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STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW
WITH A BOUSSINESQ-SCRIVEN SURFACE FLUID*

JOHN W. BARRETT'!, HARALD GARCKE?!, AND ROBERT NURNBERG#

Abstract. We consider two-phase Navier—Stokes flow with a Boussinesq—Scriven surface fluid. In
such a fluid the rheological behavior at the interface includes surface viscosity effects in addition to the
classical surface tension effects. We introduce and analyze parametric finite element approximations
and show, in particular, stability results for semidiscrete versions of the methods by demonstrating that
a free energy inequality also holds on the discrete level. We perform several numerical simulations for
various scenarios in two and three dimensions which illustrate the effects of the surface viscosity.
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1. Introduction

Fluid interfaces typically have their own dynamic properties, and, in particular,
a surface stress tensor, which involve interfacial shear and dilatational viscosities, can
have a significant effect on the dynamics. Surface tension effects on a fluid interface
are well-known, and in this case, the stresses acting on the interface are balanced by
the surface tension and the curvature of the interface. However, in systems with high
surface area to volume ratios, such as micro bubbles, blood cells, dispersions of vesicles,
and emulsions, the dynamics of the system are also highly influenced by the dynamics
on the interface. Hence one can argue (see [24]) that a more detailed study of the
stress-deformation behavior of interfaces is highly relevant for many disciplines, e.g.
interface science, biophysics, pharmaceutical science, polymer physics, food science,
and engineering.

If only surface tension effects are taken into account in the surface stress tensor or,
one obtains the form B

gF:’}/EF; (11)

where Pr is the projection to the tangent space of the interfacial surface I' and v is the
surface tension, which in the simplest case is constant. In this case, the stress balance
on the interface is given as
—Vs.or=[oi]t = —yxv=oi]t. (1.2)
Here V. is the surface divergence, [-]T denotes the jump of a quantity across the
interface and o denotes the bulk fluid stress tensor which depends on the bulk fluid
velocity @ and pressure p. Moreover, I/ is the unit normal to the interface, s is the
mean curvature, and we refer to Section 2 for the precise definitions. Equation (1.1)
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1830 TWO-PHASE FLOW WITH A SURFACE FLUID

expresses the momentum balance at a dividing surface (see [27]). When the surface
tension coefficient in (1.1) is not constant, which is the case when a surface active agent
has an effect on the surface tension, the stress balance (1.2) becomes

—yxV—Vsy= [gl?]f,

which in turn gives rise to discontinuities in the tangential components of the bulk
fluid stresses at the surface. However, in general, other interfacial properties, such
as the resistance of an interface to deformation, have to be taken into account. This
is particularly relevant in cases where the interface is not clean. For systems with
species that adsorb at the interface, like emulsions or foams stabilized by surfactants
and proteins, it is expected that the surface stresses have a pronounced effect on the
dynamics. Therefore, the interest in surface rheology has increased significantly in the
last twenty years (see [27]). One key difference between bulk and surface rheology is
that in the bulk phase one usually assumes incompressibility, whereas this assumption
often does not hold for interfaces — biomembranes are a notable exception (see [1]).
The general momentum balance, which generalizes (1.2), now, in addition, has to take
the surface momentum and a generalized stress tensor, involving surface shear and
dilatational viscosities, into account. The overall momentum balance on the surface
then reads as

8;(pp’lzp)—F(Vs.ﬁF)pp’lzp—vs.gp:[gﬁ]t, (13)
with the surface stress tensor now given by

gFZQ;LFQS(ﬁF)—I—(/\F Vs.dp+”y)£p.

Here, pr is the surface material density, @r is the interfacial velocity, 0f is the material
derivative on the interface, ur is the surface shear viscosity, pur+ Ar is the surface
dilatational viscosity, and D, (ir)= %El" (Vstr+ (Vs ﬁr)T)Ep is the interfacial rate-
of-deformation tensor. This tensor describes how the lengths of curves on the surface
change and how the angles between intersecting curves change with the flow.

Although, at first glance, the surface momentum equation looks very similar to
the bulk momentum equation, it turns out that new geometric quantities appear. For
example, we note that in V. up we take the divergence of a non-tangential vector field,
which for alternative formulations of (1.3) would lead to a curvature term. In particular,
splitting @ into its normal part (dp.7) 7 and its tangential part @ya, = tr — (dr. V)V gives
Vs.tpr = V. Ugan — Ur. Vs (see [1]).

For the surface material density pr, the mass balance law

6;pr+(vs.ﬁr)pr=0 (1.4)

holds on the surface. Hence (1.3) and (1.4) is a compressible Navier—Stokes system
on an evolving surface with a forcing [¢#]T arising from bulk stresses. An important
modeling issue that we have not yet addressed is the relationship between the interfacial
velocity @r and the bulk velocity @. In the absence of mass transfer to/from the interface

from/to the bulk it is natural to assume that

[@.7]f =0 and dr.v=ilr.v (1.5)

(see [27, p. 675] and [10, p. 137]). Moreover, we assume a no-slip condition on the
velocity @ at the interface which means that the tangential components of the bulk
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velocity are continuous across the interface (see [27, p. 293]). The no-slip condition
together with (1.5) implies that

[ﬁ]i— =0 and ﬁp :’lzh‘

(see [1, (39)] and [10, p. 137]).
In this paper, we also allow for an insoluble surface active agent (surfactant) whose
concentration we denote by ¥. We then require that the advection-diffusion equation

P Y+ (Vs. 1)y — V5. (Dr Vs1p) =0, (1.6)

with a diffusion coefficient Dr, has to hold on the interface. In this case, the surface
viscosities Ar and pr and the surface tension v may depend on ¢. The system (1.3)—
(1.6) then has to be coupled to the classical incompressible Navier—Stokes system in
the bulk, and we refer to Section 2 for the details. We stress that in the absence of
surfactant our model is the same as the one considered in [10, Section 2 and 3].

The first ideas, which later lead to the surface fluid model discussed above, are due
to Boussinesq [11], and the approach of Boussinesq was later generalized to arbitrary
moving and deforming surfaces by Scriven [26]. Hence, one speaks of a Boussinesq—
Scriven surface fluid, and we refer to the book [27] for more details on the physics of
the model and for experiments on Boussinesq—Scriven surface fluids.

The mathematical literature on models involving Boussinesq—Scriven surface fluids
is very sparse. We refer to [10] as the first paper on the rigorous mathematical study
of two-phase flows with surface viscosity in the case pr =0, i.e. when no separate mass
balance is considered. To the best of our knowledge, only the paper [23] contains
numerical simulations of a two-phase flow including a Boussinesq—Scriven surface fluid.
Also in that paper, the surface material density was set to be zero and no surfactants
were considered. It is the goal of this paper to introduce a stable finite element method
for two-phase flow with a Boussinesq—Scriven interface stress tensor which allows for a
surface material density and an insoluble surfactant. Besides showing stability results,
we also present numerical simulations in two and three dimensions which show different
phenomena arising from the surface viscosity effects.

Let us state the main features of the topics studied in this paper.

e Our approach is based on a parametric finite element method for the numerical
approximation of the interface. Such an approach, in the context of a purely
geometric evolution of the interface, was introduced by Dziuk [14]; see also the
review article [13]. We also use the techniques in [15] for the approximation of
partial differential equations on surfaces.

e For one variant of our introduced approximations, based on the present authors’
work, see [4, 5, 6, 8], the parameterization of the evolving interface has good
mesh properties, and, in contrast to other parametric approaches, no remeshing
is needed in practice.

e A suitable variational formulation of the complex conditions at the free bound-
ary is introduced which allows one to show stability of semidiscrete (discrete in
space, continuous in time) versions of the schemes. This extends the present
authors’ work on the stable numerical approximation of two-phase flow with
insoluble surfactant, see [7], by including surface viscosity effects and a surface
material density.

e Fully discrete finite element approximations are introduced which lead to linear
systems of equations at each time step. In particular, existence and uniqueness
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i

Q4(t)

Fia. 2.1. The domain 2 in the case d=2.

of the discrete solutions can be shown. If no surface material density is present,
then stability can also be shown for these fully discrete variants.

e Conservation properties and non-negativity properties of the surface material
density and the surfactant can be shown for the discretized systems.

e We present several numerical simulations in two and three space dimensions
which demonstrate the convergence of the scheme and illustrate several effects
of surface viscosity. For example, in a shearing experiment, one observes that
bubbles with higher surface viscosities are much less elongated.

The study of numerical methods for two-phase flows is a very active area, and the
available numerical approaches can be broadly grouped into three different categories:
parametric front tracking methods, such as the approximations presented in this paper,
level set methods, and phase field methods; see the introduction in [8]. For more details,
and for further background information on the various approaches, we refer, for example,
to [19, 2, 29, 22, 28, 16, 18, 12, 21].

The outline of the paper is as follows. In Section 2, we give a mathematical formu-
lation of the Navier—Stokes two-phase problem for a Boussinesq—Scriven surface fluid.
Section 3 states two semidiscrete approximations of the problem, together with several
analytical results such as stability and conservation and non-negativity properties of
the approximations to the surface material density and the surfactant concentration.
In Section 4, the corresponding fully discrete approximations are introduced. Section 5
discusses some issues concerning the practical implementation of the method, in par-
ticular, the assembly of the bulk-interface cross terms. Finally, in Section 6, several
numerical computations are presented.

2. Mathematical formulation

2.1. Governing equations. Let QCR? be a given domain where d=2 or
d=3. We now seek a time dependent interface (I'(t))ic[o,r7, T'(t) €€, which for all
t € [0,7] separates Q2 into a domain §2 (t), occupied by one phase, and a domain 2_(t) :=
Q\ Q4 (t), which is occupied by the other phase. Here the phases could represent two
different liquids or a liquid and a gas. Common examples are oil/water or water/air
interfaces. See Figure 2.1 for an illustration. For later use, we assume that (I'(t)):cjo,7
is a sufficiently smooth evolving hypersurface without boundary that is parameterized
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by #(-,t): T —R? where T CR? is a given reference manifold; i.e. T'(t) =#(Y,t). Then

VE):=F(q,t) YV Z=Zt)el(t) (2.1)

defines the velocity of I'(¢), and V.77 is the normal velocity of the evolving hypersurface
I'(t) where 7/(t) is the unit normal on I'(t) pointing into €24 (¢). Moreover, we define the
space-time surface

U 1@ =<{. (2.2)
te[0,T

Let p(t) = py Xa, (1) +p— Xa_ (), with pL €R-, denote the fluid densities where,
here and throughout, X4 defines the characteristic function for a set A. Denoting by
@:Q2x[0,7] —R? the fluid velocity, by o:Q2x [0,7]—R%*? the stress tensor, and by

f :Q % [0,T] —R? a possible forcing, the incompressible Navier-Stokes equations in the
two phases are given by

p(@+(@.V)@)~V.a=f=pfi+ [ in QL (t), (2.3a)
V.i=0 in Qu(t), (2.3b)

[@)]F =0 on I'(t), (2.3¢)

i=0 on 9,9, (2.3d)

@.i=0, gi.t=0 Vte{d}*  on o, (2.3¢)

where 002 =0:QU3Q, with 912N 02 =10, denotes the boundary of Q with outer unit
normal i and {f(}+:={t€R?:t.i=0}. Hence (2.3d) prescribes a no-slip condition on
019, and (2.3e) prescribes a free-slip condition on 92€2. Note that we have split the
forcing f into a volume force fi and a non-volume force f. As usual, [@] T ==ty —i_
denotes the jump in velocity across the interface I'(t) where, here and throughout,
we employ the shorthand notation gt :=g|q, () for a function §:Qx[0,7]—R? and
similarly for scalar and matrix-valued functions. In addition, the stress tensor in (2.3a)
is defined by

o=p(Vi+(Va)")—pld=2uD(@) - pld, (2.4)
where Id € R**¢ denotes the identity matrix and D(@):= 1 (Vi+(Va)T) is the rate-
of-deformation tensor with Vi = (8% uz)fj L As usual, V.éeRd with [V. A]; = V./_fl,
I=1—d, for AT=[A,...Ag)e R Moreover, p:Q2x[0,T] =R is the pressure and
w(t)=pq Xgl+(t) +p—Xo_ (1), with 1 € R50, denotes the dynamic viscosities in the two
phases.

Let pr(-,t):I'(t) > R>o denote the surface material density. Then on the free sur-
face, the following conditions need to hold:

8 pr+ (Vs. @) pr=0 on I'(), (2.5a)
¢ (prit)+ (Vs.@) prii— Vs.or = o]t on I'(t), (2.5b)
V.o=i.v on I'(t) (2.5¢)

-19]). Here o/t =0 V-0V

(see [10] and, for the simpler case pr=0, [18, p. 18 _
), Vs. denotes the surface divergence on

denotes the jump in normal stress across I'(¢
['(t), ar is the surface stress tensor, and

O C=G+(U.V)(=G+iu.V(  onT(t) (2.6)
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denotes the material time derivative of ¢ : G — R and similarly for 5 :Gr— R ie. OF 5 =
G+ (U V)= + (V). We set HY(Gr):={C€ L*(Gr):VsC e L?(Gr),0p (€ L*(Gr)}.
We stress that the derivative in (2.6) is well-defined and depends only on the values of
¢ on Gr, even though ¢; and V¢ do not make sense separately (see [15, p. 324]). The
surface stress tensor is defined by

ar = 2ur () Ds (@) + (Ar () Vs. @ +7(¢)) Pr, (2.7)

where pr € C(R,R>¢) is the interfacial shear viscosity and A\r € C(R) is the second in-
terfacial viscosity coeflicient satisfying

Ar(r)+ 725 pr(r) >0 v reR. (2.8)
In the special case that
pr(r)=Tpr €Rso and Ar(r)=Ar€R  V7reR, (2.9)

the constants A\r and fip are also called the first and second surface Lamé constants,
respectively. In addition, v € C1([0,7s)) With 14, >0, and

~'(r) <0, YV rel0,1v00), (2.10)

denotes the surface tension. The interfacial viscosities and the surface tension depend
on the surfactant concentration ¢ : Gr — [0,1+); recall (2.2). In addition,

Pr=Id—-ie7 (2.11a)

is the tangential projection at T'(¢), and

D, (@) =3 Pr(Vsi+(Vsi@)") Pr (2.11b)
is the interfacial rate-of-deformation tensor where V, =PrvV= (Osy5---,0s,) denotes the
d

surface gradient on I'(t) and V u= (8Sj m-)Z i1

The surfactant transport (with diffusion) on I'(t) is then given by
O+ (Vs.0)1)— V. (Dp Vi) =0 on I'(#), (2.12)

where Dr >0 is a diffusion coefficient. The system (2.3a)—(2.3e), (2.4), (2.5a)—(2.5¢),
(2.7), and (2.12) is closed with the initial conditions

F(O):Fo, pp(-,O)ZpF)Q OHFQ, ’Q/J(',O):’lbo ODFQ, ﬁ(',O):ﬁo n Q, (213)

where I'y C Q, PT,0: T'o— Rzo, '(/10 To— [O,’Q/JOO), and tp:Q— Rd, with V.uy= 0, are
given initial data.
With a view towards substituting (2.7) into (2.5b), we observe that

vs'gF :2/14F(1/]) vsgs(ﬁ)'i_vs [()\F(stﬁ—i-v(w))gﬂ
ZZUF(UJ) vsgs(ﬁ)+vs [)\F(d}) (vsﬁ)EF] +’7(¢) wiU+ st-)/(d))’ (214)

where V. A€ R? with [V,. A} = V. A}, I=1—d, for AT =[A;... Aj] e R*? and where
we have noted that Vs.0/=V.0UV=—3 implies that

VS.EFZ%J.
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Here 3¢ denotes the sum of the principal curvatures of I'(¢), which is often also called
the mean curvature of I'(t), (see [13]). Here we have adopted the sign convention that
» is negative where Q_(t) is locally convex. In particular, it holds that

Ajid=xi=:%  onT(t), (2.15)

where A, =V;.V; is the Laplace-Beltrami operator on I'(t) and id denotes the identity
function in RY.

In the case that the interface is non-material, i.e. when ppr =0, then the interface
conditions (2.5a)—(2.5¢) simplify dramatically. In this case, recalling (2.14), we are left
with the following conditions to hold on I'(t):

(a7 =—2pr(¢) Vs. Ds (@) = V. [Ar (¢) (Vs. @) Pr] — (1) 27— Vs (1), (2.16a)

—

V.V=1u.v. (2.16b)
If, in addition, Ap(¢))=pur(¢)=0, then (2.16a) and (2.16b) reduce to the interface
conditions studied by the present authors in [7] where a two-phase flow problem with

insoluble surfactant is considered.
For later purposes, we introduce the surface energy function F' which satisfies

y(r)y=F(r)—rF'(r) V re(0,%s), (2.17a)
and
}iL%TF'(T):F(O)—v(O)Zo. (2.17b)

This means, in particular, that
vy (r)y=—rF"(r) YV re(0,9s0)- (2.18)

It immediately follows from (2.18) and (2.10) that F € C(]0,%0)) NC?(0,10) is convex.
Typical examples for v and F' are given by

y(r)=7(1=8r), F(r)=7[1+8r(nr—1)], e =00, (2.19a)

which represents a linear equation of state, and by

W) =7 [1+Bvecn (1= )], PO)=7[148(rin 7y + ) |, (2:19D)

the so-called Langmuir equation of state, where ¥ €R+ ¢ and 5 €R> are further given
parameters, and we note that the special case =0 means that (2.19a) and (2.19b)
reduce to

F(r)=~(r)=7€Rs9  VreR. (2.20)

In the case (2.20), the surface tension no longer depends on the surfactant concentration
.

2.2. Weak formulation with fluidic tangential velocity. Before introducing
our finite element approximation, we will state an appropriate weak formulation. With
this in mind, we introduce the function spaces

U:={Ge[HY()]*: =0 on 8;Q, .6=0 on 8:,Q}, P:=L*Q),
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@:z{nep;/ndﬁd:()}, V:=L%0,T;U)NHY0,T;[L2()]Y), S:=H'(Gr),
Q
Vr:={@eV:3lg,€[S]%}.

Let (+,-) and (-,-)r() denote the L*-inner products on € and I'(¢), respectively. For later
use, we recall from [15, Def. 2.11] that

(el + (Ve = — (Tl ¥ CEH D) 7 [H D)% (2.21)

We remark that it follows from (2.21) that

<7(¢)7z+ Vw(tﬂ)@m = <7(1/1)%17+ V57(¢)75>F(t) == <7(w)7Vs~f>F(t) v e,
(2.22)
We recall from [8] that it follows from (2.3b)—(2.3¢) and (2.5¢) that

(p(@V)7,8) =4 [(0(@ V) 7.8) ~ (p(@.V)E,0) ~ ([p] £ 77,3 |V €€ [ Q)]

(2.23)
and
(011 = (ot &)+ (0. &) — ([} .5, fev,  (224)
dt ) ) ) — ) F(t) )
respectively. Therefore, it holds that
i.8=1Lag 3 , RRTR7A] VeV
(0i08) =3 | 33 (P + (0 &) — (o &)+ ([Z 7 E) | ¥ EeV,

and combining this with (2.23) yields that

(pld; + (7. V), €)

—

—;[jtw,&wpat,g)—<pzz,é>+<p,[<ﬁ.vm.€—[(ﬁ.wa.ﬁ)} viev. (225)

Moreover, it holds, from (2.3¢) and (2.4) that for all £€U

—

/ (V.0).£aL = ~2(uD(), DE) + (. V&)~ ([eA2.€) . (226)
Q4 (HUQ (1) INQ))
where we have also noted for symmetric matrices A €R*¢ that A: B=A: % (B+B")

for all éeRdXd.
Similarly to (2.6), we define the following time derivative that follows the parame-
terization Z(-,t) of I'(t), rather than @. In particular, we let

H¢=G+V.V¢ YV (eH (Gr), (2.27)

where we stress once again that this definition is well-defined, even though (; and V(
do not make sense separately for a function ¢ € H*(Gr). By recalling (2.6), we obtain
that

op=ar if  V=a onI(). (2.28)
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We note that the definition (2.27) differs from the definition of 9° in [15, p. 327] where
0°C=C+ (V.V) .V for the “normal time derivative”. It holds that

d . . ;
a <Xa<>l"(t) = (0 Xa<>1"(t) +(x;0; <>F(t) + <X<avs-v>r(t) Vx.Ce Hl(gT)a (2.29)

see [15, Lemma 5.2].
If V=1 on I'(t), then it follows from (2.5b), (2.14), (2.28), (2.29), and (2.21) that

< (pri ) o P2 OD@.DAE) (M) VT E),

_ 4+ Voy(),E) = {pra,o°& *+,> vEes, (2.30

()Y @).€)  =(ridzd)  +(leAhE) - YEES (230)

where we have noted for symmetric matrices éeRdXd that PrAPr:B=PrAPr:
$Pr(B+BT)Pr for all BER*,

We are now in a position to state weak formulations of the Navier—Stokes two-phase
flow problem for a Boussinesq—Scriven surface fluid that we consider in this paper.
The natural weak formulation of the system (2.3a)-(2.3e), (2.4), (2.5a)—(2.5¢), (2.7),
and (2.12) is given as follows. Find I'(t)=Z(T,t) for t€[0,T] with V € [L2(Gr)]* and
functions pr €S, @€ Vr, pe L?(0,T;P), #€[L?(Gr)]?, and €S such that for almost
all t€(0,7") it holds that

d
- <pFa<>1"(t) =(pr,0; <>r(t) vV (€S, (2.31a)

dt
1 [(i(pa,m(pﬁt@— (pii,&1) + (p, (i1 V) ). € — (. wé].ﬁ)] +2(uD(@), D(£))
. d . . = .
~0VE+ g (prid) | F2(pr) D). DE) (M) Ve Va8

- <7(1/1)ﬁ+ Vﬂ(?/f)@m)

=(f,§) +(pri,0; §>F(t) vV EeVr, (2.31b)
(V.il,p)=0 V¥ peP, (2.31c)
<17—ﬁ,>z vy =" vV Xe [LAT(1))), (2.31d)
7 it TRV — = 1 d

(Foieo + (Void Vi) =0 Ve[ ), (2,310
d

3 Qo + P (Ve Ve Oriy = (.0 Qryy ¥ CES, (2.31f)

as well as the initial conditions (2.13), where in (2.31d) we have recalled (2.1). Here
(2.31b) is derived from (2.3a) and (2.5b) by combining (2.25), (2.26), and (2.30), and
by noting (2.31d). Equations (2.31a) and (2.31f) are derived similarly to (2.30) from
(2.5a) and (2.12), respectively, by noting (2.29) and (2.31d). Of course, it follows from
(2.31d) and (2.28) that 9; in (2.31a), (2.31b), and (2.31f) can be replaced by 0.

2.3. Energy bounds. In what follows, we would like to derive an energy bound
for a solution of (2.31a)—(2.31f). All of the following considerations are formal in the
sense that we make the appropriate assumptions about the existence, boundedness, and
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regularity of a solution to (2.31a)—(2.31f). In particular, we assume that ¢ € [0,1)00).

Choosing € =1 in (2.31b), o =p(-,t) in (2.31c), and ¢(=—3ilg,|* in (2.31a), and com-
bining yields that
d 1, . 1 s s
L= [||p2u||§+<pru,u>r<t>}+2|| 22( >|\o+2<ur<w>D (). Ds (@)

If ~ is constant, recall (2.20), then the second term on the right hand side of (2.32)
collapses, by noting (2.31d), (2.31e), and (2.29), to

¥ (%, W)p 1) :7<Q’ﬁ>r(t) B _7<VS id, V. ﬁ> rwy —7<§,Vs v>F(t)

—5{1,v,. V) =-— -1 . 2.33

(L) =3 ) (2:33)

Combining (2.32) and (2.33) yields the energy identity [10, (3.2)] if f=0 in the absence
of surfactant, i.e. when (2.9) and (2.20) hold. Here we note that the authors in [10] use

a slightly different notation and assume that Ar > i which is a stronger assumption
than (2.8). In particular, we note that

2 <MF ("/J)Qs (ﬁ)ags (ﬁ)>F(t) + </\F ("/1) VS'ﬁu vs-mp(t)
=2 () D), Do), (A () + 23 i (0) Var, Vo) 7 [HH (1),

where
D (i) = (1) = 75 (60 Ds (1)) Pr = D (1) = 5 (Vai7) Pr (2.35)
denotes the deviatoric part of D, (7). Hence, (2.32) can be reformulated as

~

+2/|u? D@ +2 (e (v) Do), Da(aD))

3 S Tlob a3+ e ey
Qe+ e () Vo i Vo) | = (F0)+ (1(0) 7+ Var (), ey (2:36)

S

In order to formally derive an energy bound for the solution of (2.31a)-(2.31f), we need
to control the last term on the right hand side of (2.36). This can be achieved as in
[7], and we repeat these formal considerations here for the benefit of the reader. On
assuming that ~ is not constant, recall (2.20), we would like to choose (= F’(3) in
(2.31f). Since F’, in general, is singular at the origin, recall (2.18), we instead choose
(=F'(¢Y+a) for some o € R+ with ¥+ a <1)o. Then we obtain, by recalling (2.17a)
and (2.29), that

d

a (F(+a)=v(p+a), g +Dr (Vs (P +a), Vs F'(h+ )

_ o / 3

=W+, F'(Y+a))r t)+a< (z/1+o<),VS.V>F(t). (2.37)
Moreover, choosing xy =v(¢)+a), (=1 in (2.29), and then choosing 7=V, ¢ =7(¢) + )
n (2.21) gives

d

= W +a) Dy = (07 7 +a), Dy + (v +0), V. V)

I'(t)
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= @71+ a) g~ (YWt a) F4 V(W) V) (238)

In addition, it follows from (2.18) that

(W +a)=7"+a)f == +a) " (+a) ==Y+ )0 F'($+a). (2:39)
Combining (2.37), (2.38), and (2.39) yields that

d
— (FW+a),)pp+DPr (Vs F(¥+a), Ve F (¥ +a))p,

at
=~ (1 +a) 2+ VAW +a) V) talF W +a).V. V) (2.40)

INON

where, by recalling (2.18) and (2.10),

Fr)= / ) d.

Letting a— 0 in (2.40) yields, by recalling (2.17b), that

d ) 8§
&<F<w>,1>r(t)+Dp<vsf<¢>,vsf<w>>m>:—<~y<w>%+m<w>,v>r(t). (2.41)
We note that (2.41) is still valid, by recalling (2.33), in the case of (2.20). Combining
(2.41) with (2.36) implies the a priori energy equation

d 1 . 1
= (I3 @3+ (pr i)y | + (F W), 1)) +2103 D@3

at
t)+<(Ar(w)+%ur(w))vs.ﬁ,vs.@r(t)
+DF <Vs]:(1/))vvs]:(1/})>r‘(t):( 7ﬁ)’ (2'42)

where we recall the assumption (2.8).

Apart from the energy law (2.42), certain conservation properties can also be shown
for a solution of (2.31a)—(2.31f). For example, the volume of Q_(¢) is preserved in time;
i.e. the mass of each phase is conserved. To see this, choose ¥=7 in (2.31d) and
¢=~Xq_@) in (2.31c) to obtain

d d S J— — d
G- = (V) =@ /M)Vu £'=0 (2.43)

In addition, we note that it immediately follows from choosing (=1 in (2.31a) and
(2.31f) that the total surface mass and the total amount of surfactant are preserved; i.e.
i d—1 _ i d—1 __

prdH* =0 and PdH " =0. (2.44)

2.4. Weak formulation with free tangential velocity. It will turn out that

another weak formulation of the overall system (2.3a)—(2.3¢), (2.4), (2.5a)—(2.5¢), (2.7),

(2.12), and (2.13) will lead to finite element approximations with better mesh properties.

In order to derive the weak formulation, and by recalling (2.28), we note that if we relax
V= ﬁ|F(t) to

V.i=i.7 onD(t),
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then it holds that
8 C=0r¢C+((V—1).V)(=0; ¢+ ((V-1).V,)¢ ¥V (eH (Gr),

and similarly for (e [H!(G7)]%.

Our preferred finite element approximation will then be based on the following weak
formulation: Find ['(t)=Z(T,t) for t€[0,T] with V€ [L(G1)]%, and functions pr €S,
@€ Vr, pe L2(0,T;P), € L%(Gr), and 1 €S such that for almost all ¢ € (0,T) it holds
that

d S o
a <pFa<>F(t) + <PF7 (V—U)-Vsc>r(t) = (pr,0; <>F(t) v CeS, (2.45a)

— — — — —

PR+ .8 (0.6 + (0 (V)€ [(0.V)EL) | +20:D(0). )

[N

9+ (i d) 2 (e () D@26
~(W)P VA @).E) A+ (prd (V=) VE)

=(73+<prﬁ78§5>r(t) VEeVr, (2.45D)
(V.i,0)=0 YV geP, (2.45¢)
ﬁ—ﬁ,xﬁ>m)=0 YV x € LAT(t)), (2.45d)
(547, pgey + (Vid, Vs ﬁ>m) —0 Y ie[H'(T)", (2.45¢)
SOy + Pr (Ve Vuhrgy + (0. F=)-9.C) | =0 Clry ¥ CES, (2450)

as well as the initial conditions (2.13), where in (2.45a), (2.45b), (2.45d), and (2.45f)
we have recalled (2.1).

Similarly to (2.32), choosing £ = in (2.45b), o =p(-,t) in (2.45¢), and ¢ = —1i|gy|?
in (2.45a) yields, by noting = »7 and

1 g 22\ e 7
s (or (V=) Vala) = (prit (V=) Vi) (2.46)

that the formal Equation (2.32) holds for a solution of the weak formulation (2.45a)—
(2.45f). Moreover, similarly to (2.32)—(2.42), we can formally show that a solution to
(2.45a)—(2.45f) satisfies the a priori energy bound (2.42). We observe that the analogue
of (2.41) has as its right hand side

_ <7(¢)i+vsv(w)79>m
_ <7(¢)%ﬁ+ st(¢)vﬁ>r(t)
= — (YY) %7+ Vv (¥), Dy o

where we have used (2.45d) with x =+(¢) s> and (2.18). Of course, (2.47) now cancels
with the last term in (2.32), and so we obtain (2.42). Moreover, the properties (2.43)
and (2.44) also hold for a solution to (2.45a)—(2.45f).
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3. Semidiscrete finite element approximations

For simplicity, we consider 2 to be a polyhedral domain. Then let 7" be a regular
partitioning of 2 into disjoint open simplices 0 ,1=1,. % Associated with 7" are
the finite element spaces

Spi={x€CQ):x[EP(0) VoeT"}CH'(Q), keN,

where Py (0) denotes the space of polynomials of degree k on o. We also introduce
SO, the space of piecewise constant functions on 7". Let {<pk J} be the standard
basis functions for SP, k>0. We introduce fh [C(Q)]4—[Sp)4, k>1 the standard

k

interpolation operators, such that ( M) (py §)= i7(ph 4) forj=1,. K" where {p}! J

denotes the coordinates of the degrees of freedom of S , k>1. In addition, we deﬁne
the standard projection operator I : L*(Q) — SF such that

1
hoVl d h
(Ion)|o_£d(o) /Ondﬁ YoeT".

Our approximation of the velocity and pressure on Ih will be finite element spaces
U"CU and P"(t)CP. We also require the spaces P"(t):=P"(t)NP. Based on the
authors’ earlier work in [6, 8], we will select velocity /pressure finite element spaces that
satisfy the LBB inf-sup condition (see [17, p. 114]) and augment the pressure space by
a single additional basis function, namely by the characteristic function of the inner
phase. For the obtained spaces (U",P"(t)), we are unable to prove that they satisfy an
LBB condition. The extension of the given pressure finite element space, which is an
example of an XFEM approach, leads to exact volume conservation of the two phases
within the finite element framework. For the non-augmented spaces, we may choose, for
example, the lowest order Taylor-Hood element P2-P1, the P2-P0 element, or the P2
(P14+P0) element after setting U" = [S}?NU and P" = Sf, Sh or S+ Sk, respectively.
We refer to [6, 8] for more details.

In order to approximate  and 3 in (2.31a)—(2.31f) and Z and s in (2.45a)—(2.45f),
respectively, we define the parametric fintie element spaces as follows; see also [14, 5].
Let T (t) CR? be a (d— 1)-dimensional polyhedral surface, i.e. a union of non-degenerate
(d—1)-simplices with no hanging vertices (see [13, p. 164] for d=3) approximating the

closed surface I'(t). In particular, let T"(t) = U]JFIO';L( ) where {ah( )}Jil is a family of

mutually disjoint open (d— 1)-simplices with vertices {g}(t)}1",. Then let

V(I () = {xe[C(T" ()" >Z|U;L is linear V j=1—Jp}
=Wt @)) c [H (" (t))7,

where W (I'"(¢)) € H*(T"(¢)) is the space of scalar continuous piecewise linear functions
on T"(t) with {x}(-,t)} 5~ denoting the standard basis of W (T'"(t)), i.e.

XH@ ), )= VY kic{l,. .. Kr}te0,T). (3.1)

For later purposes, we also introduce 7" (t): C(I'"(t)) — W (I'"(t)), the standard inter-
polation operator at the nodes {g(t)} ", , and similarly 7" (¢): [C(T"(¢))]? — V(" (t)).
After choosing an arbitrary fixed to € (0,7, we can represent each 7€ T (ty) as
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Now we can parameterize I (t) by X" (-,£) :T"(ty) — R® where i EkK:FI XI(Zto) @ (t),
i.e. I"(to) plays the role of a reference manifold for (I'"*(¢))¢eo,7). Then, similarly to
(2.1), we define the discrete velocity for 7€ T (to) by

ST Sh - d
Vh(z,to)IZ—Xh(z,to):ZXZ(Z,to)—_h(to), (32)
which corresponds to [15, (5.23)]. In addition, similarly to (2.27), we define

o — d > — - -1 — —
7" C(2,t0) = - (X" (Zt0) t0) = Gu(Zit0) + V" (£,40). V((Zit0) ¥ CEH'(GF). (3.3)
where, similarly to (2.2), we have defined the discrete space-time surface

Gro= J T x{t}.

t€[0,T]

It immediately follows from (3.3) that 8"id=V" on I''(t). For later use, we also
introduce the finite element spaces

W(Gr):={xeC(G1):x(-t) eW("(t)) ¥ te[0,T]},
Wr(G1):={xeW(G}):9;" x € C(G1)}.
By differentiating (3.1) with respect to ¢, we obtain that
=0 Vke{l,. . Kr); (3.4)

see also [15, Lemma 5.5]. Tt follows directly from (3.4) that
Kr q
=Y W0 S G on T (3.5)
k=1

for ¢(-,t)= ZkK:Fl Ce(t) X2 (-,t) e W(T"(t)). Moreover, it holds that

d o = _ )
T gde—lz/ OV VAN Y e HY (oM(t)),5€{,..., 0}
H(®) ol (t)
(3.6)
see [15, Lemma 5.6]. It immediately follows from (3.6) that

d o o, %

E<777<>F’1(t) = (07" 1, rn ey + 10,07 Orn ey + (NG Ve Vpngy ¥ m,C € Wr(Gh),
(3.7)

which is a discrete analogue of (2.29). Here (-,-)pn(;) denotes the L?-inner product on
I'"(t). Tt is not difficult to show that the analogue of (3.7) with numerical integration
also holds. We state this result in the next lemma, together with a discrete variant
of (2.21), by recalling (2.15) for the case d=2. Let the mass lumped inner product
(- ), (1) on Fh( ), for piecewise continuous functions with possible jumps across the

be defined by

d
URQLIVRS ZHd N Yo mO(@h) ), (3.8)

Jj=1 k=1

edges of {o J "L
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where {qfk }d_ | are the vertices of a;? and we define (n()((qﬁ)’) = lim (nQ)(P).
aj'aﬁﬁqjlk
LEMMA 3.1. It holds that

d

37 Oy = 407" 1. on oy 0,07 Qo iy + 0 Ve Vg Y 0, €W (GF).
(3.9)

In addition, if d=2, it holds that

(¢ Vst rn oy + (Vs Con ey = (Vsid, Vo @ (CT))pny ¥ CEW (1)), 7€ V(TR (1)).

(3.10)
Proof. See the proof of Lemma 2.1 in [7]. O
Similarly to (2.11a) and (2.11b), we introduce
Pri=Id-7"®@i" onT"(t), (3.11a)
and
D (i) = 3 Prw (Vsii+ (Vo)) B on T(2). (3.11b)

Here, Vo =Pr» V denotes the surface gradient on I'"(¢). In addition, and similarly to
(2.35), we define

DMif) = D7) — 5 (Vs-if) Py on I (2). (3.12)

Then it is straightforward to show that
- _\ P - h
2 <,uF (X)Q?(n)agg (n)>l"h(t) =+ </\F (X) VS' 7, vS'ﬁ)l"h(t)

—2 (e () D40, D)

h
2 Lo
N0 + <()‘F(X) a1 /LF(X))VS.W,VS.W>

()
Ve V(I (1), xeW (" (1)  (3.13)

holds, which is a discrete analogue of (2.34).
Given I'"(t), we let O () denote the exterior of I'"(¢) and let Q" (¢) denote the

interior of I'"(t) so that T (¢) = 9Q" (t) = Q" (t) Q% (t). We then partition the elements
of the bulk mesh 77 into interior, exterior, and interfacial elements as follows. Let

Tht):={o€T:0CcQ (1)}, TI(t):={ocT":0cQ(t)},
T (t):={oe T 0nTh(t) #0}.

Clearly Th=T"{t)UTI(t)UT(t) is a disjoint partition. In addition, we define the
piecewise constant unit normal 7" (t) to I'"(¢) such that 7" (¢) points into Q% (¢). More-
over, we introduce the discrete density p"(t) € S and the discrete viscosity p”(t) € Sk
as

e 0€T(), L o€ T(),
P () ]o= 1 Pt o€ TP(t), and p"(t)[o=1 ps 0TI (1),
5(0—+py) 0€ThH (), 5(u-+py) oeTh (1)
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From now on, we assume that ﬁELQ(O,T;[C’(ﬁ)]d), 1=1,2, so that I_;If:, 1=1,2, is
well-defined for almost all ¢ € (0,7).

In what follows, we will introduce two different finite element approximations for
the free boundary problem (2.3a)-(2.3e), (2.4), (2.5a)—(2.5¢), (2.7), and (2.12). The
first will be based on the weak formulation, (2.31a)—(2.31f), and the second will be
based on (2.45a)(2.45f). In each case, U"(-,t) € U" will be an approximation to @(-,t),
while P"(-,t) € P"(t) approximates p(-,t), pl(-,t) e W(T"(t)) approximates pr(-,t) and
Wh(. t) e W(T"(t)) approximates ¥ (-,). When designing such a finite element approx-
imation, a careful decision has to be made about the discrete tangential velocity of
IR(t).

3.1. Approximation with fluidic tangential velocity. The most natural
choice is to select the velocity of the fluid; i.e. V=1is appropriately discretized. This
leads to a discretization of (2.31a)—(2.31f) where the arising variational approximation
of curvature, which directly discretizes 7, recall (2.15), goes back to the seminal paper
[14]. Overall, we obtain the following semidiscrete continuous-in-time finite element
approximation.

Given T"(0), pl(-,0) € W (I'"(0)), U"(-,0) € U", and W"(-,0) € W (I'"(0)), find T’ (t)
such that ia|Fh(t)€K(Fh(t)) for t€[0,7] and functions ple Wy (Gh), U" EVR, =
{56 HY0,T;U"): ¥ € [Wr(Gr)]?, where X(-,t) =7" [(5|Fh(t)] Vtel0,T]}, PhePh.={pe
L2(0,T;P): o(t) e Ph(t) for ae. t€(0,T)}, #he [W(Gh)]4, and U € W (Gh) such that
for almost all ¢ € (0,T) it holds that

d o h

5<P}ﬁ=<>}§h(t>=<p’§,3t’h4>mt) ¥ CeWr(Gh), (3.14a)
d Lo L N . .

} [5 (0" T"€) + (0" T1.E) — (" U’h@)] +2 (" D(0"),D(E))

— — ol pu J— & d 7 g
+3 (PO TE- (@ 9)8.0") - (P 9.8) + 4, (A T"E) ,
+ <Ar(‘1’h)Vs- (@ U"), Vs (7€) };h(t)

o fh oo (7h &
(th1 +f275) <pFUh (7T §)>Fh(t)
v e HY(0,T;U"), (3.14b)

- (R w8,

(v.ﬁh,w) =0 VgePh(), (3.14c)
h h
h = h - h
] v ge V(i (¢ 3.14d
V'X)  = (0", Y XEVT (), (3.14d)
Sh Dl = o o N h
( ,n>m)+<v51d,vsn>rh(t)_o v 7e V(T (1)), (3.14e)
d on \h h hogoh \" h
3 (U X)pn g+ Dr (Vs ¥ 7st>ph(t):<\lf 0 X>m<t> VxeWsr(Gh),  (3.14f)

where we recall (3.2). Here, we have defined fm( ) =10 fi(-,t), i=1—2. We observe
that (3.14d) collapses to YV =" " lpn(ry€V(T"(t)) which, by recalling (3.3), turns out
to be crucial for the stability analysis of (3.14a)—(3.14f). Tt is for this reason that we
use mass lumping in (3.14d).

In the following theorem, we derive discrete analogues of (2.32) and the surface
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mass conservation property in (2.44), as well as a nonnegativity result for the discrete
surface material density.

THEOREM 3.2. Let {(Fh,pF,Uh ph Eh,\Ilh)(t)}te[O)T] be a solution to (3.14a)—(3.14f).
Then

d 1= = o\ P 1
1 94 h L 73h2 h7th 77h 1 Fhy (12
53 (n[p I8 M3+ ok 0", 0 >m))+2|[ "2 D03
h

+2<u (u" DM (7" "), D (ﬁhﬁh)>rh(t)

B L \h
+ (O (W) + 27 e (W) 0, (7 0", V. (7 Uh)>rh<t>

= (o' i+ 130" + < (UM R+ V" [y (q/h)],ﬁh>h . (3.15)

Th (t)
In addition, it holds that

d
T <PF71> ():0 (3.16)

and

>0

o (3.17)

p]ll('vt){>8 VtE(O,T] if p]ll(-,()){

Proof. By recalling (3.13), the desired result (3.15) follows from choosing £=0"
n (3.14b), ¢ =P" in (3.14c), and ¢ € Wy (Gr) with ((-t)=—L 7" [|U"|pn(y) [?] for all
te[0,T). Recall U" €V., in both (3.14a) and (3.5) where we observe that the latter
implies that

Loyt (U2 =w [T" (97" 7" T")] on Th(). (3.18)

In addition, the conservation property (3.16) follows from choosing (=1 in (3.14a).
Finally, it follows from (3.14a), by recalling (3.4), that

d h d
& <p}l}‘7XZ>Fh(t) dt [<1 Xk>Fh(t) pr((j}?(t),t)} =0,

for k=1,...,Kr, which yields our desired result (3.17). 0

In the following two theorems, we derive discrete analogues of (2.42) for the scheme
(3.14a)—(3.14f). First we consider the case of constant surface tension; recall (2.20).

THEOREM 3.3. Let ~ be defined as in (2.20), let (2.9) hold, and let
{(T ,pF,Uh P" EM)(t)}eo,r) be a solution to (3.14a)—(3.14e). Then it holds that

d L L
& (4013 + (00"

Ih(t)

h(=hth\ Dh(=h7th ¥ 2 —h 7Fh Sh Fth
+2MF<D (7" UM, DM (7T )>Fh(t)+(/\r+d i )<V5.(7T 0", V,. (7" T )>

= (p" [l + f3,0™). (3.19)
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Proof.  Similarly to (2.33), it follows from (3.14d), (3.14e), and (3.7) that

h h
~ [ =h T3h ~ [ =h V3h ~/v 3w vk ~ 3h
U = = sid, Vg = 1,Vs.
7<"€ ’ >Fh(t) 7<"€ Y >Fh(t) 7<V1 VsV >Fh(t) 7< VsV >Fh(t)
d
=5 —HTHT(1)). (3.20)
dt
Combining (3.20) and (3.15) for the special case (2.20) yields the desired result (3.19).

0

Next, we generalize the results from Theorem 3.3 to the case of a general surface
tension function «y as introduced in (2.10) using the techniques introduced in [7]. Here,
similarly to (2.37), it will be crucial to test (3.14f) with an appropriate discrete variant
of F'(U"). Tt is for this reason that we have to make the following well-posedness
assumption:

U t) <o on T(t), Vte]0,T). (3.21)

The theorem also establishes nonnegativity of ¥" under the assumption, if Dr > 0, that

VP VoxpdHI™ <0 Vi#k, Vte0,T]), j=1,...,Jr. (3.22)

ol (1)

We note that (3.22) always holds for d =2, and it holds for d =3 if all the triangles U;‘ (t)

of I (t) have no obtuse angles. A direct consequence of (3.22) is that for any monotonic
function G € C%1(R), it holds for all £ € W(I'(t)) that

La / V&V [G(E)] dHIL > / V" [G(6)]. Vs [G(€)] dHIL
a’j’.‘(t) o

(1)

Vtel0,T), j=1,...J0r, (3.23)
where L € Rs denotes the Lipschitz constant of G. For example, (3.23) holds for
G(r)=[r]s :=+max{0,£r} VreR (3.24)

with LG =1.
For the following theorem, we denote the L>-norm on I'"(t) by || |[oo rn(; iee.
2]l 00, T (1) := esssuppn ) |2| for 2:Th(t) = R.

THEOREM 3.4. Let {(Fh,p{i,[jh,Ph,ﬁh,\Ilh)(t)}te[oﬂ be a solution to (3.14a)—(3.14f).
Then

d
3 (V" Dpny =0 (3.25)

In addition, if Dr=0 or if (3.22) and

h
OréltanTHVS.V ll oo, 0 () <00 (3.26)

hold, then

T )>0 YVte(0,T]  if Wh(-,0)>0. (3.27)
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Moreover, if d=2 and if (3.27) and (3.21) hold, then

d

1= =n =a\" h 1=
S (B0 I+ 3 (phTVTV), S E@ D, ) + 20 D

T (t)

~ - ~ N h
h h(=zh71Th h(=zh71Th
+2(pe (P DY), DG TY)
- — h -
F{Ar () g2 e (U) Vo (7O, Vo (O < (0" 4+ LT (3.28)

Proof. The conservation property (3.25) follows immediately from choosing x =1
in (3.14f). A proof of the result (3.27) can be found in [7, Theorem 3.3]. Also in [7,
Theorem 3.3], by using (3.23), it was shown that

4
dt

h h _ hy =h h hyy 7R\
(F(), gy < = (1R +Var L0 | (329)
which is a discrete analogue of (2.41). Combining (3.29) with (3.15) yields the desired
result (3.28). O

We note that while (3.14a)—(3.14f) is a very natural approximation, a drawback in
practice is that the finitely many vertices of the triangulations I'"(t) are moved with
the flow which can lead to coalescence. If a remeshing procedure is applied to T'(t),
then theoretical results like stability are no longer valid. It is with this in mind that we
would like to introduce an alternative finite element approximation.

3.2. Approximation with implicit tangential velocity. This will be based
on the weak formulation (2.45a)—(2.45f), and on the schemes from [6, 8] for the two-
phase flow problem in the bulk.

The main difference to (3.14a)—(3.14f) is that (3.14d) is replaced with a discrete
variant of (2.45d). In particular, the discrete tangential velocity of I'(¢) is not defined
via ﬁh(~,t), but it is chosen totally independent from the surrounding fluid. In fact,
the discrete tangential velocity is not prescribed directly, but it is implicitly introduced
via the novel approximation of curvature which was first introduced by the authors in
[4] for the case d=2 and in [5] for the case d=3. This discrete tangential velocity is
such that, in the case d=2, I'"(¢) will remain equidistributed for all times ¢ € (0,7]. For
d=3, a weaker property can be shown which still guarantees good meshes in practice.
We refer to [4, 5] for more details.

Following ideas similar to those in [3, 9], we introduce regularizations F. €
C?(—00,100) of F€C?(0,1hs) where £ >0 is a regularization parameter. In particu-
lar, we set

r)= E(r) r>e, N
Fe(r) {F(g)+F’(a)(r—s)+%F”(s)(r—g)Z r<e, (3.30a)

which in view of (2.17a) leads to
T r>e,
Ve (r) = {7( ) _ (3.30D)

so that

YVe(r)=F.(r)—=rF.(r) and ~L(r)=-rF!(r) Vr<hso. (3.31)
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We also introduce the matrix functions Z” (-, ¢) : W (I'"(t)) — [L>(T"(¢))]**¢ defined such
that, for all 2" € W(I'"(t)), it holds that

{183}

bt |U;;(t)€RdXd and ;h(zh,t) V2" =1v,7"[|z"*] on oy(t), j=1,....,Jr.
(3.32)
Here we introduce (3.32) in order to be able to mimic (2.46) on the discrete level. The

construction for ;h is given as follows. Let o denote the standard (d—1)-dimensional
reference simplex in R%~! x {0} C Rd with vertices {0,€},...,64_1}. For each o= al(t),
g=1,...,Jr, with vertices {pz}Z o, there exists an affine linear map MU 0 — o with
M, (2 ) Po+M, Z for all ZeR?, where M, € R?*? is nonsingular, such that M, (&)=

Bi, i=1,...,d—1. In particular, the columns of M, are given by p; —po, i=1,...,d,
where pg € Rd is an arbitrary point that does not lie within the hyperplane that contains
o. By choosing py such that (Bg—Do).(Bi —Po) =0 for i=1,...,d—1, we observe that
V&= (M)~ [V, (o My)]o(My)~! on o where we note that Vyn=Vn—(&;.Vn)éy
on ¢. Hence we define

EME" ) o= (MI) T ED (" MY (3.33a)

Lo

where ;Z(zh) € R4 is the diagonal matrix with entries

Bl (zM))i= {% (" (o) +2" () i=1,....d=1, (3.33b)

We propose the following semidiscrete analogue of the weak formulation (2.45a)—
(2.45f): Given T'"(0), p(-,0)€ W(I'"(0)), U"(-,0)€U", and \Ifh(-,O)eW(Fh( ), find
I'(t) such that ia|rh(t)ez(rh(t)) for t€[0,7] and functions plt e Wp(Gh), U" eve,,
PhePh, ke W(Gh), and ¥ € Wr(G%) such that for almost all £ € (0,7) it holds that

§t<pr,g>h() <p{z,a§hg>;(t)—<p§7*,(9h—ﬁh).v5<>};,L(t) Y CeWr(Gh),
(3.34a)

;[%(phﬁhfﬁ(phﬁﬁ,s pU’zgt] W D(0"),D(9))
(D TLE- ()0 - (Pth) A0,
+z<ur<wh>gz<ﬁhﬁh>,gz<ﬁh3>ﬁ,() AV (7 T,V <h3>;;L<t>
_<7Th[ ’5>rh(t < [ e (), 5>1}i’1(t)
= (thl + /3 af) +<P1@Uhvaf7h(ﬁh§)>Fh(t)

__Zd;<pg*(ﬁh_ﬁ),§h(ﬁhtjh) o (m gl)>m) v £€ H'(0,T;U"), (3.34b)
(V.U'h,cp)zo Y pePMt), (3.34c)

h
S h —h _ /17h —h h
<V X7 >Fh(t)_<U X7 >wt) YV x e W(Th(1)), (3.34d)



J. W. BARRETT, H. GARCKE, AND R. NURNBERG 1849

(6 T+ (Vi Vo) | =0V V(TN (D) (3.34¢)
d

I (U XDy + Pr (Vs 0 Vo Xy

_ gk geh \" h h
(v, (e (-0, e w(h, (3.340)

where we recall (3.2) and U" = (U}',...,U")T. The value Uh _in (3.34f) is chosen in a
special way to enable us to prove stablhty for the scheme (3. 34a)7(3.34f). Since we are
unable to prove stability for d=3 for general surface tensions due to the need for (3.10),
we simply set \I/h = V" if d=3. For d=2, by recalling (3.31), we define

C W)=Y ) pgh 1(ph
gh =) Eaprary W) ARy e k).
$(UR_ + 9} F/(Up_ ) =F/(¥}),

(3.35)
Here we have introduced the shorthand notation W (t) =W"(q(t),t), for k=1,...,Kr,
and for notational convenience, we have dropped the dependence on ¢ in (3.35). The
definition in (3.35) is chosen such that for d=2 it holds that

N h _
(W8 VL FLU )y ) = (V0T Vn [FLO) )
= (VT () TEVEHD). (3.36)

which will be crucial for the stability proof of (3.34a)—(3.34f). Note that here the
regularization (3.30a), (3.30b) is required in order to make the definition (3.35) well-
defined. We observe that (3.36) for 7=Vh— 7" (jh|ph(t) mimics (2.47) on the discrete
level. In addition pft, in (3.34a,b) is defined by

1 d—1 h h
ST ey g dH pt >0 on o
h Hd 1(0]’.‘)fhpF r= J’ h .
L= on o; Vje{l,.. Jr}. 3.37
pF.’ 0 inah p}Ik < 07 ! ! { F} ( )

In the following theorem, we derive a discrete analogue of (2.32), as well as a discrete
surface mass conservation property, for the scheme (3.34a)—(3.34f).

THEOREM 3.5.  Let {(I", pl, U™, P" ih Wh) (¢ )}eejo,r) be a solution to (3.34a)—(3.34f).
Then

Fh 2 4 h 1th L (k2
1 (10 (k007" 4211600 DO
h\ Nh(=h 77h\ Ph(=h1Th h
+2(ur (W) DUE T, DUETY) |
o i h
(AN 4 2 (E) Vo 30, 90 G TY)
h
_ h fh Fh 77h h h\ h1=h 77 h h 7h
= (P A+ 0") (7 e R0 ) (T (L0 (339)

In addition, it holds that

d h
E<pr’1>f‘h(t):0’ (339)



1850 TWO-PHASE FLOW WITH A SURFACE FLUID

and if
Jnax |V, V" ll oo, () < 00, (3.40)
then
pr(,t)>0 Y te(0,T] if  pl(-,0)>0. (3.41)

Proof. By recalling (3.13), the desired result (3.38) follows on choosing £=0"h
n (3.34b), ¢ =P" in (3.34c), and (€ Wr(Gr) with ((-,t) =—37"[[U"|rn) |?] for all
te[0,T]. Recall U" €V, in (3.34a) where we recall (3.18) and (3.32).

The conservation property (3.39) follows by choosing (=1 in (3.34a). Moreover,
choosing ¢ =7"[p}]_ in (3.34a) yields, by recalling (3.5) and (3.9), that

d . . h o h
at P20 (o (VP = TM). Vo] = (ot 0 (ol ),
h d A\ h
_1/99h__h [ hi2 1 2 1 h12 h
=3 (0" A2]1),, o =3 g M2 Dy = S (290 V) o (342)

It follows from (3.37) that the second term on the left hand side of (3.42) vanishes, and
hence we obtain that

d -
S PR ) = <[p’;12_,vs.vh> <Va VP oo ([0 )y (343)
A Gronwall inequality, together with (3.40), now yields our desired result (3.41). O

In the following two theorems, we derive discrete analogues of (2.42) for the scheme
(3.34a)—(3.34f). First we consider the case of constant surface tension; recall (2.20).

THEOREM 3.6. Let ~ be defined as in (2.20), let (2.9), hold and let
{(Th ph, T Pk &™) (t) }ejo,1) be a solution to (3.34a)—(3.34e). Then it holds that

d [y nirthp2 1 hh 3\ —qyd—1(h h13 7hy||2
dt(2||[p OB+ 3 (k0" 0") ,  FTHHE @) ) #2112 DOIE

— [/ Dhi=hihy Nh(=hT3h oY 2 ~h 17h ~h 77h
+27 (DUF TN, DLE D)) |+ et 20 n) (Vo (7 TN 95 @0
=(p" fir+ f5.0M). (3.44)

Proof.  Similarly to (3.20), it follows from ~.(-)=~(-)=7, (3.34d), (3.34e), and
(3.7) that

:7<’€hﬁh’ﬁh>;<t>:_7<vsia’v5ﬁh> o (1)
=3 (LU= ) (3.45)

Combining (3.45) and (3.38) for the special case (2.20) yields the desired result (3.44).
O

Next we generalize the results from Theorem 3.6 to the case of a general surface
tension function ~, as introduced in (2.10).
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THEOREM 3.7. Let {(Fh,p{i,[jh,Ph,/{h,\Ilh)(t)}te[oﬂ be a solution to (3.34a)—(3.34f).
Then

d  on

) =0, (3.46)
Moreover, if Xgn ;) € P"(t), then

%Ed(ﬂ’i (£))=0. (3.47)

In addition, if d=2 and if the assumption (3.21) holds, then
d 1= =5 A\l h 1=
S (B0 + (A TATYY, (RN, )+ 2l RO

~ _ —~ N h
+2(pur () DY 0N DT
- - t

Qe () + 2 (0 V@ 09GO < (0 0. 34)

Proof. The conservation property (3.46) follows immediately from choosing x =1
d h ~
in (3.34f). Moreover, choosing x =1 in (3.34d) and ¢ = (Xon (1) — = parey ) € (1) in
(3.34c), we obtain that

d . . h . .
—LHQ" ()= (V" " = (V" " ={(U" " :/ v.UMdcd =o,
di (=) < Y >mt) < . >mt) < . >mt) ok (1)

which proves the desired result (3.47). In [7, Theorem 3.7], it was shown that

4
dt
== (7" (@) ", 0" )

h

(Fe(9"),1) gy +Dr (Vs ¥ Vo [FL(UM)])

rh(t)

h

—(Ver @Oy (349)

Tk (t) rh(t)

which, similarly to (3.29), is a discrete analogue of (2.41). The desired result (3.48) now
follows from combining (3.49) with (3.38). O

We remark that it is possible to prove that the vertices of the solution I'(t)
to (3.34a)—(3.34f) are well distributed. Since this follows already from the Equation
(3.34e), we refer to our earlier work in [4, 5] for further details. In particular, we ob-
serve that in the case d=2, i.e. for the planar two-phase problem, an equidistribution
property for the vertices of I'(t) can be shown. These good mesh properties mean
that for fully discrete schemes based on (3.34a)—(3.34f) no remeshings are required in
practice for either d=2 or d=3, and this is the main advantage of the scheme (3.34a)—
(3.34f) over (3.14a)—(3.14f). Another advantage is that the volume of the two phases is
preserved for the approximation (3.34a)—(3.34f), recall (3.47), while it does not appear
possible to prove a similar result for (3.14a)—(3.14f). Here we note that the condition
Xon () €P"(t) is always satisfied for the XFEMr approach as introduced in [6, 8]. A
minor disadvantage for the scheme (3.34a)—(3.34f) is the fact that it does not appear
possible to derive a maximum principle for the discrete surfactant concentration W”
similarly to (3.27). However, the following remark demonstrates that the negative part
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of U" can also be controlled for the scheme (3.34a)—(3.34f). Moreover, in practice, we
observe that for a fully discrete variant of (3.34a)—(3.34f) the fully discrete analogues
of W"(.,t) remain positive for positive initial data.

REMARK 3.8. The convex nature of F', together with the fact that F” is singular at

the origin, allows us to derive upper bounds on the negative part of U” for the two cases
(2.19a) and (2.19b). By recalling (3.30a) and (2.17a), it holds that

Fs(r):’y(a)—l—F’(s)r—l—%F”(s) (r—e)?> %F”(E)TQ >1c715p02 Y r <0,

[N

provided that e is sufficiently small. Hence the bound (3.48), via a Korn’s inequality,

L L\ h

and by assuming that <p}ll Uh,Uh> " )Z—Co for some positive constant Cp that is
Th(t

independent of e, implies that

h
("2 )0, <Ce Vie[o,T),

for some positive constant C' and for € sufficiently small.

REMARK 3.9. In order to be able to add numerical diffusion to our fully discrete
schemes, we also consider a variant of (3.34a)—(3.34f) where we add

J(hr(t)) < ‘EF’L (ﬁh - ﬁh) ‘ Vet Vs XZ>}FLh(t)

to the left hand side of (3.34a). To maintain stability, we accordingly add the term
h
—Lo(hr(t) <’7>Fh (vh Uh)‘vs Pl wh [T, §]>F} , 10 the xight hand side of (3.34b).
(¢

Here ¥(s) >0 is a discrete diffusion coefficient with 9¥(s) —0 as s —0, and
hr(t) :==max;j=1,. diama;?(t). Then it is easy to show that all the results in the-
orems 3.5, 3.6, and 3.7 still remain true. For example, in (3.42), we note that, by
recalling (3.23), the bound (3.43) still holds.

.....

REMARK 3.10. We recall that the stability proofs in theorems 3.4 and 3.7 are restricted
to the case d =2. However, it is possible to prove stability for d=2 and d = 3 for a variant
of (3.14a)—(3.14f), which, by recalling (2.22), is given by

! [% (0" 0" .&) + (o T1.E) — (0" ﬁ%é)] +2 (" D(0"). D))

43 (P T 9) T~ (B T 9)E.0") - (Ph v. f) FATEL
+2{pur (V") DA (& T"), Dl (7€ >Fh(t + (A (@) V,. (7 0"), V.. (7" 4)>;(t)
+<7(Wh),vs.ﬁhg>};h(t)

_ (phﬂurgl,g) + <p’; ﬁh,afvh(ﬁhg)xh(t)v £e HY(0,T;UM), (3.50)

together with (3.14a), (3.14¢), (3.14d), and (3.14f). Here we observe that in this new
discretization it is no longer necessary to compute the discrete curvature vector #". It
is then not difficult to prove stability for this scheme for d=2 and d=3, since (3.10) is
now avoided. See [7, Theorem 2.7] for an analogous proof.
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4. Fully discrete finite element approximations

In this section, we consider fully discrete variants of the schemes (3.14a)—(3.14f)
and (3.34a)—(3.34f) from Section 3. Here we will choose the time discretization such
that the existence and uniqueness of the discrete solutions can be guaranteed and such
that we inherit as much of the structure of the stable schemes in [6, 8] as possible; see
below for details.

We consider the partitioning ¢,, =m7, m=0,..., M, of [0,T] into uniform time steps
T7=T/M. The time discrete spatial discretisations then directly follow from the finite
element spaces introduced in Section 3 where, in order to allow for adaptivity in space,
we consider bulk finite element spaces that change in time.

For all m >0, let 7™ be a regular partitioning of 2 into disjoint open simplices oy,
J=1,...,Jo. We set h"™:=max;—1m diam(o;-”). Associated with 7™ are the finite
element spaces S} for k> 0. We also introduce fkm [[C()]4— [Sm]4, k> 1, the standard
interpolation operators, and the standard projection operator I5*: L'(2) — Si*. For the
approximation to the velocity and pressure on 7™, we will use the finite element spaces
U™ CU and P™ CP which are the direct time discrete analogues of U* and P"(t,,),
as well as P™:=P™NP. We recall that (U™, P™) are said to satisfy the LBB inf-sup
condition if there exists a constant Cy € R independent of A" such that

[CAZIN, (4.1)

pebm gcum [lollolI€ll —

Following the XFEMr approach introduced in [6, 8], we will often augment P™ by the
single basis function Xgn. For this extended finite element space, it does not appear
possible to show that (4.1) holds, but our fully discrete scheme in §4.2, below, with
XFEMr, shows excellent volume conservation properties in practice; recall Theorem 3.7.

Moreover, the parametric finite element spaces are given by

V(™) :={Xe[C(T™)]*:X|or is linear V j=1— Jr} = [W (™) C[H'(T™)],
for m=0— M —1. Here, Fm:UﬁlW where {07} 3];1 is a family of mutually dis-
joint open (d—1)-simplices with vertices {g{"}rr,. We also introduce 7™ :C/(I") —
W(I'™), the standard interpolation operator at the nodes {g};r,, and similarly
7™ [O(I™)]? — V(I'™). Throughout this paper, we will parameterize the new closed
surface I over I'™ with the help of a parameterization X™ 1 V(I'™), i.e. [™*+! =
Xmtl(rm),

We also introduce the L?-inner product (-,-)pm over the current polyhedral surface

I'™, as well as the the mass lumped inner product (-,-)%,.. Similarly to (3.11a) and
(3.11b), we introduce

I§

rn=Id—=7"®@v™ onI™,
and
an (1) = %EF’" (Vs + (Vs ﬁ)T)EFm on ',

where here Vg =Prm= V denotes the surface gradient on I'". In addition, and similarly
to (3.12), we define

D™ (if) = D7(7f) — 745 (Vs.)Prn  on L™

Then it is straightforward to show that
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2 {jur (x) D2 (77), D7 (7)) + (e () Vs 7, Vs o

~ ~ h h
=2y () D). D)) +{ e () + 27 10 (0) Vel Vo)
VFeV(I™),xeW(T™)  (4.2)

holds, which is the fully discrete analogue of (3.13).

Given I'™, we let Q' denote the exterior of I'™ and let 2" denote the interior of
' so that ' =00 = Qm ﬂQm We then partition the elements of the bulk mesh 7™
into interior, exterior, and 1nterfac1al elements as before, and we introduce p", ™ € S7",
for m>0, as

p— omeT™, p— omeTm,
P om=1q P+ omeT!, and p"[om=q py omeT",
3(p—+ps) omETH, 3 (- +pg) omeT

We introduce the followirLg pullback and pushforward operators for the discrete
interfaces I'™ and I'™ 1. Let I~ :[C(I'"™)]? — V(I'~!) be such that

(et 2)(ge ) =2a"),  k=1,..Kp, VzZelc@m), (4.3a)

for m=1,...,M —1, and set Ti;*:=7°. Similarly, let TI"*_, : [C(T"~1)] = V(') such
that

[, 2@ =2, k=1,..,Kp, YzelCc@m (4.3b)

for m=1,...,M —1, and set ﬁ(il :=7". Analogously to (4.3b), we also introduce
e oY —w(Im).

We set p~t:=p0 I'"1:=T9, X1 XO and pF = pi.

4.1. Approximation with fluidic tangential velocity. Our proposed fully
discrete equivalent of (3.14a)—(3.14f) is then given as follows. Let I'’, an approximation
to IT'(0), U2 €U, B2 V(I'), p% € W ('), and ¥° € W (I'°) be given. For m=0—M—1,
find Um+leUm, pmtlepm, Xm+lc V(I'™), and &™+! € V(I'™) such that

% (Im m— 1)

(pm vt — (gt ) I U
T

ﬁm+1 _I_;m ﬁm _»)
——

2 (4w DO, DE) ) + & (0 [ T ) T €= (T T v) 8] o)
~(Pmv.€) +% {pr ﬁm“,{xm +2(ur (0™ DI (7" ﬁm+1),2;n(ﬁm5)>’;m
\pm)vs.(ﬁmﬁmﬂ),vs.(ﬁm§)>};m

(e
—(7(0) (R T B (U TR [ (0LE)

- ( A ) 4 (o O R ) VECDT, (4da)

( ):0 YV pebm, (4.4D)

< H-id *>h :<(7m+1,>z>zm VY xev (™), (4.4c)
.
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<Em+17ﬁ>rm <Vs Xm+17vs ,,7>Fm =0 \v4 776 Z(Fm), (44(1)

and set [+ = Xm+1(I™). Then find p™*! e W (I™+!) and ¥+ e W (I'™*) such
that

P

PP T = (X e, Y RE{L,.., Kr}, (4.4¢)

<\I/m+1 m+1>Fm+1+DF<V qu+1 vsx’lrcn+l>rm+l

ﬂIH

1
:;<\I/m,x21>}§mke{1,...,Kp}. (4.4f)

Here, we have defined fm"’1 =In fitmy1), i=1,2. We observe that (4.4a)—(4.4f)
is a linear scheme in that it leads to a linear system of equations for the unknowns
(U’m"’l,Pm"’l,X’m‘H,F{m“,p?H,\Ifm+1) at each time level. In particular, the system
(4.4a)(4.4f) clearly decouples into (4.4a)(4.4d) for (Um+1, pmtl Xmtl gmtl) (4 4¢)
for pim ! and (4.4f) for ¥+,

We note that the right hand side in (4.4a) was obtained from

;<pm—lfzmﬁm,ﬁmflam>h .

where we recall from (3.4) and (3.5) that the last term in (4.5) is a fully discrete
approximation of the last term in (3.14b).

When the velocity/pressure space pair (Um,@m) does not satisfy (4.1), we need
to consider the following reduced version of (4.4a)—(4.4d), where the pressure P™*1 is
eliminated in order to prove the existence of a solution. Let

me={UeU™:(V.U,p)=0 V pcP™}.

Then any solution (™ +!, Pt Xm+l gmtly e gm s P s [V(T™)]2 to (4.4a)(4.4d) is
such that (Jm+, Xm+1 gmtl) e Um x [V(I'™))? satisfies (4.4a), (4.4c), and (4.4d) with
U™ replaced by UG
In order to prove the existence of a unique solution to (4.4a)—(4.4f), we make the
following very mild well-posedness assumption.
(A) We assume for m=0,...,M —1 that H*~'(c7") >0 for all j=1,...,.Jp, and that
rmcao.

Moreover, and similarly to (3.22), we note that the assumption

VoLVt ant=1<o0 Vi#k, j=1,...,Jr, (4.6)

m—+1
7;

is always satisfied for d=2, and is satified for d=3 if all the triangles c™*! of I'™*!
have no obtuse angles.

THEOREM 4.1. Let the assumption (A) hold, and let p' >0. If the LBB con-
dition (4.1) holds, then there exists a unique solution (U™*!, P+l Xm+1 gmtlyc
U™ xP™ x [V(IT'™))? to (4.4a)—(4.4d). In all other cases, there exists a unique solution
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(Um+L, Xm+L gmtly e Um x [V (I™)]2 to the reduced system (4.4a), (4.4c), amd (4.4d)
with U™ replaced by UF'. In either case, there exists a unique solution (pi mtd ,omtl) e
[W(T™+1)]2 to (4.4e) and (4.4f) that satisfies

(R D = 0 D and (W7 1) = (WD), (A7)
and
PRt >0. (4.7b)
Moreover, if Dr=0 or if the assumption (4.6) holds, then

vmtl>0  if U >0. (4.7¢)

Proof. Sine all the systems are linear, existence follows from uniqueness. In order
to establish the latter, we will consider the homogeneous system in each case. We begin
by finding (U, P, X IQ) eU™ x Pm x x [V(I'™)]? such that

= (413" 0.€) +2 (1" D(0). D)) - (P.V-€)

+3 (pm 0y O V) 016~ (I 0. V) €L.0)

£ 2o 0.8). +2 (e Dr G 0), D0
+<)\p(\IJ’”)VS.(ﬁmﬁ),VS.(ﬁm H)>Fm < g‘}rm 0 VEeU™,  (4.8a)
(v.ﬁ,sp)zo YV pebm, (4.8b)
o\ h o\ h
LX), =(0x),  ¥xeramm, (4:8¢)
<,z,ﬁ>?m+<vj,vsﬁ>w:o v eV (Im™). (4.8d)

Choosing €=U in (4.8a), ¢ =P in (4.8b), Y=~(0)7 in (4.8¢), and 7=~(0) X in (4.8d)
yields, by recalling (4.2), that

s (41307 0,0) 427 (5 DO, D)) + (o 0.0)

+2T<ur(\11m)2;n(ﬁmﬁ),ﬁm (@™ 0) };m

£ { e (W) 4 22 e (W) Vo (77 0). V. (7 D)) +0(VEV.X) =0
(4.9)

Tm

It immediately follows from (4.9), by recalling p+ >0 and (2.8), that U =0 € U™. More-
over, (4.8a) with U =0 implies, together with (4.1), that P=0€&P™. This shows the
existence and uniqueness of (™!, Pm+1) e U™ x P™. The proof for the reduced equa-
tion is very similar. The homogeneous system to consider is (4.8a) with U™ replaced by
U§* where we note that the latter is a linear subspace of U™. As before, (4.9) yields that
U=0¢ U§, and so yields the existence of a unique solution U™+1 € U§* to the reduced
equatlon In addition, it follows from (4. 9) that X = X.eR?. Hence (4.8d) yields that
7=0, and (4.8¢) with U =0 implies that X =0.
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The two equations (4.4e) and (4.4f) are clearly symmetric, positive definite, linear
systems with unique solutions pi" ™' € W(I'™*!) and W+ W(I'"*!), respectively.
The desired results in (4.7a) follow by summing (4.4e) and (4.4f) for k=1,...,Kr, re-
spectively. In order to prove (4.7b), we note that pJ* >0 in (4.4e) implies that

<[pf‘ +1]*5 [pl—‘ +1]7>F7n+1 - <pF +15 [pl—‘ +1]7>F7n+1 S O; (4]‘0)

ie. p?“ >0. Similarly, by assuming U™ >0, we observe from (4.4f) that

(g, [\Ilm+1]7>’;m+1 +7Dp(V, U Vet <o, (4.11)
Similarly to (3.23), it follows that under our assumptions the second term in (4.11) is
nonnegative which yields that U+! >0, similarly to (4.10). O

Let

EEV M) =3V, V) +7(0)H (M),

for ¢ € L°(Q), V €U, and M CR? a (d—1)-dimensional manifold.
THEOREM 4.2. Let 7y be defined as in (2.20), let (2.9) hold, let pi = pi" ' =0, and let
(Omt1 pmtl Xmtl gmtl ymAly he o solution to (4.4a)(4.4e). Then p™ ' =0 and
B 71, E) 1 (0 (O = B O et )
+27 (" DU™), D(U™)
F 27T <2;n+1 (7ML [jm+1),2;n+1(ﬁm+1 [jm+1)>rm+l

+7 O+ 25 1) (T (RO, 9, (7 ) )

<E(L "N LT T 41 (p’” ity fintt (7’”“) : (4.12)

Fm+1

Proof. It follows immediately from (4.4e) that p["*'=0. Choosing f=0m+1
in (4.4a), =P+ in (4.4b), =7 in (4.4c), and 7=5(X™ ! —id|pm) in (4.4d)
yields that

% (pm[j’m-i-l,(jm-i-l) +% ((I(r)npm—l)((jm-i-l _me (jm),(jm-i-l _me (jm)

+27 (" DU, D) 7 X (o (FHLTT), 9, (R T )

m+1

+2Tﬁl“ <Q;n+1(ﬁ_»m+l Uvm-‘rl),Q;n-i-l(ﬁ:m-i-l [jm+l)> .
pr— — Fm

+7 (7, XV, (X4 - 181)>F

_ % ((Iénpm71>l_;m U’mvl_;m ﬁm) 47 (pm ﬁm—i—l _|_f_;m+17[7m+1) )
Hence (4.12), by recalling (4.2), follows immediately, where we have used the result that

<vs Xm—l—l’vs (Xm—l—l _ la)>rm 2 Hd_l(l—‘m+1) _Hd—l(:[\m)

(see [4] and [5] for the proofs for d=2 and d =3, respectively). 0
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4.2. Approximation with implicit tangential velocity. In order to define
a fully discrete equivalent of (3.34a)-(3.34f), we introduce the matrix functions = :
W (™) — [L°°(T™)]4*4 defined such that, for all 2" € W (T'™), it holds that

ém(zh)|g;n€RdXd and E™(2")Ve2" =1V ]2 on o', j=1,....Jr,

which can be constructed in a fashion analogous to (3.33a) and (3.33b). We let 271 :=
=0, as well as U1 :=0% and 7! :=70.
Let T, an approximation to I'(0), U°€U°, k0 W ('), p% e W ('), and
U0 e W(I) be given. For m=0— M —1, find U™+t e U™, pmtiepm Xm+ley(Im),
and k™1 € W(I'™) such that

% (Im m— 1)

<pm[j'm+l _ (Ig)npm—l)fzm (j‘m
T

[j’m—i—l _fm (j‘m .
%f)

+2 (DO, D)) +§ (o 11 O™ V) T . €~ (B T V) .o ™)
(P V) L loR) O o) T O 8,

N L\ h
+2{pur (™) DY (@ 074, D E"E))

—

AU VLT, G| (Tl €
=~ (YO (T R (I R E)
=(r

rm m 1 m— m rrm m— mrrm—1 rym—1 &) h
mf +1+f +17§)+_<[p1" 1]+IQ U +[p1" 1]—‘[2 U 17Hm 1§|Fm>

I'm—1

h

—Z< ( —ld _me Uvm> 7;m—l(ﬂ_m—l I;nUlm) v, (ﬂ_m—lgi)>

vV EeU™, (4.13a)

Im—1

(V.ﬁm+1,¢)20 v pebm, (4.13b)
N = h
X —id —m rm41l | —m m
<f,)(1/ > —<U XV >Fm V xew(@m), (4.13¢)
l"'m.
(R <VSX'm+1,vsﬁ>Fm=o vV fev (™), (4.13d)

and set T+t = X™+(I'™) Here we have recalled the definition (3.24). Then find
PRt e W(I™+1) and W e W(I'™*!) such that

1 h
— (X e

S - h
1 Xmtl_id .
(pp X7 >rm — <p}’f*, <7 —Um+1> ,st}f> vV ke{l,...,Kr},

-
Fm
(4.13e)

Fm+1

%<\Pm+1,x;€n+1>’;m+l+pr <VS\IJ + oy, Xm+1>
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- - h
1 XmHl_id
<\I/m7X;cn>ll}‘m - <\ij?aa (71 _Um+1> VSX;cn> Vke {L"'aKF}a

T T
Tm

(4.13f)
where W}, = W™ for d=3 and, by recalling (2.18),

m
*,E

T FIO - FIO) on (@@ Vke{l,.. Kr}

:{ e (PR ) =7 (Pt ) Fé(\:[};cnfl)#Fé(\I}Zl)u
3 (U7 + ) FL(URL ) = FU(¥),

for d=2 where U™ = ZkK:Fl Uyt Moreover, by recalling (3.37), we set

1 B —
m {Hdl(cr;”) fo;" p?‘lde ! p{_‘n ZO on U;na

r = on o Vje{l,... Jr}.

0 minﬁ pr <0, ’
We observe that (4.13a)—(4.13f) is a linear scheme in that it leads to a linear system
of equations for the unknowns (ﬁm+1,Pm+1,)?m+1,mm“,p}’”l, Pty at each time
level. In particular, the system (4.13a)—(4.13f) clearly decouples into (4.13a)—(4.13d)
for (Um+1, pmtl Xm+1 xmt1y (4.13e) for p+t, and (4.13f) for W+,

In order to prove the existence of a unique solution to (4.13a)—(4.13f), we need to
make the following very mild additional assumption.

(B) For k=1,...,Kr, let O :={0}": ¢} €07} and set
_ 1
A= U o’ and = Z ’Hdil(agn)ﬁmbm.

m m
o' €Oy

Then we further assume that dimspan{@’}c”}i{il =d, m=0,...,M—1.

We refer to [4] and [5] for more details and for an interpretation of this assumption.

THEOREM 4.3. Let the assumptions (A) and (B) hold. If the LBB condition
(4.1) holds, then there exists a unique solution (U™M+1, P+l Xmtl gm+1) cym  pm x
VIT™)xW(T™) to (4.13a)—(4.13d). In all other cases, there exists a unique solution
(Om+L, Xm+L gmtly e Um x V(D) x W(I'™) to the reduced system (4.13a), (4.13c),
and (4.13d) with U™ replaced by Uy*. In either case, there exists a unique solution
(PPt m+) e [W(I™+1)]2 to (4.4e) and (4.4f) that satisfies (4.7a).

Proof. The existence and uniqueness results for (™ +1, pmtl Xm+1 gm+1) cap
be shown similarly to the proof in Theorem 4.1 and analogously to the proof in [8,
Theorem 4.1]. The results for p’ll”l and U™t can be shown exactly as in the proof of
Theorem 4.1. o

We remark that it does not appear possible to prove the analogues of (4.7b) and
(4.7¢) for the scheme (4.13a)—(4.13f).

THEOREM 4.4. Let vy be defined as in (2.20), let (2.9) hold, let pj* = pf'~' =0 and let
(@At prtl Xmtl omtl maly e g solution to (4.13a)(4.13¢). Then pfi™t =0 and
(4.12) holds.

Proof. Tt follows immediately from (4.13e) that p’llH'l =0. Choosing 5: Um+1 in
(4.13a), o= P™*1 in (4.13b), x=7x™ ! in (4.13¢c), and 7=5(X™* —id|rm) in (4.13d)
shows, similarly to the proof of Theorem 4.2, that (4.12) holds. O
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REMARK 4.5.  We may want to add numerical diffusion to (4.13e¢) in order to avoid
oscillations in pf "+ Here we recall Remark 3.9, and hence we would add the term

Xm-l—l_'a .
—O(h) < Prm (1 _ Um+1>

-
to the right hand side of (4.13e) and, similarly, the term

. Xm+_id
soum e (28 ge0)

to the right hand side of (4.13a). Here h{" :=max;_1, s diamo?".

h

Vspr, Vs x?>
Fm

h

Vo p, Vo™ [ﬁm{]>

I'm

5. Solution methods

As is standard practice for the solution of linear systems arising from discretizations
of Stokes and Navier—Stokes equations, we avoid the complications of the constrained
pressure space P™ in practice by considering an overdetermined linear system with P™
instead. The assembly and the solution of the linear systems for the schemes (4.4a)—
(4.4f) and (4.13a)—(4.13f) at each time step are very similar to the analogous procedures
in [8, 7], and so we omit most of the precise details here.

5.1. Assembly of bulk-interface cross terms. In this subsection, we give
some more details about the assembly of the bulk-interface cross terms in (4.4a)—(4.4f)
and (4.13a)—(4.13f) that are new in this paper, and where the assembly is nontrivial.

For (ppr U™+ &)k, with €€ U™, we recall from (3.8) that

d
g ym . - -
{ppref™ oV >Fm ZH o) Y om@e" @e?" @), (5.1
k=1
where {7 d_, are the vertices of o', j=1,...,Jr, and {cp?m}f(j; denote the standard

basis functions of U™.

Algorithm 1: Calculate the matrix contributions for (5.1).

For all elements ¢ of I' do
For each vertex le of o™, find the bulk element in which C}Z lies and denote
the local S¥* bulk basis functlons on these elements with /" k=1,... K.
For all i=1,...,d do
For all k:l,...,K do
For alli=1,...,K do
Add é?—[d_l( ™) i (Q) g2 (@) 17 (@) to the contributions

h
for <P?1 ‘Pugjmbal_dof(k)"szobal_dof(z)>rm
end do
end do
end do
end do

In the above algorithm, npigoml " is the hat-function for the local degree of freedom

(DOF) k on the element in which Qi lies, and global_dof(k) is a map that gives the
global DOF in S%* for the local DOF k.
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- o _, N h -
For <p;”—1 Ji Um,ng*1§|m> with £€U™, we note similarly that
Irm—

m _ m h
(ot ol T ol o )

rm—1
Jr d

=23 "HIT )Y e @ el @ el @) (5.2)
j=1 k=1

Algorithm 2: Calculate the matrix contributions for (5.2).
For all elements o™~ of I™~! do
For alli=1,...,d do
For each vertex Q7! of 0™~ 1, find the bulk element in which Q7! lies
and denote the local S5* bulk basis functions on this element with i>**"*,
k=1,...,K. Similarly, let @Zwal’i, k=1,...,K, denote the local basis
functions on the element in which the vertex @Z” of o™ lies.
For all k=1,...,K do
ForallI=1,...,K do

Add %del(o.mfl)p}n—l(@;n—l)(piﬂocal,i(@;n—l)@éocal,i(ézn) to the

h
contributions for <p?_ 1 SDE;JZZbal,dof(k) , Hﬁ_l Wyleal,do,f(l) [pm >me E
end do
end do
end do
end do

For the scheme (4.13a)—(4.13f), we note that for the terms

N = h
m— X™—id rmyrrm | —m— m—1 ymyrm m—
<pF,*1 <f_ 2 U ) = l(ﬂ 1‘[2 Uz )VS(W 1§i)> )

m—1

for i=1,...,d, where 5: (&1,...,64)T €U™, we need to consider the matrix entries

” h
(X 2 T @ U V(T ) (5.3a)
and
m—1, U™ =m—1/_m—1 mgrrm m—1, U™ h
(ppst el 2 @ U VL () (5.:3b)

Here and throughout, {x}" fj; denotes the standard basis of W(I'™), m=0,...,M —1.
The remaining new terms are

- ~\ h
2 (e (0™ DI F O™, DI (F )
h

)
and <Ap(x11m)vs.(fr‘mﬁm*l),vs.(ﬁ'm 3>
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in (4.4a), where £€U™. For an element 0™ C T'™, let {t; }?;1 U{#™} be an ONB of R.

Algorithm 3: Calculate the matrix contributions for (5.3a).

For all elements o™~ of I ~! do
Compute G; :VSXngl, j=1,...,d for the d vertices Q1,...,Qg4 of ™ 1.
Let %ERdXd be defined by its d columns Q; —Q1, j=2—d, and

]7”171|0_7n,1.

Let § € R¥*4 be the diagonal matrix with diagonal entries

3 (I3 UM)(@1)+ (13" UM)(@;)), j=2—d, and 0.
Define A= (MT)"*AMT.
For each vertex QZ of 0™~ 1, find the bulk element in which QZ lies and
denote the local S5* bulk ba51s functions on these elements with !**"*,
k=1,....K.
For all izl,...,d do
For all j=1,...,d do
Foralll:l,...,Kdo _
Add JH (o™ Yol ! goioml’J(Q )AG; to the contributions for
"V

h
<P7r"* Noioat dog(iy E (@M I UM) Vs (2 ‘Pugjzvzbal_dof(w)%mfl'
end do
end do
end do
end do

Algorithm 4: Calculate the matrix contributions for (5.3b).

For all elements o™ Lof I'~1 do =
Compute G :vsxg]fl, j=1,...,d for the d vertices Q1,...,Qq of o™ 1.
Let %ERdXd be defined by its d columns C}j —C}l, J=2—d, and

Ij’n71|o-7nfl.

Let § € R¥*? be the diagonal matrix with diagonal entries

5 (I U (@) + I3 UM (@), j=2—d, and 0.
Define A= (MT)"*AMT.
For each vertex le of 0™~ 1, find the bulk element in which le lies and
denote the local S3* bulk ba51s functions on these elements with cploc“l ‘
k=1,....K.
For all i:l,...,d do
For all j=1,...,d do
For all k=1,...,K do
Foralllzl,...,Kdo . .
Add %del(a )p}n* 1 Zocal,Z(Q‘i)(pﬁocal,g (Q])éé] to the

contributions for

h
<p?:1 (p[global dof(k)’: 71( miljgn UM Vs (Wmil (py;Zbal,dof(l))>Fm,1'
end do
end do
end do
end do

end do
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Algorithm 5: Calculate the matrix contributions for (5.4).

For all elements o™ of I do .
Compute S’izvsxgi, 1=1,...,d for the d vertices Q1,...,Qq

of ™.

Compute éij = </\F(\Ijm)u 1>Zm Sl ® Sj +2 <MF(\I]m)7 1>Zm é(Xglanj )7
ij=lod )

For each vertex @; of ¢™, find the bulk element in which (); lies and denote
the local S5 bulk basis functions on these elements with ¢, “*"",

k=1,... K.

For alli=1,...,d do
For all j=1,...,d do
For all k=1,...,K do
Forall I=1,.... K do
Add (@) )" (@) K.j to the contributions for

b\ d
(<)‘F (¥™) V. ((p[[gjlobal_dof(k) €r), Vs. ((p[[gjlobal_dof(l) €s) > )

rm r,s=1

N
+2 <<MF(\I’m)£;n(7rm sptglobal_dof(k) er), D (m (pugjlobal_dof(l) €S)> )

rm r,s=1
end do
end do
end do
end do
end do

Then it holds in the case d =2 that

" w1
2 (o) D (e ) D2 7 )
m h m m m N ng
=2 (ur (V™) 1) 0m O, (7™ 0] ) O, (7™ @] )1 @1
m h m m m m
=12 {ur (P™), 1) gm L(7™ 7" 7™ o}).
Similarly, it holds in the case d=3 that

- RV
2 (o) D2 " ) D))

") k=1

— —

m h m m m N Ing m m m m
(ur(P),1) 5 [@5(” 07 )0 (7]l @ty + 0, (T ] ) O (0T ) T @t

0z (1) 0z (7 P B @11+ 0, (1T ) Oz, (7! L @ T
2
+23 0 (7 ) Oy, (7 AV @
b=1
h m m
=2 (ur(U™), 1) L(7™ o] 7™ o) ).

Moreover, we have that
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<</\F(\Ifm)V5.(7Tm tpEjm €x),Vs. (7™ ga?meﬁ)>h >d

m m h d
_<<Ap(mm)vs(wm¢y ). Vs (7" ") ) )

= Ar(T™), gn Vs (7™ 0] )@ Vs (7 0] ").

om

5.2. Inhomogenous boundary data. With a view towards some numer-
ical test cases in Section 6, we also allow for an inhomogeneous Dirichlet boundary
condition g on 02 and for ease of exposition consider only piecewise quadratic ve-
locity approximations. Then we reformulate (4.13a)-(4.13d) as follows. Find U™ e
U™(F):={U €[Sy : U = I[§* § on 90}, P P, X™H e V(I'™), and ™1 € W (™)
such that (4.13a), (4.13c), and (4.13d) with U™ =[S5"]YNU hold, together with

. 1) .

V.Uerl,tp) _ / (I g).idHr ¥ peP™. (5.5)
( L4(Q) Joo

If (U™, P™) satisfy the LBB condition (4.1), then the existence and uniqueness proof of

a solution to (4.13a), (4.13c), and (4.13d), (5.5) is as before. In the absence of (4.1),

the existence and uniqueness of a solution to the reduced system that is analogous to

(4.13a), (4.13c), and (4.13d), with U™ replaced by Uy", hinges on the nonemptiness of

the set UT(g) :={U e U™(§):(V.U,p)=0 ¥ pePm}.

6. Numerical results
For the bulk mesh adaptation, we use the strategy from [8] which results in a

fine mesh size hy around I'™ and a coarse mesh size h. further away from it. Here

_ 2min{H,,H>} _ 2min{Hy,H>}
hf—T and hc—T

assume from now on that the convex hull of €2 is given by x&,(—H;,H;). We remark
that we implemented the schemes (4.4a)—(4.4f) and (4.13a)—(4.13f) with the help of the
finite element toolbox ALBERTA; see [25].

For the scheme (4.13a)—(4.13f), we fix e=10"%, and in all our numerical exper-
iments presented in this section, the discrete surfactant concentration ¥ remained
above e throughout the evolution so that v, (¥") =~(¥™); recall (3.30b). Similarly, the
discrete surface material density pf* always remained nonnegative in all our numerical
simulations. Unless otherwise stated, we use the linear equation of state (2.19a) for the
surface tension, and for the numerical simulations without surfactant, we set =0 in
(2.19a). Similarly, we set the numerical diffusion in (4.13e) to be zero and ¥(s) =0 for all
s €R unless otherwise stated. We set U9 =15=1 and p{ = pr =1, unless stated oth-
erwise. In addition, we employ the lowest order Taylor-Hood element P2—-P1, together
with the XFEMr extension from [6, 8], in all computations and set Uo :I_g iy where
iio =0 unless stated otherwise. For the initial interface we always choose a circle /sphere
of radius Ry and set k"= —dR—_Ol for the scheme (4.13a)—(4.13f). For the scheme (4.4a)-
(4.4f) we let %€ V(I'°) be the solution of (4.4d) with m and m+1 replaced by zero.
To summarize the discretization parameters, we use the shorthand notation nadapty, ;
from [8]. The subscripts refer to the fineness of the spatial discretizations; i.e. for the
set nadapty, ; it holds that Ny = 2k and N, =2!. For the case d=2, we have, in addition,
that Kt = Jp =2%, and for d=3 it holds that (Kr,Jr)=(1538,3072) for k=5. Finally,
the uniform time step size for the set nadapt,,, is given by 7=10"3/n, and if n=1, we
write adapty, ;. '

are given by two integers Ny> N, where we
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6.1. Convergence experiments. In order to test our finite element approx-
imations, we consider the true solution of an expanding circle/sphere, as it has been
considered in [6] for the special case p=pr =0, (2.20) and (2.9) with 7ip = Ar =0, so
that the model (2.3a)—(2.3e), (2.4), (2.5a)—(2.5¢), (2.7), and (2.12) collapses to (2.3a)—
(2.3e) with p=0, [g7|T =~/ and (2.5¢).

Throughout this subsection, we only consider the case that both (2.20) and (2.9)
hold and that 9,2 =052 and f; =0. A nontrivial divergence free and radially symmetric
solution « can be constructed on a domain that does not contain the origin. To this end,
consider Q= (—H, H)%\ [~Hy, Ho], with 0< Hy< H. Then I'(t):={ZeR?:|Z]=r(t)}
where

r(t) = ([r(0)]? + atd)7, (6.1a)

together with

a(zZt)=alz 7%, p(Zt)=0(t) {Xg(t)—ﬁd(m}, pp(??,t)—|::| Pr.o»

where pr g € R>o and

o(t) =

« - 5| (0 =1 d
7+W(2ﬁr+(d—1))\r)—0¢ [ © ] Pr,o]

is an exact solution to the problem (2.3a)—(2.3e), (2.4), (2.5a)—(2.5¢), and (2.7) with
f1(Z,t) =a?(1—d) Z|Z|~2¢ and with the homogeneous right hand side in (2.3d) replaced

by g where §(2) =a/|z]7 2.
We perform convergence experiments for the solution (6.1a) and (6.1b) for the case

d=2. In particular, we fix Q= (—1,1)?\ [ 3, }]? and use the parameters

a=0.15 and p=0, pu=fr=Ar=7y=pro=1
for the true solution (6.1a) and (6.1b) and set I'(0) = {Z€R*:|z] = 3}.
With T'=1, we obtain that I'(T") is a circle of radius (1) =+v/0.55~0.742. Some

errors for the approximation (4.4a)—(4.4f), where we use uniform bulk meshes with
he=hy=h and h{ = h/3, are shown in Table 6.1. Here, we define the errors

IX =l = | mas X7 =2t o

where ||X(tm) —Z(-,tm)| oo :=maxp—1,.. k. {mingey |} —Z(¥,t,)|} and

10 =Bl = max U™ = B u(ctn) | = o

yeees M

In order to evaluate the errors in the pressure, we define ||P. —pc||p2 :=|[7 Zm P —

Pestm)l172 Q)]2 and [|0" —0|| 2 :=[r Zn]\le 6™ —9(tm)|2]%- Here pc( vtm) =p(tm) —
9( m)Xa_(t,,) ER for the test problem (6.1a) and (6.1b), and P :=P™ — 0™ Xgm-1 is

piecewise polynomial on 7™ 1.
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1/h T IX @~ UL~ [Pe—pellz [0" =01
3 107 5.6209e-03 1.2984e-01  5.7124e-01  8.2619e-01
6  107% 5.8122e-04 4.7725¢-02  7.0856e-02  5.5830e-02
12 10% 7.3525¢-05  2.5878¢-02  2.1928¢-02  1.7614e-02

TABLE 6.1. (a=0.15, p=~=7ip =Ar =pr o = 1) Ezpanding bubble problem on (—=1,1)2\[-1,1]2

over the time interval [0,1] for the scheme (4.4}1)7(4.4]‘) with uniform meshes. a8
Lhy 7 | X-dlp~ [U-Bilre [P=pelzz 0" 0l
24 1072 6.2091e-04  1.1700e-02 2.8168e-01 2.5660e-01
48 1072 9.0002e-05  1.9780e-03 3.1748e-02  3.5368e-02
96 1074 8.9183e-06  3.2252¢-04 7.9251e-03  8.2088e-03
TABLE 6.2. (a=0.15, p=%=fip = Ar =pp o =1) Ezpanding bubble problem on (—1,1)2\ —%,%}2

over the time interval [0,1] for the scheme (4.4a)—(4.4f) with adaptive meshes.

In Table 6.1, the convergence in ||U — I} ||~ appears to be very slow. It is for
this reason that we also repeat the convergence experiment on a sequence of refined
bulk meshes. Here we use adaptively refined grids with hy=h./8 and hr=~h./12=
%hf. The corresponding errors can be found in Table 6.2, where now the error H(j —

IZ%IH L~ appears to converge with an improved rate. The errors for the finite element
approximation (4.13a)—(4.13f) are very similar; see tables 6.3 and 6.4.

6.2. Numerical experiments in 2D. In all the simulations presented here for
the case d=2 for our preferred scheme (4.13a)—(4.13f), the areas of the two phases are
almost exactly preserved with the relative area difference in each case less than 0.01%.
Moreover, the total surfactant amount and the total surface mass on I'"*, when present,
are conserved exactly (up to machine accuracy).

6.2.1. Bubble in shear flow. In the literature on numerical methods for
two-phase flow with insoluble surfactant, it is often common to consider shear flow
experiments for an initially circular bubble in order to study the effect of surfactants
and of different equations of state. In this subsection, we will perform such simulations
for our preferred scheme (4.13a)—(4.13f). Here we consider the setup from [22, Fig. 1].
In particular, we let Q=(—5,5) x (—2,2) and prescribe the inhomogeneous Dirichlet
boundary condition §(Z) = (3 22,0)” on 9Q= 9,9 Moreover, I'y={Z€R?:|z]=1}. The
physical parameters are given by

p=1, p=01, =02, Dr=0.1, f=0, dy=4g. (6.2)

First, we investigate the effect of different surface viscosity strengths on the evolution
in the absence of surfactants and surface mass. l.e., we have pr =0 and the surface
tension is constant; see (2.20). See Figure 6.1 for some time evolutions for different
values of 7ir = A\r. We note that for larger values of the surface viscosities, the effect of
the shearing flow on the shape of the bubble is reduced. The same experiments with
surface mass present, i.e. for pro=1, can be seen in Figure 6.2. In general, there are
not many differences to the evolutions shown in Figure 6.1. However, for small surface
viscosity constants, there is a marked difference in the evolution. In particular, the
bubble appears to be shearing more when surface mass is present. Details of the surface
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1/h 7 X~ |U—Ball=_ [|Pe—pellz 6" —0]
3 1072 27615e-03 1.7447e-02  3.1799e-01  3.6399e-01
6 1077 2.0666e-04 2.5265¢-03  4.0843e-02  9.7883¢-02
12 107" 3.3724e-05  7.7310e-04  8.3360e-03  9.1464e-03

TABLE 6.3. (a=0.15, p=%=fip = Ar =pr o=1) Ezpanding bubble problem on (—1,1)%\ —%,%}2
over the time interval [0,1] for the scheme (4.13a)—(4.13f) with uniform meshes.

Vhy 7 IX @~ ULl ||Pe=pellz 0" =012
24 10?7 6.4263e-04 1.1700e-02  2.7907e-01  2.5256e-01
48 107 9.5236e-05 1.9780e-03  3.1747e-02  3.5357e-02
96 10~* 1.0197e-05 3.2348¢-04  7.9294e-03  8.2135e-03

TABLE 6.4. (a=0.15, p=5=fip = Ap =pr o=1) Bxzpanding bubble problem on (—1,1)2\[—%,%}2
over the time interval [0,1] for the scheme (4.13a)—(4.13f) with adaptive meshes.

F1G. 6.1. (2adaplg.a) The time evolution of a drop in shear flow with pro=0 for (2.20) and
(2.9) with fip =Ar =0.01 (left), ir=Ar=1 (middle), and fip =Ar =10 (right). Plots are at times
t=0,4,8,12.

mass distribution at the final time ¢ =12 can be seen in Figure 6.3, and velocity plots
are given in Figure 6.4.

F1G. 6.2. (Z2adaplg.a) The time evolution of a drop in shear flow with pro=1 for (2.20) and
(2.9) with fip =Ar =0.01 (left), fip=XMr =1 (middle), and fip =XApr =10 (right). Plots are at times
t=0,4,8,12.

For very small values of fir = Ar, an interesting effect can be observed. As this value
gets smaller, we observe a marked concentration of the discrete surface material density
prv at two points on the interface. This poses a challenge for the numerical methods,
since the peaks in the surface mass density lead to sharp fronts which behave almost
like a shock. We exhibit the difficulties of the schemes (4.4a)—(4.4f) and (4.13a)—(4.13f)
with the “degenerate” case fir = Ar =0 in Figure 6.5. Clearly, the scheme (4.4a)—(4.4f)
displays a very nonuniform mesh with some vertices close to coalescence. The latter



1868 TWO-PHASE FLOW WITH A SURFACE FLUID

w7 o / g v

F1G. 6.3. (2adapty 4) Plots of the discrete surface mass on I'™ at time t=12 for fip =Ar=0.01
(left), ip=Mr =1 (middle), and fir =M r =10 (right). Below are plots of the discrete surface mass
against arclength.

- - -
04 03

05 06 05 03

F1G. 6.4. (2adapty,a) Velocity fields for the solutions depicted in Figure 6.8 with the background
colouring depending on the pressure values.

appears to lead to small oscillations in pi*. Moreover, the inner phase increases its
area by about 1.9% in this computation. The scheme (4.13a)—(4.13f), on the other
hand, shows very uniform meshes but suffers from oscillations in the discrete surface
mass density where pi is close to zero. By recalling Remark 4.5, we note that by
adding numerical diffusion into the scheme, these oscillations can be avoided. This is
underlined by the numerical results shown in Figure 6.5 for the scheme (4.13a)—(4.13f)
with numerical diffusion J(s) = 5.

From a physical point of view, it is not easy to explain the fact that the surface
mass accumulates at two points on the interface. However, we recall from Theorem 3.7
that such a relocation of mass on the interface leads to a smaller overall energy if the
discrete velocity U™ at these points is zero or nearly zero. In fact, this is what appears
to happen for fip = Ar =0, as can be seen from the velocity plots in Figure 6.6.

In the next simulation, we consider the presence of surfactant on the interface. To
this end, we choose the linear equation of state (2.19a) with 8=0.5 and let

pr(r)=ppr(1+b,[rl+) and Ap(r)=Ar(1+bx[r]y) VreR, (6.3)

where 7ip =Ar=0.1 and b, =by =100 with the remaining parameters as in (6.2). We
also let pro=1, and the initial distribution of surfactant on I'(0) is chosen as

Po(2) =104 [z1] .

The evolutions of the approximations of ¥ and pr can be seen in Figure 6.7. The
initially one-sided distribution of surfactant, together with the definitions (6.3), leads to
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F1G. 6.5. (adapty 3) Plots of I'"™ and plots of the discrete surface mass against arclength at time
t=12 for jip = A\r =0 for the schemes (4.4a)-(4.4f), top, (4.13a)—(4.18f), middle, and (4.13a)-(4.13f)

with numerical diffusion ¥(s) = 55, bottom.

the bubble moving significantly to the right. The higher concentration of surfactant on
the right leads to surface tension gradients on the interface which then cause tangential
shear stresses on the interface. These so called Marangoni forces lead to the overall
movement of the drop to the right. Varying the value of S between 0 and 1 had no
significant effect on the overall evolution, and so we omit further numerical results for
this setting.

6.2.2. Rising bubble. In this subsection, we compare the schemes (4.4a)—(4.4f)
and (4.13a)—(4.13f) for a rising bubble experiment that is motivated by the benchmark
problems in [20] for two-phase Navier—Stokes flow. In particular, we use the setup de-
scribed in [20] (see Figure 2 therein); i.e. Q=(0,1) x (0,2) with 0;Q2=[0,1] x {0,2} and
902={0,1} x (0,2). Moreover, I'g={Z€R?:|7—(3,3)T|=11}). The physical parame-
ters from the test case 1 in [20, Table I] are given by

pr=1000, p_=100, pr=10, p_=1, ~p=24.5, fi=-098¢; fo=0, (6.4)

where, here and throughout, {€;}9_, denotes the standard basis in R?. For the sur-
factant problem, we choose the parameters Dr=0.1 and (2.19a) with 3=0.5. For the
surface material parameters, we choose fip =Ar=0.1 and pro=1. We refer to our re-
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0 2 4 6 0 0 12

F1G. 6.6. (adaptr3) A plot of |U™| at time t=12 for Tir =Ar =0 for the scheme (4.13a)—(4.13f)
with numerical diffusion ¥(s)= 5. Below, we plot am[| U™ |pm || against arclength.

O

:
x

N7l N

F1G. 6.7. (2adaptg 4) The time evolution of a drop in shear flow with (2.19a) and B=0.5 for the
scheme (4.18a)-(4.13f). The top two rows show the evolution of the discrete surface material density,
and the lower two rows show the evolution of the discrete surfactant concentration. Plots are at times
t=0,4,8,12. In the first row, the grey scales linearly with the surface material density ranging from
0 (white) to 1.4 (black). In the third row, the grey scales linearly with the surfactant concentration
ranging from 0 (white) to 1 (black).
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[
C
d

FiG. 6.8. (adaptr 3) Vertex distributions for the final bubble at time t=3 for the schemes (4.4a)-
(4-4f), left, and (4.18a)~(4.13f), right. The latter scheme uses numerical diffusion with 9(s)= 5.
The middle row shows the discrete surface material densities, and the bottom row shows the discrete
surfactant concentrations. In the former the grey scales linearly with the surface material density
ranging from 0 (white) to 9 (black), and in the latter, the grey scales linearly with the surfactant
concentration ranging from 0 (white) to 0.7 (black).

cent papers [8, 7] for numerical simulations for this benchmark problem in the absence
of a Boussinesq—Scriven surface fluid.

We start with a simulation for the scheme (4.4a)—(4.4f), using the discretization
parameters adaptz 3. The results can be seen on the left of Figure 6.8. We see that the
vertices of the approximation I are transported with the fluid flow. This means that
many vertices can be found at the bottom of the bubble with hardly any vertices left
at the top.

We also remark that for this computation the area of the inner phase decreases by
1.3%, so the volume of the two phases is not preserved. The same computation for our
preferred scheme (4.13a)—(4.13f), where the tangential movement of vertices yields an
almost equidistributed approximation of I'™, can be seen on the right of Figure 6.8. In
order to avoid oscillations in p{ close to zero, we use numerical diffusion with 9(s) = 55
for this numerical experiment. We recall that for this computation the areas of the
two phases are virtually preserved with the relative change in area less than 0.01%.
Moreover, the total surfactant amount and the total surface mass on I' are conserved
(up to machine accuracy).

In view of the superior mesh properties of our preferred scheme (4.13a)—(4.13f),
from now on we only consider numerical experiments for the scheme (4.13a)—(4.13f).

6.3. Numerical experiments in 3D. In this subsection, we present numerical
results for d=3 for our preferred scheme (4.13a)—(4.13f). As discretization parameters
we always choose 1—10 adapts ,. We note that in all computations the volumes of the two
phases are almost exactly preserved with the relative volume difference in each case less
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F1G. 6.9. The discrete interface I'™ at time t =12 for a drop in shear flow with pr o =0 for (2.20)
and (2.9) with fip =Ar =0, fip =1, Ar =0, fir =Ar =1, ir =0, A\p =1 (clockwise from top left).

®
>

F1G. 6.10. The surfactant concentration W™ and the surface mass pf* on I'™ at time t=3. The
top row shows W™, with the colour ranging from red (0.3) to blue (0.6). The bottom row shows p{*,
with the colour ranging from red (0) to blue (6.5).

than 0.05%. Moreover, the total surfactant amount and the total surface mass on '™,
when present, are conserved exactly (up to machine accuracy).

6.3.1. Bubble in shear flow. In this subsection, we report on some 3D ana-
logues of the computations in §6.2.1. In particular, we perform shear flow experiments
on the domain Q= (—5,5) x (—2,2)? with 9Q=0,Q and §(Z) = (4 23,0,0)”. The physical
parameters are as in (6.2), and for simplicity we take pro=0. See Figure 6.9 for the
final bubble shapes for a selection of parameters fip and Ar in (2.9).
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6.3.2. Rising bubble. Here we consider the natural 3D analogue of the problem
in §6.2.2. To this end, we let Q= (0,1) x (0,1) x (0.2) with 9;Q2=10,1] x [0,1] x {0,2} and
90=00\0:Q2. Moreover, we set T=3, Io={z€R3:|Z—(%,5,1)7|=1}, and choose
all the remaining parameters as in §6.2.2; recall (6.4). As in the 2D equivalent, the
bubble rises due to density difference against the direction of gravity. In the process,
the surfactant and the surface mass accumulate at the bottom of the bubble. We show

the concentrations of these two quantities in Figure 6.10.
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