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Abstract. We study a system of self-propelled particles which interact with their neighbors via
alignment and repulsion. The particle velocities result from self-propulsion and repulsion by close
neighbors. The direction of self-propulsion is continuously aligned to that of the neighbors, up to
some noise. A continuum model is derived starting from a mean-field kinetic description of the particle
system. It leads to a set of non conservative hydrodynamic equations. We provide a numerical validation
of the continuum model by comparison with the particle model. We also provide comparisons with
other self-propelled particle models with alignment and repulsion.
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1. Introduction
The study of collective motion in systems consisting of a large number of agents,

such as bird flocks, fish schools, suspensions of active swimmers (bacteria, sperm cells),
etc. has triggered the creation of an intense amount of literature in recent years. We
refer to [32, 21] for recent reviews on the subject. Many such studies rely on a particle
model or Individual Based Model (IBM) that describes the motion of each individual
separately (see e.g. [2, 6, 7, 8, 9, 18, 22, 24, 29]).

In this work, we aim to describe dense suspensions of elongated self-propelled parti-
cles in a fluid, such as sperm. In such dense suspensions, repulsion due to volume exclu-
sion is an essential ingredient of the dynamics. A large part of the literature is concerned
with dilute suspensions [19, 21, 25, 28, 33]. In these approaches, the Stokes equation
for the fluid is coupled to the orientational distribution function of the self-propelled
particles. However, these approaches are of “mean-field type;” i.e., they assume that
particle interactions are mediated by the fluid through some kinds of averages. These
approaches do not deal easily with short-range interactions, such as repulsion, due to
volume exclusion or interactions mediated by lubrication forces. Additionally, these
models assume a rather simple geometry of the swimmers, which are reduced to a force
dipole, while the true geometry and motion of an actual swimmer, like a sperm cell, is
considerably more complex.

In a recent work [26], Peruani et. al. showed that for dense systems of elongated
self-propelled particles volume-exclusion interaction results in alignment. Relying on
this work, and owing to the fact that the description of swimmer interactions from
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first physical principles is by far too complex, we choose to replace the fluid-mediated
interaction by a simple alignment interaction of Vicsek type [31]. In the Vicsek model,
the agents move with constant speed and attempt to align with their neighbors up
to some noise. Many aspects of the Vicsek model have been studied, such as phase
transitions [1, 6, 10, 11, 17, 31], numerical simulations [23], and derivation of macroscopic
models [4, 13].

The alignment interaction acting alone may trigger the formation of high particle
concentrations. However, in dense suspensions, volume exclusion prevents such high
densities from occuring. When distances between particles become too small, repulsive
forces are generated by the fluid or by the direct reaction of the bodies to each other.
These forces contribute to repel the particles and to prevent further contacts. To model
this behavior, we must add a repulsive force to the Vicsek alignment model. Inspired by
[3, 18, 29], we consider the possibility that the particle orientations (i.e. the directions
of the self-propulsion force) and the particle velocities may be different. Indeed, volume-
exclusion interaction may push the particles in a direction different from that of their
self-propulsion force.

We consider an overdamped regime in which the velocity is proportional to the force
through a mobility coefficient. The overdamped limit is justified by the fact that the
background fluid is viscous and thus the forces due to friction are very large compared to
those due to motion. Indeed, for micro-size particles, the Reynolds number is very small
(∼10−4), and thus the effect of inertia can be neglected. Finally, differently from [3, 18,
29], we consider an additional term describing the relaxation of the particle orientation
towards the direction of the particle velocity. We also take into account Brownian noise
in the orientation dynamics of the particles. This noise may take into account the
fluid turbulence, for instance. Therefore, the particle dynamics result from an interplay
between relaxation towards the mean orientation of the surrounding particles, relaxation
towards the direction of the velocity vector, and Brownian noise. From now on, we refer
to the above described model as the Vicsek model with repulsion.

Starting from the above described microscopic dynamical system, we successively
derive mean-field equations and hydrodynamic equations. Mean field equations are valid
when the number of particles is large and describe the evolution of the one-particle dis-
tribution, i.e. the probability for a particle to have a given orientation and position
at a given instant of time. Expressing that the spatio-temporal scales of interest are
large compared to the agents’ scales leads to a singular perturbation problem in the
kinetic equation. Taking the hydrodynamic limit (i.e. the limit of the singular pertur-
bation parameter to zero) leads to the hydrodynamic model. Hydrodynamic models
are particularly well-suited to systems consisting of a large number of agents and to
the observation of the system’s large scale structures. Indeed, the computational cost
of IBM increases dramatically with the number of agents, but that of hydrodynamic
models is independent of it. With IBM, it is also sometimes quite cumbersome to access
observables such as order parameters, but these quantities are usually directly encoded
into the hydrodynamic equations.

The derivation of hydrodynamic models has been intensely studied by many authors.
Many of these models are based on phenomenological considerations [30] or derived
from moment approaches and ad-hoc closure relations [3, 4, 27]. The first mathematical
derivation of a hydrodynamic system for the Vicsek model was proposed in [13]. We
refer to this model as the Self-Organized Hydrodynamic (SOH) model. One of the main
contributions of [13] is the concept of “Generalized Collision Invariants” (GCI) which
permit the derivation of macroscopic equations for a particle system in spite of a lack
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of momentum conservation. The SOH model has been further refined in [12, 16].
Performing the hydrodynamic limit in the kinetic equations associated to the Vic-

sek model with repulsion leads to the so-called “Self-Organized Hydrodynamics with
Repulsion” (SOHR) system. The SOHR model consists of a continuity equation for the
density ρ and an evolution equation for the average orientation Ω∈Sn−1 where n indi-
cates the spatial dimension. The average orientation of the fluid at (x,t) represents the
total sum of the particles orientations in a small volume around x at time t, normalized
to unit norm. More precisely, the model reads

∂tρ+∇x ·(ρU)=0, (1.1)

ρ∂tΩ+ρ(V ·∇x)Ω+PΩ⊥∇xp(ρ)=γPΩ⊥Δx(ρΩ), (1.2)

|Ω|=1, (1.3)

where

U = c1v0Ω−μΦ0∇xρ, V = c2v0Ω−μΦ0∇xρ, (1.4)

p(ρ)=v0dρ+αμΦ0

(
(n−1)d+c2

)ρ2
2
, γ=k0

(
(n−1)d+c2

)
. (1.5)

The coefficients c1, c2, v0, μ, Φ0, d, α, k0 are associated to the microscopic dynamics
and will be defined later on. The symbol PΩ⊥ stands for the projection matrix PΩ⊥ =
Id−Ω⊗Ω of R

n on the hyperplane Ω⊥. The SOHR model is similar to the SOH
model obtained in [12] but with several additional terms which are consequences of the
repulsive force at the particle level. The repulsive force intensity is characterized by the
parameter μΦ0. In the case μΦ0=0, the SOHR system is reduced to the SOH one.

We first briefly describe the original SOH model. Inserting (1.4) and (1.5) with
μΦ0=0 into (1.1) and (1.2) leads to

∂tρ+c1v0∇x ·(ρΩ)=0, (1.6)

ρ∂tΩ+c2v0ρ(Ω ·∇x)Ω+v0dPΩ⊥∇xρ=γPΩ⊥Δx(ρΩ), (1.7)

together with (1.3). This model shares similarities with the isothermal compressible
Navier–Stokes (NS) equations. Both models consist of a non linear hyperbolic part
supplemented by a diffusion term. Equation (1.6) expresses conservation of mass, and
Equation (1.7) is an equation for the mean orientation of the particles. It is not con-
servative, contrary to the corresponding momentum conservation equation in NS. The
two equations are supplemented by the geometric constraint (1.3). This constraint is
satisfied at all times as soon as it is satisfied initially. Indeed, owing to the presence of
the projection operator PΩ⊥ , dotting (1.7) with Ω, we get (provided that ρ �=0)

∂t|Ω|2+c2v0(Ω ·∇x)|Ω|2=0,

showing that |Ω|2(x,t)=1 for all times t as soon as |Ω|2(x,0)=1 for all x. A second
important difference between the SOH model and NS equations is that the convection
velocities for the density and the orientation, v0c1 and v0c2 respectively, are different
while for NS they are equal. That c1 �= c2 is a consequence of the lack of Galilean
invariance of the model (there is a preferred frame which is that of the fluid). The main
consequence is that the propagation of sound waves is anisotropic for this type of fluid
[30].

The first main difference between the SOH and the SOHR system is the presence
of the terms μΦ0∇xρ in the expressions of the velocities U and V . Inserting this term
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in the density equation (1.1) results in a diffusion-like term, −μΦ0∇x ·(ρ(∇xρ)), which
avoids the formation of high particle concentrations. This term is similar to the non-
linear diffusion term in porous media models. Similarly, inserting the term μΦ0∇xρ
in the orientation equation (1.2) results in a convection term in the direction of the
gradient of the density. Its effect is to force particles to change direction and move
towards regions of lower concentration. The second main difference is the replacement
of the linear (with respect to ρ) pressure term v0dPΩ⊥∇xρ with a nonlinear pressure
p(ρ) in the orientation equation (1.2). The nonlinear part of the pressure enhances the
effects of the repulsion forces when concentrations become high.

To further establish the validity of the SOHR model (1.1)–(1.5), we perform nu-
merical simulations and compare them to those of the underlying IBM. To numerically
solve the SOHR model, we adapt the relaxation method of [23]. In this method, the
unit norm constraint (1.3) is abandonned and replaced by a fully conservative hyper-
bolic model in which Ω is supposed to be in R

n. However, at the end of each time step
of this conservative model, the vector Ω is normalized. Motsch and Navoret showed
that the relaxation method provides numerical solutions of the SOH model which are
consistent with those of the particle model. The resolution of the conservative model
can take advantage of the huge literature on the numerical resolution of hyperbolic con-
servation laws (here specifically, we use [14]). We adapt the technique of [23] to include
the diffusion fluxes. Using these approximations, we numerically demonstrate the good
convergence of the scheme for smooth initial data and the consistency of the solutions
with those of the particle Vicsek model with repulsion.

The outline of the paper is as follows. In Section 2, we introduce the particle model,
its mean field limit, the scaling, and the hydrodynamic limit. In Section 3, we present
the numerical discretization of the SOHR model, and in Section 4, we present several
numerical tests for the macroscopic model and a comparison between the microscopic
and macroscopic models. Section 5 is devoted to our conclusion. Some technical proofs
will be given in the appendices.

2. Model hierarchy and main results

2.1. The individual-based model and the mean field limit
We consider a system of N -particles, each of which is described by its position

Xk(t)∈Rn, its velocity vk(t)∈Rn, and its direction ωk(t)∈Sn−1 where k∈{1, · · · ,N},
n is the spatial dimension and S

n−1 denotes the unit sphere. The particle ensemble
satisfies the following stochastic differential equations:

dXk

dt
=vk, (2.1)

vk=v0ωk−μ∇xΦ(Xk(t),t), (2.2)

dωk=Pω⊥k
◦(ν ω̄(Xk(t),t)dt+αvkdt+

√
2DdBk

t ). (2.3)

Equation (2.1) simply expresses the spatial motion of a particle of velocity vk. Equation
(2.2) shows that the velocity vk is composed of two components: a self-propulsion
velocity of constant magnitude v0 in direction ωk and a velocity proportional to the
gradient of a potential Φ(x,t) with mobility coefficient μ. Equation (2.3) describes the
time evolution of the orientation. The first term models the relaxation of the particle
orientation towards the average orientation ω̄(Xk(t),t) of its neighbors with rate ν. The
second term models the relaxation of the particle orientation towards the direction of the
particle velocity vk with rate α. Finally, the last term describes standard independent
white noises dBk

t of intensity
√
2D. The symbol ◦ reminds us that the equation has to be
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understood in the Stratonovich sense. Under this condition and thanks to the presence
of Pω⊥ , the orthogonal projection onto the plane orthogonal to ω (i.e Pω⊥ =(Id−ω⊗ω)
where ⊗ denotes the tensor product of two vectors and Id is the identity matrix), the
orientation ωk remains on the unit sphere. We assume that v0, μ, ν, α, D are strictly
positive constants.

The potential Φ(x,t) is the resultant of binary interactions mediated by the binary
interaction potential φ. It is given by

Φ(x,t)=
1

N

N∑
i=1

φ
( |x−Xi|

r

)
(2.4)

where the binary repulsion potential φ(|x|) only depends on the distance. We suppose
that x 	→φ(|x|) is smooth (in particular implying that φ′(0)=0 where the prime denotes
the derivative with respect to |x|). We also suppose that

φ≥0,

∫
Rn

φ(|x|)dx<∞,

implying in particular that φ(|x|)→0 as |x|→∞. The quantity r denotes the typical
range of φ. We consider repulsive potentials such that φ′<0. Since φ→0 as |x|→∞, we
have that φ≥0 and Φ0=

∫
φ(|x|)dx>0. In the numerical test section, we will propose

precise expressions for this potential force.
The mean orientation ω̄(x,t) is defined by

ω̄(x,t)=
J (x,t)

|J (x,t)| , J (x,t)=
1

N

N∑
i=1

K
( |x−Xi|

R

)
ωi. (2.5)

It is constructed as the normalization of the vector J (x,t) which sums up all orienta-
tion vectors ωi of all the particles which belong to the range of the “influence kernel”
K(|x|). The quantity R>0 is the typical range of the influence kernel K(|x|/R) which
is supposed to depend only on the distance. It measures how the mean orientation at
the origin is influenced by particles at position x. Here, we assume that x→K(|x|)
is smooth at the origin and compactly supported. For instance, if K is the indicator
function of the ball of radius 1, the quantity ω̄(x,t) computes the mean direction of the
particles which lie in the sphere of radius R centered at x at time t.
Remark 2.1. (i) In the absence of repulsive force (i.e. μ=0), the system reduces to
the time continuous version of the Vicsek model proposed in [13].
(ii) The model presented is the so-called overdamped limit of the model consisting of
(2.1) and (2.3) and where (2.2) is replaced by

ε
dvk
dt

=λ1(v0ωk−vk)−λ2∇xΦ(Xk(t),t), (2.6)

with μ=λ2/λ1. Taking the limit ε→0 in (2.6), we obtain (2.2). As already mentioned
in the introduction, for microscopic swimmers, this limit is justified by the very small
Reynolds number and the very small inertia of the particles.

We now introduce the mean field kinetic equation which describes the time evolution
of the particle system in the large N limit. The unknown here is the one particle
distribution function f(x,ω,t) which depends on the position x∈Rn, orientation ω∈
S
n−1, and time t. The evolution of f is governed by the following system:

∂tf+∇x ·(vff)+ν∇ω ·(Pω⊥ ω̄ff)+α∇ω ·(Pω⊥vff)−DΔωf =0, (2.7)

vf (x,t)=v0ω−μ∇xΦf (x,t), (2.8)
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where the repulsive potential and the average orientation are given by

Φf (x,t)=

∫
Sn−1×Rn

φ

( |x−y|
r

)
f(y,w,t)dwdy, (2.9)

ω̄f (x,ω,t)=
Jf (x,t)

|Jf (x,t)|
, (2.10)

Jf (x,t)=

∫
Sn−1×Rn

K

( |x−y|
R

)
f(y,w,t)wdwdy. (2.11)

Equation (2.7) is a Fokker–Planck type equation. The second term on the left-hand side
of (2.7) describes particle transport in physical space with velocity vf and is the kinetic
counterpart of Equation (2.1). The third, fourth, and fifth terms describe transport in
orientation space and are the kinetic counterparts of Equation (2.3). The alignment
interaction is expressed by the third term, and the relaxation force towards the velocity
vf is expressed by the fourth term. The fifth term represents the diffusion due to
Brownian noise in orientation space. The projection Pω⊥ insures that the force terms
are normal to ω. The symbols ∇ω· and Δω respectively stand for the divergence of
tangent vector fields to S

n−1 and the Laplace–Beltrami operator on S
n−1. Equation

(2.8) is the direct counterpart of (2.2).
Eq. (2.9) is the continuous counterpart of Equation (2.4). Indeed, letting f be the

empirical measure

f =
1

N

N∑
i=1

δ(xi(t),ωi(t))(x,ω)

in (2.9) (where δ(xi(t),ωi(t))(x,ω) is the Dirac delta at (xi(t),ωi(t))) leads to (2.4). Simi-
larly, equations (2.10) and (2.11) are the continuous counterparts of (2.5) (by the same
kind of argument). The rigorous convergence of the particle system to the above Fokker–
Planck equation (2.7) is an open problem. We recall, however, that the derivation of
the kinetic equation for the Vicsek model without repulsion has been done in [5] in a
slightly modified context.

2.2. Scaling
In order to highlight the role of the various terms, we first write the system in a

dimensionless form. We chose t0 as unit of time and choose

x0=v0t0, f0=
1

xn0
, φ0=

v20 t0
μ

,

as units of space, distribution function, and potential. We introduce the dimensionless
variables

x̃=
x

x0
, t̃=

t

t0
, f̃ =

f

f0
, φ̃=

φ

φ0
,

and the dimensionless parameters

R̆=
R

x0
, r̆=

r

x0
, D̆= t0D, ν̆= t0ν, ᾰ=αx0.

In the new set of variables (x̃, t̃), Equation (2.8) becomes (dropping the tildes and the˘
for simplicity)

vf =ω−∇xΦf (x,t),
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where f , Φf , ω̄f , and Jf are still given by (2.8), (2.9), (2.10), and (2.11) (now written
in the new variables).

We now define the regime we are interested in. We assume that the ranges R and r
of the interaction kernels K and φ are both small but with R much larger than r. More
specifically, we assume the existence of a small parameter ε
1 such that

R=
√
εR̂, r=εr̂ with R̂, r̂=O(1).

We also assume that the diffusion coefficient D and the relaxation rate to the mean
orientation ν are large and of the same order of magnitude (i.e. d=D/ν=O(1)), while
the relaxation to the velocity α stays of order 1, i.e.

ν=
1

ε
, d=

D

ν
=O(1), α=O(1).

With these new notations, dropping all ‘hats’, the distribution function fε(x,ω,t) (where
the superscript ε now higlights the dependence of f upon the small parameter ε) satisfies
the following Fokker–Plank equation:

ε
(
∂tf

ε+∇x ·(vεfεfε)
)
+∇ω ·(Pω⊥ ω̄

ε
fεfε)+εα∇ω ·(Pω⊥v

ε
fεfε)−dΔωf

ε=0, (2.12)

vεf =ω−∇xΦ
ε
f (x,t), (2.13)

where the repulsive potential and the average orientation are now given by

Φε
f (x,t)=

∫
Sn−1×Rn

φ
( |x−y|

εr

)
fε(y,w,t)dwdy,

ω̄ε
f =

J ε
f (x,t)

|J ε
f (x,t)|

, J ε
f (x,t)=

∫
Sn−1×Rn

K
( |x−y|√

εR

)
fε(y,w,t)wdwdy.

Now, by Taylor expansion and the fact that the kernels K, φ only depend on |x|,
we obtain (provided that K is normalized to 1 i.e.

∫
R
K(|x|)dx=1)

vεf (x,t)=ω−Φ0∇xρ
ε
f +O(ε2), (2.14)

ω̄ε
f (x,t)=G

0
f (x,t)+εG

1
f (x,t)+O(ε2), (2.15)

G0
f (x,t)=Ωf (x,t), G1

f (x,t)=
k0
|Jf |

PΩ⊥f
ΔxJf ,

where the coefficients k0,Φ0 are given by

k0=
R2

2n

∫
x∈Rn

K(|x|)|x|2dx>0, Φ0=

∫
x∈Rn

φ(|x|)dx>0. (2.16)

For example, ifK is the indicator function of the ball of radius 1, then k0= |Sn−1|/2n(n+
2) where |Sn−1| is the volume of the sphere S

n−1. In the cases d=2 and d=3, we
respectively get k0=π/8 and k0=2π/15. The local density ρf , the local current density
Jf , and the local average orientation Ωf are defined by

ρf (x,t)=

∫
Sn−1

f(x,w,t)dw, (2.17)

Jf (x,t)=

∫
ω∈Sn−1

f(x,w,t)wdw, Ωf (x,t)=
Jf (x,t)

|Jf (x,t)|
. (2.18)
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More details about this Taylor expansion are given in Appendix A . Let us observe that
this scaling, first proposed in [12], is different from the one used in [13] and results in
the appearance of the viscosity term at the right-hand side of Equation (1.2).

Finally, if we neglect the terms of order ε2 and we define the so-called collision
operator Q(f) by

Q(f)=−∇ω ·(Pω⊥Ωff)+dΔωf,

the rescaled system (2.12), (2.13) can be rewritten as follows:

ε
(
∂tf

ε+∇x ·(vεffε)+α∇ω ·(Pω⊥v
ε
ff

ε)+∇ω ·(Pω⊥G
1
fεfε)

)
=Q(fε), (2.19)

vfε(x,ω,t)=ω−Φ0∇xρfε , G1
fε(x,t)=

k0
|Jfε |PΩ⊥f

ΔxJfε . (2.20)

2.3. Hydrodynamic limit
The aim is now to derive a hydrodynamic model by taking the limit ε→0 of system

(2.19)–(2.20) where the local density ρf , the local current Jf , and the local average
orientation Ωf are defined by (2.17)and (2.18).

We first introduce the von Mises-Fisher (VMF) probability distribution MΩ(ω) of
orientation Ω∈Sn−1 defined for ω∈Sn−1 by:

MΩ(ω)=Z
−1 exp

(
ω ·Ω
d

)
, Z=

∫
ω∈Sn−1

exp

(
ω ·Ω
d

)
dω

An important parameter is the flux of the VMF distribution, i.e.
∫
ω∈Sn−1MΩ(ω)ωdω.

By obvious symmetry considerations, we have∫
ω∈Sn−1

MΩ(ω)ωdω= c1Ω,

where the quantity c1= c1(d) does not depend on Ω, is such that 0≤ c1(d)≤1, and is
given by

c1(d)=

∫
ω∈Sn−1

MΩ(ω)(ω ·Ω)dω. (2.21)

When d is small, MΩ is close to a Dirac delta δΩ and represents a distribution of per-
fectly aligned particles in the direction of Ω. When d is large, MΩ is close to a uniform
distribution on the sphere and represents a distribution of almost totally disordered ori-
entations. The function d∈R+ 	→ c1(d)∈ [0,1] is strictly decreasing with limd→0 c1(d)=1
and limd→∞ c1(d)=0. Therefore, c1(d) represents an order parameter which corresponds
to perfect disorder when it is close to 0 and perfect alignment order when it is close to
1.

We have following theorem.
Theorem 2.2. Let fε be the solution of (2.19), (2.20). Assume that there exists f
such that

fε→f as ε→0, (2.22)

pointwise as well as all its derivatives. Then, there exist ρ(x,t) and Ω(x,t) such that

f(x,ω,t)=ρ(x,t)MΩ(x,t)(ω), (2.23)
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Moreover, the functions ρ(x,t),Ω(x,t) satisfy the following equations:

∂tρ+∇x ·(ρU)=0, (2.24)

ρ
(
∂tΩ+(V ·∇x)Ω

)
+PΩ⊥∇xp(ρ)=γPΩ⊥Δx(ρΩ), (2.25)

where

U = c1Ω−Φ0∇xρ, V = c2Ω−Φ0∇xρ, (2.26)

p(ρ)=dρ+αΦ0

(
(n−1)d+c2

)ρ2
2
, γ=k0

(
(n−1)d+c2

)
, (2.27)

and the coefficients c1 and c2 will be defined in formulas (2.21) and (2.35) below.
Going back to unscaled variables, we obtain the model (1.1)–(1.5) presented in the
introduction.
Proof: The proof of this theorem is divided into three steps: (i) determination of the
equilibrium states, (ii) determination of the Generalized Collision Invariants, and (iii)
computation of the hydrodynamic limit. We give a sketch of the proof for each step.

Step (i): determination of the equilibrium states We define the equilibria as the
elements of the null space of Q considered as an operator acting on functions of ω only.
Definition 2.3. The set E of equilibria of Q is defined by

E=
{
f ∈H1(Sn−1) | f ≥0 and Q(f)=0

}
.

We have the following lemma.
Lemma 2.4. The set E is given by

E=
{
ρMΩ(ω) | ρ∈R+, Ω∈Sn−1

}
.

For a proof of this lemma, see [13]. The proof relies on writing the collision operator
as

Q(f)=∇ω ·
(
MΩf

∇ω

( f

MΩf

))
.

Step (ii): Generalized Collision Invariants (GCI). We begin with the definition
of a collision invariant.
Definition 2.1. A collision invariant (CI) is a function ψ(ω) such that for all functions
f(ω) with sufficient regularity we have∫

ω∈Sn−1

Q(f)ψdω=0.

We denote by C the set of CIs. The set C is a vector space.
As seen in [13], the space of CIs is one dimensional and spanned by the constants.
Physically, this corresponds to conservation of mass during particle interactions. Since
energy and momentum are not conserved, we cannot hope for more physical conser-
vations. Thus the set of CIs is not large enough to allow us to derive the evolution
of the macroscopic quantities ρ and Ω. To overcome this difficulty, a weaker concept
of collision invariant, the so-called “generalized collisional invariant” (GCI), has been
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introduced in [13]. To introduce this concept, we first define the operator Q(Ω,f) which
for a given Ω∈Sn−1 is given by

Q(Ω,f)=∇ω ·
(
MΩ∇ω

( f

MΩ

))
.

We note that

Q(f)=Q(Ωf ,f), (2.28)

and that for a given Ω∈Sn−1, the operator f 	→Q(Ω,f) is a linear operator. This leads
to the following definition.
Definition 2.2. Let Ω∈Sn−1 be given. A Generalized Collision Invariant (GCI)
associated to Ω is a function ψ∈H1(Sn−1) which satisfies∫

ω∈Sn−1

Q(Ω,f)ψ(ω)dω=0, ∀f ∈H1(Sn−1) such that PΩ⊥Ωf =0. (2.29)

We denote by GΩ the set of GCIs associated to Ω.
The following lemma characterizes the set of generalized collision invariants.
Lemma 2.3. There exists a positive function h: [−1,1]→R such that

GΩ={C+h(ω ·Ω)β ·ω with arbitraryC ∈R and β∈Rn such that β ·Ω=0}.

The function h is such that h(cosθ)= g(θ)
sinθ , and g(θ) is the unique solution in the space

V defined by

V ={g | (n−2)(sinθ)
n
2−2g∈L2(0,π), (sinθ)

n
2−1g∈H1

0 (0,π)},

(denoting by H1
0 (0,π) the Sobolev space of functions which are square integrable as well

as their derivative and vanish at the boundary) of the problem

−sin2−nθe−
cosθ
d

d

dθ

(
sinn−2θe

cosθ
d

dg

dθ
(θ)

)
+
n−2

sin2θ
g(θ)=sinθ.

The set GΩ is a n-dimensional vector space.
For a proof we refer to [13] for n=3 and to [16] for general n≥2. We denote by ψΩ

the vector GCI

ψΩ=h(ω ·Ω)PΩ⊥ω,. (2.30)

We note that, thanks to (2.28) and (2.29), we have∫
ω∈Sn−1

Q(f)ψΩf
(ω)dω=0, ∀f ∈H1(Sn−1). (2.31)

Step (iii): Hydrodynamic limit. In the limit ε→0, we assume that (2.22) holds.
Then, thanks to (2.19), we have Q(f)=0. In view of Lemma 2.4, this implies that f
has the form (2.23). We now need to determine the equations satisfied by ρ and Ω.

For this purpose, we divide Equation (2.19) by ε and integrate it with respect to ω.
Writing (2.19) as

(T1+T2+T3)fε=
1

ε
Q(fε), (2.32)
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where

T1f =∂tf+∇x ·(vff), T2f =α∇ω ·(Pω⊥ vf f), T3f =∇ω ·(Pω⊥G
1
f f), (2.33)

we observe that the integral of T2fε and T3fεover ω is zero since it is in divergence form
and the integral of the right-hand side of (2.32) is zero since 1 is a CI. The integral of
T1fε gives

∂tρfε +∇x ·
(∫

Sn−1

fε(x,ω,t)vfε(x,ω,t)dω
)
=0.

We take the limit ε→0 and use (2.22) to get Equation (2.24) with

U =

∫
Sn−1

ρ(x,t)MΩ(x,t)(ω)vρMΩ
(x,ω,t)dω.

Using (2.20), we get vρMΩ
(x,ω,t)=ω−Φ0∇xρ(x,t). With (2.21), this leads to the first

equation (2.26).
Multiplying (2.32) by ψΩfε , integrating with respect to ω, and using (2.31), we get∫

Sn−1

(T1+T2+T3)fε(x,ω,t)ψΩfε (x,ω,t)dω=0.

Taking the limit ε→0, we get∫
Sn−1

((T1+T2+T3)(ρMΩ))(x,ω,t)ψΩ(x,t)(ω)dω=0. (2.34)

This equation describes the evolution of the mean direction Ω. The computations which
lead to (2.25) are proved in Appendix B. The coefficient c2 in (2.25) is defined by

c2(d)=
〈sin2θcosθh〉MΩ

〈sin2θh〉MΩ

=

∫ π

0
sinnθcosθMΩhdθ∫ π

0
sinnθMΩhdθ

, (2.35)

where for any function g(cosθ), we denote by 〈g〉

〈g〉MΩ
=

∫
ω∈Sn−1

MΩ(ω)g(ω ·Ω)dω=

∫ π

0
g(cosθ)e

cosθ
d sinn−2θdθ∫ π

0
e

cosθ
d sinn−2 θdθ

.

Remark 2.5. The SOHR model (2.24)–(2.25) can be rewritten as follows:

∂tρ+c1∇x ·(ρΩ)=Φ0Δx

(
ρ2

2

)
,

∂tΩ+(V̄ ·∇x)Ω+PΩ⊥∇xh(ρ)=γPΩ⊥ΔxΩ,

where the vectors V̄ and the function h(ρ) are defined by

V̄ = c2Ω−(Φ0+2γ)∇xρ, h′(ρ)=
1

ρ
p′(ρ),

and where the primes denote derivatives with respect to ρ. This displays this system as
coupled nonlinear advection-diffusion equations.
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3. Numerical discretization of the SOHR model In this section, we de-
velop the numerical approximation of the system (2.24)–(2.27) in the two dimensional
case. As mentioned above, this system is not conservative because of the geometric
constraint |Ω|=1. Weak solutions of non-conservative systems are not unique because
jump relations across discontinuities are not uniquely defined. This indeterminacy can-
not be waived by means of an entropy inequality, in contrast to the case of conservative
systems. In [23], the authors addressed this problem for the SOH model. They showed
that the model is a zero-relaxation limit of a conservative system where the velocity Ω
is non-constrained (i.e. belongs to R

n). Additionally, they showed that the numerical
solutions built from the relaxation system are consistent with those of the underlying
particle model, and other numerical solutions built directly from the SOH model are
not. Here, we extend this idea to the SOHR model. More precisely, we introduce the
following relaxation model (in dimension n=2):

∂tρ
η+∇x ·(ρηUη)=0, (3.1)

∂t(ρ
ηΩη)+∇x ·(ρηV η⊗Ωη)+∇xp(ρ

η)−γΔx(ρ
ηΩη)=

ρη

η
(1−|Ωη|2)Ωη, (3.2)

Uη = c1Ω
η−Φ0∇xρ

η, V η = c2Ω
η−Φ0∇xρ

η, (3.3)

p(ρη)=dρη+αΦ0

(
d+c2

) (ρη)2
2

, γ=k0
(
d+c2

)
. (3.4)

The left-hand sides form a conservative system. We obtain the following proposition.
Proposition 3.1. The relaxation model (3.1)–(3.4) converges to the SOHR model
(2.24)–(2.27) as η goes to zero.
The proof of Proposition 3.1 is given in Appendix C. This allows us to use well-
established numerical techniques for solving the conservative system (i.e. the left-hand
side of (3.1) and (3.2)). The scheme we propose relies on a time splitting of step Δt
between the conservative part

∂tρ
η+∇x ·(ρηUη)=0, (3.5)

∂t(ρ
ηΩη)+∇x ·(ρηV η⊗Ω)+∇xp(ρ

η)−γΔx(ρ
ηΩη)=0, (3.6)

and the relaxation part

∂tρ
η =0, (3.7)

∂t(ρ
ηΩη)=

ρη

η
(1−|Ωη|2)Ωη. (3.8)

System (3.5)–(3.6) can be rewritten in the following form (we omit the superscript η for
simplicity):

Ut+(F (U ,Ux))x+(G(U ,Uy))y =0,

where

U =

⎛
⎝ ρ
ρΩ1

ρΩ2

⎞
⎠ , F (U ,Ux)=

⎛
⎝ ρU1

ρΩ1V1+p(ρ)−γ∂x(ρΩ1),
ρΩ1V2−γ∂x(ρΩ2)

⎞
⎠ ,

G(U ,Uy)=

⎛
⎝ ρU2

ρΩ2V1−γ∂y(ρΩ1)
ρΩ2V2+p(ρ)−γ∂y(ρΩ2)

⎞
⎠ .
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We now consider the following numerical scheme where we denote by U∗i,j the approxi-

mation of U at time tn+1=(n+1)Δt and position xi= iΔx,yj = jΔy:

U∗i,j =Un
i,j−

Δt

Δx
{Fn

i+1/2,j−Fn
i−1/2,j}−

Δt

Δy
{Gn

i,j+1/2−Gn
i,j−1/2},

where the numerical flux Fn
i+1/2,j is given by

Fn
i+1/2,j =

Fn(Un
i,j ,Un

xi,j)+F
n(Un

i+1,j ,Un
x(i+1),j)

2
−P i+ 1

2
2

(∂F
∂U (Ūn

i,j ,Ūn
xi,j)

)
(Un

i+1,j−Un
i,j),

with

Un
xi,j =

(Un
i+1,j−Un

i,j)

Δx
, Ūn

i,j =
Un
i,j+Un

i+1,j

2
, Ūn

xi,j =
Un
xi,j+Un

x(i+1),j

2
,

and the analogous discretization holds for Gn
i,j+ 1

2

.

In the above formula, P
i+ 1

2
2 is a polynomial of matrices of degree 2 calculated with

the eigenvalues of the Jacobian matrices
∂F

∂U at an intermediate state depending on

(Un
i,j ,Un

xi,j) and (Un
i+1,j ,Un

x(i+1),j) as detailed in [14]. To ensure stability of the scheme,

the time step Δt satisfies a Courant–Friedrichs–Lewy (CFL) condition computed as the
minimum of the CFL conditions required for the hyperbolic and diffusive parts of the
system.

Once the approximate solution of the conservative system is computed, equations
(3.7) and (3.8) can be solved explicitly. We solve them in the limit η→0. In this limit,
we get

ρn+1=ρ∗, Ωn+1=
Ω∗

|Ω∗|
where (ρ∗,Ω∗) is the numerical solution of system (3.5)–(3.6). This ends one step of the
numerical scheme for the system (3.1)–(3.2).

4. Numerical tests The goal of this section is to present some numerical solu-
tions of the system (2.24)–(2.27) which validate the numerical scheme proposed in the
previous section. We will first perform a convergence test. We then successively com-
pare the solutions obtained with the SOHR model to those computed by numerically
solving the individual based model (2.1) in regimes in which the two models should
provide similar results. We will finally perform some comparisons between the SOH
and the SOHR system to highlight the differences of the two models. We will compare
the SOHR model with another way to incorporate repulsion in the SOH model, the
so-called DLMP model of [12].

For all the tests, we use the model in uscaled variables as described in the intro-
duction (see (1.1)–(1.5)). The potential kernel φ is chosen as

φ(x)=

{
(|x|−1)2 if |x|≤1,

0 if |x|>1,
(4.1)

which gives Φ0=
π

6
, and for K, by assumption normalized to 1, we choose the following

form:

K(|z|)=

⎧⎨
⎩

1

π
if |z|≤1,

0 if |z|>1.
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This leads to k0=
1

8
. The other parameters, which are fixed for all simulations if not

otherwise stated, are

v0=1, μ=
1

2
, α=1, d=0.1, Lx=10, Ly =10,

which, in dimension n=2, lead to (after numerically computing the GCIs and the
associated integrals)

c1=0.9486, c2=0.8486.

In the visualization of the results, we will use the angle θ of the vector Ω relative to the
x-axis, i.e. Ω=(cosθ,sinθ).

4.1. Convergence test The first test is targeted at the validation of the pro-
posed numerical scheme. For this purpose, we investigate the convergence when the
space step (Δx,Δy) tends to (0,0) refining the grid and checking how the error be-
haves asymptotically. The initial mesh size is Δx=Δy=0.25 while the time step is

Δt=0.001. We repeat the computation for (
Δx

2
,
Δy

2
), (

Δx

4
,
Δy

4
), (

Δx

8
, and

Δy

8
). The

convergence rate is estimated through the measure of the L1 norm of the error for the
vectors (ρ,cosθ) by using for each grid the next finer grid as a reference solution. The
initial data is

ρ0=1, θ0(x,y)=

⎧⎪⎪⎨
⎪⎪⎩
arctan(

y1
x1

)+
π

2
sign(x1) ifx1 �=0,

π ifx1=0and y1>0,

0 ifx1=0and y1<0,

(4.2)

where

x1=x−
Lx

2
, y1=y−

Ly

2
.

The boundary conditions are fixed in time on the four sides of the square (ρn,θn)=
(ρ0,θ0). The error curves for the density and for cosθ are plotted in Figure 4.1 as a
function of the space step in log-log scale at time T =1s. The slope of the error curves
are compared to a straight line of slope 1. From the figure, we observe the convergence
of the scheme with accuracy close to 1.

4.2. Comparison between the SOHR and the Vicsek model with repul-
sion

In this subsection, we validate the SOHR model by comparing it to the Vicsek
model with repulsion on two different test cases. We investigate the convergence of the
microscopic IBM to the macroscopic SOHR model when the scaling parameter ε tends
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Figure 4.1: L1-error for the density ρ and the flux direction cosθ as a function of Δx in
log-log scale. A straight line of slope 1 is plotted for reference. This figure shows that
the scheme is numerically of order 1.

to zero. The scaled IBM is written:

dXk

dt
=vk, vk=ωk−∇xΦ(Xk(t),t),

dωk=Pω⊥k
◦
(1
ε
ω̄(Xk(t),t)dt+αvkdt+

√
2d

ε
dBk

t

)
,

Φ(x,t)=
1

ε2N

N∑
i=1

∇φ
( |x−Xi|

εr

)
,

ω̄(x,t)=
J (x,t)

|J (x,t)| , J (x,t)=
1

N

N∑
i=1

K
( |x−Xi|√

εR

)
ωi.

The solution of the individual-based model (2.1)–(2.3) is computed by averaging dif-
ferent realizations in order to reduce the statistical errors. The coefficient of the IBM
are fixed to r=0.0625 for the repulsive range, R=0.25 for the alignment interaction
range, and N =105 particles are used for each simulation. The details of the particles
simulation can be found in [15, 20] for classical particle approaches or in [23] for a direct
application to the SOH model.

Riemann problem: The convergence of the two models is measured as a Riemann
problem with the following initial data:

(ρl,θl)=(0.0067,0.7), (ρr,θr)=(0.0133,2.3), (4.3)

and with periodic boundary condition in x and y. The parameters of the SOHR model
are Δt=0.01 and Δx=Δy=0.25. In Figure 4.2 we report the relative L1 norm of the
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error for the macroscopic quantities (ρ,θ) between the SOHR model and the particle
model with respect to the number of averages for different values of ε: ε=1 (x-mark),
ε=0.5 (plus), ε=0.1 (circle), and ε=0.05 (square) at time T =1s. This figure shows,
as expected, that the distance between the two solutions diminishes with smaller ε. It
seems, however, that the convergence of the error to 0 as ε→0 is rather slow. This is
due to the fact that for small ε the IBM becomes very stiff. Simultaneously, accuracy
is degraded as the interaction region of a particle shrinks to a point which makes the
evalution of the average direction of the neighbouring particles very noisy. Since our
focus is the continuum model, we did not address this problem which concerns the IBM
and did not try to improve the quality of the tests. Indeed, we consider that obtaining
the results shown in Figure 4.2 is already quite informative as very few fluid models in
the literature are compared with the underlying IBM with such a degree of accuracy.

In Figure 4.3, we report the density ρ and the flux direction θ for the same Riemann
problem along the x-axis for ε=0.05 at time T =1s, the solution being constant in the
y-direction. Again, we clearly observe that the two models provide very close solutions;
the small differences are due to the different numerical schemes employed for their
discretizations.

(a) For density ρ (b) For θ

Figure 4.2: Relative error between the macroscopic and the microscopic model for
density (a) and θ (b) as a function of the number of averages for different values of
ε. The error decreases with both decreasing ε and an increasing number of averages
showing that the SOHR model provides a valid approximation of the IBM for ρ and θ.

Taylor–Green vortex problem: In this third test case, we compare the numerical
solutions provided by the two models in a more complex case. The initial data are

ρ0=0.01, Ω0(x,y)=
Ω̃0(x,y)

|Ω̃0(x,y)|
, (4.4)

where the vector Ω̃0=(Ω̃01,Ω̃02) is given by

Ω̃01(x,y)=
1

3
sin(

π

5
x)cos(

π

5
y)+

1

3
sin(

3π

10
x)cos(

3π

10
y)+

1

3
sin(

π

2
x)cos(

π

2
y),

Ω̃02(x,y)=−
1

3
cos(

π

5
x)sin(

π

5
y)− 1

3
cos(

3π

10
x)sin(

3π

10
y)− 1

3
cos(

π

2
x)sin(

π

2
y),
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(a) density ρ (b) θ

Figure 4.3: Solution of the Riemann problem (4.3) along the x-axis for the SOHR model
(blue line) and for the IBM with ε=0.05 (red line) at T =1s. The agreement between
the two models is excellent. For the SOHR model, the mesh size is Δx=Δy=0.0625.

with periodic boundary conditions in both directions. The numerical parameters for
the SORH model are Δx=Δy=0.2, and Δt=0.01, and for the particle simulations
we choose N =105 particles, ε=0.05, r=0.04, and R=0.2. In figures 4.4 and 4.5, we
report the density ρ and the flux direction Ω at time t=0.6s. In both figures, the left
picture is for the IBM and the right one is for the SOHR model. Again, we find a very
good agreement between the two models in spite of the quite complex structure of the
solution.

Due to the large number of particles required and the need for averages over a large
number of realizations, the IBM is several orders of magnitude more costly than the
SOHR model. Indeed, the statistical noise decays like O(1/

√
M) with the number M

of realizations which is very slow. Additionally, the amplitude of the statistical noise
increases with time. In practice, we have averaged over up to 100 realizations of the IBM
according to the test cases. By contrast, only one single simulation of the SOHR model
is needed. Here, we have used an explicit discretization of the diffusion operator because
the values of the diffusion constant and of the mesh sizes still led to manageable time
steps. In other applications, it could be necessary to perform an implicit discretization
of the diffusion operators, but this question is outside the scope of the present work.

In Figure 4.5, we notice that some regions of very small density appear. Since the
density equation in the SOHR model exhibits a nonlinearity similar to that of the porous
media equation, the density could theoretically become zero in some regions. However,
in the simulations presented, we have started from constant density initial data. In this
case, we doubt that the solution could become zero in finite time. In the presented
simulations, this situation has never occurred and no particular strategy was needed to
deal with the zero-density case.

4.3. Comparison between the SOH and the SOHR model In this part, we
show the differences between the SOH system (1.6), (1.7) and the SOHR one for different
values of the repulsive force Φ0. The goal is to show that the repulsive effects that the
SOHR model adds to the SOH model may have a strong qualitative and quantitative
impact on the solution of the models. We recall that the SOHR model reduces to the
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(a) density ρ for the IBM (b) density ρ for the SOHR model

Figure 4.4: Density ρ for the Taylor–Green vortex problem 4.4 at time t=0.6s. Left:
IBM. Right: SOHR model.

(a) Ω for the IBM (b) Ω for the SOHR model

Figure 4.5: Mean direction Ω for the Taylor–Green vortex problem 4.4 at time t=0.6s.
Left: IBM. Right: SOHR model.

SOH one in the case where the repulsive force is set equal to zero. To this end, we
rescale the repulsive force Φ0 by

Φ0=F0

∫
x∈R2

φ(x)dx

and let F0 vary. The repulsive potential φ is still given by (4.1) so that Φ0=F0π/6.
The other numerical parameters are chosen as follows: d=0.05, α=0, k0=1/8, μ=1,
Lx=10,Ly =10, Δx=Δy=0.15, and Δt=0.001. The initial data is that of the vortex
problem (4.2) except that we start with four vortices instead of only one. Periodic
boundary conditions in both directions are used.

Figure 4.6 displays the solutions for the SOHR system for the density (left) and for
the flux direction (right) at T =1.5s with F0=5. Figure (4.7) displays the solutions for
F0=0.05. The results are almost indistinguishable from those of the SOH model (F0=0)
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and are not shown for this reason. These figures show that when the repulsive force is
large enough, the SOHR model can prevent the formation of high concentrations. By
contrast, when this force is small, the SOHR model becomes closer to the SOH one, and
high concentrations become possible.

(a) density ρ for F0=5 (b) Ω for F0=5

Figure 4.6: Solution of the SOHR model for F0=5. Density ρ (Figure 4.6a ), flux
direction Ω (Figure 4.6b ) at t=1.5s.

(a) density ρ for F0=0.05 (b) Ω for F0=0.05

Figure 4.7: Solution of the SOHR model for F0=0.05. Density ρ (Figure 4.6a ), flux
direction Ω (Figure 4.6b ) at t=1.5s.

4.4. Comparison between the SOHR and the DLMP model
In this final part, we want to compare the SOHR system to the hydrodynamic model

proposed by Degond, Liu, Motsch, and Panferov in [12] (referred to as DLMP model).
This model is derived in a similar fashion as the SOHR model, starting from a system of
self-propelled particles which obey alignment and repulsion. The main difference is that
in the DLMP model the particle velocity is exactly equal to the self-propulsion velocity,
but the particles adjust their orientation to respond to repulsion as well as alignment.
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The resulting model is of SOH type and is therefore written like (1.6) and (1.7), but
with an increased coefficient, v0d(1+

d+c2
c1

F0), in front of the pressure term PΩ⊥∇xρ.
The initial conditions and numerical parameters are the same as in the previous test.

In Figure 4.8, we report the density ρ (left) and the flux direction Ω (right) for
F0=5 for the DLMP model. Comparing Figure (4.6) with Figure 4.8, we observe that
the solutions of the SOHR and of the DLMP model are different. The homogenization
of the density seems more efficient with the SOHR model than with the DLMP model.
This can be attributed to the effect of the nonlinear diffusion terms that are included
in the SOHR model but not in the DLMP model. Therefore, the way repulsion is
included in the models may significantly affect the qualitative behavior of the solution.
In practical situations, when the exact nature of the interactions is unknown, some care
must be taken to choose the right repulsion mechanism.

(a) density ρ (b) Ω

Figure 4.8: Solution of the DLMP model for F0=5. Density ρ (left) and flux direction
Ω (right) at t=1.5s.

5. Conclusion In this paper, we have derived a hydrodynamic model for a
system of self-propelled particles which interact through both alignment and repulsion.
In the underlying particle model, the actual particle velocity may be different from
the self-propulsion velocity as a result of repulsion interactions with the neighbors.
Particles update the orientation of their self-propulsion seeking to locally align with
their neighbors as in Vicsek alignment dynamics. The corresponding hydrodynamic
model is similar to the Self-Organized Hydrodynamic (SOH) system derived from the
Vicsek particle model, but it contains several additional terms arising from repulsion.
These new terms consist principally of gradients of linear or nonlinear functions of the
density including a non-linear diffusion similar to porous medium diffusion. This new
Self-Organized Hydrodynamic system with Repulsion (SOHR) has been numerically
validated by comparisons with the particle model. It appears more efficient to prevent
high density concentrations than other approaches based on simply enhancing the
pressure force in the SOH model. In future work, this model will be used to explore
self-organized motion in collective dynamics. To this effect, it will be calibrated on
data based on biological experiments, such as recordings of collective sperm-cell motion.
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Appendix A. Proof of formulas (2.14), (2.15). By introducing the change of

variable z=−x−y√
εR

and using Taylor expansion, we get

1

(
√
εR)n

∫
Sn−1×Rn

K
( |x−y|√

εR

)
fε(y,ω,t)ωdωdy

=

∫
Sn−1×Rn

K(|z|)fε(x+
√
εRz,ω,t)ωdzdω

=

∫
Sn−1×Rn

K(|z|)
(
fε+

√
εR∇xf

ε ·z+ εR2

2
D2

xf : (z⊗z)+O(
√
ε
3
)
)
(x,ω,t)ωdzdω

=
(
J(x,t)+εk0ΔxJ(x,t)+O(ε2)

)
,

where k0 is given by (2.16) and D2
xf is the Hessian matrix of f with respect to the vari-

able x. Here, we have used that the O(
√
ε) and O(ε3/2) terms vanish after integration

in z by oddness with respect to z.

By the same computation for the kernel φ, we have

1

(εr)n

∫
Sn−1×Rn

φ(
|x−y|
εr

)fε(y,ω,t)dydω

=

∫
Sn−1×Rn

φ(|z|)fε(x+εrz,ω,t)dzdω

=

∫
Sn−1×Rn

φ(|z|)(fε+εr∇xf ·z+O(ε2))(x,ω,t)dzdω

=Φ0

∫
Sn−1

fε(x,ω,t)dω+O(ε2),

with Φ0=
∫
Rn φ(|z|)dz.

Appendix B. Proof of Theorem 2.2 .
We prove that (2.34) leads to (2.25). Thanks to (2.30), Equation (2.34) can be

written

PΩ⊥

∫
ω∈S2

(T1(ρMΩ)+T2(ρMΩ)+T3(ρMΩ))h(ω ·Ω)ωdω :=T1+T2+T3=0, (B.1)

where T k, k=1,2,3, are given by (2.33). Now, T1(ρMΩ) can be written

T1(ρMΩ)=∂t(ρMΩ)+∇x ·(ωρMΩ)−Φ0∇x ·
(
∇x

(
ρ2

2

)
MΩ

)
. (B.2)
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We recall that the first two terms of T1 on the right hand side of (B.2) and the corre-
sponding terms in T1 have been computed in [13]. The computation for the third term
of T1 is easy, and we get

T1=β1ρ∂tΩ+β2ρ(Ω ·∇x)Ω+β3PΩ⊥∇xρ+β4(∇x

(
ρ2

2

)
·∇x)Ω

where the coefficients are given by

β1=
1

d(n−1)
〈sin2θh〉MΩ , β2=

1

d(n−1)
〈sin2θ cosθh〉MΩ ,

β3=
1

n−1
〈sin2θh〉MΩ

, β4=−
Φ0

d(n−1)
〈sin2θh〉MΩ

.

Now observe that for a constant vector A∈Rn, we have

∇ω(ω ·A)=Pω⊥A, ∇ω ·(Pω⊥A)=−(n−1)ω ·A. (B.3)

Thus, using (2.33), (B.3), and the chain rule, we get for T2(ρMΩ)

T2(ρMΩ)=αΦ0

(
(n−1)ω ·∇x

(
ρ2/2

)
−d−1∇x

(
ρ2/2

)
·Ω

+d−1
(
ω ·∇x(ρ

2/2)
)
(ω ·Ω)

)
MΩ.

Finally, we obtain

T2=β5PΩ⊥∇x

(
ρ2

2

)
,

where

β5=αΦ0

(
〈sin2θh〉MΩ +

1

d(n−1)
〈sin2θ cosθh〉MΩ

)
.

The terms T3(ρMΩ) and T3 have been computed in [12]. In particular, it is easy to see
that we get them from the formulae for T2(ρMΩ) and T2 by changing −αΦ0∇x(ρ

2/2)
into k0PΩ⊥Δx(ρΩ). Therefore, we get

T3=β6PΩ⊥Δx(ρΩ),

where

β6=−k0
(
〈sin2θh〉MΩ +

1

d(n−1)
〈sin2θ cosθh〉MΩ

)
.

Inserting the expressions of T1, T2 and T3 into (B.1) we get (2.25).

Appendix C. Proof of Proposition 3.1 .
We follow the lines of the proof of Proposition 3.1 of [23]. Assume that ρη→ρ0 and

Ωη→Ω0 as η tends to zero. Then, set

Rη :=ρη(1−|Ωη|2)Ωη.
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Multiplying equation (3.2) by η and then taking the limit η→0 yields Rη→0. It follows
that |Ω0|2=1. Since the vector Rη is parallel to Ωη, we have P(Ωη)⊥R

η =0 which implies
that

P(Ωη)⊥

(
∂t(ρ

ηΩη)+∇x ·(ρηV η⊗Ωη)+∇xp(ρ
η)−γΔx(ρ

ηΩη)
)
=0.

Therefore, letting η→0, we obtain

∂t(ρ
0Ω0)+∇x ·(ρ0V 0⊗Ω0)+∇xp(ρ

0)−γΔx(ρ
0Ω0)=βΩ0, (C.1)

where β is a real number, p(ρη)→p(ρ0)=dρ0+αΦ0(d+c2)(ρ
0)2/2, V 0= c2Ω

0−
Φ0∇xρ

0, and U0= c1Ω
0−Φ0∇xρ

0. By taking the scalar product of (C.1) with Ω0,
we get

β=∂tρ
0+∇x ·(ρ0V 0)+∇xp(ρ

0) ·Ω0−γΔx(ρ
0Ω0) ·Ω0.

Inserting this expression of β into (C.1), we find the equation for the evolution of the
average direction (2.25) and thus the SOHR model (2.24)–(2.27).
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