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DYNAMIC TRANSITIONS AND PATTERN FORMATIONS FOR A
CAHN–HILLIARD MODEL WITH LONG-RANGE REPULSIVE

INTERACTIONS∗

HONGHU LIU† , TAYLAN SENGUL‡ , SHOUHONG WANG§ , AND PINGWEN ZHANG¶

Abstract. The main objective of this article is to study the order-disorder phase transition and pat-
tern formation for systems with long-range repulsive interactions. The main focus is on a Cahn–Hilliard
model with a nonlocal term in the corresponding energy functional, representing certain long-range re-
pulsive interaction. We show that as soon as the trivial steady state loses its linear stability, the system
always undergoes a dynamic transition of one of three types — continuous, catastrophic and random —
forming different patterns/structures, such as lamellae, hexagonally packed cylinders, rectangles, and
spheres. The types of transitions are dictated by a non-dimensional parameter, measuring the interac-
tions between the long-range repulsive term and the quadratic and cubic nonlinearities in the model.
In particular, the hexagonal pattern is unique to this long-range interaction, and it is captured by the
corresponding two-dimensional reduced equations on the center manifold, which involve (degenerate)
quadratic terms and non-degenerate cubic terms. Explicit information on the metastability and basins
of attraction of different ordered states, corresponding to different patterns, are derived as well.

Key words. Phase transition, pattern formation, long-range interaction, a Cahn–Hilliard model,
center manifold reduction, hexagonal pattern.
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1. Introduction
Many systems in nature can be modeled through the inclusion of long-range in-

teractions, examples include uniaxial ferromagnetic films, Langmuir monolayers, block
copolymers, and cholesteric liquid crystals; see, e.g., Desai and Kapral [8, Chap. 13]
and references therein. The competition between long-range repulsive interactions and
short-range attractive interactions leads to new features that are not present in systems
with only short range interactions [8, 23].

The main objective of this article is to study the order-disorder phase transition
and pattern formation of binary systems confined in a bounded domain with long-
range and short-range interaction competitions, and to analyze the effects of the long-
range repulsive interactions on the phase transition. In particular, the transitions from
disordered state to lamellae (LAM), hexagonally packed cylinders (HPC), rectangles,
and spheres are explored.

The energy functional we adopt in this article is derived by adding a nonlocal term
to the usual Cahn–Hilliard free energy functional [4], measuring the long-range repulsive
interactions; see (2.1) below. It is also known as the Ohta–Kawasaki functional in the
diblock copolymer context [6, 7, 18, 20]. We refer the interested readers to [8, 22] for
models involving more general long-range terms.

The mathematical analysis of the model is carried out using techniques from dy-
namic transition theory developed recently by Ma and Wang [14, 16]; see also Ap-
pendix A for a brief account of this theory. The main philosophy of dynamic transition
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theory is to search for the full set of transition states, leading to a complete character-
ization of stability and transition. The set of transition states is often represented by
a local attractor. Following this idea, the theory is developed to identify the transition
states and to classify them both dynamically and physically.

One important ingredient of the theory is a new classification scheme of transitions,
in which phase transitions are classified into three types: Type-I, Type-II and Type-III.
In more mathematically intuitive terms, they are called continuous, catastrophic, and
random transitions, respectively. Basically, as the control parameter passes the critical
threshold, the transition states stay in a close neighborhood of the basic state for a
Type-I transition; and they are outside of a neighborhood of the basic state for a Type-
II transition. For a Type-III transition, a neighborhood of the basic state is divided
into two open regions with a Type-I transition in one region, and a Type-II transition
in the other region; cf. Theorem A.1.

We describe now the main results of this article. The related physical significance is
also briefly mentioned, and more detailed physical conclusions are left for future work.

First, we show that as soon as the trivial steady state loses its linear stability, the
system always undergoes a transition of one of the aforementioned three types, forming
different patterns/structures. The type of transition is dictated by a non-dimensional
parameter, measuring the interactions between a linear term σu, originated from the
long-range repulsive interactions, and the quadratic and cubic nonlinearities γ2Δu

2,
γ3Δu

3 in the model Equation (2.6) below. For example, in the LAM case analyzed in
Theorem 4.1, this parameter is given by

B�γ3− 8

27

γ22√
σ
,

where B>0 indicates first order transitions, and B<0 implies second-order transitions;
see (4.1) for the exact formula of B.

Second, the long-range interaction term σd

2 (−Δ)−
1
2 (uA−a) ·(−Δ)−

1
2 (uA−a) in the

energy functional (2.1) below plays an essential role in pattern selection.1 In particular,
there are three unique features induced by this long-range interaction term, which are
not present in the phase transition dynamics and pattern formations described by the
classical Cahn–Hilliard model [15], where σd=0. The first new feature is that the as-
sociated pattern selection mechanism here involves the long-range repulsive interaction
parameter, σd, which leads to more possible patterns that are absent in the classical
Cahn–Hilliard model; see (3.6). Moreover, the scale of the spatial patterns emerging
from the transition is determined by the parameter σd. Finally, the long-range interac-
tion causes the periodic structure emerging from the transition to be very sensitive to
the system parameters; see again the pattern selection criterion (3.6).

Third, an important technical ingredient of the study is the reduction of the un-
derlying partial differential equation (PDE) to its corresponding local center manifold.
The resulting reduced equations that govern the local dynamics of the original PDE
are analyzed carefully following the ideas of dynamic transition theory [14, 16]. Unlike
many other dynamic transition problems we have encountered, in the HPC case, the
reduced equations consist of (degenerate) quadratic terms and non-degenerate cubic
terms. This unique feature of the reduced system is caused directly by the introduction
of the long-range interaction term in the energy functional (2.1) below.

Fourth, in the HPC case, the transition can be of either Type-I or Type-II or Type-
III. In the Type-III case, a neighborhood of the basic state is divided into two open

1Here, σd is the dimensional form of the parameter σ mentioned in the previous paragraph.
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regions with a continuous transition in one region, and a jump transition in the other
region. The HPC structures are located on the boundary of these two regions; see
Theorem 4.2 (iii).

It is worth mentioning that dynamic transition theory enables us not only to derive
precise information on the type of transitions and phase diagram, but also to obtain
basins of attraction of different phases (fluctuations), which are otherwise unavailable;
see, e.g., Theorem 4.2 below.

The article is organized as follows. In Section 2, a Cahn–Hilliard type equation
incorporating long range interactions is introduced. The linear problem of this equation
is presented in Section 3, and the phase transitions and pattern formations associated
with the model are derived in Section 4. Section 5 is devoted to the proofs of the main
theorems.

2. A Cahn–Hilliard model with long-range interactions
We consider an incompressible binary system with long-range repulsive interactions.

Let uA and uB be the concentrations of components A and B, respectively. By the
incompressibility of the system, uA+uB =1. Thanks to this identity, the free energy
functional can be expressed in terms of uA only, and it takes the following form:

F (uA)=

∫
Ω

(μ
2
|∇uA|2+f(uA)

+
σd
2
(−Δ)−

1
2 (uA−a) ·(−Δ)−

1
2 (uA−a)

)
dx+F0,

(2.1)

where Ω⊂R
3 is a bounded domain; the coefficients μ and σd are positive parame-

ters; (−Δ)−1/2 is a fractional power of the Laplace operator under zero flux bound-
ary condition; a is the concentration of component A in the disordered state, namely
a= 1

|Ω|
∫
Ω
uA(x)dx with |Ω| being the volume of Ω; and F0 is the energy of the system

when it is in the disordered state (i.e., when uA≡a).
The term μ

2 |∇uA|2 in (2.1) represents the interfacial free energy. The term f(uA)
measures the bulk energy of the mixing and usually takes a double well form. For
simplicity, we assume that2

f(uA)= b1(uA−a)2+b2(uA−a)3+b3(uA−a)4,

where b1, b2 and b3 are constants with b3>0. The third term in (2.1) reflects long-range
interactions with σd measuring the interaction strength; see [7, 18] for more details.

When σd=0, the energy functional (2.1) is reduced to the classical Cahn–Hilliard
free energy functional [4]. It is worth mentioning that (2.1) is also known in the literature
as a Ginzburg–Landau functional with competing or Coulomb-type interaction [17], or
an Ohta–Kawasaki functional in the context of phase separation of diblock copolymers
[20].

We turn now to present the governing equation associated with the energy functional
(2.1). For this purpose, let

u :=uA−a. (2.2)

The equation governing the evolution of u can be derived as the gradient flow of the
energy functional (2.1) under the H−1(Ω) norm with a constant mobility factor. This

2As far as the dynamic transition is concerned, more general form of the nonlinearity can be dealt
with by applying a Taylor expansion of the nonlinearity about the disordered state uA≡a.
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can be done in the same fashion as the derivation of the usual Cahn–Hilliard equation
from the corresponding free energy functional; see, e.g., [6, 10, 12, 13, 19]. The equation
reads:

∂u

∂t
=m[−μΔ2u+Δ(b1u+b2u

2+b3u
3)−σdu], (2.3)

where m>0 is the constant mobility, and other parameters are as mentioned above.
Equation (2.3) is supplemented with Neumann and no-flux boundary conditions:

∂u

∂n
=0,

∂Δu

∂n
=0 on ∂Ω; (2.4)

and suitable initial condition u(x,0)=ψ. For simplicity, we consider the spatial domain

to be a bounded rectangular domain, i.e., Ω=
∏3

i=1(0,L
d
i ).

Note that the quantity
∫
Ω
u(x,t) dx is conserved, which can be checked by integrat-

ing both sides of Equation (2.3) over Ω, and applying the divergence theorem to the
RHS and making use of the boundary condition (2.4). Now by integrating both sides of
(2.2) over Ω and by noting that a= 1

|Ω|
∫
Ω
uA(x)dx, we obtain the following mean-zero

condition on u: ∫
Ω

u(x,t)dx=0. (2.5)

Throughout this article, we will work with a non-dimensional form of (2.3). For
this purpose, let us introduce the following non-dimensional variables and parameters:

x′=
x

d
, t′=

mμ

d4
t, u′=u, λ=−d

2b1
μ

,

γ2=
d2b2
μ

, γ3=
d2b3
μ

, σ=
d4

μ
σd,

where d is a typical length scale related to the domain Ω. Then, the system (2.3)–(2.5)
can be recast in the following non-dimensional form (omitting the primes):

∂u

∂t
=−Δ2u−λΔu+Δ(γ2u

2+γ3u
3)−σu,∫

Ω

u(x,t)dx=0,

∂u

∂n
=
∂Δu

∂n
=0 on ∂Ω,

u(x,0)=ψ,

(2.6)

where Ω=
∏3

i=1(0, Li), and Li=L
d
i /d,1≤ i≤3. Note that since b3>0 by our assump-

tion, we have γ3>0.
For the mathematical set-up, let us introduce the following function spaces:

H :=

{
u∈L2(Ω)

∣∣∣∫
Ω

udx=0

}
,

H1 :=

{
u∈H4(Ω)∩H

∣∣∣ ∂u
∂n

=
∂Δu

∂n
=0on ∂Ω

}
,

H1/2 :=

{
u∈H2(Ω)∩H

∣∣∣ ∂u
∂n

=0on ∂Ω

}
.

(2.7)
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We define the operators Lλ=−A+Bλ :H1 → H and G :H1/2 → H by

Au=Δ2u,

Bλu=−λΔu−σu,
G(u)=γ2Δu

2+γ3Δu
3.

(2.8)

Then, the system (2.6) is equivalent to the following abstract form:

du

dt
=Lλu+G(u),

u(0)=ψ,
(2.9)

where ψ∈H is a given function.
The existence and uniqueness of solutions to (2.9) can be proven in a standard

fashion; see, e.g., [24, Chap. III]. In particular, for any ψ∈H, the system (2.9) possesses
a unique weak solution u which belongs to

C([0,T ];H)∩L2((0,T );H1/2), ∀T >0.

Moreover, if ψ∈H1/2, then u∈C([0,T ];H1/2)∩L2((0,T );H1) for all T >0.

3. Principle of exchange of stabilities
In this section, we consider the eigenvalue problem associated with the linear opera-

tor Lλ as defined in (2.8). For this purpose, Let us first consider the following eigenvalue
problem:

−Δψ=ρψ,

∂ψ

∂n
=0 on ∂Ω,∫

Ω

ψdx=0.

(3.1)

Since the domain Ω is rectangular, the eigenvalues and eigenfunctions for the system
(3.1) are given by:

ρK = |K|2,
eK =cos(

k1πx1
L1

)cos(
k2πx2
L2

)cos(
k3πx3
L3

),
(3.2)

where the wave vector K belongs to the following permissible set P:

P :=

{(k1π
L1

,
k2π

L2
,
k3π

L3

) ∣∣∣ ki∈N0, 1≤ i≤3,

3∑
i=1

k2i �=0

}
, (3.3)

with N0 being the set of all nonnegative integers, and

|K|2 :=
3∑

i=1

k2i π
2

L2
i

. (3.4)

Note that the linear operator Lλ=−A+Bλ defined by (2.8) has the same eigen-
functions {eK |K ∈P} as given in (3.2); and the eigenvalue of Lλ corresponding to eK
is given by

βK(λ)=−|K|4+λ|K|2−σ= |K|2
(
λ− |K|

4+σ

|K|2
)
, K ∈P. (3.5)
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The linear stability and instability are precisely determined by the critical-crossing
of the first eigenvalue, which is often called the principle of exchange of stabilities (PES).
For this purpose, we define a number λc as follows:

λc := min
K∈P

|K|4+σ
|K|2 . (3.6)

Note that λc is the critical value of the parameter λ at which some eigenvalues of Lλ

cross the imaginary axis and the rest remain on the left half plane.

Let us denote by S the set of critical wave vectors that achieve the minimum in
(3.6):

S :={K ∈P | K achieves the minimum in (3.6)} . (3.7)

Then, the following PES condition holds:

βK(λ)

⎧⎪⎨⎪⎩
<0 if λ<λc,

=0 if λ=λc,

>0 if λ>λc,

∀K ∈S, (3.8)

βK(λc)<0 ∀K ∈P\S. (3.9)

The above condition implies that λc is exactly the critical value of λ, at which the
disordered state u≡0 of the system (2.9) loses its linear stability.

4. Dynamic transitions and pattern formations

From dynamic transition theory [14, 16] (see also appendix A), we know that as
λ crosses λc from below, the system (2.9) always undergoes a dynamic transition of
one of three types: Type-I, Type-II, and Type-III; and the type of transition is mainly
dictated by the nonlinear interactions in the system. In this section, we address the type
of phase transitions and the associated pattern formations. The proofs are deferred to
next section.

4.1. Transitions to LAM patterns. In this subsection, we consider the case
where the first eigenvalue is simple and the corresponding critical wave vector K1 which
achieves the minimum in (3.6) is of the form K1=(k1π/L1, 0, 0), for some k1∈N. We
will see later in Section 5 that the type and structure of phase transitions of the system
are dictated by the sign of the following parameter:

B :=γ3− 8|K1|2
36|K1|4−9σ

γ22 . (4.1)

One can readily check by (3.6) that |K1|2�
√
σ, the parameter B then takes the following

simpler form:

B�γ3− 8

27

γ22√
σ
. (4.2)

Theorem 4.1. If K1=(k1π/L1, 0, 0) for some k1∈N is the only wave vector which
achieves the minimum given in (3.6), the following assertions hold:
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(i) If B>0, then the transition associated with the system (2.6) at λc is Type-I,
where λc=(|K1|4+σ)/|K1|2 and |K1|2=k21π2/L2

1. Moreover, the system bifur-
cates on λ>λc to two locally stable steady states u1 and u2, which admit the
following approximation formula:

u1,2=±
√

4βK1
(λ)

3|K1|2B cos(
k1πx1
L1

)+o(|βK1
(λ)|1/2), (4.3)

where βK1
(λ) is the eigenvalue corresponds to the wave vector K1 given by (3.5).

(ii) If B<0, then the phase transition is Type-II, and the system bifurcates on the
side λ<λc to two non-degenerate saddle points.

From the above results, we can obtain the corresponding local phase diagrams for
λ near the critical value λc; see Figure 4.1 below. Note that they are the same as
the classical phase diagrams dictated respectively by the subcritical and supercritical
pitchfork bifurcation. This figure also provides a pictorial explanation of the Type-I
and Type-II transitions as recalled in Theorem A.1 for the case considered here.

λλc

u1

u2

H

(a) B>0

λc λ

H

(b) B<0

Fig. 4.1: Phase diagram for the LAM case given in Theorem 4.1. (a) Type-I transition (when B>0).

(b) Type-II transition (when B<0).

For Type-I transition cases, Theorem 4.1 shows that the patterns emerging from
the transition are perturbations of the pattern determined by the eigenmode eK1

, which
is the mode that loses its stability during the phase transition; see (4.3). Note that the
spatial patterns associated with the local attractors u1,2 given by (4.3) is laminar as
illustrated in Figure 4.2.

For Type-II transition cases, although the states after the transition cannot be
described precisely as is done for the Type-I transition case, it is interesting to mention
that a skeleton of the corresponding global phase diagram can be obtained by using
standard energy estimates; see Figure 4.3. In particular, there exists λ∗<λc such that
the disordered state u=0 is globally stable when λ<λ∗.3 When the control parameter
λ is between λ∗ and λc, the disordered state is metastable. In this parameter regime,
perturbations can lead the system to other metastable states which may be far away
from the disordered one as illustrated by the top and bottom parts of the curve in
Figure 4.3. The disordered state becomes unstable when λ>λc, and the phase of the

3which follows from standard energy estimates. See, e.g., the proof of Theorem 3.2 in [15], where
the classical Cahn–Hilliard equation is dealt with (correpsonding to the case σ=0 here).
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system “jumps” to these “far away” states under arbitrarily small perturbations. The
two values λ∗ and λc in Figure 4.3 represent respectively the so called binodal and
spinodal points [2, 3].

Fig. 4.2: LAM pattern: an isosurface

plot of the eigenmode eK1
(x1,x2,x3)=

cos( k1πx1
L1

) associated with the bifur-

cated local attractors u1,2 given by

(4.3).

λc λλ∗

H

Fig. 4.3: A global version of Figure 4.1(b): The

disordered state u=0 is globally stable when λ<λ∗,
is metastable when λ∗<λ<λc, and becomes unsta-

ble when λ>λc; see the main text for more details.

Note also that a Type-II transition corresponds to a first-order transition in the
sense of Ehrenfest, and a Type-I transition corresponds to a second-order or higher-
order transition [21].

4.2. Transitions to HPC patterns. Now, we consider a transition scenario
which allows hexagonally packed cylinder (HPC) patterns. We assume that the domain
size satisfies the following conditions:

L1=2πL, L2=
2√
3
πL, and L3=θπL. (4.4)

Here, L and θ are positive constants depending on σ, which are chosen in a way such

that Kc
1 := (nL ,0,0) and Kc

2 := ( n
2L ,

√
3n

2L ,0) are the only wave vectors which achieve the
minimum in (3.6), where n is a positive integer.

Theorem 4.2. Assume that the size of the domain satisfies (4.4), and that Kc
1 =(nL ,0,0)

and Kc
2 =( n

2L ,
√
3n

2L ,0) are the only two wave vectors which achieve the minimum in (3.6).
Let B be the parameter defined in (4.1) with |K1|= |Kc

1|= |Kc
2|. The following assertions

hold:

(i) If

γ2=0,

then the phase transition of (2.6) at λc is Type-I, where λc=(|Kc
1|4+σ)/|Kc

1|2.
The system bifurcates on the side λ>λc to an attractor Σλ, which is homeomor-
phic to the one-dimensional unit sphere S1. Σλ contains eight non-degenerate
steady states, with four saddle points v1, v2, v3, and v4 and four minimal at-
tractors u1, u2, u3, and u4 as shown in Figure 4.4(a). Moreover, the following



H. LIU, T. SENGUL, S. WANG, AND P. ZHANG 1297

approximation formulas hold:

u1,3=±
√

4β1(λ)

3|Kc
1|2γ3

cos(
n

L
x1)+o(|β1(λ)|1/2),

u2,4=±
√

16β1(λ)

9|Kc
1|2γ3

cos(
n

2L
x1)cos(

√
3n

2L
x2)+o(|β1(λ)|1/2),

v1,2,3,4=±
√

4β1(λ)

15|Kc
1|2γ3

cos(
n

L
x1)

±2

√
4β1(λ)

15|Kc
1|2γ3

cos(
n

2L
x1)cos(

√
3n

2L
x2)+o(|β1(λ)|1/2),

(4.5)

where β1(λ) :=βKc
1
(λ) is as given in (3.5).

(ii) If

γ2 �=0 and B<0,

then the system (2.6) bifurcates on both sides of λc and the transition is Type-
II. Moreover, there are four steady states bifurcated out on the side λ<λc,
including three saddle points and one unstable node. On the side λ>λc, the
system bifurcates to two steady states, which are saddles.

(iii) If

γ2 �=0 and B>0,

then the transition is Type-III.
Again, there are bifurcations on both sides of λc. On the side λ<λc, there are
two saddles bifurcating out from the origin.
On the side λ>λc, the system bifurcates to four steady states:

w1=
β1(λ)

|Kc
1|2γ2

cos(
n

L
x1)+

2β1(λ)

|Kc
1|2γ2

cos(
n

2L
x1)cos(

√
3n

2L
x2)+o(|β1(λ)|),

w2=
β1(λ)

|Kc
1|2γ2

cos(
n

L
x1)− 2β1(λ)

|Kc
1|2γ2

cos(
n

2L
x1)cos(

√
3n

2L
x2)+o(|β1(λ)|),

w3=

√
−β1(λ)
b(λ)

cos(
n

L
x1)+o(|β1(λ)|1/2),

w4=−
√
−β1(λ)
b(λ)

cos(
n

L
x1)+o(|β1(λ)|1/2),

(4.6)

where b(λ)=
2|Kc

1 |4γ2
2

16|Kc
1 |4−4λ|Kc

1 |2+σ − 3|Kc
1 |2
4 γ3. Among the four steady states, there

are one stable node and three saddles, where the node is w3 if γ2>0, and w4 if
γ2<0.
Moreover, there is a neighborhood V ⊂H of u=0, which can be decomposed into
two disjoint sectorial regions VI and VII such that V =V I ∪V II and the phase
transition is Type-I if the initial perturbation is in VI and is Type-II if the initial
perturbation is in VII . In region VI , there is exactly one minimal attractor as
is shown in Figure 4.4(b) for γ2>0 and in Figure 4.4(c) for γ2<0.
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We note that, among all the steady states given in (4.5), u1 adn u3 are related to
LAM patterns as shown in Figure 4.2, v1,v2,v3, and v4 lead to HPC patterns shown in
Figure 4.5, and u2 and u4 correspond to rectangular patterns as shown in Figure 4.6.
Similarly, among the steady states given in (4.6), w1 and w2 correspond to HPC pat-
terns, and w3 and w4 correspond to LAM patterns.

0

u1

u2

u3

u4

v1v2

v3 v4

(a) γ2=0

0

VII VI

w1

w3w4

w2

(b) γ2>0 and B>0

0
VIIVI

w2

w3

w1

w4

(c) γ2<0 and B>0

Fig. 4.4: Local phase portrait for the HPC case stated in Theorem 4.2. (a) Type-I transition (when
γ2=0): the attractor Σλ after the transition is mapped homeomorphically to S1 and u1,u2,u3 and u4

are minimal attractors. (b) Type-III transition (when γ2>0 and B>0): the sectorial regions VI and
VII are separated by the stable manifolds of the steady states w1 and w2 represented by the lines 0w1

and 0w2 respectively, and w3 is the minimal attractor in VI . (c) Type-III transition (when γ2<0 and
B>0): the sectorial regions VI and VII are separated again by the stable manifolds of the steady states
w1 and w2, and w4 is the minimal attractor in region VI .

In Type-I transition cases, as the disordered state loses its stability, the transition
happens in two stages as time evolves: First, there is a fast transition from the disor-
dered state towards the bifurcated attractor Σλ; then there is a slow evolution within
the bifurcated structure. Depending on the initial perturbations, the patterns finally
emerging from the transition may be either lamellae or rectangles.

In Type-III transition cases, transition may happen on both sides of the critical point
λc. On the side λ<λc, the disordered state is metastable, and perturbations may drive
the system to some other metastable states far away from the disordered state; see also
the discussion at the end of the previous subsection. On the side λ>λc, the disordered
state is unstable, and the transition may be either Type-I or Type-II depending on
the initial perturbations. When the perturbation leads to Type-I transition, as time
evolves, there is first a fast transition towards the local attractor which consists of two
steady states with the HPC structure, one steady state with LAM structure, and two
heteroclinic orbits connecting them as shown in figures 4.4(b) and 4.4(c); the pattern
eventually settles down to LAM patterns.

4.3. Transitions to rectangle and sphere patterns. In this subsection, we
return to the situation when the first eigenvalue is simple, and we study the case when
the corresponding wave vector K1 that achieves the minimum in (3.6) is of the form

K1=(k1π/L1, k2π/L2, 0), ki �=0, 1≤ i≤2,

or

K1=(k1π/L1, k2π/L2, k3π/L3), ki �=0, 1≤ i≤3.

For simplicity, we will give results for the case k1/L1=k2/L2=k3/L3; the general situ-
ation can be dealt with in the same way. With this assumption, the eigenfunction cor-
responding to the first eigenvalue has a square pattern when K1=(k1π/L1, k2π/L2, 0),



H. LIU, T. SENGUL, S. WANG, AND P. ZHANG 1299

(a) (b)

Fig. 4.5: (a) HPC structures determined by v1,2,3,4 in (4.5). Here, the figure is obtained as an

isosurface plot of the function cos(nx1
L

)+2cos(nx1
2L

)cos(
√
3nx2
2L

). (b) Top view of the structures given
in (a).

and a sphere pattern when K1=(k1π/L1, k2π/L2, k3π/L3). We define the following
parameters:

B2 :=γ3− 16

9

( |K1|2
2|K1|4−σ +

|K1|2
2
(
12|K1|4−3σ

))γ22 ,
B3 :=γ3− 32|K1|2

3

(
1

4|K1|4−3σ
+

1

40|K1|4−15σ
+

1

108(4|K1|4−σ)
)
γ22 .

(4.7)

Theorem 4.3. Assume that K1=(k1π/L1, k2π/L2, 0), k1/L1=k2/L2 �=0, is the only
wave vector which satisfies (3.6). Then the following assertions hold:

(i) If

B2<0,

then the phase transition of (2.6) at λc is Type-II. In particular, the system
bifurcates from (u, λ)=(0, λc) on the side λ<λc to two non-degenerate saddle
points.

(ii) If

B2>0,

the transition is Type-I, and the system bifurcates on λ>λc to two local attrac-
tors u1 and u2, which can be expressed as

u1,2=±
√

16βK1
(λ)

9|K1|2B2
cos(

k1πx1
L1

)cos(
k2πx2
L2

)+o(|βK1(λ)|1/2), (4.8)

where βK1
(λ) is as in (3.5).

See Figure 4.6 for a plot of the spatial structure of u1,2 given in Theorem 4.3.

Theorem 4.4. Assume that the only wave vector which satisfies (3.6) is K1=
(k1π/L1, k2π/L2, k3π/L3), k1/L1=k2/L2=k3/L3 �=0. Then the following assertions
hold:

(i) If

B3<0,

then the phase transition of (2.6) at λc is Type-II. In particular, the system
bifurcates on the side λ<λc to two non-degenerate saddle points.
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(a) (b)

Fig. 4.6: (a) Rectangle patterns: an isosurface plot of the eigenmode cos( k1πx1
L1

)cos( k2πx2
L2

) associated

with the local attractor given by (4.8). (b) Top view of the structures given in (a).

(ii) If

B3>0,

the transition is Type-I, and the system bifurcates on λ>λc to two attractors
u1 and u2, which can be expressed as

u1,2=±
√

64βK1
(λ)

27|K1|2B3
cos(

k1πx1
L1

)cos(
k2πx2
L2

)cos(
k3πx3
L3

)+o(|βK1
(λ)|1/2),

(4.9)
where βK1

(λ) is as in (3.5).

See Figure 4.7 for a plot of the spatial structure of u1,2 given in Theorem 4.4.

Fig. 4.7: Sphere patterns in face-centered-cubic lattices: an isosurface plot of the eigenmode

cos( k1πx1
L1

)cos( k2πx2
L2

)cos( k3πx3
L3

) associated with the local attractor given by (4.9).

5. Proofs of the main theorems
This section is devoted to the proofs of the main results regarding the phase tran-

sitions associated with the system (2.6) presented in the previous section.

Proof. (Proof of Theorem 4.1.) The proof relies on the center manifold reduc-
tion, which reduces the system (2.6) to a one-dimensional ODE for the case considered
here. We follow the treatment presented in [14, 16]; see also Appendix A for a brief
account of this theory.

For this purpose, let us first introduce the subspaces Hc and Hs by

Hc := span{eK1
}, H=Hc⊕Hs, (5.1)
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namely, Hc is the center-subspace spanned by the eigenmode which loses its stability as
λ crosses the critical value λc, and Hs is the stable-subspace obtained as the topological
complement of Hc in the ambient space H, where H is defined in (2.7). Let us also
denote by Pc and Ps the corresponding canonical projectors associated with Hc and Hs

respectively.
Note that any solution u(t,x,λ) of the system (2.6) on the center manifold takes

the following form:

u(t,x,λ)=y(t,λ)eK1
(x)+Φ(y(t,λ)eK1

(x),λ), (5.2)

where y(t,λ)eK1
(x)=Pcu(t,x,λ), and Φ(·,λ) :Hc→Hs is the center manifold function

which we will calculate later.4 Recall that thanks to the classical center manifold theo-
rem [11, 14, 24], we have

Φ(y(t,λ)eK1
,λ)=o(|y(t,λ)|). (5.3)

Now multiplying both sides of the first equation in the system (2.6) by eK1
and

integrating over Ω, we obtain the following equation for y(t,λ):

dy

dt
=βK1

(λ)y− 1

〈eK1 ,eK1〉
∫
Ω

Δ(γ2u
2+γ3u

3)eK1
dx,

where 〈·, ·〉 stands for the inner product in H.
Applying integration by parts twice in the above equality and using the identity

ΔeK1 =−|K1|2eK1 , we get then

dy

dt
=βK1(λ)y−

2|K1|2
|Ω|

∫
Ω

(γ2u
2+γ3u

3)eK1 dx,

where |Ω| is the volume of Ω.
Now, by using the representation of solution on the center manifold given by (5.2)

and the fact that Φ(y(t,λ)eK1
,λ)=o(|y(t,λ)|) recalled in (5.3), we derive the following

reduced equation on the center manifold:

dy

dt
=βK1

(λ)y− 2|K1|2
|Ω|

(
g2(y)+g3(y)+g23(y)

)
+o(|y|3), (5.4)

where

g2(y)=γ2y
2

∫
Ω

e2K1
eK1

dx, (5.5)

g3(y)=γ3y
3

∫
Ω

e3K1
eK1 dx, (5.6)

g23(y)=2γ2y

∫
Ω

eK1
Φ(yeK1

,λ)eK1
dx. (5.7)

By using basic trigonometric identities, we obtain

g2(y)=γ2y
2

∫
Ω

cos3(k1πx1/L1)dx=0, (5.8)

4Note that the center manifold function Φ actually takes values in a more regular space Hs
1/2

, where

Hs
1/2

is the topological complement of Hc in the space H1/2 with the latter defined in (2.7). However,

we will not make use of this regularity in this proof.
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g3(y)=γ3y
3

∫
Ω

cos4(k1πx1/L1)dx=
3γ3
8
|Ω|y3. (5.9)

To evaluate g23, we need to compute the center manifold function Φ(yeK1
,λ). We

will use the following second order approximation formula of Φ(yeK1
,λ) (see, e.g., [14,

Thm. 3.8] for details; see also Appendix A):

Φ(yeK1 ,λ)=(−Ls
λ)
−1PsG2(yeK1)+o(2). (5.10)

Here Ps :H→Hs is the canonical projection with Hs being the subspace of H spanned
by all stable eigenfunctions of Lλ as defined by (5.1), Ls

λ is the restriction of Lλ to Hs,
G2 is the second order term of the nonlinearity, i.e., G2(v)=γ2Δv

2, and the o(2)-term
is given by

o(k) :=O(|βK1
(λ)||y|k)+o(|y|k), k∈N. (5.11)

Since {eK |K ∈P \K1} spans Hs, we can write Φ in the following form:

Φ(yeK1
,λ)=

∑
K∈P\{(k1π/L1,0,0)}

〈Φ(yeK1 ,λ),eK〉
〈eK ,eK〉 eK . (5.12)

Now, for each eK with K ∈P \{(k1π/L1,0,0)}, we take the L2 inner product of (5.10)
with eK to obtain

〈Φ(yeK1
,λ),eK〉= 〈(−Ls

λ)
−1PsG2(yeK1

),eK〉+o(2)
= 〈PsG2(yeK1),(−Ls

λ)
−1eK〉+o(2)

=− 1

βK(λ)
〈G2(yeK1

),eK〉+o(2), ∀K ∈P \{(k1π/L1,0,0)}.

Using this identity in (5.12), we obtain

Φ(yeK1
,λ)=

∑
K∈P\{(k1π/L1,0,0)}

−〈G2(yeK1),eK〉
βK(λ)〈eK ,eK〉 eK+o(2). (5.13)

Recall also that G2(v)=γ2Δv
2, which leads to

〈G2(yeK1
),eK〉

βK(λ)〈eK ,eK〉 =
γ2y

2〈e2K1
,ΔeK〉

βK(λ)〈eK ,eK〉 =− γ2|K|2y2
βK(λ)〈eK ,eK〉

∫
Ω

e2K1
eK dx.

Note that∫
Ω

e2K1
eK dx=

∫
Ω

1+cos(2k1πx1/L1)

2
eK dx=

{
|Ω|/4, if K=(2k1π/L1, 0, 0),

0, otherwise.

It follows then that the center manifold function Φ(yeK1 ,λ) can be approximated via:

Φ(yeK1
,λ)=

2γ2|K1|2y2
β2K1

(λ)
cos(

2k1πx1
L1

)+o(2). (5.14)

By using (5.14) in (5.7), we get

g23(y)=
γ22 |K1|2|Ω|
β2K1(λ)

y3+o(3). (5.15)
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Finally, by reporting (5.8), (5.9) and (5.15) in (5.4), we derive after simplification the
following reduced equation for the system (2.6):

dy

dt
=βK1

(λ)y−2|K1|2
(3
8
γ3+

|K1|2
β2K1

(λ)
γ22

)
y3+o(3). (5.16)

Thanks to the classical center manifold theory, the transition of the system (2.6)
in this case is the same as the transition of the reduced system (5.16); see, e.g., [14,
Chap. 6] and [16, Chap. 2].

Note that (5.16) has a pitchfork bifurcation at (y,λ)=(0,λc), and the sign of the
cubic term determines whether the bifurcation at λc is supercritical or subcritical. For
this purpose, we introduce a parameter B as follows:

B :=γ3+
8|K1|2

3β2K1
(λc)

γ22 =γ3−
8|K1|2

36|K1|4−9σ
γ22 . (5.17)

If B>0, then the bifurcation at λc is supercritical, i.e., the bifurcation occurs on
the side λ>λc, and the two bifurcated steady states are local attractors, which can be
expressed as

y1,2(λ)=±
√

4βK1(λ)

3|K1|2B +o(
√
βK1

(λ)).

Since all initial data in a sufficiently small neighborhood of the trivial steady state
is attracted by either y1(λ) or y2(λ), and limλ→λc

|y1,2(λ)|=0, the transition for the
reduced Equation (5.16) in this case is Type-I; see Theorem A.1. Consequently, the
system (2.6) also undergoes a Type-I transition at (u,λ)=(0,λc). Moreover, the two
bifurcated attractors for system (2.6) in correspondence to y1,2(λ) take the form given
by (4.3). Assertion (i) is now proved.

If B<0, then the bifurcation at λc is subcritical, i.e., the bifurcation occurs on the
side λ<λc, and the two bifurcated steady states are non-degenerate saddle points. On
the side λ>λc, it can be checked that the direction of the vector field on the RHS of
(5.16) points away from the origin in a neighborhood of the trivial steady state, where
the size of the neighborhood can be chosen to be independent of λ. The transition for
this case is thus Type-II; see Theorem A.1. Hence, Assertion (ii) is justified. The proof
is now complete.

Proof. ( Proof of Theorem 4.2.) We proceed in three steps.

Step 1. Derivation of the reduced system. The eigenfunctions of Lλ corre-
sponding to Kc

1 and Kc
2 are

e1(x)=cos(
n

L
x1), e2(x)=cos(

n

2L
x1)cos(

√
3n

2L
x2). (5.18)

In this case, the center-subspace Hc is spanned by the two eigenmodes e1 and e2:

Hc := span{e1,e2}. (5.19)

As before, let us write any given solution u(t,x,λ) of the system (2.6) on the center
manifold as

u(t,x,λ)=v(t,x,λ)+Φ(v(t,x,λ),λ),
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where v(t,x,λ)=Pcu(t,x,λ)=y1(t,λ)e1(x)+y2(t,λ)e2(x) and Φ(·,λ) :Hc→Hs is the
center manifold function. Again, Φ can be approximated to the second order via the
formula recalled in (A.8), namely

Φ(y1e1+y2e2,λ)=(−Ls
λ)
−1PsG2(y1e1+y2e2)+o(2), (5.20)

where o(2) is defined in (5.11), with (y1,y2) in place of y therein.
Following the same reasoning as in (5.12)–(5.14), we can derive the following:

Φ(y1e1+y2e2,λ)=− 2γ2|Kc
1|2y21

16|Kc
1|4−4λ|Kc

1|2+σ
cos(

2n

L
x1)

− 3γ2|Kc
1|2y1y2

9|Kc
1|4−3λ|Kc

1|2+σ
cos(

3n

2L
x1)cos(

√
3n

2L
x2)

− γ2|Kc
1|2y22

16|Kc
1|4−4λ|Kc

1|2+σ
cos(

n

L
x1)cos(

√
3n

L
x2)

− 3γ2|Kc
1|2y22

4(9|Kc
1|4−3λ|Kc

1|2+σ)
cos(

√
3n

L
x2)+o(2), (5.21)

where |Kc
1|= |Kc

2|=n/L.
Now multiplying both sides of the first equation in (2.6) by e1 (and e2 in turn),

integrating over Ω, and making use of the approximation (5.21), we obtain the following
reduced equations to the center manifold:

dy1
dt

=β1(λ)y1− |K
c
1|2γ2
4

y22+b(λ)y
3
1+c(λ)y1y

2
2+o(3),

dy2
dt

=β1(λ)y2−|Kc
1|2γ2y1y2+d(λ)y32+e(λ)y21y2+o(3),

(5.22)

where β1(λ)=βKc
1
(λ)=βKc

2
(λ) and

b(λ)=
2|Kc

1|4γ22
16|Kc

1|4−4λ|Kc
1|2+σ

− 3|Kc
1|2
4

γ3,

c(λ)=
3|Kc

1|4γ22
2(9|Kc

1|4−3λ|Kc
1|2+σ)

− 3|Kc
1|2
4

γ3,

d(λ)=
|Kc

1|4γ22
2(16|Kc

1|4−4λ|Kc
1|2+σ)

+
3|Kc

1|4γ22
4(9|Kc

1|4−3λ|Kc
1|2+σ)

− 9|Kc
1|2

16
γ3,

e(λ)=
3|Kc

1|4γ22
9|Kc

1|4−3λ|Kc
1|2+σ

− 3|Kc
1|2
2

γ3.

(5.23)

Again, due to the classical center manifold theory, the transition of the system (2.6)
in this case is the same as the transition of the reduced system (5.22). To analyze the
latter, it is important to understand the dynamics of the reduced system at the critical
parameter λc. At λ=λc, β1(λ)=0, and (5.22) reads (up to 3rd order terms):

dy1
dt

=−|K
c
1|2γ2
4

y22+b(λc)y
3
1+c(λc)y1y

2
2 ,

dy2
dt

=−|Kc
1|2γ2y1y2+d(λc)y32+e(λc)y21y2.

(5.24)

We analyze below the cases γ2=0 and γ2 �=0 separately.
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Step 2. The case when γ2=0. In this case, (5.24) reads as

dy1
dt

=−3|Kc
1|2
4

γ3y
3
1−

3|Kc
1|2
4

γ3y1y
2
2 ,

dy2
dt

=−9|Kc
1|2

16
γ3y

3
2−

3|Kc
1|2
2

γ3y
2
1y2.

(5.25)

Note that

d(y21+y
2
2)

dt
=−3|Kc

1|2
2

y41−
9|Kc

1|2
8

γ3y
4
2−3|Kc

1|2γ3y21y22<0, ∀(y1,y2) �=(0,0).

Hence, the trivial steady state of (5.25) is locally asymptotically stable. Therefore, due
to Theorem 6.1 in [14] (see also [15, Thm. A.3]), the transition of (5.22) is Type-I.

To determine the structure of the attractor after the transition, we can ignore the
o(3) terms in (5.22), and analyze the following truncated version:

dy1
dt

=β1(λ)y1− 3|Kc
1|2
4

γ3y
3
1−

3|Kc
1|2
4

γ3y1y
2
2 ,

dy2
dt

=β1(λ)y2− 9|Kc
1|2

16
γ3y

3
2−

3|Kc
1|2
2

γ3y
2
1y2.

(5.26)

When λ>λc the trivial steady state becomes unstable, and there are eight steady states
bifurcating out from the origin for the above system (5.26). By direct computation, we
obtain the bifurcated steady states as follows

X1,3=

(
±
√

4β1(λ)

3|Kc
1|2γ3

, 0

)
, X2,4=

(
0, ±

√
16β1(λ)

9|Kc
1|2γ3

)
,

Y1,2,3,4=

(
±
√

4β1(λ)

15|Kc
1|2γ3

, ±2
√

4β1(λ)

15|Kc
1|2γ3

)
.

(5.27)

One can check, by calculating the Jacobian at the corresponding steady states, that all
these steady states are non-degenerate, and X1,2,3,4 are stable nodes and Y1,2,3,4 are
saddle points; see Figure 5.1 for the bifurcated structure.

By the center manifold reduction, the bifurcated steady states for the original sys-
tem (2.6) are in one-to-one correspondence with the non-degenerated steady states given
in (5.27). Hence, there are eight steady states bifurcating out for system (2.6) when
λ crosses λc from below, and these steady states, denoted by u1,3, u2,4, v1,2,3,4 (cor-
responding to X1,3, X2,4, and Y1,2,3,4, respectively), take the form as given in (4.5).
Since (2.6) is a gradient system, the bifurcated local attractor Σλ consists of these eight
steady states together with the heteroclinic orbits connecting them (see, e.g., [5, Thm.
2.43]). Hence, Σλ is homeomorphic to the one-dimensional unit sphere S1. Assertion
(i) is now proven.

Step 3. Analysis of the reduced system for γ2 �=0 case. Now, we consider
the case when γ2 �=0. The flow structure of (5.24) near the origin for this case can
be analyzed using a classical theorem due to A. A. Andronov et al. [1, Chap. IX],
which provides qualitative information about the local phase portrait near the origin
for two-dimensional ODE systems. For the reader’s convenience, the result is recalled
in Theorem A.3 in the Appendix.

In order to apply this theorem to the system (5.24), we first note that since γ2 �=0,
the lowest order homogeneous polynomials Pm and Qm in Theorem A.3 are given here
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y1

y2

y  =2y2         1
y  =-2y2           1

Fig. 5.1: The local topological structure of flows of (5.26) when β1(λ)>0.

by the quadratic terms: P2(y1,y2) :=− |K
c
1 |2γ2

4 y22 and Q2(y1,y2) :=−|Kc
1|2γ2y1y2. Note

also that y1Q2(y1,y2)−y2P2(y1,y2) �≡0, hence by Theorem A.3, any direction θ∗ —
along which a semipath of (5.24) tends to O := (0,0) — satisfies the equation

cosθ∗Q2(cosθ
∗,sinθ∗)−sinθ∗P2(cosθ

∗,sinθ∗)=0.

Namely,

−|K
c
1|2γ2
4

(sin2θ∗−4cos2θ∗)sinθ∗=0.

So

mod (θ∗,2π)=0, π, or arctan(±2), (5.28)

where mod(·, ·) is the standard modulo operation.
Note that the directions determined by (5.28) coincide with the directions deter-

mined by the following straight lines:

y2=±2y1, and y2=0. (5.29)

We can also easily check that these three lines consist of straight line orbits of (5.24) (in
the sense that trajectories starting on these lines stay on it for all t∈R). For example,
to check that y2=2y1 consists of straight line orbits, we only need to show that for
any point (y1,2y1) �=(0,0) on this line, the ratio of the right hand sides of (5.24) is 1/2,
which can be derived as follows:

− |Kc
1 |2γ2

4 y22+b(λc)y
3
1+c(λc)y1y

2
2

−|Kc
1|2γ2y1y2+d(λc)y32+e(λc)y21y2

=
−|Kc

1|2γ2y21+b(λc)y31+4c(λc)y
3
1

2
(−|Kc

1|2γ2y21+4d(λc)y31+e(λc)y
3
1

)
=

1

2
,

where we have used

b(λ)+4c(λ)=4d(λ)+e(λ), (5.30)

which can be derived from (5.23).
Now, the local phase portrait of (5.24) near the origin can be determined thanks to

Theorem A.3. The straight line orbits serve as the separatrices, which divide the phase
plane into six regions. The flow in each such region is determined by the direction of
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y1

y  =2y2         1
y  =-2y2           1

(a) γ2>0 and b(λc)>0

y1

y  =2y2         1
y  =-2y2           1

(b) γ2<0 and b(λc)>0

y1

y  =2y2         1
y  =-2y2           1

(c) γ2>0 and b(λc)<0

y1

y  =2y2         1
y  =-2y2           1

(d) γ2<0 and b(λc)<0

Fig. 5.2: Topological structure of the flow of (5.24) near the origin when γ2 �=0.

the corresponding straight line orbits. The results depend on the signs of γ2 and b(λc),
and are shown in figures 5.2(a)–5.2(d).

Based on the phase portrait of (5.24), we are in position to analyze the phase
transition associated with (5.22), and we treat the two cases b(λc)>0 and b(λc)<0
separately.

Case γ2 �=0 and b(λc)>0. For γ2 �=0 and b(λc)>0, a neighborhood of the origin
is divided into six regions by the straight line orbits of (5.24), and four of them are
hyperbolic and the other two regions are parabolic as shown in figures 5.2(a) and 5.2(b).
Since orbits starting from any of these regions are eventually repelled away from the
origin, the transition of (5.22) is Type-II; see Theorem A.1.

Again, in order to calculate the bifurcated steady states, we can ignore the o(3)
terms in (5.22), and analyze the following instead

β1(λ)y1− |K
c
1|2γ2
4

y22+b(λ)y
3
1+c(λ)y1y

2
2 =0, (5.31a)

β1(λ)y2−|Kc
1|2γ2y1y2+d(λ)y32+e(λ)y21y2=0. (5.31b)

In the above algebraic equations, if y2=0, then we have from (5.31a) that

y1=

{
±
√
−β1(λ)

b(λ) or 0, if λ<λc,

0, if λ>λc.

If y2 �=0, we find from (5.31b) that

β1(λ)= |Kc
1|2γ2y1−d(λ)y22+o(|y1|). (5.32)

By using this identity in (5.31a), we obtain

|Kc
1|2γ2y21−

( |Kc
1|2γ2
4

+O(|y1|)
)
y22+o(y

2
1)=0, (5.33)
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which implies that y2=O(|y1|). By using this relation in (5.32) we obtain

y1=
β1(λ)

|Kc
1|2γ2

+o(|β1(λ)|). (5.34)

This together with (5.33) leads to

y2=± 2β1(λ)

|Kc
1|2γ2

+o(|β1(λ)|).

From above, we conclude that for (5.22) there are four steady states bifurcating out
from the origin on the side λ<λc, which are given by:

Z1=

(
β1(λ)

|Kc
1|2γ2

,
2β1(λ)

|Kc
1|2γ2

)
+o(β1(λ)), Z2=

(
β1(λ)

|Kc
1|2γ2

,− 2β1(λ)

|Kc
1|2γ2

)
+o(β1(λ)),

Z3=

(√
−β1(λ)
b(λ)

,0

)
+o(

√
|β1(λ)|), Z4=

(
−
√
−β1(λ)
b(λ)

,0

)
+o(

√
|β1(λ)|).

(5.35)

By computing the Jacobian, we can see that when λ is sufficiently close to λc three of
them are saddle points, and the other one is an unstable node.

There are two steady states bifurcating out from the origin on the side λ>λc, which
have the following form:

Z5=

(
β1(λ)

|Kc
1|2γ2

,
2β1(λ)

|Kc
1|2γ2

)
+o(β1(λ)), Z5=

(
β1(λ)

|Kc
1|2γ2

,− 2β1(λ)

|Kc
1|2γ2

)
+o(β1(λ)), (5.36)

and both of them are saddle points.
Note also that b(λc)>0 is equivalent to B<0 with B given by (4.1). Assertion (ii)

is thus proved.

Case γ2 �=0 and b(λc)<0. For γ2 �=0 and b(λc)<0, a neighborhood of the origin
is also divided into six regions by the straight line orbits of (5.24), and four of them are
hyperbolic and the other two regions are parabolic as shown in figures 5.2(c) and 5.2(d).
Moreover, orbits starting in the parabolic regions tend to the origin, and orbits starting
in the hyperbolic regions eventually move away from the origin. Hence, the transition
of (5.22) is Type-III.

By the same type of argument used for Type-II, one can show that there are bi-
furcations on both sides of λc. On the side λ<λc, it bifurcates to two saddle points,
which take the same form as in (5.36). On the side λ>λc, there are four steady states
bifurcating out, which take the same form as in (5.35). When λ is sufficiently close to
λc, one can check that three of them are non-degenerate saddle points and the other is
a stable node ( the stable node is Z3 when γ2>0 and is Z4 when γ2<0).

The flow structure of the reduced Equation (5.22) when λ>λc can now be obtained
easily and the result after dropping o(|y|3) terms for this case is shown in Figure 5.3.
In particular, there is a neighborhood N of the origin of the y1y2 plane, which can
be decomposed into two disjoint regions NI and NII such that N =NI ∪NII and in
region NI , there is exactly one stable node bifurcating out on the side λ>λc. Note
that, because of the perturbations from the o(3) terms, NI and NII are actually slight
perturbations of the regions OI and OII in Figure 5.3, respectively. Corresponding to
N , there is a neighborhood V of the origin in space H, which can be decomposed into
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0
y1

y  =2y2         1
y  =-2y2          1

OIOII

Z2

Z3Z4

Z1

(a) b(λc)<0 and γ2>0

0

y  =-2y2          1

y  =2y2         1

y1

OI OII

Z2

Z3Z4

Z1

(b) b(λc)<0 and γ2<0

Fig. 5.3: The local topological structure of flows of (5.22) for λ>λc with γ2 �=0 and b(λc)<0 (without
taking into account the o(3) terms). The two sectorial regions OI and OII are separated by the rays
0Z1 and 0Z2.

two disjoint regions VI and VII such that V =V I ∪V II . Here VI and VII are chosen
such that

PcVI =NI , PcVII =NII , (5.37)

where Pc is the canonical projection associated with the center-subspace Hc.
5 Thus,

assertion (iii) is proved; and the proof is complete.

The proofs of Theorem 4.3 and Theorem 4.4 are similar to that of Theorem 4.1,
and the details are omitted here. For the reader’s convenience, we record here the
approximation formula for the center manifold function and the reduced equations on
the center manifold for each case.

Proof. (Proof of Theorem 4.3.) By similar calculation as given above, we can
obtain the following approximation formula for the center manifold function:

Φ(y,λ)=−ξ1(λ)γ2y2 cos(2k1πx1
L1

)−ξ2(λ)γ2y2 cos(2k2πx2
L2

)

−ξ3(λ)γ2y2 cos(2k1πx1
L1

)cos(
2k2πx2
L2

)+o(2).

Here ξ1, ξ2 and ξ3 are given by:

ξ1(λ)=
|K11|2

16|K11|4−4λ|K11|2+σ , ξ2(λ)=
|K12|2

16|K12|4−4λ|K12|2+σ ,

ξ3(λ)=
|K1|2

16|K1|4−4λ|K1|2+σ ,

where |K11|2= k2
1π

2

L2
1
, |K12|2= k2

2π
2

L2
2
, |K1|2= k2

1π
2

L2
1

+
k2
2π

2

L2
2
.

The reduced equation of (2.6) on the center manifold in this case is:

dy

dt
=βK1(λ)y−|K1|2

( 9

16
γ3−

(
ξ1(λ)+ξ2(λ)+

1

2
ξ3(λ)

)
γ22

)
y3+o(3).

5Here, with a slight abuse of notation, we have identified the two-dimensional center-subspace Hc

defined in (5.19) with its coordinate form {(y1,y2)∈R2 :y1e1+y2e2∈Hc}.
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Proof. (Proof of Theorem 4.4.) The center manifold function for this case is:

Φ(y,λ)=−η1(λ)γ2y2 cos(2k1πx1
L1

)−η2(λ)γ2y2 cos(2k2πx2
L2

)

−η3(λ)γ2y2 cos(2k3πx3
L3

)−η4(λ)γ2y2 cos(2k1πx1
L1

)cos(
2k2πx2
L2

)

−η5(λ)γ2y2 cos(2k1πx1
L1

)cos(
2k3πx3
L3

)−η6(λ)γ2y2 cos(2k2πx2
L2

)cos(
2k3πx3
L3

)

−η7(λ)γ2y2 cos(2k1πx1
L1

)cos(
2k2πx2
L2

)cos(
2k3πx3
L3

)+o(2),

where ηi (1≤ i≤7) are given by

η1(λ)=
k21π

2/L2
1

2
( 16k4

1π
4

L4
1
−4λ

k2
1π

2

L2
1

+σ
) , η2(λ)=

k22π
2/L2

2

2
( 16k4

2π
4

L4
2
−4λ

k2
2π

2

L2
2

+σ
) ,

η3(λ)=
k23π

2/L2
3

2
( 16k4

3π
4

L4
3
−4λ

k2
3π

2

L2
3

+σ
) , η4(λ)=

|K12|2
2
(
16|K12|4−4λ|K12|2+σ

) ,
η5(λ)=

|K13|2
2
(
16|K13|4−4λ|K13|2+σ

) , η6(λ)=
|K23|2

2
(
16|K23|4−4λ|K23|2+σ

) ,
η7(λ)=

|K1|2
2
(
16|K1|4−4λ|K1|2+σ

) ,
with

|K12|2= k21π
2

L2
1

+
k22π

2

L2
2

, |K13|2= k21π
2

L2
1

+
k23π

2

L2
3

,

|K23|2= k22π
2

L2
2

+
k23π

2

L2
3

, |K1|2= k21π
2

L2
1

+
k22π

2

L2
2

+
k23π

2

L2
3

.

The reduced equation of (2.6) to the center manifold is given by:

dy

dt
=βK1

(λ)y−|K1|2
(27
64
γ3−η(λ)γ22

)
y3+o(3),

where

η(λ)=η1(λ)+η2(λ)+η3(λ)+
1

2
(η4(λ)+η5(λ)+η6(λ))+

1

4
η7(λ).

Appendix A. Dynamic transition theory for nonlinear systems. In this
appendix we recall some basic elements of the dynamic transition theory developed by
Ma and Wang in [14, 16], which are used to carry out the dynamic transition analysis
for the system (2.6) considered in this article.

Let (H1,‖·‖1) and (H,‖·‖) be two Hilbert spaces, with H1 ↪→H a dense and com-
pact inclusion. Let us consider the following nonlinear evolution equation

du

dt
=Lλu+G(u,λ),

u(0)=u0,
(A.1)
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where u : [0,+∞)→H is the unknown function and λ∈R is the control parameter of the
system. The operators Lλ :H1→H are a family of linear completely continuous fields
depending continuously on λ, which satisfy

Lλ=−A+Bλ a sectorial operator,

A :H1→H a linear homeomorphism,

Bλ :H1→H a parameterized linear compact operator.

(A.2)

In particular, Lλ generates an analytic semigroup {Sλ(t)= e
tLλ}t≥0. Let us also in-

troduce the interpolated spaces Hα as follows. For all α>0 one can define frac-
tional powers (−Lλ+aλI)

−α of (−Lλ+aλI) for some fixed sufficiently large aλ>0;
see [14, Sect. 2.2.3]. Note that (−Lλ+aλI)

−α is a bounded injective operator on H
for each α>0. We can then define (−Lλ+aλI)

α as the inverse of (−Lλ+aλI)
−α.

The domain of (−Lλ+aλI)
α, denoted by Hα, is a Banach space under the norm

‖u‖α :=‖(−Lλ+aλI)
αu‖.

We assume that G(·,λ) :Hα→H is a parameterized family of Cr bounded operators
for some 0≤α<1 and r∈N, which depends continuously on λ. Moreover,

G(u,λ)=o(‖u‖α), ∀ λ∈R. (A.3)

Let {βi(λ)∈C : i∈N} be the set of eigenvalues of Lλ counting multiplicities, and
{ei : i∈N} be the corresponding eigenvectors which are assumed to be independent of
λ. Suppose that the following principle of exchange of stabilities (PES) holds

Reβj(λ)

⎧⎪⎨⎪⎩
<0, if λ<λc,

=0, if λ=λc,

>0, if λ>λc,

∀ 1≤ j≤m,

Reβj(λc)<0, ∀ j≥m+1.

(A.4)

Now, we recall the following theorem from [16] which provides a basic classification
for transitions from equilibrium states of nonlinear systems of the form (A.1). Here,
without going into details, we assume that the Cauchy problem (A.1) is well-posed [9],
and we can put the model into the perspective of a dynamical system [24], which is
indeed the case for many nonlinear systems arising from nonlinear sciences [16].

Theorem A.1 ( Classification of Dynamic Transitions [16, Thm. 2.1.3]). Consider
the system (A.1). Assume (A.2), (A.3), and the PES condition (A.4) hold. Then, the
problem (A.1) always undergoes a dynamic transition from (u,λ)=(0,λc), and there is
a neighborhood U ⊂H of u=0 such that the transition in U is one of the following three
types:

(i) Continuous (or Type-I) Transition: there exists an open and dense set

Ũλ⊂U such that for any φ∈ Ũλ, the solution uλ(t,φ) of (A.1) with initial
datum uλ(0,φ)=φ satisfies

lim
λ→λc

limsup
t→∞

‖uλ(t,φ)‖=0.

(ii) Catastrophic (or Type-II) Transition: for any λc<λ<λc+ε with some

ε>0, there is an open and dense set Ũλ⊂U such that for any φ∈ Ũλ,

limsup
t→∞

‖uλ(t,φ)‖≥ δ>0,

where δ>0 is independent of λ.
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(iii) Random (or Type-III) Transition: for any λc<λ<λc+ε with some ε>0,
U can be decomposed into two open (not necessarily connected) sets Uλ

1 and Uλ
2 :

U =Uλ
1 ∪Uλ

2 , Uλ
1 ∩Uλ

2 =∅,
such that

lim
λ→λc

limsup
t→∞

‖uλ(t,φ)‖=0 ∀φ∈Uλ
1 ,

limsup
t→∞

‖uλ(t,φ)‖≥ δ>0 ∀φ∈Uλ
2 .

This theorem shows that as the trivial steady state loses its linear stability, the
system (A.1) undergoes a transition of exactly one of the three types. Basically, as
the control parameter crosses the critical threshold, the transition states stay in a close
neighborhood of the basic state for a Type-I transition, and they go outside of a neigh-
borhood of the basic state for a Type-II transition. For the Type-III transition, a
neighborhood is divided into two open regions (not necessarily connected) with a Type-
I transition in one region, and a Type-II transition in the other region.

Remark A.2. It is worth mentioning that the Type-I transition is closely related to
the attractor bifurcation [14, Def. 5.1], which includes the classical pitchfork bifurcation
as a special case. Assuming (A.2), (A.3), and (A.4), one sufficient condition for the
system (A.1) to have an attractor bifurcation at λ=λc is that the trivial steady state
is locally asymptotically stable for the system when λ=λc; see [14, Thm. 5.2].

For a given dynamical system generated by (A.1), the type of phase transition and
detailed dynamical behavior after the transition (at certain critical parameter value) is
determined via analysis of a reduced dynamical system on the corresponding center-
unstable manifold of the original dynamical system. More specifically, let Hc be the
subspace of H spanned by the first m eigenvectors of Lλ with m determined by the
PES condition (A.4):

Hc := span{e1, · · · ,em};

and Hs
α be the topological complement of Hc in Hα. By the classical invariant manifold

theory (see, e.g., [11, Chap. 6] and [14, Thm. 2.12]), under the assumptions (A.2),
(A.3), and (A.4), there exists a neighborhood Oλc

of λc and a neighborhood U of the
origin in Hc, such that the dynamical system generated by (A.1) admits a local center
(or center-unstable) manifold Mloc

λ near the origin which can be represented as the
graph of a function Φ(·,λ) :U ⊂Hc→Hs

α for all λ∈Oλc
. The function Φ is called the

center manifold function. We recall that Mloc
λ is locally invariant in the sense that

any trajectory with initial datum on Mloc
λ stays on it and can leave the manifold only

from its boundary. Moreover, it attracts exponentially all trajectories of (A.1) that stay
within a sufficiently small neighborhood of Hα.

In order to reduce (A.1) to the corresponding local center manifold, we recall that
the eigenvectors {ei | i∈N} of Lλ and the eigenvectors {e∗i | i∈N} of its adjoint operator
L∗λ satisfy 〈ei,e∗j 〉= δij for all i,j∈N, where 〈·, ·〉 is the dual product6, and δij is the
Kronecker delta; see [14, Thm. 3.4].

Now, let u(t,λ)=v(t,λ)+Φ(v(t,λ),λ) be a solution on the local invariant manifold,
where v(t,λ)=Pcu(t,λ)=

∑m
i=1yi(t,λ)ei∈Hc. Plugging this expression of u into the

6which reduces to the inner product on H when Lλ is self-adjoint.
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first equation in (A.1) and taking the dual product with e∗i , 1≤ i≤m, on both sides of
the equation, we obtain the following reduced system for y1(t,λ), · · · ,ym(t,λ):

dyi
dt

=βi(λ)yi+
1

〈ei,e∗i 〉
〈G(v+Φ(v,λ),λ),e∗i 〉, 1≤ i≤m. (A.5)

By (A.3), there exists an integer k≥2, such that the nonlinearity G has a Taylor
expansion about u=0 as follows

G(u,λ)=Gk(u,λ)+o(‖u‖kα), (A.6)

where

Gk(·,λ) :Hα×···×Hα︸ ︷︷ ︸
k times

→H

is a k-linear operator.
Then, (A.5) can be rewritten as

dyi
dt

=βi(λ)yi+
1

〈ei,e∗i 〉
〈Gk(v+Φ(v,λ),λ),e∗i 〉+o(‖y‖k), 1≤ i≤m, (A.7)

where y=(y1, · · · ,ym) and ‖y‖ denotes the Euclidean norm of y which should not be
confused with the norm in H.

In order to obtain an explicit reduced system from (A.7), we need an approximation
formula of Φ(v,λ) in terms of v. The following approximation is sufficient for our purpose
(see [14, Thm. 3.8]):

Φ(v,λ)=(−Ls
λ)
−1PsGk(v,λ)+O(|β(λ)|‖v‖k)+o(‖v‖k). (A.8)

Here Ps :H→Hs is the canonical projection into Hs, and L
s
λ is the restriction of Lλ to

Hs.
Now, using (A.8) in (A.7) we can obtain an explicit reduced system ofm-dimensional

ODEs on the local center manifold, which can be used to analyze the local dynamics of
the original system (A.1).

Finally, we recall a classical theorem due to A. A. Andronov et al. [1, Chap. IX,
Thm. 64], which is very useful in determining the flow structure near the origin of a
system of two-dimensional ODEs. This result is used in Section 5 to analyze the reduced
equations on the local center manifold.
Theorem A.3. Let Pm(y1,y2) and Qm(y1,y2) be any given homogeneous polynomials
in y1 and y2 of order m with m≥1. Let φ(y1,y2) and ψ(y1,y2) be any analytic functions
in y1 and y2 which are higher order terms with respect to Pm and Qm as y1 and y2 go
to zero. Then, any semipath7 of the analytic system

dy1
dt

=Pm(y1,y2)+φ(y1,y2),

dy2
dt

=Qm(y1,y2)+ψ(y1,y2),

(A.9)

which tends to the equilibrium state O := (0,0) is either a spiral or tends to O in a
definite direction θ∗.

7The part of a trajectory of a given ODE system corresponding to either t∈ [t0,∞) or t∈ (−∞,t0]
if it exists is called a semipath.
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If at least one path of the system is a spiral tending to O as t→+∞ (or as t→−∞),
then all paths passing through points of some neighborhood of O are also spirals (so that
O is a stable or an unstable focus).

If y1Qm(y1,y2)−y2Pm(y1,y2) �≡0, the directions θ∗ along which the semipaths tend
to O satisfy the equation

cosθ∗Qm(cosθ∗,sinθ∗)−sinθ∗Pm(cosθ∗,sinθ∗)=0. (A.10)
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