proof for the uniqueness result.
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3.1. A single bump on R in Case (P). Let us begin with Case (P), for
which

aχ

Dε
−β2=ω2>0 and let us prove that we can construct a “one-bump” solution

in that case.

Proposition 3.1. Let M>0. We assume that
aχ

Dε
−β2=ω2>0. Among the solu-

tions (ρ,φ) satisfying system (S) on R, with ρ∈C0(R), φ∈C2(R)∩H1(R), ρ, φ≥0 and

such that

∫
R

ρ(x)dx=M , there exists a unique “one bump” stationary solution, up to a

translation, defined on R by the following expressions:

ρ(x)=

⎧⎪⎪⎨
⎪⎪⎩

0, for x<x̄,
M

I

χ

ε

(
(1−cos(ω(x− x̄)))+

ω

β
sin(ω(x− x̄))

)
, for x̄≤x≤ x̄+ l,

0, for x>x̄+ l,

and

φ(x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M

I

ω2

β2
eβ(x− x̄), for x<x̄,

M

I

(
−cos(ω(x− x̄))+

ω

β
sin(ω(x− x̄))+

aχ

εβ2

)
, for x̄≤x≤ x̄+ l,

M

I

ω2

β2
e−β(x− x̄− l), for x>x̄+ l,

with

I=
2χ

εω

(
π−arctan(

ω

β
)+

ω

β

)
>0 and l=

2

ω

(
π−arctan(

ω

β
)

)
.

The energy of such solution, as defined in Equation (2.4), is equal to

J�(M)=− εω3M2

4β2(π−arctan(
ω

β
)+

ω

β
)
. (3.1)

Proof. Following the results of Proposition 2.3, we can use the following expressions
for ρ and φ, defined on R,

ρ(x)=

⎧⎪⎨
⎪⎩

0, for x<x̄,

−Aχ

ε
cos(ω(x− x̄))+

Bχ

ε
sin(ω(x− x̄))+

β2K

εω2
, for x̄≤x≤ x̄+ l,

0, for x>x̄+ l,

and

φ(x)=

⎧⎪⎨
⎪⎩

P+eβ(x−x̄)+P−e−β(x−x̄), for x<x̄,

−Acos(ω(x− x̄))+B sin(ω(x− x̄))+
aK

Dεω2
, for x̄≤x≤ x̄+ l,

(P ′)+eβ(x−ȳ)+(P ′)−e−β(x−ȳ), for x>x̄+ l.

Since φ∈H1(R), we have φ(x)→±∞0, from which we deduce that P−=0 and that (P ′)+=

0 with (2.18). We are then able to express all the constants given by (2.18) and (2.22)
as a function of A as follows:

K=
χω2

β2
A, P+=

ω2

β2
A, B=

ω

β
A, (P ′)−=

ω2

β2
e−β(ȳ−x̄−l)A,
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and, from Equation (2.17), l=
2

ω

(
π−arctan(

ω

β
)

)
. The remaining constant A can be

rewritten in term of the mass M using Equation (2.19), namely

A=
M

2χ

εω

(
π−arctan(

ω

β
)+

ω

β

) .

Using Equation (2.4), we are now able to compute the energy of a “one-bump”
solution as a function of the mass M and of the parameters of the system:

J�(M)=
1

2

∫
R

(ερ2−χφρ)dx=
1

2

∫ x̄+l

x̄

ρ(ερ−χφ)dx=−K

2

∫ x̄+l

x̄

ρdx

=− χω2

2β2
AM =− εω3M2

4β2(π−arctan(ωβ )+
ω
β )

.

Remark 3.2. The bump is symmetric with respect to x̄+ l
2 = x̄+ 1

ω

(
π−arctan(ωβ )

)
.

This is clear outside the region [x̄,x̄+ l] and for x inside this region, the symmetry
derives from the formula

−cos(ω(x− x̄))+
ω

β
sin(ω(x− x̄))

=
1√

1+ ω2

β2

{
cos(π−arctan(

ω

β
))

·cos(ω(x− x̄))+sin(π−arctan(
ω

β
))sin(ω(x− x̄))

}

=
1√

1+ ω2

β2

cos
(
ω(x− x̄)−π+arctan(

ω

β
)
)
.

We exhibit in Figure 3.1 the graphs of the functions ρ and φ defined in Proposi-
tion 3.1, for two different values of the parameters ω and β.

Fig. 3.1. A one-bump solution defined by the function ρ (in red) and the function φ (in green)
for two different values of the parameters (ω,β), namely (1,0.5) on the left and (1,10) on the right.
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3.2. Several bumps on R in Case (P). In the following proposition, we prove
that we cannot have a solution defined by a finite or a countable number of bumps on
the whole real line R. The contradiction will be obtained using the expressions for the
constants (2.18) and (2.22) and the signs (2.16), in the case of a finite number of bumps,
or using the finite value of the total mass, in the case of a countable number of bumps.

Proposition 3.3. Let M>0. We assume that
aχ

Dε
−β2=ω2>0. We consider a

solution (ρ,φ) satisfying system (S) on R, with ρ∈C0(R), φ∈C2(R), ρ, φ≥0 and such

that

∫
R

ρ(x)dx=M . There exists no solution defined on R by a finite number N ≥2 or

by a countable number of bumps as described in Proposition 2.3.

Proof. In the current proof, we will use the notation displayed on Figure 3.2.

x x
n

x
n

+ lnx n+1
x

n+1
+ l

n+1
n−1

x
n−1

+ l
n−1

dd n n+1

, Bn , K nnAA , B
n−1n−1

, K
n−1

A , B
n+1n+1

, Kn+1

nn n+1n+1
P

−
, P P

+ +
, P 

−

Fig. 3.2. Notations for the proof of Proposition 3.3.

(i) Assume that we have a finite number of bumps, numbered by 1,2, . . . ,N with N ≥
2. Since φ∈H1(R), we have φ(x)→±∞0, which leads in expression (2.15) to P−

1 =0 and

to P+
2 =0, P−

2 =P+
1 e−β(ȳ−x̄−l), using Equation (2.18). We obtain now, from Equation

(2.22), the following expression for the constant for the second bump: B2ω=β(P+
2 −

P−
2 )=−βP+

1 e−β(ȳ−x̄−l). We find therefore a contradiction between this expression and
the signs (2.16) of the constants, namely P+

1 >0 and B2>0.

(ii) Assume now that we have a countable infinite number of bumps, indexed by
n, n∈Z (or n∈N). We define by Mn the mass of the n-th bump. Equation (2.18) yields
that the product P+

n P−
n is constant. This constant cannot be zero unless one of the

terms P+
n or P−

n vanishes. In that case, either P−
n =0 or P−

n+1=0, since P+
n =0 implies

P−
n+1=0 from Equation (2.18). As before, the same contradiction for Bn or Bn+1 with

the signs (2.16) occurs. Therefore,

the product P+
n P−

n is constant, non-zero. (3.2)

From now on, we consider the value of the mass. The total mass M =
∑
n∈Z

Mn should

be finite, leading to Mn →
n→+∞0. Since the following inequalities hold: Mn≥ 2χπ

εω
An≥0

from Equation (2.19), we can conclude that An →
n→+∞0. Since P+

n ≥0 (and P−
n ≥0,
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Fig. 4.1. Various stationary solutions: constant (in red), one lateral half bump (in black), one
central bump (in blue), two bumps with minimal energy (in green), two symmetric bumps with maximal
energy (in cyan). The parameters are the following: ε=2, χ=10, D=0.1, a=20, b=10, L=1, and
M =10.

using Equation (2.18)), Equation (2.22) also gives that P+
n →

n→+∞0 and P−
n →

n→+∞0 ,

which is in contradiction with Equation (3.2).

Remark 3.4. In the Case (N ) and Case (Z), that is to say, if
aχ

Dε
−β2=−ω2≤0, we

can prove that there is no stationary solution.

4. Stationary problem (S) on a bounded interval [0,L]⊂R: a bifurcation
diagram

In this section, we will show that, unlike the previous results, it is possible to
construct multi-bumps solutions of system (S):

{
ερ∂xρ=χρ∂xφ,
D∂2

xxφ+aρ−Dβ2φ=0,
(S)

on a bounded interval [0,L] of R, satisfying the following Neumann boundary conditions:

∂xρ(x)=0, ∂xφ(x)=0, on x=0,L. (4.1)

The number of bumps of these solutions depends on the length of the interval and on
the parameters of the system. We will study successively different types of solutions,
namely constant solutions in Subsection 4.1, single bump in Subsection 4.2, a half-bump
at the boundary in Subsection 4.3, two bumps in Subsection 4.4, two half bumps at the
boundaries in Subsection 4.5, one bump and a half in Subsection 4.6. We display some
of these solutions in Figure 4.1.

For each type of solution, we will also compute the corresponding energy and we will
compare those energies one to another. In Figure 4.2, we present the above mentioned
stationary solutions on a bifurcation diagram by plotting their energy as a function of
the length L of the domain. It is quite easy to see that we may construct a continuous
family of solutions with an arbitrary number of bumps by putting several bumps side
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Fig. 4.2. Bifurcation diagram of the energies of different types of stationary solutions (constant,
half bump, 2 half bumps, 1 bump, 2 bumps, etc.) as a function of the length L of the domain.

by side as soon as the length L of the interval is sufficiently large. We plot these curves
using these formulas which will be proved in the following:

• Equation (4.2) for the energy of the constant solution,

• Equation (4.16) for the energy of the half bump solution,

• Equation (4.6) for the energy of the 1 bump solution,

• expression of Proposition 4.7 for the energy of the 2 half bumps solution,

• Equation (4.18) for the energy of the 2 bumps solution.

Figure 4.2 is therefore the summary of al the computed solutions in the next sub-
sections.

In most of this section, we will consider only the case Case (P), when aχ

Dε
−β2=

ω2>0.

4.1. Constant states. Let M>0. The only positive, constant in space, solution
to (S) of mass M is given by

(ρ,φ)=
(M
L
,
aM

LDβ2

)
,

whatever the sign of
aχ

Dε
−β2. The energy of this solution is given by

JCte(M,L)=
εM2

2Lβ2

(
β2− aχ

εD

)
. (4.2)

In particular, in the case when
aχ

Dε
−β2>0, this energy is negative and increases with

L up to 0 as L→+∞.

From now on, we concentrate on the case when
aχ

Dε
−β2>0.
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4.2. A single bump inside the interval [0,L]. In this section, we study
the possibility of having a single bump solution to (S) inside the interval [0,L]. For
that purpose, we will use the results of Proposition 2.3 and the notation is explained in
Figure 4.3.

Fig. 4.3. Notations used in Subsection 4.2 for the case of a single bump inside the interval [0,L].

We split the interval [0,L] into three parts: the left hand-side ]0,d0[ and the right
hand-side ]d0+ l1,L[ , where the function ρ vanishes and the center interval ]d0,d0+ l1[,
where ρ is positive and which corresponds to the bump. The constraint on the length
of the interval reads

d0+ l1+d1=L. (4.3)

We introduce two functions, which will be useful in the following:

H :R+
d �→2d+
2

ω

[
π−arctan

(ω
β
tanh(βd)

)]
(4.4)

and

g :R+
d→π−arctan
(ω
β
tanh(βd)

)
+

ω

β
tanh(βd). (4.5)

In particular, we will show later on that constraint (4.3) may be written under the
simple form H(d0)=L.

In the following proposition, the construction of such a bump is given and it is
shown that its energy is smaller than the energy of the constant solutions computed in
the previous subsection.

Proposition 4.1. Let L>0 and M>0. There exists a stationary solution of system

(S) with one single bump inside the interval [0,L], satisfying (4.1) if and only if L≥ 2π

ω
,

in which case it is unique and symmetric with respect to L/2.
The energy of such solution is equal to

J1�(M,L)=− εω3M2

4β2g◦H−1(L)
, (4.6)

where H and g are defined at equations (4.4) and (4.5), and satisfies the following
properties:
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(i) The function L �→J1�(M,L) defined on [2π/ω,+∞[ increases from −εω3M2

4πβ2
to

J�(M), defined in Equation (3.1).

(ii) For every L>
2π

ω
, J1�(M,L)<JCte(M,L).

(iii) J1�(M,
2π

ω
)=JCte(M,

2π

ω
) and 0<

∂J1�

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

Proof. On the interval ]0,d0[, which corresponds to the left hand-side of the interval
[0,L], the function ρ vanishes and the Equation (2.15) gives the following expression for
the function φ: φ(x)=P+

1 eβ(x−d0)+P−
1 e−β(x−d0). The boundary condition ∂xφ(0)=0

implies that

P+
1 e−βd0 =P−

1 eβd0 (4.7)

and the second boundary condition ∂xρ(0)=0 is satisfied since ρ=0 on ]0,d0[.
We now consider the interval ]d0+ l1,L[, which corresponds to the right hand-side

of the interval [0,L]. We obtain the expression φ(x)=P+
2 eβ(x−L)+P−

2 e−β(x−L) from
Equation (2.15). In the same way, the boundary condition ∂xφ(L)=0 leads to

P+
2 =P−

2 (4.8)

and the second boundary condition ∂xρ(L)=0 is satisfied since ρ=0 on ]d0+ l1,L[.
Finally, on the center part ]d0,d0+ l1[ of the interval [0,L] we can write, using

Equation (2.14)

⎧⎪⎨
⎪⎩

φ(x)=−A1 cos(ω(x− x̄))+B1 sin(ω(x− x̄))+
aK1

Dεω2
,

ρ(x)=−A1χ

ε
cos(ω(x− x̄))+

B1χ

ε
sin(ω(x− x̄))+

β2K1

εω2
.

Let us study now how the transitions at points d0 and d0+ l1 link the constants
A1, B1,K1, P

+
1 , P−

1 , P+
2 , P−

2 defined above. We use the relations (2.22), corresponding
to the transition of ρ,φ,∂xφ at d0, and we obtain the three following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1=
β2

χω2
K1,

A1
ω2

β2
=P+

1 +P−
1 ,

B1ω=β(P+
1 −P−

1 ).

(4.9)

The transition at point d0+ l1 and the relation (2.18) give

P+
2 =P−

1 eβ(L−d0−l1)=P−
1 eβd1 and P−

2 =P+
1 e−β(L−d0−l1)=P+

1 e−βd1 (4.10)

using Equation (4.3). Therefore, relations (4.7), (4.8), and (4.10) give

P+
1 (1−e2β(d0−d1))=0. (4.11)

If P+
1 =0, then P−

1 =P+
2 =P−

2 =0 and we get the trivial solution A1=B1=K1=0.
Therefore, Equation (4.11) implies that

d0=d1.
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Fig. 4.4. Graph of function H.

Now, we consider the length of the bump given by (2.17). It is equal to

l1=
2

ω

(
π−arctan(

B1

A1
)

)
=

2

ω

(
π−arctan(

ω

β
tanh(βd0))

)
.

Thus we get from (4.3), using that d1=d0,

H(d0)=2d0+
2

ω

(
π−arctan(

ω

β
tanh(βd0))

)
=L. (4.12)

Notice that the function H depends only on the parameters ω, β of the system and
not on the length L of the interval and is continuously increasing from 2π/ω to +∞.
Indeed,

H ′(d)=
2tanh2(βd)

1+ ω2

β2 tanh
2(βd)

(ω2

β2
+1

)
>0 (4.13)

for d>0. The graph of function H is given in Figure 4.4.
Finally, using formulas (2.19), (4.9), and (4.7), the mass of the bump is equal to

M =
2χβ2

εω3
P+
1 (1+e−2βd0)

(
π−arctan(

ω

β
tanh(βd0))+

ω

β
tanh(βd0)

)

=
2χβ2

εω3
P+
1 (1+e−2βd0)g(d0). (4.14)

We can now conclude on the existence of a one-bump solution. For L<
2π

ω
, we cannot

find d0≥0 such that H(d0)=L, hence there is no solution to (4.12) and no bump

solution. For L≥ 2π

ω
, there is exactly one solution to (4.12). With this value of d0,

relation (4.14) gives the value of P+
1 (since M is fixed). Then (4.7) gives P−

1 , (4.10)
gives P−

2 and P+
2 and (4.9) gives A1, B1, and K1. Thus we have find exactly one bump

solution. Its energy (using (2.4)) is given by
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J1�(M,L)=
1

2

∫ d0+l1

d0

ρ(ερ−χφ)dx=−K1

2

∫ x̄+l1

x̄

ρdx=−χω2

2β2
A1M

=− εω3M2

4β2g(d0)
, where H(d0)=L.

At last, let us prove some properties on the energy J1�(M,L). Since

g′(d)=
ω3

β2

(1−tanh2(βd))tanh2(βd)

1+ ω2

β2 tanh
2(βd)

=
ω3

β2

tanh2(βd)

cosh2(βd)(1+ ω2

β2 tanh
2(βd))

>0, (4.15)

and H is increasing, it follows that J1�(M,L)=− εω3M2

4β2g◦H−1(L)
is increasing with L.

Furthermore, as L→+∞, we recover the situation of Section 3.1, and in particular:

J1�(M,L)=− εω3M2

4β2g◦H−1(L)
→J�(M)=− εω3M2

4β2(π−arctan(ωβ )+
ω
β )

.

We may also compute the following expansions when d→0,

g(d)=π−arctan
(ω
β
tanh(βd)

)
+

ω

β
tanh(βd)=π+

(ωd)3

3
+O(d5),

and

H(d)− 2π

ω
=2d− 2

ω
arctan

(ω
β
tanh(βd)

)
=

2

3
(ω2+β2)d3+O(d5).

Thus, as L→ 2π

ω
,

g◦H−1(L)=π+
ω3

ω2+β2

(
L− 2π

ω

)
+O

(
(L− 2π

ω
)5/3

)
,

which implies

J1�(M,L)=−εω3M2

4β2π
+

εω6M2

8β2π2(ω2+β2)

(
L− 2π

ω

)
+O

(
(L− 2π

ω
)5/3

)
.

Observe that the expansion of JCte(M,L) given in (4.2) near L= 2π
ω is equal to

JCte(M,L)=−εω2M2

2Lβ2
=−εω3M2

4πβ2
+

εω4M2

8π2β2

(
L− 2π

ω

)
+O

(
(L− 2π

ω
)2
)
,

which implies that
∂J1�

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

Finally, we may compare JCte(M,L) and J1�(M,L) easily. Indeed, J1�(M,L)<
JCte(M,L) is equivalent to

2g(d)<ωH(d),

with L=H(d). By definition of g and H, we have

ωH(d)−2g(d)=2ω
(
d− 1

β
tanh(βd)

)
,

for d≥0, which is clearly positive for d>0 by concavity of the function tanh.
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4.3. Half bump on the boundary of the interval [0,L]. Since the single
bump solution constructed in the previous section is symmetric with respect to L/2, it
is easy to see that if we keep only the part 0≤x≤L/2 or L/2≤x≤L, then we obtain
a solution in an interval of length L/2 but with half mass. Conversely, due to the
Neumann boundary condition (4.1), it is clear that if we have a solution with ρ>0 in
[0,�[ and ρ=0 on [�,L], then ρ must be equal to the restriction of the bump constructed
in Proposition 4.1 on half of the interval. We call this type of solution “half bump”.
We also prove in the following proposition that its energy is smaller than the energy of
the constant solutions described in Subsection 4.1 and than the energy of the bump of
Subsection 4.2 of the same mass on an interval of the same length.

0

 

 L 2L

Fig. 4.5. Notations for the case of half bump on the boundary of the interval [0,L].

Proposition 4.2. Let L>0 and M>0. There exists a stationary solution to system

(S)-(4.1) with half bump on the boundary of the interval [0,L] if and only if L≥ π

ω
, in

which case it is unique up to the symmetry with respect to L/2. Its energy is equal to

J 1
2 �
(M,L)=

1

2
J1�(2M,2L)=2J1�(M,2L)=− εω3M2

2β2g◦H−1(2L)
(4.16)

and satisfies the following properties:

(i) The function L �→J 1
2 �
(M,L) defined on [π/ω,+∞[ increases from −εω3M2

2πβ2
to

2J�(M)=− εω3M2

2β2(π−arctan(ωβ )+
ω
β )

, where J�(M) is defined in Equation (3.1).

(ii) For every L>
π

ω
, the inequality J 1

2 �
(M,L)<JCte(M,L) holds.

(iii) J 1
2 �
(M,

π

ω
)=JCte(M,

π

ω
) and 0<

∂J 1
2 �

∂L
(M,

π

ω
)<

∂JCte

∂L
(M,

π

ω
).

(iv) For every L≥ 2π

ω
, J 1

2 �
(M,L)<J�(M,L).

Proof. The expression of the energy follows by considering a bump of mass 2M in
the interval of length 2L and dividing the result by two. Hence, points (i), (ii), and (iii)
come from (i), (ii), and (iii) in Proposition 4.1 and form the fact that in view of (4.2),
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JCte(2M,2L)=2JCte(M,L). It remains to show (iv), and this is a direct consequence
of the following lemma.

Lemma 4.3. Let �≥2π/ω be given and let us define θ0≡2π/(�ω)∈]0,1]. Then, the
function

θ �→ g(H−1(θ�))

θ
defined on ]θ0,+∞[

is decreasing.

We apply this lemma with �=L≥2π/ω and we deduce from the monotonicity that

g(H−1(L))>
g(H−1(2L))

2
,

which is exactly the desired inequality for (iv), using formulas (4.6) and (4.16).

Proof. We denote ψ(θ)=θ−1g(H−1(θ�)) and d=d(θ)=H−1(θ�). Then, for θ>θ0,

ψ′(θ)=
g′(d(θ))d′(θ)

θ
− g(d(θ))

θ2
,

hence
(
θ2ψ′(θ)

)′
=θ

(
g′(d(θ))d′(θ)

)′
.

Since d′(θ)= �/H ′(d(θ)), and using the derivatives of H and g expressed at equations
(4.13) and (4.15), we deduce

g′(d(θ))d′(θ)=
�ω3

2(β2+ω2)
(1−tanh2(βd(θ))),

which is a decreasing function of θ (d increases). Therefore, θ �→θ2ψ′(θ) is decreasing.
For θ=θ0, d=0 thus, by definition of θ0,

θ20ψ
′(θ0)=θ0g

′(d(θ0))d′(θ0)−g(d(θ0))=
�θ0ω

3

2(β2+ω2)
−π

=
πω2

β2+ω2
−π=− πβ2

β2+ω2
<0.

As a consequence, θ2ψ′(θ) is negative for θ>θ0, and the result follows.

4.4. Two bumps inside the interval. We investigate in this section the
existence of a solution consisting of two bumps inside the interval [0,L] as shown in
Figure 4.6. We shall see that a two bumps solution is necessarily the concatenation
of two one bump solutions as defined at Proposition 4.1, set on two smaller intervals.
These stationary solutions are specific to the case where the domain is a bounded interval
instead of the whole line. Moreover, there exists a one parameter family of two bumps
solutions, parametrized by d0 (see Figure 4.6). Then the parameter d2 and the masses
M1 and M2 of the two bumps are uniquely defined. To define the masses, the following
function is needed:

G(d)=cosh(βd)

(
π−arctan(

ω

β
tanh(βd))+

ω

β
tanh(βd)

)
=cosh(βd)g(d),
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Fig. 4.6. Notations for the case of two bumps inside the interval [0,L].

where g is defined in Equation (4.5). Since g is increasing, from Equation (4.15), it
is clear that G is the product of two positive increasing functions, hence is a positive
increasing function.

In the following proposition, we will also show that among all the configurations
with two bumps inside the interval, the one corresponding to d0=0 is the one with
the smallest energy, whereas the symmetric one, satisfying d0=d2 is the one with the
highest energy.

Proposition 4.4. Let L>0 and M>0. There exists a continuum of stationary solu-

tions to system (S), (4.1) with two bumps inside the interval [0,L] if and only if L≥ 4π

ω
.

In this case (see Figure 4.6), the solution may be parametrized by the parameter d0
with 0≤d0≤d	≡H−1(L/2), corresponding to the first bump. The second bump is de-
fined by the parameter d2 which satisfies the relation L=H(d0)+H(d2) and the masses
of the two bumps are defined by

(M1,M2)=M
( G(d0)

G(d0)+G(d2)
,

G(d2)

G(d0)+G(d2)

)
. (4.17)

The symmetric configuration with respect to L/2 is also a stationary solution.
Its energy is then given by

J2�(M,L,d0)=J1�(M1,L1)+J1�(M2,L2)

=− εω3M2
1

4β2g(d0)
− εω3M2

2

4β2g(d2)
, (4.18)

and satisfies the following properties:

(i) The function d→J2�(M,L,d) defined on [0,d	] is increasing.

(ii) For L>
4π

ω
, the following inequalities hold:

JCte(M,L)>J2�(M,L,d	)=2J1�(M/2,L/2)=
1

2
J1�(M,L/2)>J1�(M,L).
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(iii) J2�(M,
4π

ω
,0)=JCte(M,

4π

ω
) and 0<

∂J2�

∂L
(M,

4π

ω
,0)<

∂JCte

∂L
(M,

4π

ω
).

(iv) As L→+∞, J2�(M,L,0)→J�(M), defined in Equation (3.1), and J2�(M,L,d	)→
1
2J�(M)= 1

2J1�(M,∞).

Remark 4.5. In the case L=
4π

ω
, the continuum of solutions degenerates into a

unique 2 bumps solution.

Proof. We use the notation of Figure 4.6. We begin to prove that a two-bumps
solution is necessarily the concatenation of two one bump solutions as defined at Propo-
sition 4.1, set on two smaller intervals. The length of the total interval is

L=d0+ l1+d1+ l2+d2 (4.19)

and we look for a relation linking parameters d0, d1, and d2. Inspired by equations (4.7)
and (4.8), the boundary conditions give

P−
1 =P+

1 e−2βd0 , P−
3 =P+

3 . (4.20)

and the transition conditions (2.18) imply

P+
2 =P−

1 eβd1 ,P−
2 =P+

1 e−βd1 ,P+
3 =P−

2 eβd2 ,P−
3 =P+

2 e−βd2 . (4.21)

Combining the relations (4.20) and (4.21) (and since we assume P1 �=0), we get

d1=d2+d0. (4.22)

Let us now consider the point y≡2d0+ l1=L−(2d2+ l2)∈ [0,L] (in view of (4.19) and
(4.22)). The solution on [0,y] satisfies the Neumann boundary condition (4.1) on the
boundary x=0. The bump being symmetric, the derivatives of ρ and φ vanish at y. In
particular, (ρ,φ)|[0,y] is actually a single bump solution in the interval [0,y]. Similarly,
(ρ,φ)|[y,L] is also a single bump solution in the interval [y,L].

Conversely, let us decompose L=L1+L2, and assume that we have two single
bumps: one in the interval [0,L1], and the other one in the interval [L1,L]. Let us
determine all the constraints so that when we concatenate the two bumps, we obtain a
solution in the interval [0,L]. First, note that since Lj≥2π/ω (j=1, 2), this already
imposes L=L1+L2≥4π/ω. Second, the total massM must be equal toM1+M2. Once
(L1,L2,M1,M2) are given such that L=L1+L2 and M =M1+M2, the two bumps are
completely determined, which means that, for the moment, we have two free parameters.
The relation (4.12) holds for the two bumps, hence

H(d0)=L1 and H(d2)=L2. (4.23)

Furthermore, since (ρ,φ) solves the system (S) in ]0,L1[ and in ]L1,L[, (ρ,φ) is a solution
near L1 if and only if it is continuous. Indeed, their derivatives is zero by the Neumann
condition (4.1). Since ρ is zero near L1 on the right and on the left, we are reduced to
verify the relation φ(0)=φ(L). Indeed, φ(0) (resp. φ(L)) is the value of φ at the left
(resp. right) of L1 due to the symmetry of the bumps, see Remark 3.2. Using equations
(2.15) and (4.7), we have

φ(0)=P+
1 e−βd0 +P−

1 e+βd0 =2P+
1 e−βd0 ,
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and we express consequently the mass M1 as a function of φ(0) thanks to Equation
(4.14):

M1=
2χβ2

εω3
P+
1 (1+e−2βd0)g(d0)=φ(0)

2χβ2

εω3
G(d0).

We have then the relations

M1=φ(0)
2χβ2

εω3
G(d0) and M2=φ(L)

2χβ2

εω3
G(d2),

arguing symmetrically in [L1,L]. Therefore, the condition φ(0)=φ(L) is equivalent to

M1

G(d0)
=

M2

G(d2)
(4.24)

and we have now only one parameter free.
Let us determine to which interval the parameters d0 and d2 (and the massesM1 and

M2) belong. Since L>4π/ω, we may define d̂>0 as the solution to H(d̂)=L−2π/ω,
which corresponds to the value of d2 (resp. d0) whenever d0=0 (resp. d2=0). Then,

using Equation (4.23), the relation L=H(d0)+H(d2)≥2π/ω+H(d0) imposes d0≤ d̂,

and also d2≤ d̂ by symmetry. Notice that M1=
MG(d0)

G(d0)+G(d2)
=

M

1+G(d2)/G(d0)
is

then a decreasing function of d0, which varies between
M

1+G(0)/G(d̂)
=

M

1+π/G(d̂)
and

M

1+G(d̂)/π
. Therefore, if we want to fix the masses M1 and M2, with M1+M2=M ,

they have to satisfy

M1,M2∈
] M

1+ G(d̂)
π

,
M

1+ π
G(d̂)

[
,

or, equivalently,

M1

M2
∈
] π

G(d̂)
,
G(d̂)

π

[
.

We notice that the massesM1 andM2 are bounded away from 0 by a constant depending
on L.

Then, recalling that we started from two one bump solution of mass M1 (resp. M2)
set on an interval of length L1 (resp. L2), the two parameters (d0,d2) have to solve

M1

G(d0)
=

M2

G(d2)
and L=L1+L2=H(d0)+H(d2)

by (4.23) and (4.24). This system has a unique solution: if we let d0 increase, then d2
decreases by the second relation, since H is an increasing function; on the contrary, for
M1 and M2 given, if we let d0 increase, then d2 increases by the first relation, since G
is a decreasing function. Hence, we find a unique solution d2 as a function of d0.

As a consequence, we have obtained a continuous one parameter family of solutions
with two bumps, that we may parametrize by L1∈ [2π/ω,L−2π/ω[ or, equivalently, by
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d0∈ [0, d̂[. The parameter d2∈ [0, d̂[ is given by the relation L=H(d0)+H(d2). More-
over, the masses (M1,M2) must satisfy the relation M =M1+M2 and the Equation
(4.24), which give exactly one solution computed in Equation (4.17).

Now, let us consider the energy of the two bumps solutions we constructed. One
may wonder what are the variations of the energy when L1 or, equivalently, d0 varies
and if a single bump solution has less energy than these solutions with two bumps. For
the solution with two bumps, using the definition of the energy of a single bump (4.6),
the energy is given by formula (4.18), that is to say,

J2�(M,L,d0)=J1�(M1,L1)+J1�(M2,L2)

=− εω3M2
1

4β2g(d0)
− εω3M2

2

4β2g(d2)
,

with d2 defined by L=H(d0)+H(d2) and M1,M2 by (4.17). The function J2� is seen

as a function of the single variable d0∈ [0, d̂[. Moreover, since we may assume d0≤d2
by symmetry, it is natural to define d	 to be the solution of L=2H(d	) and to work

only for d0∈ [0,d	]. Observe that 2H(d	)=L=H(d̂)+H(0)≤2H(d̂), thus, H being

increasing, d	≤ d̂. Let us prove now the following lemma, which corresponds to point
(i) of Proposition 4.4, that is to say, the energy for a two bumps solution increases with
d0.

Lemma 4.6. Let L≥4π/ω and M>0 be given. Then, the function J2�(M,L, ·) is
increasing on [0,d	].

Proof. Since H ′(d0)+H ′(d2)∂d0d2=0, we compute

−H ′(d2)
4β2

εω3

dJ2�

dd0

=H ′(d2)
∂

∂d0

( M2
1

g(d0)
+

M2
2

g(d2)

)
−H ′(d0)

∂

∂d2

( M2
1

g(d0)
+

M2
2

g(d2)

)

=H ′(d2)
{2M1∂d0

M1

g(d0)
−M2

1 g
′(d0)

g2(d0)
+

2M2∂d0
M2

g(d2)

}

−H ′(d0)
{2M2∂d2

M2

g(d2)
−M2

2 g
′(d2)

g2(d2)
+

2M1∂d2
M1

g(d0)

}
.

We now report, from (4.17),

∂M1

∂d0
=−∂M2

∂d0
=M

G(d2)G
′(d0)

(G(d0)+G(d2))2

and

∂M1

∂d2
=−∂M2

∂d2
=−M G′(d2)G(d0)

(G(d0)+G(d2))2

to obtain

− 4β2H ′(d2)
εω3M2

dJ2�

dd0
=

H ′(d2)
(G(d0)+G(d2))2

{ 2G(d2)G
′(d0)

G(d0)+G(d2)

[G(d0)

g(d0)
−G(d2)

g(d2)

]

−g′(d0)
G2(d0)

g2(d0)

}
− H ′(d0)

(G(d0)+G(d2))2

{ 2G(d0)G
′(d2)

G(d0)+G(d2)

[G(d2)

g(d2)
−G(d0)

g(d0)

]
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−g′(d2)
G2(d2)

g2(d2)

}
.

We now use that G(d)=cosh(βd)g(d) to infer

−(G(d0)+G(d2))
2 4β

2H ′(d2)
εω3M2

dJ2�

dd0

=2
cosh(βd0)−cosh(βd2)

G(d0)+G(d2)

{
G(d2)G

′(d0)H ′(d2)+G(d0)G
′(d2)H ′(d0)

}

+H ′(d0)g′(d2)cosh2(βd2)−H ′(d2)g′(d0)cosh2(βd0). (4.25)

Using (4.15) and (4.13), we then deduce

H ′(d0)g′(d2)cosh2(βd2)=
2
ω3

β2

(ω2

β2
+1

)
tanh2(βd0)tanh

2(βd2)

(1+ ω2

β2 tanh
2(βd0))(1+

ω2

β2 tanh
2(βd2))

=H ′(d2)g′(d0)cosh2(βd0),

so that the last line in (4.25) is zero. If d0<d2, that is d0<d	, then the right-hand side
of (4.25) is <0 since G, G′, and H ′ are positive, which is the desired result.

Now, let us prove the various properties of the energy described in Proposition 4.4.
For (ii), the first and last inequalities are a consequence of Lemma 4.3. (iv) follows
directly from either the fact that we have symmetrized one bump with parameters
(M/2,L/2), either the fact that (M1,M2)→ (0,M) and d2→+∞. We now compute the

derivative for (iii). Observe first that when d0=0, d2= d̂=H−1(L−2π/ω), thus d̂→0
as L→4π/ω. We have already seen in Section 4.2 that

g(d)=π+
(ωd)3

3
+O(d5),

thus

G(d)=g(d)cosh(βd)=π+
πβ2

2
d2+

(ωd)3

3
+O(d4).

Therefore,

4β2

εω3M2
J2�(M,L,0)=−

π+
G2(d̂)

g(d̂)

(π+G(d̂))2
=− 1

2π
+

ω3d̂3

12π2
+O(d̂4).

Since

L− 4π

ω
=H(d̂)− 2π

ω
=

2

3
(ω2+β2)d̂3+O(d̂5),

it follows that

4β2

εω3M2
J2�(M,L,0)=− 1

2π
+

ω3

8π2(ω2+β2)

(
L− 4π

ω

)
+O

(
(L− 4π

ω
)4
)
.

As a consequence,

0<
∂J2�

∂L
(M,4π/ω)=

εω6M2

32π2β2(ω2+β2)
<

εω4M2

32π2β2
=

∂JCte

∂L
(M,4π/ω),
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from the explicit expression of JCte in (4.2). This completes the proof.

For (iv), notice that it is natural to recover the energy of a single bump when d0=0
and L is large since the mass of the bump on the left tends to zero. Despite our efforts,
we have not been able to determine the variations of the least energy configuration
L �→J2�(M,L,0), even though numerically, it seems convincing that it is increasing on
a small interval and then decreasing.

4.5. Two half bumps on the two boundaries. Now we construct some
solutions made of two half bumps on the two boundaries. For that purpose, we follow
what we made in Section 4.3: to find a two half bumps solution of mass M on a
domain of length L, we construct a two bumps solution of mass 2M on a domain
of length 2L as explained in Section 4.4 and we keep half of the domain in order to
obtain two half bumps on the boundaries. The technique is illustrated in Figure 4.7.
The results are straightforward following Proposition 4.4 and are summarized in the
following proposition.

0 L 2L

 

 

Fig. 4.7. Technique to construct a solution with two half bumps on the boundaries of the interval
[0,L]

Proposition 4.7. Let L>0 and M>0. There exists a continuum of stationary solu-
tions to system (S),(4.1) with two half bumps on the boundaries of the interval [0,L] if

and only if L≥ 2π

ω
.

In this case (see Figure 4.6 for the notation), the solutions may be parametrized
by the parameter 0≤d0≤d	≡H−1(L) for the first half bump. The second half bump
is defined by the parameter d2 which satisfies the relation 2L=H(d0)+H(d2) and the
masses of the two half bumps are given by equation (4.17). The symmetric configuration
with respect to L/2 is also a solution.

Its energy is given by

J2× 1
2 �
(M,L,d0)=

1

2
J2�(2M,2L,d0)=2J2�(M,2L,d0)

and satisfies the following properties:

(i) The function J2× 1
2 �
(M,L, ·), defined on [0,d	], is increasing.
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(ii) JCte(M,L)>J2× 1
2 �
(M,L,d	)=J1�(M,L).

(iii) J2× 1
2 �
(M,

2π

ω
,0)=JCte(M,

2π

ω
) and 0<

∂J2× 1
2 �

∂L
(M,

2π

ω
)<

∂JCte

∂L
(M,

2π

ω
).

(iv) As L→+∞, J2× 1
2 �
(M,L,d	)→J�(M)=J1�(M,∞) and J2× 1

2 �
(M,L,0)→

2J�(M).

4.6. One bump inside the interval and half bump on the boundary.
Finally, we consider the solutions where we have one bump inside the interval and half
bump on the boundary. Clearly, we may use a reflection across the boundary for the
half bump to reduce to the case of two bumps, see Figure 4.8.

We have consequently the following proposition:

L0 d0 d  + d0 2
d

2

Fig. 4.8. Notations for the case of one bump inside and half bump on the boundary of the interval
[0,L]

Proposition 4.8. Let L>0 and M>0. There exists a continuum of solutions to
system (S)-(4.1) with one bump inside the interval [0,L] and one half bump on the

boundary of [0,L] if and only if L≥ 3π

ω
.

In this case, the solutions may be parametrized by 0≤d0≤d	≡H−1(L−π/ω) for

the bump on the center of the interval or by 0≤d2≤ d̂≡H−1(2L−4π/ω) for the half

bump on the boundary, the other parameter being given by relation L=H(d0)+
1

2
H(d2).

The mass M1 of the bump and the mass M2 of the half bump are defined by

(M1,M2)=M
( 2G(d0)

2G(d0)+G(d2)
,

G(d2)

2G(d0)+G(d2)

)
. (4.26)

The symmetric configuration with respect to L/2 is also a solution.
Its energy J(1+ 1

2 )�
(M,L,d0) is given by

J(1+ 1
2 )�

(M,L,d0)=J1�(M1,L1)+J 1
2 �
(M2,L2)

=− εω3M2
1

4β2g(d0)
− εω3M2

2

2β2g(d2)
, (4.27)
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and satisfies the following properties:

(i) The function J(1+ 1
2 )�

(M,L, ·) is increasing on [0,d
] and decreasing on [d
,d	], where

d
≡H−1(2L/3) is the value corresponding to d0=d2.

(ii) JCte(M,L)>J(1+ 1
2
)�(M,L,d�)=3J 1

2
�(

M
3
, L
3
)= 3

2
J1�(

2M
3
, 2L

3
)= 2

3
J1�(M, 2L

3
)>J1�(M,L).

(iii)J(1+ 1
2
)�(M,

3π

ω
,0)=JCte(M,

3π

ω
) and 0<

∂J(1+ 1
2
)�

∂L
(M,

3π

ω
)<

∂JCte

∂L
(M,

3π

ω
).

(iv) As L→+∞, J(1+ 1
2 )�

(M,L,0)→2J�(M)=J 1
2 �
(M,∞), J(1+ 1

2 )�
(M,L,d
)→

2
3J�(M)= 2

3J1�(M,∞) and J(1+ 1
2 )�

(M,L,d	)→J�(M).

Proof. The argument is very close to the case of two bumps inside the interval
explained in details in Section 4.4, hence we only sketch the proof. The constraint on
the length is

L=H(d0)+
1

2
H(d2),

and this gives the upper bounds d	 and d̂ for d0 and d2 respectively. If M1 (resp. M2)
denotes the mass of the bump (resp. half bump), then we must have

M =M1+M2 and
M1

G(d0)
=

2M2

G(d2)
,

the second one being the matching condition for φ, thus relation (4.17) is replaced now
by relation (4.26).

Moreover, the energy of the one bump and one half bump solution is given by Equa-
tion (4.27). To study the variations of J(1+ 1

2 )�
(M,L, ·), we perform some computations

which are very similar to those of Lemma 4.6 and we obtain

β2H ′(d2)
εω3M2

dJ(1+ 1
2 )�

dd0
=−2cosh(βd0)−cosh(βd2)

(2G(d0)+G(d2))3

{
G(d2)G

′(d0)H ′(d2)

+2G(d0)G
′(d2)H ′(d0)

}
.

Since the bracket is a sum of positive terms,
dJ(1+ 1

2 )�

dd0
has the same sign as d2−d0, and

(i) follows since d
 is the value of d0 corresponding to the case d2=d0.

4.7. Fuzzy solutions. In this section, we consider some very particular solutions,
such that ρ>0 on the interval [0,L]. Then, from (2.14) with x̄=0 and the Neumann
conditions (4.1), we infer

0=
∂ρ

∂x |x=0
=

Bχω

ε
and 0=

∂ρ

∂x |x=L
=

Aχω

ε
sin(ωL)+

Bχω

ε
cos(ωL),

thus

B=0 and Asin(ωL)=0.

As a consequence, except in the exceptional case ωL∈πN, we must have A=0. If
ωL∈πN, then there exists a continuous family of solutions⎧⎪⎨

⎪⎩
φ(x)=−Acos(ωx)+

aK

Dεω2
,

ρ(x)=−Aχ

ε
cos(ωx)+

β2K

εω2
.
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Fig. 4.9. Graphs of some solutions ρ when (L,ω)=(π,1) (on the left) and when (L,ω)=(2π,1)
(on the right).

We have represented some typical solutions ρ when (L,ω)=(π,1) and when (L,ω)=
(2π,1) in Figure 4.9. Note that the mass of such a solution is given by

M =

∫ L

0

ρ(x) dx=
β2KL

εω2

since ωL∈πN. Taking into account the conditions ρ≥0 and φ≥0, we then obtain the
fuzzy solutions in [0,L]

⎧⎪⎨
⎪⎩

φ(x)=−Acos(ωx)+
εM

χL
,

ρ(x)=−Aχ

ε
cos(ωx)+

M

L
,

with A<
εM

χL
. All these solutions have the same energy

JFuzzy(M,L)=−εω2M2

2Lβ2
,

which is the same as the energy JCte of the constant solution for this value of L. It is
clear that if we slightly increase L, then all these solutions disappear, except the two
extreme ones which vanish either at x=0 either at x=π (the red and the cyan solutions),
which are symmetric with respect to L/2 and will give the half bump solutions. The
same phenomenon occurs when ωL=2π, leading to the solutions with one bump inside
and two half bumps on the boundary.

Remark 4.9. In the Case (N ) and Case (Z), that is to say, if
aχ

Dε
−β2=−ω2≤0,

we can prove that either ρ=0 everywhere, either ρ>0 everywhere. Therefore, the only
non-zero solution is given by the constant state exhibited in Section 4.1.
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5. Numerical simulations on a bounded interval [0,L]
Let us notice that finding analytically the stability of the previous exhibited station-

ary solutions is a hard task and out of scope for the moment. An important difficulty
is that the stationary solutions lie on the boundary of the admissible set of functions,
since the non-negativity constraint on the density is saturated.

Since we prove in Section 4 that the half bump solution has the smallest energy

among the stationary solutions we consider, in the case when L≥ π

ω
, we expect this

solution to be a stable one. However, the stability of the other stationary solutions is
not that clear and seems to depend deeply on the parameters of the system. In what
follows, we present a numerical study of the stability of these solutions for three different
sets of parameters:

• Case 1: ε=2, γ=2, χ=10, D=0.1, a=20, b=10, α=1 on a domain of length

L=3. In this case, we have
Lω

π
∼28.6479.

• Case 2: ε=2, γ=2, χ=50, D=1, a=1, b=1, α=1 on a domain of length L=2.

In this case, we have
Lω

π
∼3.1188.

• Case 3: ε=2, γ=2, χ=50, D=1, a=4, b=1, α=1 on a domain of length L=2.

In this case, we have
Lω

π
∼6.3343.

Generalizing the conditions found in Propositions 4.1–4.8, we may say that we can
construct (at least) one k half bumps solution under the following condition linking

the length of the domain and the parameters of the system: L≥ kπ

ω
. In this formula,

we assume that one bump accounts for two half-bumps. Hence, for the three previous
sets of parameters and given length, we may construct the following types of stationary
solutions (except from the constant solution):

• Case 1: 1≤k≤28, that is to say, we may construct up to 14 bumps solution (or
equivalently 13 bumps inside the interval and 2 half bumps on the boundaries).

• Case 2: 1≤k≤3, that is to say, we may construct up to 1 bump inside the
interval and 1 half bump on the boundary.

• Case 3: 1≤k≤6, that is to say, we may construct up to 3 bumps inside the
interval (or equivalently 2 bumps inside the interval and 2 half bumps on the
boundaries).

In the following, we use an adapted numerical scheme based on a upwinding technique
described in [27] and improved in [26]. This scheme is constructed in order to deal with
vacuum, to preserve the positivity of the solution and to be well-balanced, that is to
say, to preserve stationary solutions with constant velocities.

Note that we are limited with respect to the perturbations we use in the following
numerical tests. Indeed, a perturbation should be chosen of null mass and such as
preserving the positivity of the solution. Moreover, in many cases, we try to perturb
the stationary solution without changing the vacuum regions. Finally, sometimes the
two bumps solution are such that the height of one bump is extremely small (of order
10−6). Therefore, the computation of adapted perturbations is often a delicate task.

5.1. Summary of the stability results. In this subsection, we give a brief
summary of what we have observed concerning the stability of the stationary solutions.
A large part of these observations is presented in the following.

To begin with, the full picture of stability of stationary solutions is unknown for
the moment, since we find very different results according to the set of parameters for
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the equation we consider. Namely, what we observe in the following is

• in case 1, a wide range of stationary solutions (half-bump solution, one bump
solution and all the two-bumps solutions) look stable in our numerical experi-
ments;

• in case 2, the half bump solution seems to be the only stable solution;

• in case 3, the one bump and some two-bumps solutions are unstable and the
half bump and the two half-bumps solutions seem stable.

Remark that some simulations done with parameters similar to case 2, except χ=25

for which
Lω

π
∼2.1588 show the same behaviour for 2 lateral half-bumps and one central

bump solutions. Namely, the 2 half-bumps solution is stable, whereas the central bump
is not; in that case, the solution reaches asymptotically a lateral half-bump solution.

Finally, a comparison of the stability of the solutions for (1.1) and for (1.3) has
been given in [26] at Figure 6 for the parameters of Case 2. Starting from a small
perturbation of the two half bumps solution, we obtain that this stationary solution is
stable in the hyperbolic case and unstable in the parabolic case. Indeed, the asymptotic
solution for system (1.1) is a one lateral half-bump solution.

Now, let us present some numerical simulations to illustrate these results.

5.2. Case 1: stability of 1 half bump, 1 bump, 2 half bumps and 2 bumps.
We begin with the first set of parameters (Case 1) and we study the stability of the

half-bump solution on the boundary described at Proposition 4.2. In Figure 5.1, we
show the results of a numerical simulation of system (1.3) with an initial condition
equal to a perturbation of a half bump on a boundary. Note that the perturbation is
chosen so that the initial condition is a non-negative function. It is clear that the half
bump stationary solution is stable under such a perturbation.
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Fig. 5.1. Case 1 - Initial condition and asymptotic solution for system (1.3) on [0,3] (on the
left) and zoomed on the interval [0,0.25] (on the right). The initial condition is a perturbation of the
half-bump stationary solution and this stationary solution seems stable.

Now, we consider the stability of various two half-bumps solutions. We compute
here the asymptotic solutions of system (1.3) starting with three different two half
bumps solution, namely the symmetric one with the maximal energy (Figure 5.2), the
one with the minimal energy (Figure 5.3) and a third one with an intermediate energy
(Figure 5.4). In figures 5.2, 5.3, and 5.4, we can see that all these stationary solutions
are numerically stable, although we could expect only the one with minimal energy to
be stable. See Proposition 4.7 for more details.
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Fig. 5.2. Case 1 - Initial conditions and asymptotic solutions for system (1.3) on [0,3] (on the
left) and zoomed on [0,0.1] (on the right). The initial condition is a perturbation of the two half-bumps
stationary solution with maximal energy, which seems stable.
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Fig. 5.3. Case 1 - Initial conditions and asymptotic solutions for system (1.3) on [0,3] (on the
left) and zoomed on [2.8,3] (on the right). The initial condition is a perturbation of the two half-bumps
stationary solution with minimal energy, which seems stable.
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Fig. 5.4. Case 1 - Initial conditions and asymptotic solutions for system (1.3). Zooms on [0,0.1]
(on the left) and on [2.92,3] (on the right). The initial condition is a perturbation of one two half-bumps
stationary solution with intermediate energy, which seems stable.

We continue with the study of the stability of the one bump stationary solution,
which existence and unicity have been shown at Proposition 4.1. A first test, not
presented here, shows that this solution remains stable under a slight perturbation. In
Figures 5.5 and 5.6, we show two different tests: we take an initial condition equal to a
translation of the one bump solution. If the translation is small enough (Figure 5.5), the
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Fig. 5.5. Case 1 - Zoom on [1.38,1.62] of initial conditions and asymptotic solutions for system
(1.3) on [0,3]. The initial condition is a small translation of the 1 bump-solution.
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Fig. 5.6. Case 1 - Asymptotic solution for system (1.3) on [0,3] composed of one central bump and
two small lateral bumps (on the left) and zoomed on [0.9,1.6] of the initial condition, the asymptotic
solution and the exact one-bump solution (on the right). The initial condition is a large translation of
the 1 bump-solution.
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Fig. 5.7. Case 1 - Initial condition, asymptotic solution and two-bumps solution for system (1.3).
Zooms on [0,0.3] (on the left) and on [1.5,1.7] (on the right). The initial condition is a perturbation
of the two bumps stationary solution with minimal energy, which is stable.

asymptotic solution is still the one bump stationary solution, whereas if the translation
is large enough (Figure 5.6), the asymptotic solution is one bump with two half bumps
on the boundary.

Finally, in Figures 5.7–5.10, we study the stability of two-bumps solutions. As
demonstrated in Proposition 4.4, there is a continuum of such solutions. We first take
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Fig. 5.8. Case 1 - Initial condition and asymptotic solution for system (1.3) on [0,3] (on the
left) and zoomed on [2.1,2.5] (on the right). The initial condition is a perturbation of the two bumps
symmetric stationary solution with maximal energy, which is stable.
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Fig. 5.9. Case 1 - Initial condition and asymptotic solution for system (1.3) on [0,3] (on the left)
and zoomed on [2,2.4] (on the right). The initial condition is a perturbation of a two bumps stationary
solution with intermediate energy, which is stable.
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Fig. 5.10. Case 1 - Initial condition, asymptotic solution and a two-bumps solution for system
(1.3) on [0,3]. The initial condition is a translation of a two-bumps solution and we reach asymptoti-
cally a solution composed of 2 bumps and one lateral half-bump.

as initial data a perturbation of three different two-bumps solutions and the results
presented in those figures show that all these solutions are stable. More precisely, we
have considered the two-bumps solution with a minimal energy (Figure 5.7), symmetric
with a maximal energy (Figure 5.8) and with an intermediate energy (Figure 5.9).
Finally, if the initial data of the simulation is a translation of the two bumps solution
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Fig. 5.11. Case 2 - On the left, the one bump stationary solution is unstable; on the right, the
initial condition is a two bumps solution computed with the set of parameters of Case 1. In both cases,
the asymptotic solution is a lateral half-bump, on the left or on the right of the interval.
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Fig. 5.12. Case 3 - On the left, the one bump solution is numerically unstable (and a half-bump
seems stable); on the right, a two bumps solution is numerically unstable (and two half-bumps seem
stable).

with an intermediate energy, we find asymptotically a solution with two bumps and one
half-bump on the boundary (Figure 5.10).

5.3. Case 2: stability of 1 bump. For this second set of parameters, only
a few types of stationary solutions exist: the half-bump solution, the bump solution,
the two half bumps solution and a solution made of one central bump and one lateral
half-bump. In Figure 5.11, we display the asymptotic solutions for two different initial
conditions, that is to say, the one bump stationary solution translated (on the left)
or a two-bumps solution computed with another set of parameters and translated (on
the right). For this set of parameters, the asymptotic solution we obtain is always a
half bump on the boundary of the interval (on the left or on the right). From these
simulations, it seems that the half-bump solution is the only stable stationary solution
for the set of parameters of Case 2, unlike the results of Case 1.

5.4. Case 3: stability of 1 bump and 2 bumps. Finally, we present in
Figure 5.12 the results of a stability study for stationary solutions in the case of an
intermediate set of parameters where 2 bumps solutions exist. Beginning with a slight
perturbation of the one bump solution (figure on the left), the asymptotic solution of
system (1.3) is a half bump on the boundary of the interval. Therefore, the 1 bump
solution seems to be unstable. However, the half-bump solution is not the only stable
solution of the system as before, since the second test (figure on the right) shows that,
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starting from a two bumps solution, we find two half-bumps as an asymptotic solution
of the system. The results for the other two-bumps stationary solutions are the same.
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