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WAVE PROPAGATION IN UNDERWATER ACOUSTIC WAVEGUIDES
WITH ROUGH BOUNDARIES*

CHRISTOPHE GOMEZf

Abstract. In underwater acoustic waveguides a pressure field can be decomposed over three kinds
of modes: the propagating modes, the radiating modes, and the evanescent modes. In this paper, we
analyze the effects produced by a randomly perturbed free surface and an uneven bottom topography
on the coupling mechanism between these three kinds of modes. Using an asymptotic analysis based on
a separation of scales technique we derive the asymptotic form of the distribution of the forward mode
amplitudes. We show that the surface and bottom fluctuations affect the propagating-mode amplitudes
mainly in the same way. We observe an effective amplitude attenuation which is mainly due to the
coupling between the propagating modes themselves. However, for the highest propagating modes this
mechanism is stronger and due to an efficient coupling with the radiating modes.
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Introduction. Acoustic wave propagation in waveguides has been studied for a
long time because of its numerous domains of application. One of the most important
application is submarine detection with active or passive sonars, but it can also be used
in underwater communication, mines or archaeological artifacts detection, and to study
the ocean’s structure or ocean biology. Underwater acoustic waveguide are used to model
acoustic wave propagation media such as a continental shelves. These environments are
very complex media because of indices of refraction with spatial and time dependences.
However, the sound speed in water, which is about 1500m/s, is sufficiently large with
respect to the motions of water masses so that we can consider this medium as being
time independent. Moreover, the presence of small spatial inhomogeneities in the water,
heave or the ocean bottom roughness can induce significant effects over large propagation
distances.

The effects of random boundaries has been studied in many physical setups. For
instance, fluid flows in a medium with random boundaries has been studied in [3], water
wave propagation with a free surface or a random depth has been studied in [8, 13],
and also in wave propagation in underwater acoustics with a perturbed sea surface
[7, 22, 23, 26]. Mathematical studies regarding acoustic wave propagation in randomly
perturbed waveguides have been carried out in many papers [10, 11, 12, 14, 15, 17, 19],
but only under the rigid-lid assumption at the waveguide boundaries, and with random
perturbations inside the waveguide through variations of the index of refraction. Re-
cently, waveguides with a bounded cross-section and randomly perturbed boundaries
have been considered in [2]. Using a change of coordinates the authors show that the
scattering effects differ from the ones produced by internal perturbations (see [10]). In
this paper, we consider a two-dimensional acoustic waveguide model with a Pekeris pro-
file (unbounded cross-section), a randomly perturbed free surface, and uneven bottom
topography (see Figure 0.1). Our approach is based on a conformal transformation pro-
viding a smooth change of coordinates and allowing the use of the modal decomposition
of the unperturbed waveguide (see Figure 0.1 (a)). In our model a propagating field can
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be decomposed over three kinds of modes: the propagating modes which propagate over
long distances, the evanescent modes which decrease exponentially with the propagation
distance, and the radiating modes representing modes which can penetrate under the
ocean bottom. Using an asymptotic analysis based on a separation of scale technique
described in Section 1, we show in this paper that the random perturbations of the
waveguide geometry induce a mode coupling between the three kinds of modes. The-
orem 4.1, Theorem 4.2, and Theorem 4.3 describe the coupling mechanisms between
the propagating and the radiating mode amplitudes in term of diffusion models but
taking into account the effects produced by the evanescent modes. These mechanisms
are similar to the ones observed in [15] and produce an effective attenuation of the
mode amplitudes (Theorem 1.1 and see Section 4.2). It turns out that the surface and
bottom fluctuations affect the propagating-mode amplitudes mainly in the same way.
However, for almost all the propagating modes the attenuation mechanism is mainly
due to the coupling between the propagating mode themselves. Nevertheless, for the
highest propagating modes the attenuation mechanism is due to the coupling with the
radiating modes, and it is significantly stronger than for the other modes.

The organization of this paper is as follows. In Section 1 we present the waveguide
model and give a summary of the tools before introducing the main result of this pa-
per. The remaining of the paper consists in introducing more precisely the tools, and
techniques used to prove the results. In Section 2 we introduce the conformal transfor-
mation. In Section 3 we study the mode coupling mechanism when the three kinds of
modes are taken into account and we derive the coupled mode equations. In Section 4,
under the forward scattering approximation, we study the asymptotic form of the joint
distribution of the propagating, and radiating mode amplitudes. Finally, we precisely
describe the attenuation of the propagating-mode amplitudes.
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FIGURE 0.1. Tllustration of two semi-infinite waveguides with a Pekeris profile. In (a) an

unperturbed waveguide with the rigid-lid assumption is considered. In (b) a perturbed waveguide with
a free surface and an uneven bottom topography is considered. In the two cases the waveguide are
homogeneous in the interior with propagation speed profile c¢(z,z) equal to c1 in the ocean section of
the waveguide, and cg in its bottom.

1. Waveguide model and main result
Throughout this paper, we consider a two-dimensional linear acoustic wave model.
We assume that the acoustic pressure satisfies the wave equation
1 0%

M- e = F (t,z,2) ER x R x (0,400), (L1)
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with A=092+02. Here, the coordinate z represents the propagation axis along the
waveguide and the coordinate = represents the transverse section of the waveguide (see
Figure 0.1). Let d>0 be the average ocean depth, we consider the velocity field given
by

ce(z,m):\/Ke(z7$)/pe(z,x)={z; i zgfc‘l/i(%’é;j(b;;?)’ z€R, (1.2)

where VS and V¢ model respectively the free surface and the bottom topography (see
Figure 1.1 for an illustration). In our context, the free surface can model heave produced
by the speed of the wind, and the uneven bottom topography can model a sandy bottom
with variations produced by water currents [20]. The forcing term F(t,z,z) is given by

F(t,z,2)=f(t)¥(2)é(z - Ls)e., (1.3)

where e, is the unit vector pointing in the z-direction. This term models a source
located in the plane z= Lg, emitting a signal f(¢) in the z-direction with transverse
profile ¥ supported in (0,d) (see Figure 1.1).

: Lg x=VE(z) Lfe z
..... .—M\M\/\/\I\MW—.—.)
Ocean 0
ST ®) ......
Bottom '
FicUure 1.1.  lllustration of the waveguide model. In this figure d represents the mean ocean

depth, and the random fluctuations are given by the graphs of V§ at the free surface, and d+ VS at the
bottom of the waveguide model. We illustrate the source term F emitting a wave f(t) in the z-direction.
L/e characterizes the size of the section in which the random fluctuations are included (see (1.4)). The
right arrow (with a 0) pointing to the left at z=L/e indicates that no wave is coming from the right
at the end of the random section.

Moreover, from the continuity of the pressure field at the free surface z=VE(z),
which is tantamount to neglect the surface tension, the wave Equation (1.1) is comple-
mented by the following boundary conditions:

p(t,z,V;(z)) =Psurface V(t,Z)GRXR,

where pgurface is the atmospheric pressure. However, one can assume without loss of
generality that

Psurface = 0,

and then consider Dirichlet boundary conditions at the free surface, which corresponds
to a pressure-release condition.

Waveguide models with a Pekeris profile (1.2) have been extensively studied for half
a century [31], and has been widely used to model an ocean with a constant propagation
speed profile (see Figure 0.1). Such conditions can be found during the winter in Earth’s
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mid latitudes and in water shallower than about 30 meters [24]. This profile is convenient
for computations but it underestimates the real complexity of the medium. Nevertheless,
the analysis carried out in this paper can be extended to more general propagation speed
profiles. This model can also be used for electromagnetic waveguides such as dielectric
slabs or optical fibers with randomly perturbed boundaries [27, 28, 33, 38].

In the definition of the sound speed profile (1.2), V€ and Vi¢ are given by

VE(z)=VeVi(z/le) fs(ez), and VS (2)=veVi(2/l.)fo(ez), with e<1l. (1.4)

We assume that Vs and V;, are two independent mean zero stationary bounded stochastic
processes, and fs and f, are two smooth functions with support included in (en, L) (with
7>0). Therefore, fs(ez) and f,(ez) represent the locations of the random fluctuations
of the free surface and the bottom topography for z € (n,L/¢). The scaling of f, and
/s has been chosen according to the size of the random fluctuations (y/e<1). In fact,
wind speeds at about 5m/s induce a standard deviation of the surface roughness at
about 0.1m, and the same order of magnitude can be considered for the roughness of
sandy bottoms (see [20, Chapter 2] and [23]). Therefore, we have to wait for long
propagation distances (of order 1/¢) to observe significant cumulative stochastic effects
on the pressure wave. Let us note that the two random processes Vy and V;, in (1.4) are
assumed to be independent since the surface and bottom standard deviations are small
compared to the ocean depth, and then the bottom topography does not produce any
ripples on the free surface. In this paper we consider the power spectral densities for Vj
and V}, (i.e. the Fourier transform of their autocorrelation functions) given by

CQ,S

Is(u):/Rs(z)ei“Zdz: Cis e " and Ib(u):/Rb(z)emzdz:

]

Chy
4 (v24+1)20/2’
(1.5)

with C 5, Ca 5, C, >0, and
Ry(2)=E[Vs(2+20)Vs(20)]  and  Ry(2) =E[Vi(2+20)Vs(20)]

(see [20, Section 2.4 and Section 2.9]).

In [20, Section 2.4 and Section 2.9] the authors refer to s, =4, oy, =6, and puy, =2
(Pierson—Neumann spectra), or ay, =5 and py, =4 (Pierson-Moscovitz spectra). Con-
sequently, the trajectories of V£ and V¢ are at least of class C? with bounded derivatives,
and therefore the surface fluctuations given by the graph V¢ do not have breaking waves.
Regarding the mixing properties of V¢ and V¢, we assume that V, and V; in (1.4) are
¢-mixing processes [25], that is considering the o-algebras

fz:FO,z:O—(Vvs(u)v‘/b(u)a OSUSZ) and -Fz,+oo:0(vs(u)avb(u)a ZSU)7 (16)
we have

sup  |P(A|B)—P(A)|<¢(u), with  ¢eL'(R)NLY3(R). (1.7)
AE]"Zzi?L,Jroo
BecFo,-

To study the asymptotic behavior of the acoustic pressure wave in the perturbed
waveguide domain, we use a change of coordinates through a conformal transformation
[34] described precisely in Section 2, from

Do={u+iveC: u>0} onto Dy,={z+izeC: z>V:(2)},
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O(u+iv) =z +ix
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Do Dy

S
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FIGURE 1.2. Schematic representation of the change of coordinates from the unperturbed domain
Dg onto the perturbed domain Dy, .

and allowing us to study the pressure wave p(t,z,z) in a waveguide domain with a flat
surface (see Figure 1.2). As a result, one can focus our attention on pg(t,u,v) defined
by

po(t,u,v)=p(t,z(u,v),z(u,v)),

which represents the pressure wave p(t,z,z) solution of (1.1) in a waveguide domain
with a flat surface, and where z(u,v)+iz(u,v) = ®(u+iv) is the change of coordinates
from Dy onto Dy,. Thanks to this transformation the acoustic pressure wave pg satisfies
now Dirichlet boundaries conditions at the flat surface of the waveguide:

po(t,u,0)=0,  V(t,u) eRxR.

Moreover, the original pressure wave p(t,z,x) can be recovered from pg(t,u,v) by invert-
ing the change of coordinates:

p(t,z,2) =po(t,Re(® (2 +ix)), Im(d (2 +ix))).

We show in Section 2 that this change of coordinates transforms the random fluctuations
of the free surface to random fluctuations in the interior and at the bottom of the
waveguide (see Figure 3.1).

By taking the Fourier transform in time of pg

i I [ —i
ﬁo(&},u,’l}):/po(t,u7v)€LWtdt with pO(t7uav):27/p0(w7u>v)e Zwtdw7 (18)
s

one can decompose the monochromatic pressure field po(w,u,v) as
N(w)

]/)\O(W,U,U) =
Jj=1

0

B (w,) 5 (w,0) + /O B (w,0) b (w,0)dy + / B (w,0) (w,0)dy.

— 00

propagating modes radiating modes evanescent modes

(1.9)

This modal decomposition corresponds to the spectral decomposition of the (unper-

turbed) Pekeris operator defined by
d2

R,= T2 k% (w)n?(v) with n(v)= {

ny=co/c1>1 if ve(0,d),

1 if veld,400). (1.10)
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The spectral properties of this operator are recalled in Section A.1, and here ¢, (w,u)
(j€{1,...,N(w)}) and ¢ (w,u) (Vy € (—o0,k*(w))) are the eigenvectors of this operator.
Moreover, k(w)=w/cq is the wavenumber, ¢y is the propagation speed in the bottom of
the waveguide model, and N(w) is the number of propagating modes. The coefficients
pj(w,u) (je{1,....N(w)}) and py(w,u) (Vv € (—00,k*(w))) represent the amplitudes of
each kind of mode (propagating, radiating, and evanescent modes).

n (1.9), the propagating modes can propagate over long distances, while the am-
plitudes of the evanescent modes decrease exponentially with the propagation distance.
Finally, the radiating modes represent modes which can penetrate under the ocean
bottom. Thanks to this decomposition, one can study the effects of the random fluc-
tuations on the pressure field po(w,u,v) through an asymptotic analysis of the mode
coupling precisely described in Section 3 and Section 4. As a result, by neglecting the
backscattering effects during the propagation and because of the strong attenuation of
the evanescent modes, the expected pressure field py at the end of the perturbed section
(u=L/e) can be approximated for e <1 by

N(w)
L , ,
E[ﬁo( )} Z ajo(w) —7}(w,L)-H'Pj(W7L)€'L/3j(w)L/5¢j(w7v)

VB (w)

k2 (w)a ( ) )
+ T VT (w.0)dy

N(w)
~ Z aj O 773'(w,L)+i'Pj(w,L)eiﬂj(w)L/€¢j (w7'l)), (111)

T V(W

because of the fast oscillating integral. In (1.11) we have introduced the modal wave-
numbers (f1(w),...,Bn(w)(w)) of the propagating modes and (y/7)~e(0,k2(w)) for the
radiating modes. Here, @g(w) is the initial amplitude of the modes generated by the
source and entering in the random section. One can observe that in the asymptotic
€ — 0 the radiating modes are not affected by the fluctuations but do not propagate over
large distance. Only the propagating modes exhibit frequency-dependent attenuations
and phase-modulations through 7;(w,L) and P;(w.L). These coefficients are precisely
described in Section 4.2 with a particular interest in the mode-dependent and frequency-
dependent attenuation 7;(w,L). These terms are of the form

L L
Ti(w.L) = C3(w) / F2(2)dz+ C(w) / [z jef{l.. . Nw),

with C%(w) >0 and C}(w) > 0. Here, the two terms describe the modal cumulative net
scattering effects produced by respectively the surface and bottom fluctuations. The
main result of this paper describe how the surface and bottom fluctuation act on the
net scattering effects.

THEOREM 1.1. In the limit of a large number of propagation modes k(w)>>1, we have
for cce{s,b}:

e for j< N(w)'/?

—+oo

i2
a ~ Ko 3/2 J T
C] (CU) k(w)>1 1 k (M)N(w)Q 0 \/E a(’l})d’l}
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-2 o0

c%w)k(w;%—f(;‘k?’”(w)ﬁ | Vil n0) @N()d)de,

e for N(w)'/? < j <vN(w), with ve(0,1)

5 j3 +oo
a ~ —Kok I,(v)dv,
Cr @), o, KSR @ g [ T

e for j~N(w)
K§k(w)*? < 0% (w) < K&k(w)®?,

where K¢ K$, K¢, K¢, K& >0, 1, is given by (1.5), and 0 =+/1—1/n?.

Theorem 1.1 gives the order of magnitude of the mode-dependent and frequency-
dependent attenuation 7;(w,L) responsible for the effective attenuation of the forward
propagating-mode amplitudes. The first remark is that the surface and bottom fluctu-
ations affect the mode amplitudes mainly in the same way. The second remark is that
the higher the propagating mode is the stronger is the attenuation. In fact, the higher
the mode is the more it bounces on the random boundaries, and then the more it is
scattered. However, as described more precisely in Proposition 4.2 and Proposition 4.3,
while j is not of order N(w) the phenomena is mainly due to the mode coupling between
the propagating modes themselves. However, for the highest order modes j ~ N (w), this
attenuation is mainly produced by the coupling with the radiating modes. The reason
is that only the highest order modes can couple efficiently with the radiating modes
and therefore produced a stronger attenuation since the radiating modes induce strong
losses in the bottom of the waveguide [15].

This kind of result has already been obtained in [2] for waveguides with a bounded
cross-section, which do not support radiative modes. In this paper the authors use a
very convenient local change of coordinates. However, this method cannot be easily
extended to unbounded cross-section without bringing technical difficulties. The main
reason is that to treat the radiating part of the pressure wave one need global estimates
of the distance between the identity map and the change of coordinate over the cross-
section (0,+00), and not only local estimates. This is due to the fact that ¢, (w,-)
does not belongs to L?(0,+00) (see (A.11)). As we will see in Section 2, the conformal
transformation approach allows uniform and L? estimates over the cross-section (0,400)
of this distance.

The remaining of this paper consists in the detail analysis described above to prove
Theorem 1.1 through Theorem 4.1, Theorem 4.2, Theorem 4.3, Proposition 4.2, and
Proposition 4.3.

2. Conformal transformation of the waveguide

The free surface of our waveguide model (see Figure 1.1) is not convenient for the
forthcoming asymptotic analysis based on a spectral decomposition of the acoustic pres-
sure wave. In this paper, we consider a conformal transformation approach allowing us
to transform our waveguide model with a free surface to a waveguide with an unper-
turbed surface (see Figure 1.2). This strategy has already been used in several contexts
[7, 8, 13, 26]. We will see in Section 3 that this transformation by flattening the sur-
face induces deformations in the structure of the waveguide, that is deformations of
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the bottom and also induces variations of the index of refraction of the waveguide (see
Figure 3.1).

To introduce the conformal transformation we consider the waveguide domain with
a free surface as a subdomain of the complex plan C:

Dy, :{z—i—ixE(C: x>V;(z)},

where V¢ is defined by (1.4), and the domain corresponding to the waveguide with a

flat surface is then given by
Doz{u+ive(C: ’U>O}.

We refer to [34] for the basic properties of conformal transformations. In order to
provide an explicit expression of this transformation (from Dy onto Dy,) we need to
consider boundary conditions at infinity. We have assumed that the random perturba-
tions of the waveguide geometry are included in the interval (0,L/¢) in the longitudinal
direction. Therefore, the difference between the conformal map and the identity map
goes to 0 as Z =wu+1iv goes to +o0. The following proposition, which is a consequence
of [34, Theorem 14.8], proves the existence and gives explicit formula of a conformal
transformation from Dy onto Dy, .

PROPOSITION 2.1.  There exists a bijective conformal map ® from Dy onto Dy, defined
by

O (u+iv) =z(u,v) +iz(u,v),

with
z(u U):u_1/+°°dﬁ(a—u)V;(z(a,0)) and  x(u v):v—v/+wdﬁw
’ ™o (@—u)?+v2 ’ L (ﬁf“)H(gQ{)

for all (u,v) such that u+iv € Dy.

Let us note that we can extend the conformal transformation ® as a homeomorphism
from the closure of Dy onto the closure of Dy, thanks to [34, Theorem 14.19], so that
the derivation of (2.1) is a classical result about harmonic functions which can be found
in [1, 30] for instance.

Consequently, one can consider the pressure wave in the new system of coordinates:

po(t,u,v)=p(t,z(u,v),z(u,v)), V(t,u,v) ER xR x (0,400),

where p is the solution of (1.1). Therefore, po(¢,u,v) evolves in the unperturbed domain
Dy and satisfies Dirichlet boundary conditions at the flat surface of the waveguide:

po(t,u,O):Q V(t,u) cR xR.

However, (2.1) involves the term z(u,0) which is not convenient for the forthcoming
analysis. In fact, at the boundary v =0 it is difficult to use the inductive formula z(u,0) =
u—U(2(.,0))(u), where U is the Hilbert transform defined below in Proposition 2.2. In
the following proposition we give an approximation of z(u,0) and then an approximation
of 2(u,0) to justify Assumption 2.1 introduced below.
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PROPOSITION 2.2.  We have for every p € (2,+00)
2(u,0) =u—UVE) (u) + e 7P AS (u), (2.2)
and then
2 (u,0) =V (2(u,0)) = Vi (u) *U(‘GE)(U)d%‘C(U) +e2TVP A (u), (2.3)
with sup, | A{ || e r) + A5 Lrr) < C almost surely, and where C' is a deterministic con-
stant. In (2.2) and (2.3), U stands for the Hilbert transform defined by

L{(f)(u):lp.v. f@ di,

™ Uu—u

where p.v. denotes the Cauchy principal value.

The proof of this proposition is given in [18, Section 5.2]. However, one can easily
see that (2.3) comes from (2.2) using a Taylor expansion of V. Let us remark that
we prove this approximation only in LP(R) with p <oco. The reason is that the Hilbert
transform is not a bounded operator in L>°(R). Moreover, we take p>2 so that A§(u)
n (2.2) and A5(u) in (2.3) do not play any significant role in the forthcoming analysis.
In particular we need to have 1—1/p>1/2 (p>2) in (2.2) and 3/2—1/p>1 in (2.3).
Consequently, for the sake of simplicity in the proof of Theorem 4.1 (Section A.2) we
neglect in what follows the contributions of €' ~1/P A (u) and €3/271/P A5 (u).

ASSUMPTION 2.1.
2(u,0)=u—UV;)(u), (2.4)

and

d
du
However, this assumption will not change the overall results of this paper because the
contributions of the correctors €!~1/PAS(u) (resp. €3/2~1/PAs(u)) are too small with
respect to /€ (resp. €) to produce any significant effects. We keep only the terms which
produce significant effects.

We can remark that (2.4) illustrates the fact that z(u,0) is closed to the identity
map but where the small correction comes from the conformal transform. The same
remark holds for (2.5), at the boundary of the domain Dy, x(u,0) is closed to the original
free surface V¢ but also with a small correction.

Finally, we describe in the following proposition the asymptotic behavior of the
real and imaginary part of the conformal transformation given by (2.1) under Assump-
tion 2.1.

a(u,0) =V (u) =UV$) (u) = Vi (w). (2.5)

ProprosSITION 2.3. For all p>2, we have

sup |2(u,v) —u| + |2 (u,v) —v| < Cpet/27VP almost surely,

u,v>0

and
+o00
suP/ E [|Z(u,v) —ul*+ |z (u,v) _0\2} dv < Cpe'/> 17,
u Jo

where C, is a deterministic constant independent of e.

Proposition 2.3 means, as expected, that the conformal transformation is closed to
the identity map since the amplitude of the surface fluctuations are small. The proof of
Proposition 2.3 is given in [18, Section 5.3].
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3. Mode coupling in random waveguides

In this paper, the stochastic effects produced on the wave propagation is studied
using the spectral decomposition of the unperturbed Pekeris operator defined by (1.10)
and introduced in Section A.1. In this section we introduce the mode coupling mecha-
nism induces by the random free surface and the uneven bottom topography. By taking
the Fourier transform (1.8) of the pressure wave p(t,z,z) we obtain the time-harmonic
wave equation

2

2w, z,x) +02p(w, z,2) + )ﬁ(w,zw):l?“(w,zyx),

2(z,x

where ¢, is defined by (1.2) and f‘(w,z,x) is the Fourier transform of the source term
F(t,z,x) defined by (1.3).

Let us first describe the mode decomposition of the pressure field entering the
perturbed section of the waveguide (0,L/¢). According to the spectral decomposition
of the Pekeris operator (1.10), the monochromatic pressure field can be expanded as
follows in the unperturbed section [Lg,0],

N(w) k2 (w) 0
Plw,z,x) Z Pj(w,2)¢;(w,z)+ / ﬁv(w,zww(w,x)d*y—&—/ Py (w,2) 0y (w,x)d,
=1 0 —0o0
radiating modes evanescent modes

propagating modes

where the mode amplitudes are defined by (A.14) and (A.15), and where ¢;(w,u) (j €
{1,...,N(w)}) and ¢, (w,u) (Vy € (—00,k*(w))), defined by (A.5) and (A.11), are the
eigenvectors of the Pekeris operator. The source term (1.3) implies the following jump
conditions for the pressure field across the plane z= Lg,

]/?\(W,JZ,L;:)*ﬁ(w,IL’,LE) =0

PN ~ _ 3.1
0:pluo,, L) — 0., L) = §F () (a), o
so that the pressure field p(w,z,z) for z € (Lg,0] is given by
@) k(W) 5
a; 1ﬁj(w)z Ay, 0( ) iﬁz
p(w,z,7) z:: ﬁ o (w, x)—l—/o 13 Oy (w,x)dy
/ VIl (w,z)dy Va0,
and where
~ f(w) —iBj(w)Ls .
. — j . 7\I/ 9 c 17...7N s
a]vo(w) 4 Bj (OJ) e <¢] (W) >L (0,+00) J { (UJ)}
~ f(w) vat’ 2
B0 = g1 0 W) gy TEORE), (3:2)

Cyo(w)=— ( ) \WLS@H

TNRE v € (—00,0).

>L2(0 +00)

Assuming that the source is far away from the randomly perturbed part of the waveguide
(|Ls|>>1), the evanescent part of the incoming wave at z=0 can be neglected because
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of a strong attenuation. Therefore, we can consider

Nw) B g ()
Z \/Jﬁoi Pz g (), m)+/ W?M eV (w,x)dy, Vo >0.
i ( 0

(3.3)

Now, to study the evolution of the pressure field in the perturbed section (0,L/¢)

through a mode coupling mechanism, we consider the new system of coordinates in-

troduced in Section 2. This transformation allows us to flatten the free surface of the

waveguide domain, and then to decompose the pressure field with respect to the propa-

gating, radiating, and evanescent modes. The pressure field p(w,z,z) in the new system
of coordinates is given by

Do(w,u,v) =p(w, z(u,v),z(u,v)), Y(u,v)€Rx(0,+00), (3.4)

where z(u,v) and x(u,v) are defined by (2.1) under Assumption 2.1, and satisfies the
following time-harmonic wave equation:

20 (w,u,v) + 02Po (w,u,v) + k* (W) J (w,0)n2 (u,v)po(w,u,v) =0, (3.5)
for all (u,v) €[0,L/€] x (0,400), with Dirichlet boundary conditions
Po(w,u,0)=0,  YueR. (3.6)

Moreover, in (3.5), the Jacobian J. and the index of refraction n. are given by

2

Je(u,v) = (8um(u,v))2 + (&,x(u,v)) , (3.7)
and for all (u,v) €R x (0,+00)

ni=co/c1 >1 if ve (0,27 (u,d+Vi(z(u,v)))),

ne(u,v) = CO/CE(Z(U,U)7$(U,U)) = { 1/ if ve El‘_l(u,(d—FVbE (i((u,(v)))),)—?-)oo)

(3.8)
According to (3.5), let us remark that the waveguide transformation transfers the sur-
face perturbations to the interior of the waveguide through the Jacobian J., and to
the bottom of the waveguide through the index of refraction n.(u,v) defined by (3.8)
(see Figure 3.1). Thanks to the Dirichlet boundary conditions (3.6), the effects of the
random perturbations can be studied using the modal decomposition corresponding to
an unperturbed waveguide.

3.1. Coupled mode equations. Let us begin this section with two remarks

n (3.5). First, J.(u,v)n?(u,v)po(w,u,v) does not necessarily belong to H = L?(0,+00)

since the Jacobian J blows up as v goes to 0. This technical difficulty can be avoided by

considering the following assumption on the modal decomposition (1.9) of the pressure
field po(w,u,v) defined by (3.4).

ASSUMPTION 3.1. For all (u,v) €R x (0,400), we have
N(w)
Po(w,u,v) Z Py (w,u)pj(w,v)+ / Dy (w,u) oy (w,v)dry, (3.9)
(=1/&=8U(&k? (w))

where the modes amplitude are defined by (A.14) and (A.15).
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FIcure 3.1. Illustration of the conformal transformation on the waveguide with a free surface
and an uneven bottom topography. Figure (a) and Figure (b) represent waveguides with a free surface.
In these figures the wvertical dashed lines mean that the medium parameters are mot perturbed. In
(a) the bottom is not perturbed, that is V,£ =0, and in (b) the bottom of the waveguide is perturbed.
Figure (c) represents the waveguide after the conformal transformation. In this figure the perturbed
vertical dashed lines mean that the medium parameters are perturbed. Moreover, if the bottom was
already perturbed before the conformal transformation (Figure (b)), it is now also is perturbed by the
waveguide transformation.

The cut-off induced by € in the previous decomposition allows to obtain a rigorous
derivation of the following coupled mode equations more easily, but without changing
the overall results obtained in Section 4.1. Basically, we make an error of order O(¢)
with this assumption, and the main results in Section 4.1 are obtain after passing to
the limit £ — 0. Consequently, according to Assumption 3.1 the coupling mechanism of
the spectral components of the pressure field will be studied in the space

CNE) 5 L2 ((—1/€, =€ U (€, k> ())).-

Finally, we assume that e < £ <1 so that we have two distinct scales. In this paper, we
consider first the asymptotic € goes to 0 and in a second time the asymptotic £ goes to 0.
As a result, the mode amplitudes in (3.9) satisfy the following coupled mode equations
for ue[0,L/¢]:

q2 N (w)
Wﬁj(wvu)+52( )P (w,u) + k* (w Z S(w,u)pr(w,u)

+k2(w)/ Cj,y,(w,u)ﬁ,yl(w,u)d'y’:(),
(=1/&,=8U(&,k2 (w))

a2 R R N(w) . R
Wp,y(w,u)—k'ypw(w,u)—&—kz(cﬂ Z O’yl(w7u)pl(w7u)
=1

+k2(w)/ CS (W, u)py (w,u)dy' =0,
(—=1/8,=§U(&,k?(w))
(3.10)



C. GOMEZ 2017

where
+oo
Cﬁs(w,u):/o (Je(u,v)nf(u,v)fn2(v))¢r(w,v)¢s(wm)dv, (3.11)

for (r,s) e ({1,....,N(w)} x (=1/&,—-&)U(£,k*(w)))?. Under Assumption 3.1, the cou-
pling coefficients C¢(w,u) and then the previous coupled mode equations in CN ) x
L2((—1/€,-€)U(&,k*(w))) are well defined since 3K . > 0 such that sup,,|J. (u,v) — 1| <
Ky . /v?, and

QSr(w,v)v:Ong Vre{l,...,N(w)} x (=1/&, - Uk (w)). (3.12)

Moreover, sup,,|n2(u,v) —n?(v)| is bounded and has a bounded support with respect to
the transverse variable v. Let us also remark that

T, 002 (,0) = 1 (0) = 02 (w,0) (Jo(u,0) 1) 4 (0 (w,0) —n>(v)),

so that the first part of the decomposition induces random perturbations in the core of
the waveguide, while the second part which is the difference of the index of refractions
induces random perturbations at the bottom of the waveguide (see Figure 3.1).

The two asymptotic results in Section 4 (Theorem 4.1 and Theorem 4.2) are based
on a diffusion-approximation result for the solution of ordinary differential equations
with random coefficients in a Hilbert space. However, according to the formula of the
conformal transformation (2.1) and the coefficients (3.11), we cannot directly apply the
asymptotic results obtained in [10, 15, 17] since the mode amplitudes are not adapted
to the ¢-mixing filtration (1.6). In fact, in (2.1) all the trajectory of V£ is involved,
which leads us to technical difficulties to manage the random coefficients (3.11), and to
use the mixing properties of the random perturbations (1.7). For the sake of simplicity
in the proof of Theorem 4.1 we consider the following assumption.

ASSUMPTION 3.2.

C’ey'y’((")?u)zoﬁ V(’%’y/)6(_1/67_5)U(£’k2(w))'

This assumption means that we neglect the coupling mechanism between the radiating
and evanescent modes, they do not interact with each others. Let us remark that in
[15], in which the random perturbations take place in the interior of the waveguide, the
mode coupling mechanism between these modes do not play any significant role.

Next, we introduce the amplitudes of the generalized right- and left-going modes
a(w,z) and b(w,z), which are given by

R 1

pj(u)= NG

~ 1/ INGIIEN —iud/\ . 1/4 ([~ iAyu 7 —i/Au
py<u>=W(a7<u>eﬂ B, (w)e™VT) = (u) = i (@ (weV T b, (w)e V),

-~ iBju | 7 —ifu d = . ~ iBiu 7 —iBu
(a5 we s+ biwpe5), pi(u)=iy/B; (a;(we ™ —by(we ")

so that

8.5 (w) + L5, o -
& (u) = i8ip; (W) + 305 (%) _igu - (u) = i/ () + Py (4) i
’ 2i\/B; C 2i1/4 )
o o o L
b (u) = i050;(4) ~ =P (W) igu 3 (u)= iv/AP () = 5 (1)
! 2i,/B; ™ 90174 ,

(3.13)
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for all j€{1,...,N(w)} and almost every v € (£,k*(w)). From now on, let us denote
HE =CNW x L2 (£,k* (w)).

From (3.10) and (3.13), we obtain the coupled mode equation in Hg xHg x
L*(—1/¢,-¢) for the mode amplitudes (a(w,u), b(w,u),ﬁ(w,u)):

d . aa ~ ik? (75 C5(u) iByu
0 =B ) @)+ B+ 5 [ 6 L e

\/57 ' (3.14)

0 ) = 2%, () @) + B ) (),
) = @) + HC ()~ - [ F Oy
du’ ©& & 2 Joye VB (3.15)
05, ) =B o) @)+ B, () (),
and
j?ﬁv(w,u)—i—'yﬁw(w,u)—l—\/Egv(w,u):Q (3.16)
where

Q
)
—
£
I
N
)
(=
P
=
=
7~

ar(u)e’ +31(U)€_iﬂlu)

~ VB
K oe (u A L —£
+k? / i (4 : (G (e 1y (we™ VT ) ay 112 [ CE () ()
3 ' / -1/¢
(3.17)
(3.14)—(3.15) we have
k2 r L O Koo (u) ., o
a%] |:Z I(Bl_ﬁj)uyl'i_/ L()el(\/’?_ﬁj)uyyld’y/}7 (318)
= ¢ BT
ik s Ol RCe L (u)
cen (1) {Z e!hr= f)uyl‘F/f 17: aac eV 'dvl}, (3.19)
ikz C€ (u) —1 I kz CE /(U) —q 7 u
Hefj( )(y)ZT[Z jgﬁ € (Bi+55) yl+/ Le (V+B;) y,y/d’y/:|, (320)
=1 Jl &\ /BivAY
H (u )(y)w[i nyl(u) ei(ﬂz+ﬁ)uyl+/k2 Mefi(ﬁ+ﬁ)uy /d’y’] (3.21)
e,y \U 9 — \ﬁﬁl ¢ ’Y1/4’Y/1/4 v

The operators H{¢ (w,u) and H¢ E(w u) represent the coupling between the propagating
and the radiating modes with themselves. Moreover, H¢¢(w,u) describes the coupling
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between the forward-going modes, while H?% (w,u) describes the coupling between the
forward- and backward-going modes. Let us note that in absence of random pertur-
bations, the mode amplitudes a(w,u) and b(w,u) are constant. We complement this
system with the boundary conditions

o~

a(w,0)=a5%(w) and b(w,L> =075 (w) in HY, (3.22)
€

where a5 (w) and /b\eL&(w) are defined by (3.13), (A.14), and (A.15), for respectively
u=0 and u=L/e. In (3.22), 60’5 (w) represents the initial amplitudes of the right-going
propagating and radiating modes at © =0, while geLg (w) represents the initial amplitudes
of the left-going propagating and radiating modes at uw= L/e. However, let us recall that
the pressure wave entering the random section at z=0 is given by (3.3), and that we
assumed that no wave is coming from the right at z=L/e (see Figure 1.1). The following
proposition shows that agvf(w) is closed to the mode amplitudes ag(w) (defined by (3.2))
of the pressure field (3.3) coming from the right homogeneous part of the waveguide
and entering the random section at z=0. The convergence of 325 (w) toward 0 in the
following proposition is due to the fact that we assumed that no wave is coming from
the right at z=_L/e (see Figure 1.1).

ProrosiTiON 3.1. We have
tim E |15 (w) — o(w) 13 + 155l | =0.

Proposition 3.1 gives us an approximation of the coefficient Zig’g(w) in Hg, which is used
in Theorem 4.1 and Theorem 4.2 to determine the initial conditions of the asymptotic
diffusion processes. This proposition is a direct consequence of Proposition 2.3 and
Parseval’s equality associated to the spectral decomposition introduced in Section A.1
since we have

+oo
/ E[|ﬁ0(w,u*,v)—ﬁ(w,u*,v))|2+|3uﬁ0(w,u*,v)—3uﬁ(w,u*,v))|2 dv
0
“+o00
§C/ E[|z(u*,v)—u*|2—|—\x(u*,v)—v\Q dv,
0

where w, is either equal to 0 or L/e. Let us remark that this inequality holds because
uy is out of the randomly perturbed section of the waveguide (see Figure 1.1), so that
we can use the variable v € [0,4-00) of the unperturbed transverse section also for the
original monochromatic pressure field p(w,z,x).

3.2. Influence of the evanescent modes on the propagating and radiating
modes. In this section we describe the influence of the evanescent modes on the cou-
pling mechanism between the propagating and the radiating modes. The main goal is
to obtain a more convenient coupled mode equation involving only the propagating and
the radiating modes, but taking into account the contribution of the evanescent modes.
However, to obtain the following proposition we introduce the following radiation condi-
tion for the evanescent modes meaning that the energy carried by the evanescent modes
decay as the propagation distance becomes large.

ASSUMPTION 3.3.

+o00 —£ 2
lim ‘/ Dy (w,u) oy (w,v)dy| dv=0.
0 —-1/¢

u—+00



2020 WAVEGUIDES WITH ROUGH BOUNDARIES

Consequently, thanks to Assumption 3.3 and following [15, Section 4.3] (see also [18,
Section 5.4]), we can rewrite (3.14)-(3.15) in a closed form in Hg x H'.

PRrROPOSITION 3.2.  We have

%mw,u): 24 (w,u) (@(w,u)) +H% (w,u) (b(w,u))
+G% (w,u) (@(w,w)) + G (w, ) (b(w,u)) + A (u), (3.23)

) =HZ (0,0) (@0 0) + HE% (0,2) (b))

+ G (w,u) (a(w,u)) + G2% (w,u) (b(w,u)) + B (u), (3.24)
for all uwe[0,L/¢€], where
. . €3/2—1/p N N
sup [|A“(u)[l2z + 1B (u)llpy <C——F— sup (Ila(w,u)llug+||b(w,u)llng)
wel0,L/€] §  uel0,L/q
(3.25)

for every p>2.

n (3.23) and (3.24), the operator H¢¢ and H‘Zbg are defined by (3.18)—(3.21), and
according to Assumption 3.2

, u+u e s o
% (y / / G (W )ﬂ/\vHulﬂﬁjuﬂﬁz(wwyl (3.26)
1/¢ BJW |/6l

G Gl BHY) _ ljal-i6yu—iti(a+w
6,5,1( i
~1/¢ w)|Y'[Br

ct L (u)(y)= G",g,y( u)(y)=0, for almost all y € (£,k?), (3.27)

with y € H¢ and where C¢(w,u)=0 if u¢[0,L/e]. Here, the operators G{% and szg
represent the coupling between the evanescent modes with the propagating and the
radiating modes. Let us remark that we take p>2 in order to have 3/2—1/p>1 in
(3.25), so that the correctors A€ and B€ are small enough to do not play any significant
role in the forthcoming analysis.

Equations (3.23) and (3.24) describe the coupling process between the propagating
and the radiating mode including the influence of the evanescent modes and the evanes-
cent part of the source term. However, it is difficult to get good a priori estimates
on

sup ([0 g + 50,0 (3.28)
w€e[0,L /€]

to be sure that the residuals A¢ and B¢ in Proposition 3.2 are small even after large
propagation distance L/e. One way consists in introducing the following stopping “time”

~ ~ 1
L€ —inf (L>o, sup [[a(w,u)lpz + [B(w,u) | > T¥),
w€e[0,L/¢€] €
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where « is such that 3/2—1/p—a>1, in order to limit the size of the random section
and control the size of the residuals A€ and B¢. However, will see in Section 3.3 that
under the forward scattering approximation, we have

ImP(LE<L)=0  VYL>0,

e—0
which means that with high probability the residual terms are small.

3.3. Forward scattering approximation. The forward scattering approxima-
tion is widely used in the literature, and consists in assuming that the coupling between
forward- and backward-propagating modes is negligible compared to the coupling be-
tween the forward-propagating modes. In this case, the amplitudes of the left-going
modes b should converge to 0 as ¢ — 0 since we have assumed that no wave is coming
from the right (see Figure 1.1). A rigorous derivation of the forward scattering ap-
proximation is technically complex. The main technical problem is to obtain a uniform
bound with respect to € for (3.28). To correct this issue we could think that it suffices to
use in a first step the stopping times corresponding to the first exit times of closed balls
with respect to the norm |||l as described in [35, Chapter 11]. Unfortunately there
are two problems. The first problem is that it is not possible to show a limit theorem
on C([0,L],( 2’7H||Hg)) In fact, if the convergence holds on C([0, L], ( 2’,||\|Hg)) the
energy conservation property (3.30) should be also valid for the asymptotic diffusion
process according to Portmanteau’s theorem [4]. However, this conservation property
contradict the energy dissipation of the limit process!. As a result, it seems to be
more appropriate to obtain a limit theorem on C([0, L], H¢ ) where H¢ , stands for H
equipped with the weak topology. However, the second problem is that these first exit
times are lower semicontinuous with respect to the topology of C([0,L], (H¢, [l ),
but not with respect to the one of C([0,L],H¢ ). Therefore, the classical technique of
[35, Chapter 11] cannot be applied.

Nevertheless, one can formally show using the diffusion approximation theorem
proved in [10] that the coupling between right-going propagating modes and left-going
propagating modes involves coefficients of the form

+o0 +oo
/o Ry (u)cos ((Bi(w)+ Bj(w))u)du and /0 Ry (u)cos ((Bi(w) + B (w))u)du,

while the coupling between two right-going propagating modes or two left-going prop-
agating modes involves coefficients of the form

+o0 +oo
/O Ry (w)cos ((Bi(w) — B;(w))u)du  and /0 Ry () cos ((51(w) — ; (w))u) du,

for all (5,1) € {1,... ,N(w)}Q, and where R, R, € L' (R) are the autocorrelations function
of V5 and V;, (see (1.5)). Consequently, in our context if we forget these technical prob-
lems, according to [10, 14] the forward scattering approximation should be valid in the
asymptotic € — 0 under the following assumption, meaning that the Fourier transform
of the u-autocorrelation functions possess a cut-off wavenumber.

'We refer to [15, Theorem 6.1] for the statement of this result in the case of perturbations in
the interior of the waveguide. The same theorem holds in our context but the precise study of the
asymptotic mean mode powers will be addressed in a later work.
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ASSUMPTION 3.4.  For all (j,1) € {1,...,N(w)}2,

—+o00 —+o0
/0 Ry (u)cos ((Bi(w) + Bj(w))u)du=0and ; Ry (u)cos ((Bi(w) + B (w))u)du=0.

As a result, under these assumptions, there is no effective mode coupling between the
right-going and left-going propagating modes, but there is still coupling between the
right-going propagating modes which is described in Section 4. Let us remark that
the continuous part (0,k?(w)) of the spectrum corresponding to the radiating modes
play no role in the previous assumption. The reason is that the radiating modes and
the evanescent modes play no role in the coupling mechanism between the right- and
left-going modes as it has been shown in [15, 17].

Consequently, according to the forward scattering approximation we only consider
the simplified version of the forward coupled mode equations (3.23) and (3.24):

diia(w, u) =H{ G (w,u) (@(w,u)) + G (w,u) (@(w,u)) + A (u) (3.29)

in HY, for ue|0,L/e], where an are defined by (3.18)—(3.19), (3.26)—(3.27),
in H, for ue[0,L/c], where H% and G2% are defined by (3.18)-(3.19), (3.26)(3.27
and with
(3/2-1/p -
sup  [|A“(u)llyy SC——F— sup a(w,u)[ne, Vp > 2.
wel0,L/€] §  uelo,L/q

The evolution Equation (3.29) is complemented with initial condition @(w,0) =a5* (w),
where @5°(w) is introduced in Section 3.1. As already discussed, under the forward

scattering approximation, we have the following proposition.

ProrosiTiON 3.3. We have

limP(L¢<L)=0, where L¢=inf (L >0,  sup |[a(w,u)]e > i),
=0 uw€[0,L/¢€] ¢ €

The proof of Proposition 3.3 follows exactly the one of [16, Proposition 4.1]. Conse-
quently, under the forward scattering approximation, one can adapt the results obtained
in [15, Section 4.2] to the system (3.29) in order to derive the local energy flux conser-
vation for the propagating and the radiating modes, that is for all >0

LmP( sup > n) —0, (3.30)

~ 2 a 2
ligP( sup |3y —30(w) ey

meaning that the amplitude a(w,u) is asymptotically uniformly bounded on [0,L/e] in
the limit € —0. The derivation of (3.30) is based on Lemma A.1, Proposition 3.1, and

Proposition 3.3. Consequently, using Gronwall’s lemma, Proposition 3.1, and Proposi-
tion 3.3, we have the following proposition.

ProrosiTION 3.4.  We have for all n>0
lim]P’( sup  [[a(w,u) — a1 (w, )2 >n) —0,
=0 w€e[0,L /€] ¢

where a1 (w,u) is the unique solution of the differential equation

iZil(w,u):H?E((,u,u)(al(w,u))—|—G:Z"E(cu,u)(iil(w,u)) with  ay(w,0)=ap(w).

du
(3.31)

As a result, thanks to Proposition 3.4 and [4, Theorem 3.1], we can focus our attention
in what follows on the process @ (w,u), which is studied in detail in Section 4.
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4. Coupled mode processes

In this section, we study in a first time the asymptotic behavior, as e — 0 first and
then £ — 0, of the statistical properties of the mode coupling mechanism (3.31) in terms
of a diffusion process. In a second time we study the net scattering effects for the
propagating-mode amplitudes.

First of all, let us define the rescaled process according to the size of the random
section [0,L/¢],

% (w,u) =0, (w,y) Yu €0, L].
€

This process is the unique solution on [0, L] of the rescaled forward coupled mode equa-
tions

%a € (w,u) = fo’“(w,%)(ae’g(w,u))—&-% zg(w,g)(aﬁf(w,u» (4.1)

in H¢, with initial conditions a“%(w,0) =ap(w) defined by (3.2), and where HZ% and
¢t are defined by (3.18)-(3.19) and (3.26)—(3.27).

4.1. Limit theorem. In this section, to simplify the presentation we first focus
our attention only on the random perturbations at the surface of the waveguide, that is
we assume that Vf =0. Afterward, we take into account also the randomly perturbed
bottom topography of the waveguide. To prove Theorem 4.1 and Theorem 4.2 we
consider the classical nondegeneracy condition [10, 14, 19].

ASSUMPTION 4.1. The modal wave-numbers (f1(w),...,Bn(w)(w)) defined in Sec-
tion A.1 are distinct along with their sums and differences.

Let us note that this condition is not necessarily satisfied for nonplanar waveg-
uide model. However, in this case, Assumption 4.1 can be still valid if the statistical
properties of the random fluctuations are rotationally invariant [19].

4.1.1. The random surface. This section is devoted to the asymptotic analy-
sis of the forward mode amplitude a*¢(w,u) solution of (4.1), and where the random
perturbations of the waveguide are only due to the random surface, that is V,f =

THEOREM 4.1. Let L>0. In the case Vi =0, under assumptions 2.1—4.1 and the
mixing conditions (1.7), the family (6675(w,-))6€(0 1y; unique solution of (4.1), converges

in distribution on C([0,L],H¢ ) as e =0 to a limit denoted by a%(w,-). Here HE,, stands
for the Hilbert space H¢ equipped with the weak topology. This limit is the unique
diffusion process on HY, starting from ag(w) defined by (3.2), and associated to the
infinitesimal generator

L% () = L5 (w) + L8 (u) + L3 (w), (4.2)

where

ﬁws

Z e (T T;0r, 07 + TTi0r, 0 — Ty T, O, —

7,l=1
J#l

T o)

i (F” r;f(w)) (T or, +T; (%) f2( ) Z)ij(w) (TjaTj —Tj%)

=1
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and
2 N(w)
w,s s u c,s, <A S,S, c,s, <A S,S, T
£pg =1 S (K07 0) + i34 T, + (A5 () —iA5*4()) Ty0p
=1
N(w)
L5 =if2(u) Y kS (w) (TjaTj *TjaTj> : (4.3)
=1

Let us note that according to the infinitesimal generator ﬁ‘g’s defined by (4.2), the
diffusion phenomena happen on the support of fs describing the location of the random
perturbations of the surface of the waveguide (1.4).

Here, we have considered the classical complex derivative with the following nota-
tion: If v =1 +ivs, then 0, = 3 (8, —i0y,) and d5= 3 (8y, +10y,). The coupling coeffi-
cients are given by the following notations. Let us denote

Qrr, 51,7250, 4) = (03 1261, (4)6, (€)1, (@) ()
T %(n% —1)[A|¢r, (d)¢s, (d) - Dry (V) s, (0)0 (U)e_(d+v)lA‘dU
4 +oo “+o0 ’ .
+22 [ [ 00600 () (0 e M. (44
0 0

™

We have for all (j,1) € {1,...,N}2 and j#1

4 +o00o
F;ZS:ﬁQ(j’lvjvlvﬁj_ﬁl) 0 R ( )COS((ﬁl BJ)Z)dZ
J
it oo
FjZS:WQ(]alvjalaﬂjfﬂl)/ R ( )Sln((ﬁl ﬂ])z)dz
I = Zrﬂ, D = erl, (4.5)
l#] l;ﬁ]

and for all (j,0) € {1,...,N}2,

s k2 ]{74
Aj“f=/€ 575, OOV R UVAVATS 5a/ Ry(2)cos (V7' = B;)z) dzd,

k2 k4
$,8,6
Aj _/5 2\/76] a]?’y J\/ﬁ 5]/ R Sln f BJ )dZd’Y7

—£ i ke +o0 i Je2
,{?75:/ L G%) (w,z)cos (,sz)e_\/wzdzdv—i— ;7/BjG§2). (4.6)

—o00 Qﬁj\/m 0

Here, we have

(1) e o
Gm (2) :/0 I (u)Q(v, 4,7, j,u) cos(uz)du

and

“+o0 ~
G =(nt ~1)¢3(d) 6 /0 I (ujue™>"du-+U(R.)(0)]
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2 +oo
H =D, (@ [ Lwe

—+oo —+o0
+ ¢?(U)n2(v)/ I (u)e 2" (1 +u?)du.
0 0
In the previous expressions n(v) is defined in (1.10), R stands for the autocorrelation
function of the random process V,, and R, is the correlation function of the processes V,
d d%Vm which is d%RS. Let us remark that the first (resp. the second and the third)
term in the right hand side of (4.4), and G") are produced by the coupling mechanism
between the propagating modes at the bottom of the waveguide (resp. between the
bottom and the transverse section, and through the transverse section of the waveguide).
In the proof of Theorem 4.1, the random operator G¢% in (4.1) can be treated
following the ideas of [21] as it has been done in [15, 17]. In fact, the technique developed
in [21] does not require any mixing properties. However, the random operator H{%
requires to introduce an approximation of the random coefficients (3.11) to turn this
formula in a more convenient form to use the ¢-mixing properties of the filtration (1.6).
The approximations of the random operators H¢¢ and G¢% are given in Lemma A.1,
Section A.2.1. The remaining of the proofs are based on a martingale approach using the
perturbed-test-function method. In a first step we show the tightness of the processes,
and in a second step we characterize all the subsequence limits by mean of a well-posed
martingale problem in a Hilbert space. Finally, let us remark that the convergence in
Theorem 4.1 holds also in C([0, L], (H¢, |- lx)) only for the N(w)-discrete propagating
mode amplitudes.

4.1.2. The random surface and random bottom. In this section we present
the asymptotic analysis of the forward mode amplitudes a**(w,u), where we consider
a randomly perturbed bottom topography in addition to the randomly perturbed free
surface. This section presents no additional difficulties since the random perturbations
of the surface and the bottom are assumed to be independent, and can be treated
directly using the method of [15, 17].

THEOREM 4.2. Let L>0. Under Assumptions 2.1—4.1 and the mixing conditions
(1.7), the family (Zie’g(w,-))ee(o 1y; unique solution of (4.1), converges in distribution on

C([0,L],Hg,,) as €—0 to a limit denoted by a%(w,-). Here He S stands for the Hilbert
space H¢ equipped with the weak topology. This limit is the unique diffusion process on
He, starting from ag(w) defined by (3.2), and associated to the infinitesimal generator

L2 (w) =L () + L (), (4.7)

where L£°°(u) is defined by (4.2), and

L0 (u) = L0 (w) + Ly P (w) + L7 (w), (4.8)
with
N(w)
0 (uy=o 1) 3™ ped (@) (T3 T501,0g; + T, 0 — TyTi0r, 01, ~ T 0507y
7,l=1
J#l

N(w)
f2(u) Z 1,b s — .
b2 Fjl (w) (TJTZaTJ %—FT]‘E(?TT(“)TL —TjTlaTj 6Tz —TJTZB,JTJ%)

=1

+
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2 u N(UJ) —
DS (0@ - w) (10, + T
j=1

f}?(u) ) s,b T
ol ; U@ (Lor, -Tiog ), (49)
and
Z (A5 (@) +i0F S (@) T30, + (A5 () =i (@) T; O
=
N(w) -
ot Z (T or, TjaT—j). (4.10)

The coupling coefficients in (4.9) and (4.10) are defined as follows: for all (j,1)€
{1,...,N(w)}2 and j#I

p 2K MA—1)202(d)gP(d) [+ s,
L= Bib /o Rulz)cos (B =5y)2)
sy 2K (nT—1)2¢3(d)p7(d) [T :
Fjib: (nl B)jﬁlj( ) l( ) /0 Rb(z)sul((ﬂlfﬂj)z)dz
Igp=- Zfﬂ LTy Zfﬂ , (1)
l;éj l?ﬁJ
2

and for all (j,0)€{1,...,N}",
2k* (n1 —1)?¢3(d) b7 (d)

b

Iy’ = B i Ry(2)dz,

c K2k (n] —1)293 ()92, (d) [+ , /
Aj’bé:/g 1 \/’7/77]1' ] 0 Ry (2)cos (v = B;)z) dzd,

. K2kt (nd —1)202(d)g2,(d) [+ : /
AJjb’g:/{ ny Wﬁ]]( Y ( /0 Rb(z)sm((ﬁ_ﬂj)z)dzdv s

e [ B DG
—ve Bivhl 0

+iRy(0)

- Ry (z)cos (B;2) e_\mzdzd'y

2
8k*(nf —1)%¢3(d)¢’;(d)
Bi

The drift (£57, L3, L:;’Eb, and L3 ?? defined by (4.3) and (4.10)) of the diffusion
process a%(w,-) still depend on the parameter ¢ introduced in Assumption 3.1. Before
discussing the meaning of each terms in (4.2) and (4.8), we give the following result
regarding the asymptotic & — 0.
THEOREM 4.3. Let L>0. The family (Zig(w,-))ge(o 1) converges in distribution on
C([0,L],(HE, || llng ) as €0 to a limit denoted by a(w,-). This limit is the unique dif-
fusion process on HE , starting from ag(w) and associated to the infinitesimal generator

L9 (u) = L] (u) + L5 (u) + L35 (u), (4.13)

(4.12)
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where
N(w) o
:_,Z 72(0) (A" (@) A3 (@) T 01, + (A7 (@) = i3 (@) T;0r5 )
+1? (u)((Ag’b<w>+iA§*b<w>>TjaTj+<A§’b<w>fm;*b<w>>ﬁaﬁ),
N(w)
L= Y (05 + e ) (101, T ).

with for all j€{1,...,N(w)}

s (Y i ACS:E 5,50\ 55,6 S (i) Tirr S
Aj (w)—gg%/\j (W), A7 (w)= Jim A (W), Kj(w) L (w), (4.14)
and
c,b c,b,& s,b T s,b,& b 1 b§
AT (w )—%lgg)/\ (w), A; (w)—glg%f\j (W), Kj(w) glg%f”»] (w). (4.15)

Let us note that in Theorem 4.3 the limits in (4.14) and (4.15) with respect to § are
well defined thanks to (A.11)—(A.13).

Consequently, Theorem 4.1, Theorem 4.2, and Theorem 4.3 describe the asymptotic
behavior, as e — 0 first and then £ — 0, of the statistical properties of the forward mode
amplitudes @*¢(w,-) in terms of a diffusion process with infinitesimal generator (4.13)
and starting from ap(w) given by (3.2). The infinitesimal generator £* is composed of
three parts which represent different behaviors on the diffusion process. However, we can
remark that this infinitesimal generator depends only on the N (w)-discrete coordinates,
so that the radiating part of the forward mode amplitudes remains constant. This
result has already been obtained in [15, 17] in a different setup. The first operator £Y
describes the mode coupling between the N (w)-propagating modes. This part is of the
form of the infinitesimal generator obtained in [10, 14], and for which the total energy
is conserved. The second operator L4 describes the coupling between the propagating
modes with the radiating modes. This part implies a mode-dependent and frequency-
dependent attenuation on the N(w)-propagating modes, and a mode-dependent and
frequency-dependent phase modulation. The third operator £ describes the coupling
between the propagating and the evanescent modes, and implies a mode-dependent and
frequency-dependent phase modulation. The purely imaginary part of the operator £“
does not remove energy from the propagating modes but gives an effective dispersion.
Finally, let us remark that their is no I''* term for the surface fluctuations. The reason
is that I;(0)=0 for (1.5) (Pierson-Neumann and Pierson-Moscovitz spectra), that is a
mode cannot be coupled with himself.

4.2. Mean mode amplitudes. In this section we describe the effects of the
random perturbations on the forward mean mode amplitudes. From Theorem 4.3, we
get the following result.

PROPOSITION 4.1. For all z€[0,L] and j€{1,...,N(w)}, we have

lim hmIE[ > (w,z)] :E[aj(w,z)]

£—0e—0

©F (w) =T (w) — A" (w) +i(T5° (w —A5 s
—exp[(rm( ) F]]( ) j ( )+2(F“( ) i (w)+2K; ( )/ fs :|
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c,b 1,b c,b .1s,b s, b
XHPKRA> I35 () = A5 (@) (155 (w) = A5 (w) 2K (w )/jb “%” o

2

where ag(w) is defined by (3.2).

First, let us note that the mean amplitude of the radiating part remains constant on
L?(0,k%(w)), since the diffusion process only holds for the propagating modes (see The-
orem 4.3). Second, for all j € {1,...,N(w)}, the coefficients (T (w) +AG(w) =T%;(w))/2
are nonnegative according to Bochner’s theorem [32] or [10, Section 6.3.6].

The decay rate for the mean jth-propagating mode is given by

[E[a;(w,2)|
[ 0 (w)|e~ (A5 =T @) J5 £2 (/2= (T3 @)+ A5 @)=T5 (@) Ji £ (w2,
which depends on the effective coupling between the propagating modes, and the cou-
pling between the propagating and the radiating modes. This decay describes the
effective attenuation of the mode amplitudes caused by the cumulative effects of the
random perturbations given by fs and f,. The two following propositions describe the
net scattering effects in the limit of a large number of propagating modes N(w)>1
corresponding to k(w)>>1 (see (A.10)).

PROPOSITION 4.2. We have the following asymptotic behaviors.
1. For j=[vN(w)™] with m €[0,1/2) and v>0, we have

. 5/2
32/N(w)2 29/2n1/ 92

re’ ~ k32 .
7 (w)k(w)>>1 K (w)(1_92j2/N(w)2)1/4 —d Vuly(v)dv

2. For j=[vN(w)'?] and v >0, we have
2411?/202

-2 2
PEw), ~ k) L)
F(w)>1 1-6%j2/N(w)> 7d

+o0o
/ V2l /d+2v1,(v)do
—v2760/(2d)

3. For j=[vN(w)™] with na € (1/2,1] and v>0 (v<1 if na=1), we have

" gy PN 2Pnie

] ~ Iy(v)dv.
97 w)k(w)>>1 “ 1-60252/N(w)?2 ©d Jo {o)dy

4. For j=[vN(w)™] with n3 €[0,1] and v>0 (v<1 if n3=1), we have

j4/N(UJ)4 4n%94 o0

rle ~ k2
i@ S F TS N e

Ry(v)dv
0

5. For j=[vN(w)™] withny €[0,1] andv >0 (v <1 ifns=1), we have for k(w)>>1

et e L
k(w)T 1—02j2/N (w)? k(w)™ 1-6%52/N(w)

where Cy and Co are positive constants.
6. For j=N(w)—[v] with v>0, we have for k(w)>>1

Csh(w)™? < A" (w) < Cuk(w)?/?,

where C3 and Cy are positive constants.
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The proof of this proposition is given in Section A.3. Regarding the influence of the
surface fluctuations we have the following result.

PRrROPOSITION 4.3. We have the following asymptotic behaviors.
1. For j=[vN(w)™] with n; €[0,1/2) and v>0, we have

2 +oo

res ~ 3/2¢, v T
3 (w)k(w)>>1 Cik (W)N(w)%d 0 Vol (v)dv
6252 | ~1/2 6252 | —5/4 6252 | —9/4
x [(1* N(w)Q) +(1— N(w)Q) +(1— N(w)Q) }

2. For j=[vN(w)"?] and v>0, we have

2 400
c,s ~ 3/2 J \/27
157 (w) Cak (w)N(w)Qﬂ'd/ V270 /d+2vI(v)dv

k(w)>1 1276/ (2d)

92]'2 _1/2 92j2 _a/o 02]'2 /o
x (1_N(w)2) / +(1_N(w)2) Y +<1_W> o }

3. For j=[vN(w)™] with na € (1/2,1] and v>0 (v<1 if na=1), we have

c,s 2 j3 oo
F]] (OJ) k(w’\)-’>>1_03k (W)WA IS(U)d’U
02 -2 _1/2 92 2 9 92 2 9
x [(1_ N(i)Q) / ( B N(i)Q) Y (1_ N(i)Q) Y ]

4. Forj=[vN(w)™]| withns €[0,1] andv>0 (v<1 ifny=1), we have for k(w)>>1
72 N 2 -2 N 2
Cl — J / (W) SAC,S(M) S C2 — J / (w) ;
k(w)ors /1—92j2/N(w)2 J k(w)ors /1—92j2/N(w)2
where Cy and Cy are positive constants.
5. For j=N(w)—[v] with v>0, we have for k(w)>>1

Csk(w)?? <AS* (w) < Cyk(w)™/?,
where C5 and Cy are positive constants.

The proof of this proposition follows the lines of the one of Proposition 4.2 but with
lengthier computations. For the points 1-3 the three terms into brackets correspond
respectively to the three terms in (4.4). From these two propositions we can first remark
that the surface and bottom fluctuations affect the amplitude of the propagating mode
in the same way. Second, the decay rates become larger as the order of the propagating
mode j increase. The reason is that the higher the propagating mode j is the more it
bounces on the randomly perturbed boundaries, and therefore the more it is scattered.
However, while j is not of order N(w) the amplitude attenuation is mainly produced by
the mode coupling between the propagating modes themselves through I‘;’j and I‘g’jb.
Now, when j ~ N(w), the modes can coupled significantly with the radiating modes (see
(4.6), (4.12), and (A.2)) through A$* and A;’b, which produce more important losses
in the bottom of the waveguide. In fact, for these modes the decay rate produced by
the mode coupling between the propagating modes is of order k?(w) (points 3-4 in
Proposition 4.2 and point 3 in Proposition 4.3), while the one produced by the mode
coupling with the radiating modes is of order k°/2 (w) which is significantly larger.
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Conclusion. In this paper we have analyzed wave propagation in an acoustic
waveguide with a randomly perturbed free surface and uneven topography, and the
resulting mode coupling mechanism between the three kinds of modes (propagating,
radiating, and evanescent). We have shown that the evolution of the forward propa-
gating mode amplitudes can be described in term of a diffusion process (Theorem 4.1,
Theorem 4.2, and Theorem 4.3) taking into account the main coupling mechanisms: the
coupling with the evanescent modes induces a mode-dependent and frequency-dependent
phase modulation on the propagating modes, the coupling with the radiating modes,
in addition to a mode-dependent and frequency-dependent phase modulation, induces
a mode-dependent and frequency-dependent attenuation on the propagating modes.
Moreover, we have observed (Proposition 4.2 and Proposition 4.3) that the surface and
bottom fluctuations affect the amplitude of the forward propagating modes mainly in
the same way. However, the amplitudes of highest propagating mode is more affected
because of an efficient coupling with the radiating modes.

Acknowledgment. This work was supported by AFOSR FA9550-10-1-0194 Grant.

Appendix A.

A.1. Spectral decomposition in unperturbed waveguides. This section
is devoted to the presentation of the spectral decomposition of the Pekeris operator
02 + k?(w)n?(z) where the index of refraction n(x) is defined by

_[ni=co/er>1 if z€(0,d),
”(x)_{ 1 if 2€[d,+00).

Here, H = L?(0,+00) is equipped with the inner product defined by

+oo
V(hl,hz)eHXH, <h1’h2>H:/ hl(ﬂf)hQ(l‘)dl‘
0

DEFINITION A.1. Let us note by R(w) the Pekeris operator defined by
& 2 2
R@)y) = gy + K (@)n?(@)y Yy D(R()), (A1)

which is an unbounded operator on H with domain
D(R(w)) = Hy (0,400) NH?(0,+00).

The following result regarding the spectral decomposition of the Pekeris operator R(w)
is proved in [37].

THEOREM A.l. R(w) is a self-adjoint operator on H, and its spectrum is given by
Sp(R(w)) = (=00, k* (@) U{ B () (@), BT (W) } (A.2)

where for all j € {1,...,N(w)}, the modal wave numbers ;(w) are positive and ordered
i an decreasing way:

E*(w) < ﬁfv(w) (W) << B(w) <n?k?(w).
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Moreover, let 11, be the resolution of the identity associated to R(w), we have for all
ye H and for allr€eR,

I (r,+ Z 4, 8(@,)) 05 (@,2) L o) (B5()?)

K (w)
+/ (Y5 Dy (w,.)) gy Oy (@,2)dYL (— o k2 () (), (A.3)

and for all y € D(R(w)),

N(w)

I, (r,+00) (R(w) (1)) (x) = > Bj(w)*(y,¢;(w,.)) ;65 (@, )1 (s, 00) (B;(w)?)
j=1

k*(w)
4 / (Yoo (@) o (@2 VL oo gy (7). (A)

Let us describe more precisely the decompositions (A.3) and (A.4).
Discrete part of the decomposition
For all j€{1,...,N(w)}, the jth eigenvector is given [37] by

B Aj(w)sin(oj(w)x/d) if 0<x<d
¢j(w7w)_{AJ( ;sm( (w;)e*@'(“)% if d<u, (A-5)
where
0j(w)=d\/nTk?(w) = B3 (W), (i(w)=d\/B;j(w)?—k3(w), (A.6)
and
2/d
Aj(w): sin2 (o (w sin(20; (w)) * (A7)
|

According to [37], 01(w),...,0n(w)(w) are the solutions on (0,n1k(w)df) of the equation

_ Y
tan(y) = —(nlkdﬂ)Q— , (A.8)

such that 0 <o (w) < - <on(w)(w) <nik(w)dl, and with

9:\/1—1/71%:\/1—01/00 (A.9)

This last equation admits exactly one solution over each interval of the form (7r /24 (j—
D /2 +j7r) for je{l,...,N(w)}, so that the number of eigenvectors is

N(w)= [”1’“(“”9] , (A.10)

s

where [-] stands for the integer part.
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Continuous part of the decomposition
For € (—00,k%(w)), we have [37]

¢y (w, )
B A, (w)sin(n(w)z/d) it 0<z<d
_{Av(w) (sin(n(w))cos(f( )= )—I—ZEZ; cos(n(w))sin(f(w)%*d)) if d<u,
(A.11)
where
n(w)=dy/nik?(w) =7, &(w)=dVk*(w)—7, (A.12)

and

dé(w)
Aylw)= V/ (@ (@5 (1)) + P (@) o (n()))

Let us note that we have

1
1o Va7t

We can also remark that ¢-(w,.) does not belong to H, so that (y,¢~(w,.)),, in (A.3)
and (A.4) is not defined in the classical sense, but in the following way:

A, (W) (A.13)

M
(02 0) = Jm [ y@)os@adde in L2 (o0 K (w)).
As a result, we have

N(w)

k2 (w)
||y||H—Z|y¢] H|+/ (s (w,2)) 2,

and then,

O, H — HY
v — (005D 1) o1 v (D) 1) s

is an isometry, from H onto H* =CN®) x L?(—o00,k?(w)).
In this paper the pressure field (1.9) can be decomposed according to the resolution
of the identity II, introduced in this section.

N(w) 0

K (w)
Do(w,u,v) Z Pj(w,u)d;(w,v)+ /0 @,(w,u)qﬁw(w,v)d’y—&—/ Dy (w,u) oy (w,v)dy,

> radiating modes evanescent modes
propagating modes

where the amplitudes of the propagating modes are defined by

“+o00
vie {1 N} 5 wu) =T ({8;(@)}) Folw,u, ) = / B (w0,14,0) b (w0,0) v,
(A.14)
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and the amplitudes of the radiating and evanescent modes are defined by

M
V’YG(_OOJCZ(W)% ﬁ’y(w7u): lim ﬁO(wauvv)d)’y(wav)dv in L2(—OO7]€2(LU)).

M—+o0 [
(A.15)
Consequently, the mode amplitudes are the projections of the pressure field po(w,u,v)
over the eigenvectors of the Pekeris operator.

A.2. Proof of Theorem 4.1. The proof of this theorem is based on a martingale
approach using the perturbed-test-function method. However, the process (a*(u)), .,
is not adapted with respect to the filtration 75 = F, /., where F, is defined by (1.6). In
fact, neither the random operator H¢% nor G¢% ((3.18)-(3.19) and (3.26)(3.27)) are
adapted with respect to the filtration F;,. The proof of this theorem is in three parts.
The first part of the proof consists in approximating the random coefficients Ha% and
G“% with new ones from which we can use the mixing property. The second part follows
the ideas of [21] and consists in simplifying the coupled mode equation and introducing
a new process for which the martingale approach can be used. Finally, the third part of
the proof is based on a martingale approach using the perturbed-test-function method
and follows the ideas developed in [5, 15].

A.2.1. Approximation of the random coefficients. This section is devoted
to the approximation of the random operators H{% ¢ and Ga‘z In fact, these operators
do not satisfy the mixing properties coming from the random perturbations of the
waveguide surface. The reason is that the conformal map (2.1) involves the complete
trajectory of the random surface of the waveguide.

Let ap€(1/2,1),

C},!Ze(%) 2(nf1)¢r(d)¢s(d)d/ o Vs(u/e+w)fs(u+ew)dw

T w2+ d?
2 [t

- br (V) s (V)02 (1})/ Vi(u/e+w) fs(u+ew)

2 2
T Jo lw|<1/e™0 w= 4w
4 [Te0

w2 [ s e [ Bilra)

T Jo lw|<1/eo (w? +v?)?

dwdv

dwdv,
(A.16)

and

Fop=0(CY>(u), s<u<t), (A.17)

the o-algebra generated by C'/2¢. Let us remark that ]:'S , is still ¢.-mixing. In fact,

for s>2/ex0 if AE}'HS too and BeF, 4 then A€F, o -y 1o and BEFj 1y c1-ag,
and therefore we have

sup  [P(AB) —P(A)[ < (s —2/e*) = Pe(s).
Aeﬁt:»s,+oc
BEJ:'(),t

According to [25] we have the following results regarding mixing processes:

|E[CY/2€(t+51)|Fo,e] | < 20 (s1), (A.18)
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and

‘E[C1/2’6(t+ 514 52)CY 2 (t+51)| Fo. i) —E[CY2E(t 451 +59)CH 2 (1 + s2)|
<492 (s1)de/? (s2), (A.19)

for all s1,50>2/€. Let us also consider

3 u)fs(ew) s(u) fs(ew -
Che(w =20 )6, (@0 ()| 5 [ (V;(_ i [ <<~V( =

U)2+d2 _ )2+d2)2
3 [ Vi@ fled) N2 d [UVefu(e)(@) £Va@) fuled)
s <5/ e )
@) fs(elr)  \2 Feo
@@+ @an@) (4 [ R ) [ 6wt
2 V@) N2 2 UV @) EV @)
[ (et 7/ (-2 +e? a
02 (UGN EV@I(R) 02 [ V@) [ Vi@ filen)
. (Ol B el e e
1 [ V@fslei) N2 v (@) N2
+772(/( e +v2du) +7r2(/((11—u)2+v2)2du> B (A.20)

We have the following result.
LEMMA A.1.  For all (r,s)€{l,....N}U(&,k?), we have

Cra(w) = Ve Cpl>(u) +e Cr(u) +ofe),

uniformly with respect to uwe (0,L/€), and where C(u) is defined by (3.11).

This Lemma gives an approximation of the random operators H¢% and G¢¢ ((3.18)~
(3.19) and (3.26)—(3.27)) by new operators I:IZZ and GZZ defined by

9 N 1/2e k2 ~1/2.€
I:Ijig Zk |:ZC ( )ye ﬂ)u+/ Oj"{/ (u)y’}//ei(ﬁfﬂj)ud,}/}7
NGt NN
iR L O ()
H € yleZ(ﬁl_ﬁ)ua
s 5 Z \/7&
4 N —¢ 1/2,6 1/2,e/~
éj—‘ig(uxy):& / i IR H) g 614804 g
“ 4 —1/¢ VBV 181
N 16 2 1l,e
C k% (w C ) .
[Z ye ﬁj)u_|_/ L() vzel(ﬁ_ﬁj)ud’y' ;
iV, ﬂjﬁl 3

where CV/2¢(u) =0 if u¢[0,L/e] and GA/ e =0 for v € (£,k*(w)). The following lemma
is a direct consequence of Lemma A.1.

LEMMA A.2. We have

(1) =SB (D) wron) and Lz (E)w) =G () wrol)



C. GOMEZ 2035

uniformly in w€ [0,L/e] and for each y € H .

This second lemma will be used in the next section to approximate the forward
mode amplitudes ¢ unique solution of (4.1).

Proof. (proof of Lemma A.1.) The proof consists only in doing expansions of the
perturbations produced by the waveguide transformation.

+oo
Crs(u) = /O (Je(u,0)n (u,v) =n?(0))¢r (v) ds (v)dv = Dy (u) + D73 (u) + D) (u),

where J. is defined by (3.7), and

+o00
Dy (u) = ; (V)95 (v) (Je(u,v) = 1)n? (v)dv,
+oo
D7 (u)= ; e (V)¢5 (v) (n (u,0) —n?(v))dv,
+oo
D} (u) = ; (V)¢5 (v) (Je(u,v) = 1) (nZ (u,v) —n*(v))dv.

First, we have
P 2 T4 [ VA@S(@) 2 [ V@@
Drs (’u’)_\/g 0 (bT(’U)(bS(v)n (U)|: T /(( ) +v2)2d ﬂ'/(’a*u)2+’l}2d
“+oo

e [T onmto) [ ([ L W (0) )’

0
2 [UWV:() fs(e) (@) 2 Vi(@) fs(er) UVs () fs(e)) (@) £ Vi(@) fs(ea) -
7T/ (1—u)?+v? / (0 —u)?+0v2)? !
40 [ V(a)fs(ea) [ Vi(a)fs(ea)

du/(( du

w2 ) (G—u)? 02 i—u)? +v?)?
([T ) 2 ([ ) ot (h2

Second, we have

dii+

D2(u) = /A (1= 1), (v)s (v)dv + / (13— 1), (v) ba(v)dv

Asze
where
A c={v<d, z(u,v)>d} and Ay .={v>d, =z(u,v)<d}.
The real part x(u,-) of the conformal map (2.1) is a nondecreasing bijection since

sup [0y (u,v) — 1| < VeK.
>0

vE[n,M]

Moreover, we have

le™ (u,d) —d— (d—2(u,d))Opz ™ (u,z(u,d))| < = |d—m(u,d)|2 sup |02 (u, D)),
ve(d,z(u,d)]
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with

sup  sup |02 ' (u,d)| < K+ve, and sup|d—x(u,d)| <Ky

v
u>00v€(d,x(u,d)] u>0

Then, D2° can be approximated as follows

D= [ (=ndor)owdrt [ (nF=1)o,(0)ou(o)do+ole)

A2,e
where
121175:{11<d, v>d—|—YE(u,d)} and ;12,6:{1/>d, v<d—&—YE(u,d)}7

with

Yé(u,d):i/%da[l—i/wdu+2d2/((ﬂ_xgﬂd2)2dﬂ}.

Consequently, we have

D%;(u) :ﬁ?(n% — 1)¢r(d)¢8(d)% / mdﬂ

3 u €l s(u) fs(ew -
+e2(n§—1)¢T(d)¢s(d){ i?/( o1 ){S(erldu/ V(@) (dg)zdu

d ([ Va(@fsled) N2 d [UV()Fo(€) (@) fEVs(@)fo(ct)
_ﬁ(/<a—u>2+d2d“) +%/ (i1—u)? + 2 du
d /vsw)fs(eﬂ)d 2

™

+ed(nd = D))} (d) + 61 () ()

Finally, according to the previous step, we have
4d? Vi(a)fs(ew) 2 [ Vi(a)fs(ew) .
.Dg’6 =€Qr s . : du—— - ; d
bt =eo (o) [ [ D a2 [ RO ]

d [ Vs(a)fs(ew) -
x;/mdu—i—o(e).

To finish the proof of this lemma, we have to approximate in D¢(u) and D*€(u) the
terms of order /€ to obtain a more convenient form to exploit the mixing properties of
the random perturbations. Let ag € (1/2,1). First, we have

Vs(d)fs(ed) .~ Vs(u+w)fs(e(u+w)) w
U | d

i—u)?+d? w?+d? ’
and then
+oo
/ %(U+w)fs(6(u+w))dw SK #dngﬁaq
Jw]>1/e0 w? + d? 1/(devo) W21

u+w>0
In the same way, we have

+00 Ve (@) fs(eid) oo Vs(u+w) fs(e(a+w))

0 ¢r(v)¢s(v)/md d = o ¢7‘ (bs w2+v2 d’LUd’U,
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so that
e Vs(utw) fs(e(utw))
RO /w|>1 g AU 1,
u+w>0
“+oo
<K/ [ (v |/ 5—dwdv
/(veco) W +]-

S/om|¢T<v><z>s<v>|owKe%.

Let us note that f by (v) s (v)|dv is well defined thanks to Assumption 3.2 and the
form of ¢; given in Section A.1. The last term can be treated exactly as the previous
one. a

A.2.2. Approximation of the transfer operator. The forward mode ampli-
tudes @*¢ unique solution of (4.1) cannot be studied directly using the perturbed test
function method introduced below because the random operator H¢¢ and G¢% are not
adapted to the filtration of the random perturbations. Consequently, we approximate
a“¢ by a new process from which we can exploit the mixing properties of the random
perturbations. Let us introduce a¢¢ the unique solution of the differential equation

%aeé(u) - \L[Hg ( ) G (u)+ (G"" ) (u)a“t (u), (A.22)

with a“¢(0) =a5 defined by (3.2), and where (G**) is defined for all y€H¢ and j€

[1....N} by

—€ kA2 +oo 12 52
(@)= [ T [T G eyeon (3p2)e sy + H Ay,

and <G‘m>’y(y) =0 for almost every v € (¢,k?). Here, we have

(1) 2( s(zrw—w') /
G (z) =4(n —1)? ¢;(d // w2—|—d2 w/2+d2)dwdw

/¢J V)~ (V) B (v ‘157 // B Zer izlg)dwdw/dvdvl

16
/¢J ) (V)5 (V) oy (V' )0? /2// w2+vz—|—w w) 2dwdw'dvdv'

w'? +0'?)
(n —1 s(z+w—w') ,
1 (% /¢J ¢7 /(w2+v2)(w’2+d2)dwdw dv
16 ( s(z+w—w') /
+———=0;(d)p,(d /(153 V)¢ (v /(w2+f02) (w’2+d2)dwdw dv

/¢J ) (V)5 (V') P (v // w2 z—l—w l:_z} )dwdw’dvdv’

-5 [[ewswsiwe,wi” [[ e dwdu!dvd’,

w2+v2 wl2+ 12)
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6d3 / / w) W — / / W) qwdw +U(R)(0)
wQ—&—d2 w’2—&—d2 w?—i—d2 w’2+d2) )
w') /
( —1 ¢j // 2—|—d2 w’2+d2)dwdw
+oo /
n ¢2 // ww'Rs(w—w") dwdw!
0 U) +’U2 w2+v2)2

// 5 w) dwdw’
w2 +’02 ’UJ’ +U2)
(w—w") 4ot // w’) ,
dwdw' + —- dwdw
// w2+v2 ) w2+v2 w'? +v2)2

where R is the autocorrelation function of the random process V,, and R, is ‘the cor-
relation function of the processes V, and £V, that is L R,. Let us note U(R,)(0) is
well defined. In fact, Ry is an even functlon so that Ry(0)=0.

Moreover, let us remark that the terms involving the Hilbert transform in (A.21)
have disappeared. In fact, taking the expectation, using the stationarity of Vs by making
a change of variable, and then passing to the limit in €, we have

) ~ 1 [ Ry(w) . 4?7 2/m
elE}(l) dufs(eu);/ w ,(e(u—w))[(<ﬁ_u/€)2+v2)2 B (ﬂ—u/e)Q—i—v?]

(R[22 /( 2 )Q—fr/f”‘ | = Utk o[- 2] <o

- 2 4 42
us w2+ 02 u”+v vov

We have the following proposition that describes the relation between the two trans-
fer processes a*¢ and a.

ProprosITION A.1.

V>0, limP| sup [a%¢(u)—a“*(u)|3. >n|=0.
e—0 uE[O,L] 3

Thanks to Proposition A.1 and [4, Theorem 3.1], one can study the new process (a*).
instead of (@“%).. Let us remark that a“* is adapted to the filtration .7-'5 « defined by

(A.17) and [|a**(u )HHE—H ||H , for all u>0. Consequently, (a“%). can be studied
using the perturbed test functlon method.

Proof. This proof is in two steps. The first step consists in using Lemma A.2 to
approximate the random operator H¢¢ and G¢% by I:IZZ and GZZ from which we can
exhibit the mixing properties of the random perturbations. The second step consists in
using the ideas developed in [21] to exploit the fast phase of the random operator G¢%
The proof of the second step follows closely the proof of Proposition 6.3 in [16]. ]

A.2.3. The perturbed test function method. In this section we study the
limit in distribution of the process (@“%). unique solution of the differential Equation
(A.22), using the perturbed-test-function method and a martingale technique. The
proof is in two steps. First, we prove the tightness of the process (a“%)., afterward we
identify all the subsequence limits thanks to a well posed martingale problem. According
to [25, Theorem 4], the proof of the tightness is decomposed in Lemma A.3, Lemma A .4
, and Lemma A.5. The subsequence limits are identify, first by a complex martingale
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problem (Lemma A.6), and then by a real martingale problem (Lemma A.7) to use the
classical uniqueness results in [39] for instance.
Now, let us define a space, on which we can apply the asymptotic analysis. Let

r =@l
8777{&:{)\6%5 ||)\HH§: <A7A>H§S7'y}

the closed ball with radius r, and {g,,n>1} a dense subset of B, 3,.. We equip By 3,
with the distance dg, ,, defined by

+00 1
dBnH& ()\,,u) 2227 )<)\_Mygn>7_[£‘

Jj=1
for all (A,uu) € B3, As a result, (Bya,d(grﬂ&) is a compact metric space. From the

definition of the metric dg we have the following criterion.

7',7{57
THEOREM A.2. A family of processes (X)cc(0,1) is tight in C([O,—i—oo),(BT’HE,dBT’HE))

if and only if (<X€,)\>H£)se(o 1 is tight on C([0,+00),C) for all e H,.

This last theorem looks like the tightness criterion of Mitoma and Fouque [29, 9].
For any A€ H¢, we set &f\’g(u) = <d6’f(u),)\>ﬂs. According to Theorem A.2, the family
(@%¢(.))e is tight on C([0,+00), (Brvﬂﬁ’dlghﬂg )) if and only if the family (ZL;’E(.))6 is tight
on C([0,+00),C) for all A € H¢. Furthermore, (a%¢(.)). is a family of continuous processes
and then it is sufficient to prove that for all A€ He, (02;’5(.))6 is tight in the space of
cad-lag functions D([0,4+00),C) equipped with the Skorokhod topology [4, Theorem
13.4).

Using the notion of a pseudogenerator, we prove tightness and characterize all
subsequence limits. Let us recall the techniques developed by Kurtz and Kushner.
Let M¢ be the set of all 7°-measurable functions f(u) for which sup,, , E[| f(u)|] <400
and where L >0 is fixed. The p-lim and the pseudogenerator are defined as follows. Let
f and f° in M€ for all § >0. We say that f=p—lims f° if

sugE[\f5<u)|]<+oo and i E[|f*(u) = f(u)[]] =0 Vu.

The domain of A€ is denoted by D (A¢). We say that f€D(A°) and A°f=gif f and g
are in D(A) and

P50

[]EZ[f(UJF;)]_f(u) —g(U)} =0,

where Ef, is the conditional expectation given F; and Fy=F, .. A useful result about
A€ is given by the following theorem.

THEOREM A.3. Let f €D (A). Then,

M3 () = f () — / * A Fw)dv

is an (F¢)-martingale.
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In what follows, we consider the classical complex derivative with the following
notation: If v=ca+1i3, then 9, =1 (0, —i03) and Oy = 3 (9 +i0p).

PROPOSITION A.2. For all A€ He, the family (di\’&(.))ee is tight in D([0,400),C).

(071)
Proof. First, we easily obtain for all 7> 0,

lim lirnIP’< sup |d§’£(u)|2M) =0,

M—+ocoe—0 0<u<T

since (@%(.))c is a bounded process. To show the tightness of the process (a“%(u)), .,

according to [25, Theorem 4], we need to prove the three following lemmas. Let X € He,
f be a smooth function, and f§(u)=f (d;’5 (u)) We have,

1
.
vt (a50) | 2 (3.0 (2), ) 6 aes)|,

i (300,02 (1), ) 0 (34 0)|

€

A fi(u) =0, (a5(1)) [

€ €

where
Geré 12, (B Y St (Y get
H (@4 (). €2 (2),2) = (B (2)a S () (0),A)
and G (a%(u)) = <<(~3‘raa>(u)dﬁ’f(u),)\>7_tw. Let us consider
¢

g [ (.02 (), 2) ) do

fitw) =—z0.f (a55w) [ 2y

u

+ %agf (a;i(u)) /;OOE; [HA (aeé(u),cme (%) f)} dw.

Here, Ef, stands for the conditional expectation with respect to the filtration ]}S’u defined
by (A.17).

LEMMA A.3.  For all T>0, we have lim supy<,<7|fi(u)|=0 almost surely, and
sup, > B[ ff (u)[] = O(e!/277) for all > 0.

Proof. Using a change of variable and thanks to (A.18), we obtain

+o0 +o00
FfI<EVe | dw)dw | $w)(1+1/(@u)dwt K Ven(1+1/(de))

+oo
+Kﬁ0 Y(w)(In(1+1/(w?e2*)) +1/(2w)) (1 +1/w)dw,

where, thanks to Assumption 3.2, 1 is a function coming from the propagating modes
¢; such that the integral in w is well defined. More precisely, P(w) ~w? as w goes
to 0 and v decay exponentially at infinity. The second and third part of the previous
expression come from the fact that in (A.18) s; has to be greater than 2/e¢*0. Indexes s;
smaller than 2/e® are not covered by the mixing property and then lead us to explicit
computation using a primitive of arctan(w) given by warctan(w) —1/2In(1+w?). That

concludes the proof of Lemma A.3. ]
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A computation gives us

A(fo+ 1) (w)

=0, f (a*( / b258 (*’5( ),ES [01/26( )@C”Ze( +w)} %%—I—w)dw
+GA(a’ (u))]
+ 05 f (a5 (u / Hl)(aevf( ),Ee. [01/26( )®C’1/26<6—|—wﬂ,%,%+w)dw
+O2f (55 () / HP (a4 (u),B5 0124 (2) 0 0124 (2 4w) | 2.2 4w dw
+02f (a5 (u)) /O HP (a4 (u), By 012 (2) @ 0V (2 4w) ] 2,2 w0 duw

A e O R ) s
[T

+ 0,05 F (a5 / H<3>(aes( ),Ee [01/26( )®Cl/26(e+w)

N N
H(T,C,s,3) %ZT[ Z _ G ig—py)a+iBu— s,

VB,
N k2
Cilly i(B—By)5+ily/7 Gyl i(/A7—B)5+i(Bi—V7)s
+Z _ Y (B B5)s+i(VY /Bl)STV,_f_i v 3% i Td’y}
1=1"¢ BB \/W

Y c
~Ul ei([jlf\ﬁ)ngi(By*BL)sTl,

4 K2
_4/5 [l,lz'—:u/\ﬁﬂlzﬁl'

k
n / Oy il D+i(vA™ fm)sTy,,dvu} v,
& AVIBVY

j k* nal Nsi(—1)i-1(g.,_
HI(T,C,5,5) = (~1)"! [ Cit i (B1=B3)5=i(=1)/ " By —B,;)s 0,
JjZl 1;1 BibBiBy B

o [ G i(B1=B;)3=i(=1)7 " (/15 =B;0)s /
+ e 7 z TlT'yéd’YQ
&\ BiBiBi s

K2 N )
+/ Cinirv VT80 Bu=Bs T Ty
& v=14/Biv/1Bi B
k2 k2 )
/ / G “ﬁ‘ﬁf>§—i(—1>’”<x/vé—ﬂj/)STwTw dvidvé}W
1 2
\/ BivV1Bir /s

=1
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4 kZ .
_ k / _ G i (B1=B)3=i(=1)) " By —v2)s, T,
Li=1 B]ﬂl\/%/ﬁl/

k2 N C - —1)7
Lol . 7 Y-S I=H(B ; a 7’yd)2
/ # 1(\/,71 5J)a z( 1) 1( v \/’Y?)‘ST,Y{TZ/ '71 )‘J)‘ 2
13 ;71 BJ 7172[3[/
K2 N C j Y1)s5— ‘
gy 3i(ﬁz*\/il)é' (=1 (By fJ")STZTZ/

k4
/ e ”, 1\/ﬁﬁlﬁj'5r

k? ,
/ Gy B VI Y d%} PPV
\/ ﬁlﬂj '72
k4 k‘2 kz N l l j—1
_ Gt s yms-it-1y (Bl«—m)sTlTl,}ﬁd%d%
/ / =1 5!@51/ o

where j € {2,3}. Let us note that a quick computation shows that A°(f§+ f{)(u) is not
necessarily uniformly integrable. In fact, we obtain for E[|A°(f§+ ff)(u)[?*] the same
bound as the one obtained for ff(u) in Lemma A.3 but without /e, so that this bound
blows up as € goes to 0. The problem comes from the indexes not covered by the mixing
property (A.18). To show the tightness of the process @< we have to introduce a second
perturbed test function to correct the problem. This second perturbed test function f§

is given by
= [ R (s o ()] e ()] L)aw
where

~ +OO
F\(T,Cw) :8vf(T,\)/ HM(T,C(w) © Cw+1d), w,w+1d)dd
0

+o0
+(%f<TA)/ HO(T,C(w) @ Cw+d), 0,0+ 0)did
0

“+oo
+63f(TA)/ H(T,C(w) @ Clw+ ), w,w+ )did
0

+oo
+8%f(TA)/ H® (T,C(w) @ Cw+ &), w,w+ @) di
0

+oo
+awvf(TA)/ H®(T,C(w) @ C(w+1b), w,w+b)dis
0

“+o0
—&—auabf(T)\)/ HO(T,C(w) @ C(w+ ), w,wt @) di.
0

LEMMA A4, For all T>0, we have limcsupg<,<7|fs5(u)|=0 almost surely, and
sup,,>o E[|fs (u)[] = O(e' "), for all 7> 0.
Proof. Using a change of variable and thanks to (A.19), we obtain

T30 §K6</O+OO¢1/2(w)dw/0+oow(w)(1+1/(2w))dw)2+K6(ln(1+1/(d262“0))>2

+00 2
+Ee( [ ) n+1/ (@) +1/(2w) (14 1/w)dw)

0
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where 1 has been described in the proof of Lemma A.3. We recall that indexes s;
smaller than 2/e¢®° in (A.18) are not covered by the mixing property. These indexes
lead us to explicit computations using a primitive of arctan(w) given by warctan(w) —
1/2In(1+w?). That concludes the proof of Lemma A.4. O

Finally, the tightness of a“¢ is given by the following lemma.

LEMMA A5, {A°(f§+ fi+f5)(u): €€(0,1),0<u<TY} is uniformly integrable for all
T >0, where

Aé(f5+ff+f5)( )

—0.f(a / H (a4 () BV (0) 0 02 )], %, Y ) dw+ G (a5 ()|
+onf @) [ 1 (@ BOvR 00 e )] L )+ (a0
125 ( / HE (a4 () ECY2(0) 0 03 (w)], %, ) duw

+ 054 (a3F (w) / HP (@ (u) E[C2<(0) © C/2<(w)], 7, % +w ) dw

e / HE (a4 (), EICY ) 9.0V ()], %, 4 ) dw

0,05 f (355 (u)) / HP (a%€(u), E[C1/24(0) @ CY/2<(w)], 2, % + w) dw+o(1).

0

Proof. This lemma is a consequence of a long but straightforward computation.
The terms of order one in A® ( fS+i+ f§) are uniformly integrable. Moreover, the terms
bring by f$ in o(1) can be bounded using the bound obtain in the proof of Lemma A .4
with /e instead of e. Therefore, the unbounded logarithm which was a problem in
A (f§+ ff) can be killed. O

That completes the proof of Proposition A.2. a

Now, we characterize all the subsequence limits (Proposition A.3), using first by
a complex martingale problem (Lemma A.6), and then a real martingale problem
(Lemma A.7) to use the classical uniqueness results in [39] for instance.

PROPOSITION A.3.  All the subsequence limits of (@*(.))ce(0,1) are solution of a well
posed martingale problem associated to the infinitesimal generator defined by (4.2).

Proof. To do that, we consider a converging subsequence of (de’g(.))ee(oﬁl) which
converges to a limit @*(.). For the sake of simplicity we denote by (a*(.))ce(0,1) such
a subsequence. To exhibit the well-posed martingale problem, we need first to extract
all the fast oscillating phase, as done in [16, Proposition 6.5], in A® (fé—i—ff +f§) using
Assumption 4.1.

LEMMA A.6.  For all \e He and for all f smooth test function,

u

F@S () = [ 00 f (@5 () (T¢(@ (), A)y, +0af (@S5 (w)) {(TE@E (W), Ny,

0

+05 £ (@5 (w)) (K (@ (w)) (A),A) 5, +052f (a5 () (K (@ () (A, A)
+050, f (a5 (w)) (L (@ (w)) (V) A) 5, + 0005 (@5 (w)) (L (@ (w)) (X),A), dw
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is a martingale, where

CS FS sS
JE(T); = 2 ACé’g—l—z( 5 —AY Ay ’§> T;,
1 Y o 1 Y o (A.23)
K(T 52(?‘?’5 irjf)TjTlAl, L(T)(N); =5 D T5 T,
iz iz
and J¢(T), = K(T)(\),=L(T)(\), =0 for almost every v € (£,k?), and for (T, \) G’Hg.

Here, T'1s, T'e8 TS5 A€ A€ and k%% are defined in Section 4.1.1.

In order to prove uniqueness, we decompose @¢(.) into real and imaginary parts.
Then, let us consider the new process

Eu:YLg(u) where LE(y) = Re(at(u an 28(u)=Im(at(u
Y=g e Y@ =Re@(@) ot Y0 = w).

This new process takes its values in Gg X G¢, where Ge =RYN x L2((¢,k?),R), and we
introduce the operator

Tigg ng —>g§ ng,
T! T
)]
LEMMA A.7. For all f€CE(Ge x Ge),

M) = FOYE (@)= [ LY )

0

is a continuous martingale, where for all (Y,\) € (Ge x G¢)?

1
Lﬁf(Y):§trace (A(Y)D*f(Y)) +(B5(Y),Df(Y ))gexge” (A.24)
with ACY)(A)=A41(Y)(A\)+ A2(Y)(N). Moreover, for je{l,...,N},
BY(Y); = %_A;’S’f Y, - %m;f—z\;’slf T;(Y)
N N
A (Y)(N); ==Y, ) T [YIN FYIN] +05(Y) Y U5 [0 (V)N + T (Y)NF]
=, =
As(Y)(N)j =N Zr” +(Y})3,
2

and Bg (Y)=A4,(Y)N)=A,(Y)(N)=A,(Y)(A\) =0 for almost every € (&,k?). More-

over, the martingale problem associated to the generator LS is well-posed.

Proof. Following the proof of Theorem 4.1.4 in [39], to prove that Mﬁ is a
martingale it suffices to show that:

(M*(u), A)g g, = M5 (u) = (Y (u) —/OuBf(Yf(w))dw,/\>g£Xg§
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is a continuous martingale with quadratic variation
< Mf > (u) :/O <A(Y5(u;))()\),/\>gE Xggdw.

Moreover, for all (Y,A) € (G¢ x G¢)?, we have (A(Y)(A),N)g, xg, =0 and trace(A(Y)) <
+00. According to Theorem 3.2.2 and 4.4.1 in [39], the martingale problem associated
to L¢ is therefore well-posed. ]

Finally, to recover rigorously the form of the generator (4.7) for the complex diffusion
process a(w,-), we use formula (A.24) where

g(Y)=f(T) and T=Y'+4iY?
with
Oy19(Y) = (0x; +05,)f(T) and  Oy29(Y)=i(0x, —05;) f(T).
In fact, for the drift term, we have

(BS(Y).Da(Y))g,

N pr’fg
-5 [5-a] i -

s,8

|
s i ¥ ’51 Yiov1g(Y)

j=1 2
F;f ;8,8 2 ;39 5§ 8,8, 1
N c,s FS .5
Z [ AcsE+Z< 5 +nj’§Aj,syﬁ> T;0r,9+c.c,
j=1

where c.c means complex conjugate of the previous term. To obtain the diffusion term,

a formal but fast way to do consists in replacing the component of the test function \;

by O5-in (K (a*(w)) ()\)’/\>H5 and (L (a*(w)) (/\),)\>H5 defined by (A.23). In fact, in the

proof of Proposition A.7, one can see that the real part )\} corresponds to 3Y; and the

imaginary )\? corresponds to 8Y];, so that \; = )\} + i)\? correspond to GY; —H’@Y? = 28T—j.
Finally, using the fact that

1 ~ o /
RS(Z+’LU7U}/):%/duRS(U)G’mzew‘(wiw )7

—iw oA iwu 4 Ciwu
and fA2+w2 dw= e ful, f(A2+w2 dw=—iuggze b, f(A?idw—

% —Alul for A>0, we obtain after long but straightforward computations
the expression of the diffusion coefficients in Theorem 4.1. That completes the proof of
Proposition A.3. a

A.3. Proof of Proposition 4.2. The proof of this proposition follows the idea of
the one of [2, Proposition 5.1]. We restrict the proof to the case of a randomly perturbed
bottom. For the case of a randomly perturbed surface the proof remains the same but
with more terms and lengthier computations. Proposition 4.2 is a consequence of the
three following lemmas allowing us to study the behavior of the coupling coefficients
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F;f(w), F;f(w), and dissipation coefficients Ag’b(w) in the asymptotic k(w) — +o0o. How-
ever, we restrict the proof to the ones of F;;b(w), and A;’b(w) since for I‘;;b(w) it is a
simple application of Lemma A.10.

LEMMA A.8. Let us denote

N(w) 2

T ¢l (wvd)

[j(w)= Iy(Bj(w) = Bi(w)).
% Bilw) :

We have the three following asymptotic behaviors.
1. Formn; €[0,1/2) and vy >0, we have

i e
sup (W) ————r
Jell i N@m]y | 7 m02(n1k(w))3/2 J

\/ﬂlb(v)dv‘ = O(W).

2. Formy € (1/2,1)% and pa >ve >0 (and va <pa <1 if no=1), we have

sup ’f (w) _2 /+OCI (v)dv‘ 0<71 )
. —_— b p— _ .
JelaN@) ][N ()]} | TN (w)? ) s N(w)2=m

3. For j=[vN(w)'/?], we have

- 2 Hoeo V20w 1
INw)—-—————+ 2ulp(v)dv| =0 —+ ).
j(w) 702 (n1k(w))3/? ~/—u27r9/(2d) d +2vl,(v) v‘ O(N(w)3/2)

Regarding the dissipation coefficients, we have the following result.

LEMMA A.9. Let n€[0,1], v1>0,00>0 with v1 <1 if n=1, and let us denote

- F(w) ¢2,(w,d
Aj(w)—/ M
0 VY
We have the two following asymptotic behaviors.
1. For j=[vN(w)"] with ne€0,1] and v>0 (v<1 if n=1), we have

L,(B;(w) —v/+)dy'.

(& ~ Cy
<A; < ,
(nik(w))or =7 = (nik(w))er
where Cy and Cy are positive constants.
2. For j=N(w)—[v] with v>0, we have
Cs ~ Cy

<A; < .

N(w)l/Q = = N(w)l/Q

Proof. (Proof of Lemma A.8.) To prove this results, we need the following lemma.

LEMMA A.10. We have for alll€{1,...,N(w)}

1—-1)2
0 2 7<N(<w>+)1>2

m(N(w)

+1) 1+ L _p2 (=17
e VTP wer
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2
_GRwd) 20 N

STAw) S AN@) g P

Proof. In fact, using relation (A.8) and the relation sin(arctan(z))=xz/v/1+x? we
have

sin(oj(w)) = —sin(arctan(o; (w)/\/(nlk(w)d0)2 —03(w))) =—0j(w)/(n1k(w)do).
In the same way, using the relation cos(arctan(z)) =1/v/1+ 22, we have
2/d
+ it/ 1~ 03 @)/ (1 k(w)d6)?

where A;(w) is defined by (A.7). Therefore, using the fact that o;(w)€[(j—1)m, ]
and the definitions (A.6) and (A.10), we obtain the desired result. d

A?(w) =

According to Lemma A.10 we have for all j€{1,...,N(w)} the two following in-
equalities:

0 Jgf) 2 (1=1)%/(N()+1)°
m(N(w)+1) = T oo V1P D (N W) +1)?
><Ib nlkw(\/l 02(j—1)2/(N(w)+1)2—/1—-6212/N(w)2))
¢> W BN
Z l Bj(w) = Bi(w Z TR N ()
l;é] 17'5]
X Iy(nik(w)(y/1—0252/N(w)2 —/1—62(1—1)2/(N(w)+1)2)) (A.25)

so that for all n€(0,1) and je{1,...,[vN(w)"}

N(w) o
¢ (w,d) |
|2 T e )2 [ m k() (/1= 6272 /N @)? — v T=0%2)) ]
17
L J+N(w)*q2 1 1
SC[N(OJ)[ N(w) ] N(w) [N(W)O‘fl(N(w)a-ij)]Oq]'

(A.26)

Here a is the decaying power of the function I;,. To obtain this estimate we have split
the set of indexes into two parts |j —I| < N(w)® and |j—1| > N( )®. The reason is that
for the first set of indexes the term I, (n1k(w)(y/1 — 60252 /N(w)2 — /1 —0212/N (w)?)) is
considered to be bounded, but decays fast for the second set of indexes. Moreover, for
all n; €(0,1/2) and j€ {1,...,[V1N(w)’71]}, using a change of variable, we have

2
)
— ———y(nk(w 1-6252/N(w 1—-6%y?
7| g k) (VPPN -
) /nlk(w)(x/1792]'2/N(w)27\/1792)
n

_7T92”1k(w) 1k(w)(y/1—6252 /N (w)2—1)

\/1 (VI=O N @) - v (mih)) To(o)do
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so that

20 y?
— —————(nik(w 1-6252/N(w 1— 022
- [ AL T PRINGR -
V2(1-6%j%/N (w)*)"/* /mkw)(\/le?ﬂ/zv(w)?W@?)
702 (n1k(w))3/? k(W) (v/1=6272 /N (@)2 1)
_ C /nlk(w)(\/1—92j2/N(w)2—\/1—92)< j2 ) Ib
T (nk(w))3/2 S k() (/To0257 /N (@) 1) N(W)U nlk

and choosing properly a € (1/241/(4ay),3/4) in (A.26), all the previous error estimates
are negligible with respect to N (w)~3/2,
- V2 +oo
e V2
m02(n1k(w))*/2 Jo

Vvl Iy (v)dv

sup
JE{L,..,[aN(w)n ]}

Now, for all n, € (1/2,1) and j € {[vaN(w)"™],...,[u3N(w)™]}, using a change of variable,
we have

\/Elb(v)dv‘ = O(N(w)f?’/Q).

20/ >

— —(nik(w 1-62%52/N(w) 1-02y2))d
) /nlk(w)(\/1792j2/N(w)27\/1792)

B 702 n1k(w) n1k(w)(y/1-6252/N(w)2—1)

\/1—( 1—92j2/N(w)2—v/(nlk))QIb(fU)dv

so that

(n1k(w)(v/1—0252/N(w)2 —/1—622)

=

9id nik(w)(y/1-0252 /N ()2 V1=07)
_W/ 4 Ip(v)dv
s w nlk(w)(\/m—l)
C] nlk(w)(\/WM) UQ vIN
SN 5 , (?+T>Ib(v)dv7
(@)? S k() (/10272 /N ()2 1) 7o

and
nik(w)(y/1-0252/N(w)2—/1-02) 400
/ Ib(v)dvf/ Iy(v)dv
nik(w)(y/1—60%52/N(w)2—1) —00

Then, choosing properly a € (n2,(1+12)/2) and a>1/24+(1—n2)/(2ar) in (A.26), we
obtain

sup ‘f‘j (w) — 7T2]2\?(i)2 /+OOIb(U)dU‘ :o<N(w)—2+n2).

Je{lvaN(w)m2],.. [p2 N (w)"2]} o0

Finally, for all v € (0,1) and j € {[vN(w)],...,N(w)}, we have using (A.25)

L(nk(W)(VI— 0272 /N (@) — /1 02y2 )dy‘

2
Y
m A /1792y2

< .
- N(w)2—(x + N(w)lJraI(lfa)
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The exponent a € (0,1) comes from the fact that we have split the sum between
{1,...,[vN(w)] = [N(w)*]} and {[vN(w)]—[N(w)?*],...,N(w)} in the same spirit as
(A.26). As in the previous case, we obtain

2j

sup I‘-(w)—i/ I(v)dv| =0 N(w)™!),
SN @ N @), N @)} TN (W)? ) oo ‘ ( )

which concludes the proof of Lemma A.8. The case 73 =1/2 needs just a more accurate
truncated expansion but brings no significant difficulty. O

Proof. (Proof of Lemma A.9.) We have

~ B k2(“’)¢3,(w,d) | , )
Rjw)= / e TCHRETES

1/6 T T2
L ity (ke
2
(1 s = Vi) Jao
so that
J1<Aj(w) < Ja,
where

lez/ll/g V”Li%")d‘%)n (ruk(eo) (/1= 02(@)/(mik()d)? — /16707 ) ) o
I, (nlk(w) (\/1 —02(w)/(nik(w)d)? — /T —92«12)) dv.

2 [/ v
T 1 V2 —1v/1— 0202

First, for .J,, using the change of variable u=+/1—62 —+/1— 60202 we have

Jo=

Cb /\/ 1-62 1

= k@) h
2120 (n1k(w))*r Jy (/1= 02@)/ (uk(w)d)2 = VT=07 +0)* + s | :
du

X du, (A.27)

V2uv1—0?% —u?

so that for all n€[0,1)

Cb V1-62 1
sup J2—ﬁ/ du|
je{l,..,[viN(w)"]} 2m20(n1k(w))*r Jo (I1=vV1=62+u)>rv/2uy/1—02 —u?
=0o(N(w)™ ),

and if j=[v1 N(w)]

Jo

Yy 1-02 1
e du
2W29(n1k(w))“f/o (V1I=6207 —/1T— 02 +u)o1/2uy/1— 62 — 2 ‘

=o(N(w)™1).
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Moreover, for the case j of the form N(w)—[v], we have

J2<J2(77)
_ Cb /\/1—92 1
- 2 oy 041/2
2m20(n1k(w)) 0 {(\/l—HQ(I—V/N(w)P—\/1—92+u)2+ (nlkl(w))"’}
X du du,

V2uv1—0% —u2

so that using the change of variable v =uN(w) we obtain

~ Chpd1g>r =1 Foeo 1 —0 W) 1/2
J2(77)*23/2ﬂ_a1+2(1_92)1/4N(w)1/2/0 [( - 02+U) +(d?) ]a1/2\/»d1)’_ (N( ) )

Now, for Ji, let us note that we have to take care of the sinus. To do so, we split the
integral in many parts over which the sinus will be close to 1,

m

2 Toyae (1/2+v+m)
72 2 k)T mk@an) Y [T Vo2~ Tsin® (1 k(w)d6o) do,

m=m1 W(1/27V+m)
where vy is such that sin?(7/2+vom) >1/2, and with

nyk(w)do
7r

mlz[ —|-1/0—1/2] and mgz[ —y0—1/2].

nik(w)d
T
Then, for the case j=[vN(w)"], with n€[0,1] and v € (0,1) if n=1, we have

0 c
>
N k@) |

1
I+ mree

m—m1

R N Z V2N (@) +1)2 -1

with

1/6—1

Z\/mQ/ +1)2-1 o~ Vu(u+2)du>0.

m i N(w)>>1 0

Now, in the case j = N(w)—[v] with v >0, we have for p € (0,1)

N@)] 14 2t

R(w)> 2 Z / 2N (@) T N (0)372 vv/v2 —1sin?(N(w)m)
J - .

o SR (v2— s1n2(N(w)7rv))\/ 1—62%02
1

1
X Iy (n1k(w) (v/T= 0272/ N (@)% = V/1-62) ) dv
l %: /+2N(w)+1\f(w)3/2 ’Um
T St (02— sin? (N (w)T)VI— 072
2
< Iy (mak(0) ol

VI—02N(w)
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Moreover, using the fact that sin?(N(w)mv)>1—sin®(7/N(w)*/?)>1—-72/N(w), we

obtain
K (o) s Gpll =)l D2ae 1
](W)f Amer+2(yh)or [1+N(w)2m]a1/2
(n1k(w)0?)?
2m+1 1
1 [“g(:w” IN(@) ~ NP
>< N
N7 2 BB+ r /N
where
2m—+1 1
NI Ny Nw)3/2 1 [tdu
Y
NG 22y B e + N N1 Vi Vi
which concludes the proof of Lemma A.9. ]
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