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MULTI-HUMP SOLITARY WAVES OF A NONLINEAR
DIRAC EQUATION∗

JIAN XU† , SIHONG SHAO‡ , HUAZHONG TANG§ , AND DONGYI WEI¶

Abstract. This paper concentrates on a (1+1)-dimensional nonlinear Dirac (NLD) equation with
a general self-interaction, being a linear combination of the scalar, pseudoscalar, vector and axial vector
self-interactions to the power of the integer k+1. The solitary wave solutions to the NLD equation are
analytically derived, and the upper bounds of the hump number in the charge, energy and momentum
densities for the solitary waves are proved analytically in theory. The results show that: (1) for a
given integer k, the hump number in the charge density is not bigger than 4, while that in the energy
density is not bigger than 3; (2) those upper bounds can only be achieved in the situation of higher
nonlinearity, namely, k∈{5,6,7, · · ·} for the charge density and k∈{3,5,7, · · ·} for the energy density;
(3) the momentum density has the same multi-hump structure as the energy density; (4) more than
two humps (resp. one hump) in the charge (resp. energy) density can only happen under the linear
combination of the pseudoscalar self-interaction and at least one of the scalar and vector (or axial
vector) self-interactions. Our results on the multi-hump structure will be interesting in the interaction
dynamics for the NLD solitary waves.
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1. Introduction
There is a remarkable upsurge of interest in the nonlinear Dirac (NLD) models or

equations, as they emerge naturally as practical models in many physical systems, such
as the extended particles in particle physics [8, 9, 13, 14], the gap solitons in nonlinear
optics [3], Bose–Einstein condensates in honeycomb optical lattices [12], phenomenolog-
ical models of quantum chromodynamics [7], as well as matter influencing the evolution
of the universe in cosmology [26]. To make the resulting NLD model to be Lorentz
invariant, the so-called self-interaction Lagrangian can be built up from the bilinear
covariants which are categorised into five types: scalar, pseudoscalar, vector, axial vec-
tor and tensor. Different self-interactions give rise to different NLD models. Several
interesting models have been proposed and investigated based on the scalar bilinear
covariant in [10, 11, 19, 31], on the vector bilinear covariant in [33], on the axial vector
bilinear covariant [18], on both scalar and pseudoscalar bilinear covariants [25], on both
the scalar and vector bilinear covariants [21, 32] etc. All of these models have attracted
wide interest of physicists and mathematicians, especially on looking for solitary wave
solutions and investigating their physical and mathematical properties.

A key feature of the NLD equations is that it allows solitary wave solutions or
particle-like solutions — the stable localized solutions with finite energy and charge [24].
That is, the particles appear as intense localized regions of fields which can be recognized
as the basic ingredient in the description of extended objects in quantum field theory
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[34]. For the NLD equation in (1+1) dimensions (i.e. one time dimension plus one space
dimension), several analytical solitary wave solutions are derived in [15] for the quadric
nonlinearity, [16, 17] for fractional nonlinearity as well as [6, 32] for general nonlinearity
by using explicitly the constraint resulting from the energy-momentum conservation.
Most existing studies on the NLD solitary waves focus on the situation with the self-
interaction Lagrangian constructed from one single bilinear covariant. For example, the
Soler model [31] and the Thirring model [33] involve respectively the quadric scalar
self-interaction and the quadric vector self-interaction, and further discussion about
extending such two models to the situation with the integer nonlinearity is recently
presented in [6, 20].

With the help of the analytical expressions of the NLD solitary wave solutions, the
interaction dynamics among them can further be conveniently studied and rich nonlin-
ear phenomena have been revealed in a series of work [1, 28, 29, 30, 35]. An important
step in this direction has been made by Alvarez and Carreras [1], who simulated numer-
ically the interaction dynamics for the (1+1)-dimensional NLD solitary waves under the
quadric scalar self-interaction [2]. Shao and Tang have revisited this interaction dynam-
ics problem [28] by employing a higher-order method. They not only reproduced the
phenomena observed by Alvarez and Carreras but also observed that collapse happens
in binary and ternary collisions of two-hump NLD solitary waves. Very recently, they
have further investigated the interaction dynamics for the NLD solitary waves under the
linear combination of scalar and vector self-interactions with the integer nonlinearity
and revealed that the interaction dynamics depend on the power exponent of the self-
interaction in the NLD equation. For example, collapse happens again after collision
of two equal one-hump NLD solitary waves under the cubic vector self-interaction in
contrast to no collapse scattering for the corresponding quadric case [35]. Their nu-
merical results inferred that both the multi-hump (two-hump) profile and high order
nonlinearity could undermine the stability during the scattering of the NLD solitary
waves. Note in passing that although multi-hump solitary waves have been found for
many other nonlinear models, see e.g. [22] and references therein, the detailed study
of the multi-hump solitary waves of the NLD model is mostly open. Shao and Tang
first pointed out the two-hump structure [28] and later work has commenced by other
researchers, see e.g. [6].

In (1+1) dimensions, the pseudoscalar and tensor bilinear covariants are linearly de-
pendent, and a direct generalization of self-interaction is linearly combining the scalar,
pseudoscalar, vector and axial vector bilinear covariants with arbitrary nonlinearity,
called by the linear combined self-interaction (see Equation (2.16)). A natural question
is raised here: What happens for the interaction dynamics for the (1+1)-dimensional
NLD solitary waves under such linear combined self-interaction? In answering the ques-
tion, efficient and stable numerical methods are needed in order to solve accurately
the NLD equation with the linear combined self-interaction in long time simulations.
Actually, we have demonstrated that both the Runge–Kutta discontinuous Galerkin
method and the exponential operator splitting method are fit for the job [29, 35]. On
the other hand, more detailed information on the physical and mathematical proper-
ties of the NLD solitary waves under the linear combined self-interaction is essential to
investigating the interaction dynamics. The present work will focus on studying these
properties and try to answer questions such as: How to choose the coefficients of the
linear combined self-interaction to make the NLD model physically significant and have
solitary wave solutions? What parameters does the multi-hump structure depend on?
Is the hump number related to the power exponent of the self-interaction?
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The paper is organized as follows. The NLD equation with the linear combined self-
interaction is introduced in Section 2 and the range of the combination coefficients is
also determined there by the Hermiticity requirement of the self-interaction. In Section
3, the localized solitary wave solutions are analytically derived with the help of the
conservation laws. The multi-hump structure of the charge, energy and momentum
densities is analyzed in Section 4 where the upper bounds of the hump number in those
densities are proved in theory. The paper is concluded in Section 5 with a few remarks.

2. Nonlinear Dirac equation
This section will introduce the (1+1)-dimensional NLD equation with the linear

combined self-interaction. Throughout the paper, units in which both the speed of
light and the reduced Planck constant are equal to one will be used, and the Einstein
summation convection will be applied, namely, summation over repeated indices. The
NLD equation has the following general covariant form

(iγμ∂μ−m)Ψ+
∂LI

∂Ψ
=0, (2.1)

being the Euler–Lagrange equation ∂μ
(
∂L/∂(∂μΨ)

)−∂L/∂Ψ=0, where the spinor Ψ

has two complex components, Ψ=Ψ†γ0 with superscript † denoting the conjugate
transpose, γμ are Gamma matrices (we choose γ0=σz and γ1=iσy as in [1, 28] where
σx,y,z are the standard Pauli matrices) and ∂μ=

∂
∂xμ for μ=0 and 1, i is the imaginary

unit, m≥0 is the mass (the NLD model is called massive if m>0 and massless if m=0),
and the Lagrangian L reads

L=LD+LI. (2.2)

Here LD denotes the Dirac Lagrangian given by

LD=
i

2

(
Ψγμ∂μΨ−(∂μΨ)γμΨ

)−mΨΨ, (2.3)

and the self-interaction Lagrangian LI is a nonlinear functional of the spinors Ψ and
Ψ, but independent of ∂μΨ, e.g. a general linear combined self-interaction in (2.16) will
be considered in this work. Physically, the self-interaction Lagrangian LI is not only
required to be invariant under the Lorentz transformation (see Equation (4.34)), but
also should be carefully chosen such that the resulting solution Ψ to the NLD Equation
(2.1) satisfies the following conservation laws

∂μj
μ=0, (2.4)

∂μT
μν =0, (2.5)

where the current vector jμ and the energy-momentum tensor Tμν are defined respec-
tively as

jμ=ΨγμΨ, (2.6)

Tμν =
i

2

(
Ψγμ∂νΨ−(∂νΨ)γμΨ

)−ημνL. (2.7)

Here ∂μ=ημν∂ν and ημν =ημν =diag(1,−1) is the Minkowski metric. Equation (2.4)
corresponds to the mass conservation, while Equation (2.5) gives the energy conservation
for ν=0 and the momentum conservation for ν=1. According to equations (2.4), (2.5),
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(2.6) and (2.7), for the localized spinorΨ, integrating the zero components of the current
vector jμ and the energy-momentum tensor Tμν yields three conserved quantities, i.e.
the charge Q, the energy E, and the momentum P , as follows

Q=

∫ +∞

−∞
j0dx, (2.8)

E=

∫ +∞

−∞
T 00dx, (2.9)

P =

∫ +∞

−∞
T 01dx. (2.10)

As we have mentioned in Section 1, the self-interaction Lagrangian LI can be built
up from the bilinear covariants and several NLD models exist in the literature corre-
sponding to different bilinear covariants. There are five types of bilinear covariants: the
scalar bilinear covariant is ΨΨ, the pseudoscalar bilinear covariant is Ψγ5Ψ, the vector
bilinear covariant is ΨγμΨ, the axial vector bilinear covariant is Ψγμγ5Ψ, and the ten-
sor bilinear covariant is i

2Ψ(γ
μγν−γνγμ)Ψ, where γ5=γ0γ1. In (1+1) dimensions,

it can easily be shown that the tensor and pseudoscalar bilinear covariants are linearly
dependent, e.g. i

2Ψ(γ
1γ0−γ0γ1)Ψ=−iΨγ5Ψ, and then the remaining four bilinear

covariants are used to construct the following self-interactions:

LS=ΨΨ= |Ψ1|2−|Ψ2|2∈R, (2.11)

LP=−iΨγ5Ψ=2Im(Ψ∗1Ψ2)∈R, (2.12)

LV=ΨγμΨΨγμΨ, (2.13)

LA=Ψγμγ5ΨΨγμγ
5Ψ, (2.14)

where Ψ1 and Ψ2 are two components of the spinor Ψ, the superscript ∗ denotes the
complex conjugate, and γμ=ημνγ

ν are the covariant Gamma matrices. Further more,
direct calculation shows the relation between LV and LA

LV=−LA=
(|Ψ1|2+ |Ψ2|2

)2−(2Re(Ψ∗1Ψ2))
2≥0. (2.15)

Thus the general linear combined self-interaction can be formally written as

LI=s(LS)
k+1+p(LP)

k+1+v(LV)
1
2 (k+1), (2.16)

where the exponent power k+1 is an integer, and the linear combination coefficients
s,p,v should be carefully chosen such that the resulting NLD models are physically
meaningful. For some special choice of the parameters k,s,p,v, Equation (2.16) will
reduce to the often-cited NLD models in literature such as the Thirring model [5, 33] and
the Soler or Gross-Neveu model [10, 31]. If the spinor Ψ is scaled by a constant factor

as Ψ̃=
√
αΨ with α∈C, then the scaled self-interaction Lagrangian will be αk+1LI[Ψ]

which shows that the power exponent to α is k+1. In this sense, we say that the
self-interaction Lagrangian LI has the power exponent k+1, for example, the quadric
and cubic self-interaction are referred to the case k=1 and the case k=2, respectively.
The linear combination of the quadric scalar and quadric pseudoscalar self-interactions
has been studied in [15, 25], while the linear combination of the scalar and vector self-
interactions with a general power exponent has been considered in [32, 35]. The linear
combined self-interaction (2.16) with k=1 has also been mentioned in [23].
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Obviously, the linear combined self-interaction LI in (2.16) is Lorentz invariant
because each of LS,LP,LV is invariant under the Lorentz transformation. Accordingly,
the only remaining physical requirement is to choose the linear combination coefficients
in (2.16) such that the resulting NLD spnior Ψ satisfies the conservation laws (2.4) and
(2.5). It can readily be shown that the linear combined self-interaction (2.16) satisfies
the so-called homogeneity relation [17, 32]

Ψ
∂LI

∂Ψ
=(k+1)LI,

(
∂LI

∂Ψ

)†
γ0Ψ=(k+1)L∗I . (2.17)

Combining equations (2.1), (2.6) and (2.17) gives that the conservation law (2.4) is
equivalent to the Hermiticity of the linear combined self-interaction (2.16), i.e.

LI=L∗I , (2.18)

which poses a requirement the self-interaction (2.16) must satisfy. Multiplying Equation

(2.1) from the left withΨ plus the conjugate transpose of Equation (2.1) multiplied with
γ0Ψ from the right yields

2LD+Ψ
∂LI

∂Ψ
+

(
∂LI

∂Ψ

)†
γ0Ψ=0,

for Equation (2.3), and then we have the useful relation

L=−kLI, (2.19)

for equations (2.2), (2.17) and (2.18). In consequence, combining the homogeneity rela-
tion (2.17), the relation (2.19) between L and LI as well as the Hermiticity requirement
(2.18), and direct algebraic calculation leads to the conservation law (2.5). That is, the
spinor Ψ of the NLD Equation (2.1) with the linear combined self-interaction (2.16)
follows the conservation laws (2.4) and (2.5) if and only if the Hermiticity requirement
(2.18) is satisfied. Below we will use the Hermiticity requirement (2.18) to choose the
linear combination coefficients in (2.16). Before that, we would like to make a remark
that the cases of k=−1 and k=0 will not be considered in the following because the
NLD Equation (2.1) degenerates to the linear Dirac equation when k=−1 according to
Equation (2.17), and the Lagrangian L vanishes (i.e. L≡0) when k=0 for the relation
(2.19).

The Hermiticity condition (2.18) implies

(s−s∗)(LS)
k+1+(p−p∗)(LP)

k+1+(v−v∗)(LV)
1
2 (k+1)=0, (2.20)

for k∈Z\{−1,0} and LS,LP,LV are all real as shown in equations (2.11), (2.12) and
(2.15). In particular, for the quadric case (i.e. k=1), Equation (2.20) further reduces
to

(s−p−s∗+p∗)(LS)
2+(v+p−v∗−p∗)LV=0, (2.21)

on account of (LP)
2=LV−(LS)

2 [23]. Because of the arbitrariness of the NLD spinor
Ψ, Equation (2.21) implies that both s−p and v+p must be real when k=1, otherwise
s,p,v must all be real for k∈Z\{0,±1}. The range of the parameters {s,p,v} in the
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linear combined self-interaction (2.16) with a given integer power exponent k+1 reads
as follows

Ek :=
{
{(s,p,v)|s−p∈R,v+p∈R, |s−p|+ |v+p| �=0} for k=1,

{(s,p,v)|s∈R,p∈R,v∈R, |s|+ |p|+ |v| �=0} for k∈Z\{0,±1}, (2.22)

where the coefficients with which LI≡0 holds have been excluded.
In the next section, for k∈Z\{−1,0}, we are going to look for the localized solitary

wave solutions for the NLD Equation (2.1) with the linear combined self-interaction
(2.16) of a given integer power exponent k+1 under the condition that the linear com-
bination coefficients in Equation (2.16) belong to Ek in Equation (2.22).

3. Solitary wave solutions
This section will focus on seeking the localized solutions of the following form for

the (1+1)-dimensional NLD Equation (2.1) with (2.16) in the spirit of the methods used
in [4, 15, 17, 32]. The solution with the form

Ψ(x,t)=e−iωtψ(x), ψ(x)=

(
ϕ(x)
χ(x)

)
(3.1)

is wanted, where ω≥0 is the frequency, and both |ϕ(x)| and |χ(x)| are required to
decay very fast to zero as |x|→+∞. Such solutions are said to be localized in R as
mentioned before. Substituting the ansatz (3.1) into the Lagrangian (2.2) and the
energy-momentum tensor (2.7) gives respectively

L=ωψγ0ψ+
i

2
(ψγ1∂xψ−(∂xψ)γ1ψ)−mψψ+LI, (3.2)

T 00=−i

2
(ψγ1∂xψ−(∂xψ)γ1ψ)+mψψ−LI, (3.3)

T 01=−i

2
(ψγ0∂xψ−(∂xψ)γ0ψ), (3.4)

T 10=ωψγ1ψ, (3.5)

T 11=ωψγ0ψ−mψψ+LI, (3.6)

all of which are independent of the time t in this moment, and thus the conservation
law (2.5) becomes

dT 10

dx
=
dT 11

dx
=0,

which implies that

T 10=T 11=0 (3.7)

for the localized solutions (3.1), i.e.

ωψγ1ψ=0, (3.8)

ωψ†ψ−mψψ+LI=0. (3.9)

To ensure Equation (3.8), we require

ψγ1ψ=ϕ∗χ+ϕχ∗=0. (3.10)
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That is, ϕ∗χ is imaginary. To this end, we assume that ϕ is real and χ is imaginary as
follows (

ϕ(x)
χ(x)

)
=R(x)

(
cos(θ(x))
isin(θ(x))

)
, (3.11)

where both R(x) and θ(x) are under-determined real functions. Only the classical
solutions are considered below and both R(x) and θ(x) at least belong to C1(R) which
consists of all differentiable functions in R whose derivative is continuous. Meanwhile,
we assume that for any x∈R, the charge density j0(x) does not vanish, that means, the
particle described by the NLD spinor Ψ in Equation (3.1) has a positive probability to
go anywhere in R. Under such assumption, according to Equation (2.6), for any x∈R,
we have R(x) �=0 for

ρQ(x) := j0[Ψ](x,t)=ψ†(x)ψ(x)=(R(x))2>0, (3.12)

where the spinor Ψ is given in Equation (3.1) and the notation ρQ(x) denoting the
charge density has been introduced for convenience. Moreover, physically, the charge Q
defined in Equation (2.8) is required to be finite, i.e. Q=

∫ +∞
−∞ ρQ(x)dx<+∞. Note in

passing that substituting Equation (3.11) into Equation (3.4) directly leads to

T 01=0 (3.13)

which means the momentum density vanishes for all x∈R. Further substituting equa-
tions (3.1) and (3.11) into equations (2.11), (2.12) and (2.13) leads to, respectively,

LS=ψ(x)ψ(x)=(R(x))
2 cos(2θ(x)), (3.14)

LP=(R(x))
2 sin(2θ(x)), (3.15)

LV=(R(x))
4, (3.16)

and then the linear combined self-interaction (2.16) becomes

LI=(R(x))
2(k+1)G(x), (3.17)

where

G(x) :=s(cos(2θ(x)))k+1+p(sin(2θ(x)))k+1+v, (3.18)

is introduced for convenience.
Combining equations (2.19), (3.2) and (3.9) yields

kωψ†ψ−kmψψ− i

2
(ψγ1ψx−ψxγ

1ψ)=0, (3.19)

which does not depend on the particular type of the self-interaction involved and could
be solved analytically. Substituting the ansatz (3.11) into (3.19) gives rise to the ordi-
nary differential equation

dθ(x)

mcos(2θ(x))−ω
=kdx, (3.20)

under the condition of mcos(2θ(x))−ω �=0, otherwise θ(x)= 1
2 cos

−1 ω
m . According to

the integral formula

∫ u

u0

dθ

a+bcos(cθ)
(c �=0)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

c
√
b2−a2

tanh−1
(

(b−a)√
b2−a2

tan
(
cu
2

))
, |b|> |a|,

− 1
ac cot

(
cu
2

)
, b=−a �=0,

2
c
√
a2−b2

tan−1
(

(a−b)√
a2−b2

tan
(
cu
2

))
, |b|< |a|,

1
ac tan

(
cu
2

)
, b=a �=0,

(3.21)
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where the value of u0 is taken to be π/c for the second case and to be zero for the
remaining three cases, the solution of (3.20) can be obtained as follows:

• When m>ω≥0, the solution of (3.20) with θ(0)=0 is

θ(x)=tan−1(αtanh(kβx))∈ (−tan−1(α),tan−1(α)
)⊆(−π

4
,
π

4

)
, (3.22)

where

α=

√
m−ω

m+ω
, β=

√
m2−ω2. (3.23)

• When ω=m>0, the solution of (3.20) with θ(0)= π
2 is

θ(x)=cot−1(2mkx)∈ (0,π) . (3.24)

• When ω>m≥0, the solution of (3.20) with θ(0)=0 is

θ(x)=tan−1

(√
ω−m

ω+m
tan
(
−k
√
ω2−m2x

))
∈
(
−π

2
,
π

2

)
. (3.25)

Note in passing that the solution (3.25) can also be reformulated into the solution (3.22)
using the properties: tanh(ix)=itan(x) and tan(−x)=−tan(x), and the last case of
the integral formula (3.21) cannot happen in Equation (3.20) since both m and ω are
nonnegative. The remaining task is to solve R(x).

Further combining equations (3.9), (3.12), (3.14) and (3.17) yields

(R(x))2kG(x)=mcos(2θ(x))−ω, (3.26)

from which we can conclude that either G(x)≡0 in R (i.e. LI ≡0 for Equation (3.17) and
will not be considered) or G(x) �=0 for all x∈R holds, namely, either Ω0 or Ω1 equals
to R after denoting Ω0 :={x|G(x)=0} and Ω1 :={x|G(x) �=0}, and the demonstration
is as follows. For m≥0 and ω≥0, there are only four cases to investigate: m=ω=0,
ω>m≥0, m>ω≥0 and m=ω>0. For all x∈R, we have R(x) �=0, and mcos(2θ(x))−
ω=0 for m=ω=0 or mcos(2θ(x))−ω<0 for ω>m≥0, thus G(x)=0 holds in the
case of m=ω=0, while G(x) �=0 is true for the case of ω>m≥0. When m>ω≥0, if
there exists x0<x1∈R such that x0∈Ω0 and x1∈Ω1, then we have: on the one hand,
from Equation (3.26), cos(2θ(x))= ω

m holds for all x∈ [x0,x1]∩Ω0; on the other hand,

from Equation (3.22), there exits M>0 and δ= 1−(αtanh(kβM))2

1+(αtanh(kβM))2 >
1−α2

1+α2 =
ω
m such that

cos(2θ(x))≥ δ holds for all x∈ [x0,x1]∩Ω1. This contradicts the assumption that θ(x)
as well as cos(2θ(x)) are continuous in [x0,x1]. The discussion of the remaining case of
m=ω>0 is similar to that of the case of m>ω≥0. Below we will concentrate on the
situation of G(x) �=0 as well as mcos(2θ(x))−ω �=0 for all x∈R. From Equation (3.26),
R(x) is solved in R as follows

R(x)=±
(
mcos(2θ(x))−ω

G(x)

) 1
2k

, (3.27)

which expresses R(x) in terms of θ(x) for Equation (3.18), while θ(x) has been solved
in equations (3.22), (3.24) and (3.25). Consequently, according to Equation (3.12), the
charge density becomes

ρQ(x)=

(
mcos(2θ(x))−ω

G(x)

) 1
k

. (3.28)
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It is worth noting that the derivation of the above solution Ψ(x,t) given in Equation
(3.1) with equations (3.11), (3.22), (3.24), (3.25) and (3.27) is referred to as sufficient
and logically complete, that is to say, the above function Ψ(x,t) satisfies the (1+1)-
dimensional NLD Equation (2.1) with the self-interaction (2.16). Its demonstration
is easy through directly substituting Ψ(x,t) into (2.1) with (2.16) and some algebraic
manipulations.

The physical solutions with which the charge Q is finite (i.e. Q<+∞ implying
lim
x→∞ρQ(x)=0 must be true) will be selected from equations (3.22), (3.24), (3.25) and

(3.27). On the one hand, we discard the case of k∈{−2,−3,−4, · · ·} in which the limit
of ρQ(x) cannot be zero as x→∞ and the reason is as follows. For example, when
m>ω≥0 and k<−1, the parameter p must be zero (otherwise G(0) will be infinity
and then ρQ(x) will be discontinuous at x=0 according to Equation (3.28)), and from
Equation (3.18) we have G(x)=s(cos(2θ(x)))k+1+v, thus lim

x→+∞(mcos(2θ(x))−ω)=

0 for Equation (3.22) and lim
x→+∞G(x)=s( ω

m )
k+1+v. In consequence, from Equation

(3.28), it is evident that ρQ(x) will diverge as x→∞ if s( ω
m )

k+1+v �=0. In the case
of s( ω

m )
k+1+v=0 which implies that s cannot be zero, directly using L’Hospital’s rule

gives lim
x→+∞ρQ(x)=

(
m

s(k+1)

) 1
k m

ω �=0. On the other hand, the case of k∈Z+ and ω>m≥
0 is also discarded and the reason is, in such case, we have both mcos(2θ(x))−ω≤m−
ω<0 and |G(x)|≤ |s|+ |p|+ |v| hold for all x∈R, thus there exists δ=

(
ω−m

|s|+|p|+|v|
) 1

k

>0

such that ρQ(x)>δ holds for all x∈R. Therefore, the physical solutions may exist only
in the situation of k∈Z+ and m≥ω≥0 and will be searched in the following.

3.1. k∈Z+ and m>ω≥0. This subsection focuses on the situation with k∈Z+

and m>ω≥0, in which θ(x) is given in Equation (3.22) and monotonously increases
from −tan−1(α) to tan−1(α) as x goes from −∞ to +∞. Then we have

mcos2θ−ω=
αβsech2(kβx)

1+(αtanh(kβx))2
∈ (0,m−ω], (3.29)

and thus 1≥ cos2θ> ω
m ≥0. In order to facilitate the subsequent discussion, we introduce

an intermediate function y(x)=tanh(kβx) which increases monotonously from −1 to 1
when x goes from −∞ to +∞ and thus lim

x→±∞y(x)=±1. The dependence of y(x) and
θ(x) on x is implicitly implied hereafter. From Equation (3.22), we have the relation

y=
1

α
tan(θ), cos(2θ)=

1−α2y2

1+α2y2
, sin(2θ)=

2αy

1+α2y2
, (3.30)

and then rewrite G(x) given in Equation (3.18) and ρQ(x) given in Equation (3.28) in

terms of y into G̃(y) and ρ̃Q(y), respectively, as follows

G̃(y)=s

(
1−α2y2

1+α2y2

)k+1

+p

(
2αy

1+α2y2

)k+1

+v, (3.31)

ρ̃Q(y)=(αβ)
1
k

(
1−y2

1+α2y2

) 1
k
(

1

G̃(y)

) 1
k

, (3.32)

and ρQ(x)>0 shown in Equation (3.28) gives

∀y∈ (−1,1), G̃(y)>0. (3.33)
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Then the charge Q becomes

Q=
(αβ)

1
k

kβ
I(α,k), (3.34)

where

I(α,k) :=

∫ 1

−1

(1−y2)
1
k−1(

(1+α2y2)G̃(y)
) 1

k

dy. (3.35)

Because α,β∈ (0,+∞) and k∈Z+, the finite charge condition is equivalent to

I(α,k)<∞, (3.36)

and the necessary condition lim
x→∞ρQ(x)=0 implies

lim
y→±1

ρ̃Q(y)=0. (3.37)

In short, we should seek the solution in the situation with k∈Z+ and m>ω≥0
satisfying the restrictions (3.33) and (3.36). Given (s,p,v)∈Ek, the foregoing restrictions
are used to determine the feasible set for ω, and the discussion is split into two cases:
one is for k=1, the other is for k∈{2,3,4, · · ·}.
• When k=1, the inequality (3.33) becomes:

G̃(y)=(s−p)

(
1−α2y2

1+α2y2

)2

+v+p>0

holds for any y∈ (−1,1). It is equivalent to both G̃(0)>0 and G̃(1)≥0 since G̃(y) is
even with respect to y∈ (−1,1) and increases monotonously when s−p≤0 and decreases
monotonously when s−p>0 as y increases in [0,1). If G̃(1)=0, then

lim
y→±1

ρ̃Q(y)=
β(1+α2)

2α((s−p)(1−α2)−(v+p)(1+α2))
�=0,

which violates the necessary condition (3.37), and thus we require G̃(1)>0. Therefore,
for a given ω∈F1, there exists ε=min{G̃(0),G̃(1)}>0 such that

I(α,1)≤ 1

ε

∫ 1

−1

1

1+α2y2
dy≤ 2

ε
<∞,

where the set F1 is define by

F1 :={ω|ω∈ [0,m),G̃(0)>0,G̃(1)>0}. (3.38)

That is, the feasible set of ω for the case of k=1 is F1.

• When k∈{2,3,4, · · ·}, if G̃(1)=0, then

lim
y→1

ρ̃Q(y)=

(
β(1+α2)k

(k+1)(sα(1−α2)k−p(2α)
k−vα(1+α2)k)

) 1
k

�=0,
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and if G̃(−1)=0, then

lim
y→−1

ρ̃Q(y)=

(
β(1+α2)k

(k+1)(sα(1−α2)k+p(−2α)k−vα(1+α2)k)

) 1
k

�=0,

both of which violate the necessary condition (3.37). Thus, the feasible set for ω in the
case of k∈{2,3,4, · · ·} should be a subset of the following set

Fk :={ω|ω∈ [0,m),∀y∈ [−1,1],G̃(y)>0}, for k∈{2,3,4, · · ·}.

Since G̃(y) has at most three extreme points at 0,± 1
α tan

(
1
2 tan

−1
∣∣ s
p

∣∣ 1
k−1

)
for y∈ (−1,1),

the minimum of G̃(y) must locate among these three extreme points and the two end-
points. In consequence, we have equivalently

Fk={ω|ω∈ [0,m),∀y∈P,G̃(y)>0}, for k∈{2,3,4, · · ·}, (3.39)

where

P :=
{
0,±1,± 1

α
tan

(
1

2
tan−1

∣∣s
p

∣∣ 1
k−1

)}
∩ [−1,1]

is a finite set of no more than five elements. It can be readily verified that, for a given
ω∈Fk with k∈{2,3,4, · · ·}, there exists ε=miny∈[−1,1]{G̃(y)}>0 such that

I(α,k)≤ 1

ε
1
k

∫ 1

−1

(1−y2)
1
k−1dy=

√
πΓ
(
1
k

)
ε

1
kΓ
(
1
2+

1
k

) <∞,

where Γ(x) is the gamma function. That is, the feasible set of ω for the case of k∈
{2,3,4, · · ·} is indeed Fk given in Equation (3.39).

Remark 3.1. Generally, Fk� [0,m) holds for most cases of (s,p,v)∈Ek with k∈
Z+. For the NLD solitary waves with the scalar and vector self-interaction and s>0,

−s<v≤0, p=0, the feasible set becomes Fk=
((−v

s

) 1
k+1 m,m

)
for any k∈Z+, while

for those with only the pseudoscalar self-interaction (i.e. s=0, p �=0, v=0), the feasible
set becomes Fk=∅ for all k∈Z+.

3.2. k∈Z+ and ω=m>0. This subsection concerns the situation with k∈Z+

and ω=m>0 in which θ(x) is given in Equation (3.24). Consequently, we have

cos2θ=
(2kmx)2−1
(2kmx)2+1

∈ [−1,1), (3.40)

sin2θ=
4kmx

(2kmx)2+1
∈ [−1,1],

G(x)=s

(
(2kmx)2−1
(2kmx)2+1

)k+1

+p

(
4kmx

(2kmx)2+1

)k+1

+v,

mcos2θ−ω=− 2m

(2kmx)2+1
∈ [−2m,0), (3.41)

and the charge density becomes

j0(x)=

(
− 2m

(1+(2kmx)2)G(x)

) 1
k

, (3.42)
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with |G(x)|< |s|+ |p|+ |v|. Since j0(x)>0 as shown in Equation (3.12), we obtain

G(x)<0, ∀x∈ (−∞,+∞). (3.43)

Since j0(x)∝ 1
x2/k (x→∞), the finite charge condition requires 0<k<2. It is worth

noting that j0(x) decays polynomially to zero as x→∞, which is completely different
from the exponential decay described in Section 3.1. Therefore, we only need to consider
the case of k=1 in which the restriction (3.43) becomes:

∀x∈ (−∞,∞), G(x)=(s−p)

(
(2mx)2−1
(2mx)2+1

)2

+v+p<0,

that is equivalent to requiring G(0)=s+v<0 as well as G
(

1
2m

)
=v+p<0 since G(x)

is even and has three local extreme points x=0,± 1
2m , and lim

x→∞G(x)=s+v=G(0).

Accordingly, we have

Q=
π√

(s+v)(v+p)
, (3.44)

i.e. the charge is finite. Hence for ω=m>0 and k=1, we have that the NLD solitary
waves displayed in equations (3.1) and (3.11) satisfy the finite charge condition if the
linear combination coefficients (s,p,v) belong to

E−1 :={(s,p,v)|s+v<0,v+p<0}⊂E1,
otherwise, the charge corresponding to the NLD spinor given in equations (3.1) and
(3.11) cannot be finite or Equation (3.12) cannot hold for all x∈R.
Remark 3.2. It was pointed out that the profile of the charge density ρQ(x) given
in Equation (3.28) is either one-hump or two-hump under only the quadric scalar self-
interaction (i.e. k=1, v=p=0) [28], which is still true for the scalar self-interaction
with more general integer exponent power (i.e. k>1, v=p=0) [6]. The role such multi-
hump structures play in the interaction dynamics for the NLD solitary waves attracts a
lot of attention. Numerical results have shown that the two-hump NLD solitary waves
may collapse (i.e. they after collision stop being solitary waves) during the scattering,
whereas the collapse phenomena cannot be generally observed in collisions of the one-
hump NLD solitary waves [28, 30]. Since the collision can be regarded as a solution of the
time-dependent equation with the initial condition formed by two or more solitary waves
separated from each other by large distances, so as to be independent, we conjecture,
the “instability” is related to such collapses. More efforts are still needed in exploring
the physical mechanism of the collapse, such as when and why the NLD solitary waves
may collapse during their interaction dynamics. A more direct question is naturally
raised: Is there a connection between the instability (i.e. collapse) and the multi-hump
structure? Very recently, the stability was studied in [27] by numerical simulations
using the fourth-order operator splitting integration method [35]. It was observed there
that all stable NLD solitary waves have a one-hump profile, but not all one-hump waves
are stable, while all waves with two humps are unstable. We have further shown that
collapse happens after binary collision of one-hump NLD solitary waves under the cubic
self-interaction in contrast to no collapse scattering for the corresponding quadric case
[35].

In summary, both the multi-hump (two-hump) structure and high order nonlinearity
could undermine the stability during the scattering of the NLD solitary waves. In
the next section, we will show that the multi-hump structure depends on the linear
combination coefficients (s,p,v)∈Ek and the integer power exponent k+1.
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4. Multi-hump structure
This section will focus on investigating the multi-hump structure of the NLD solitary

wave (3.1) with the linear combined self-interaction (2.16) for (s,p,v)∈Ek and ω∈Fk

when k∈Z+ and m>ω≥0 as well as for (s,p,v)∈E−1 when k=1 and m=ω>0. More
specifically, we will answer: Can the charge density ρQ(x) have more humps than two
under the linear combined self-interaction (2.16)? At most how many humps can the
charge density ρQ(x) afford? Can we have similar results for the energy density or the
momentum density?

4.1. k∈Z+ and m>ω≥0. The number of humps in the charge density ρQ(x)
is equal to the number of its local maximum and can be determined by the number of

zeros of
dρQ(x)

dx , and the zeros of
dρQ(x)

dx are the same as those of
dρk

Q(x)

dx for ρQ(x)>0
and k∈Z+. When m>ω≥0, for convenience, we introduce an intermediate variable
ξ=2θ and rewrite ρQ(x) in terms of ξ into

ρ̂Q(ξ)=m
1
k

(
cosξ−a

Ĝ(ξ)

) 1
k

>0, ∀ξ∈ I, (4.1)

where

a :=
ω

m
∈ [0,1),

Ĝ(ξ) :=scosk+1 ξ+psink+1 ξ+v,

I := (−cos−1(a),cos−1(a))⊂
(
−π

2
,
π

2

)
.

Combining equations (3.20), (3.29) and (3.30) gives that dξ
dx >0 holds for all x∈R, and

then the chain rule

dρkQ(x)

dx
=
dρ̂kQ(ξ)

dξ

dξ

dx
=−ρ̂2kQ (ξ)

dρ̂−k
Q (ξ)

dξ

dξ

dx
(4.2)

further implies that
dρk

Q(x)

dx has the same zeros as
dρ̂−k

Q (ξ)

dξ . That is, the remaining task

is to determine or estimate the number of zeros of
dρ̂−k

Q (ξ)

dξ . To this end, technically, we

need the following two lemmas in which #z
Ω[f ] (resp. #

e
Ω[f ]) represents the number of

zeros (resp. extreme points at which the derivatives of f(ξ) are zero) of the function
f(ξ)∈C1(Ω) in an open interval Ω.

Lemma 4.1. Given f(ξ)∈C1(Ω), we have

(i) #z
Ω[f ]≤#e

Ω[f ]+1;

(ii) #z
Ω[αf ]=#

z
Ω[f ] and #

e
Ω[αf ]=#

e
Ω[f ] hold for any α �=0.

Lemma 4.2. Suppose f(ξ),g(ξ), g
′(ξ)

f ′(ξ) ∈C1(Ω), and f(ξ) �=0 holds for all ξ∈Ω. Then

#e
Ω

[
g

f

]
≤#e

Ω

[
g′

f ′

]
+#z

Ω[f
′]+1.

Proof. The identity
(

g′

f ′ f−g
)′
=
(

g′

f ′

)′
f implies

#e
Ω

[
g′

f ′
f−g

]
=#e

Ω

[
g′

f ′

]
, (4.3)
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since f(ξ) �=0 holds for all ξ∈Ω. Similarly, since
(

g
f

)′
= f ′

f2

(
g′

f ′ f−g
)
, then

#e
Ω

[
g

f

]
≤#z

Ω

[
g′

f ′
f−g

]
+#z

Ω[f
′]

≤#e
Ω

[
g′

f ′
f−g

]
+1+#z

Ω[f
′]

≤#e
Ω

[
g′

f ′

]
+#z

Ω[f
′]+1,

where we have used Lemma 4.1(i) in the second line and Equation (4.3) in the last line.

We are now in position to determine #e
I

[
ρ̂−k
Q

]
, i.e. the number of extreme points

of ρ̂−k
Q (ξ) in the interval I. Because

ρ̂−k
Q (ξ)=

1

m

Ĝ(ξ)

cosξ−a
=:

1

m

g1(ξ)

f1(ξ)
, (4.4)

for Equation (4.1), using Lemma 4.1(ii) and Lemma 4.2 directly gives

#e
I

[
ρ̂−k
Q

]
=#e

I

[
1

m

g1
f1

]
=#e

I

[
g1
f1

]
≤#e

I

[
g′1
f ′1

]
+#z

I [f
′
1]+1. (4.5)

A direct calculation shows

g′1(ξ)=(k+1)(−scosk ξ sinξ+psink ξcosξ), (4.6)

f ′1(ξ)=−sinξ,
thus

#z
I [f

′
1]=1, (4.7)

and

g′1(ξ)
f ′1(ξ)

=
(k+1)(s−ptank−1 ξ)

cos−k ξ
=: (k+1)

g2(ξ)

f2(ξ)
(4.8)

which implies by Lemma 4.1(ii) and Lemma 4.2 that

#e
I

[
g′1
f ′1

]
=#e

I

[
(k+1)

g2
f2

]
=#e

I

[
g2
f2

]
≤#e

I

[
g′2
f ′2

]
+#z

I [f
′
2]+1, (4.9)

for k∈Z+. It can easily be shown that

g′2(ξ)=−p(k−1)tank−2 ξcos−2 ξ, (4.10)

f ′2(ξ)=kcos−k−1 ξ sinξ,

and then

#z
I [f

′
2]=1, (4.11)

g′2(ξ)
f ′2(ξ)

=−p(k−1)
k sink−3 ξcosξ, (4.12)
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g′2(ξ)
f ′2(ξ)

)′
=−p(k−1)

k sink−4 ξ
(
(k−3)cos2 ξ−sin2 ξ) . (4.13)

Based on the foregoing derivation, we can rigorously determine the number of humps
of the charge density ρQ(x) and the results are summarized as follows.

• Case Q1: When k∈Z+ and s=p=0, we have v �=0 for (s,p,v)∈Ek and Equation
(4.4) becomes

ρ̂−k
Q (ξ)=

v

m

1

cosξ−a
,

from which it can readily be seen that the charge density has only one hump.

• Case Q2: When k∈Z+, p=0 and s �=0, Equation (4.8) becomes
g′1(ξ)
f ′1(ξ)

=(k+1)scosk ξ,

then we have #e
I

[
g′1
f ′1

]
=1, thus #e

I

[
ρ̂−k
Q

]
≤3 for Equation (4.5), i.e. the charge density

has at most two humps.

• Case Q3: When k=1 and s=p �=0, Equation (4.4) becomes

ρ̂−1
Q (ξ)=

s+v

m

1

cosξ−a
,

from which it can readily be seen that the charge density has only one hump.

• Case Q4: When k=1, p �=0 and s �=p, Equation (4.8) becomes

g′1(ξ)
f ′1(ξ)

=2(s−p)cosξ,

and we have #e
I

[
g′1
f ′1

]
=1, thus #e

I

[
ρ̂−1
Q

]
≤3 for Equation (4.5), i.e. the charge density

ρQ(x) has at most two humps.

• Case Q5: When k=2 and p �=0, Equation (4.8) becomes
g′1(ξ)
f ′1(ξ)

=3(scos2 ξ−psinξcosξ),

then we have (
g′1(ξ)
f ′1(ξ)

)′
=−3(ssin(2ξ)+pcos(2ξ)),

and #e
I

[
g′1
f ′1

]
≤2, thus #e

I

[
ρ̂−2
Q

]
≤4 for Equation (4.5), i.e. the charge density ρQ(x) has

at most two humps.

• Case Q6: When k=3 and p �=0, Equation (4.12) becomes
g′2(ξ)
f ′2(ξ)

=−2p
3
cosξ,

then we have #e
I

[
g′2
f ′2

]
=1, thus #e

I

[
ρ̂−3
Q

]
≤5 for equations (4.5), (4.7), (4.9) and (4.11),

i.e. the charge density has at most three humps.
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• Case Q7: When k=4 and p �=0, Equation (4.13) becomes(
g′2(ξ)
f ′2(ξ)

)′
=−3p

4
cos(2ξ),

which implies that
g′2(ξ)
f ′2(ξ)

has at most two extreme points, then we have #e
I

[
g′2
f ′2

]
≤2, thus

#e
I

[
ρ̂−4
Q

]
≤6, for equations (4.5), (4.7), (4.9) and (4.11), which means that the charge

density has at most three humps.

• Case Q8: When k∈{5,6,7, · · ·} and p �=0, Equation (4.13) implies that the extreme
points of

g′2(ξ)
f ′2(ξ)

possibly locate at ξ=0 and ξ=±tan−1(
√
k−3) and thus

#e
I

[
g′2
f ′2

]
≤3. (4.14)

Combining equations (4.5), (4.7), (4.9), (4.11) and (4.14) leads to

#e
I

[
ρ̂−k
Q

]
≤7, (4.15)

which means that the charge density has at most four humps.

Remark 4.3. Our analysis has shown that: (i) the charge density has only one hump
under the pure vector self-interaction [6] and has either one hump or two humps under
the linear combination of the scalar and vector self-interactions [35]; (ii) The charge
density has at most four humps for (s,p,v)∈Ek and ω∈Fk when k∈Z+ and m>ω≥0;
(iii) The NLD solitary wave with the four-hump charge density can only appear in the
situation of higher nonlinearity, i.e. k∈{5,6,7, · · ·}, while for the case of k∈{1,2} (resp.
k∈{3,4}), the charge density has at most two (resp. three) humps; (iv) under the linear
combination of the vector and pseudoscalar self-interactions (i.e. v �=0,p �=0,s=0) with
k∈{3,4,5 · · ·} the charge density also has at most three humps because setting s=0 in
Equation (4.8) leads to (

g′1(ξ)
f ′1(ξ)

)′
=((k−1)cot2 ξ−1)sink ξ,

which has at most three zeros, i.e. #e
I

[
g′1
f ′1

]
≤3, then #e

I

[
ρ̂−k
Q

]
≤5 for equations (4.5)

and (4.7); (v) The charge density can indeed have three humps or four humps as shown
in figures 4.1 and 4.2, while the two-hump charge density was first pointed out in [28].

Apart from the charge Q in (2.8), there are another two important conservative
quantities: the energy E in (2.9) and the momentum P in (2.10). For the solitary
wave solutions with the form in equations (3.1) and (3.11), from Equation (3.13), the
momentum density ρP (x) :=T 01[Ψ](x,t) in Equation (3.4) vanishes for all x∈R, which
reflects that the NLD solitary waves are at rest (i.e. the standing waves), while the
energy density ρE(x) :=T 00[Ψ](x,t) in (3.3) becomes

ρE(x)=ρQ(x)(mkcos(2θ(x))−(k−1)ω)>0, ∀x∈R, (4.16)

for equations (3.9), (3.19), (3.1) and (3.11). Next, we are going to investigate the multi-
hump structure of the energy density ρE(x) and the method is similar to that used in
discussing the multi-hump structure of the charge density ρQ(x).
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(a) The charge density ρQ(x).
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Fig. 4.1: The two-hump and three-hump charge densities are plotted in (a) with respect to s with other
parameters being m=1,k=3,ω=0.01,v=1,p=−0.95. The critical value for the two-hump charge
densities transiting to the three-hump ones is s= 25

74
�0.3378. When s�−0.3584, the three peaks have

the same height 1.156 and locate at x=0 and x�±0.4110. It is noted that the energy densities with
the same parameters have just one hump, see (b).

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

x

ρ Q
(x
)

 

 

s = -0.5
s = 0.09191
s = 0.1836
s = 0.7010
s = 2

(a) The charge density ρQ(x).

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

x

ρ E
(x
)

 

 

s = -0.5
s = 0.09191
s = 0.1836
s = 0.7010
s = 2
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Fig. 4.2: The three-hump and four-hump charge densities are plotted in (a) with respect to s with
other parameters being m=1,k=11,ω=0.01,v=1,p=−0.95. The critical value for the three-hump
charge densities transiting to the four-hump ones is s= 25

272
�0.09191. The four peaks have the same

height for s�0.1836 and so do the three valleys for s�0.7010. It is noted that the energy densities
with the same parameters have only one hump, see (b).

Rewrite ρE(x) in terms of the intermediate variable ξ into

ρ̂E(ξ)=mkρ̂Q(ξ)(cosξ−b)>0, ∀ξ∈ I, (4.17)

where b= k−1
k a≤a and Equation (4.1) is applied, and the number of extreme points of

ρ̂−k
E (ξ) in the interval I, i.e. #e

I

[
ρ̂−k
E

]
, is to be estimated. Because

ρ̂−k
E (ξ)=

1

mk+1kk
Ĝ(ξ)

(cosξ−a)(cosξ−b)k
=

1

mk+1kk
g1(ξ)

h1(ξ)
, (4.18)

for equations (4.4) and (4.17), where h1(ξ) :=(cosξ−a)(cosξ−b)k, using Lemma 4.1(ii)
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and Lemma 4.2 gives

#e
I

[
ρ̂−k
E

]
=#e

I

[
1

mk+1kk
g1
h1

]
=#e

I

[
g1
h1

]
≤#e

I

[
g′1
h′1

]
+#z

I [h
′
1]+1. (4.19)

A direct calculation shows

h′1(ξ)=−sinξ(cosξ−b)k−1(k+1)(cosξ−c), (4.20)

where c= ka+b
k+1 =

k(k+1)−1
k(k+1) a and cosξ−b≥ cosξ−c≥ cosξ−a>0 holds for all ξ∈ I, thus

#z
I [h

′
1]=1. (4.21)

Combining equations (4.6), (4.8) and (4.20) leads to

g′1(ξ)
h′1(ξ)

=
s−ptank−1 ξ

(1− b
cosξ )

k−1(1− c
cosξ )

=
g2(ξ)

h2(ξ)
, (4.22)

where h2(ξ) :=(1− b
cosξ )

k−1(1− c
cosξ ). By Lemma 4.2, Equation (4.22) implies that

#e
I

[
g′1
h′1

]
=#e

I

[
g2
h2

]
≤#e

I

[
g′2
h′2

]
+#z

I [h
′
2]+1. (4.23)

It can easily be shown that

h′2(ξ)=−(1− b
cosξ )

k−2 sinξ
cos2 ξ

(
b(k−1)(1− c

cosξ )+c(1− b
cosξ )

)
, (4.24)

thus we have

#z
I [h

′
2]=1, if b �=0, (4.25)

and

g′2(ξ)
h′2(ξ)

=p
(k−1)sink−3 ξ

(cosξ−b)k−2
(
b(k−1)(1− c

cosξ )+c(1− b
cosξ )

) , (4.26)

for Equation (4.10). Hence we are able to determine the number of humps of the energy
density ρE(x) and the results are shown below.

• Case E1: When k∈Z+ and p=ω=0, Equation (4.18) becomes

ρ̂−k
E (ξ)=

1

mk+1kk

(
s+

v

cosk+1 ξ

)
,

from which it can readily be seen that the energy density has only one hump.

• Case E2: When k∈Z+, p=0 and ω �=0, we have 0<ω<m, a>0, b>0, and Equation
(4.18) becomes

ρ̂−k
E (ξ)=

1

mk+1kk
q1(ξ)

q2(ξ)
, (4.27)

where

q1(ξ) :=s+ v
cosk+1 ξ

, and q2(ξ) :=(1− a
cosξ )(1−

b

cosξ
)k.
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It is easy to show that both q1(ξ) and q2(ξ) are even and positive in the domain I. In

fact, we can further show that q1(ξ)
q2(ξ)

increases monotonously as ξ goes from 0 to cos−1a

which implies that the energy density has only one hump in this situation. The reason
is given in the following. The case of v≥0 is trivial. If v<0, then we have s>0 for
Ĝ(0)=s+v>0 because ω∈Fk, and using the formula for difference of powers leads to

q1(ξ)=

(
ρ− η

cosξ

) k∑
j=0

ρj
(

η

cosξ

)k−j

, (4.28)

where ρ :=s
1

k+1 >0 and η := (−v) 1
k+1 >0. It is simple to see that ρ− η

cosξ >0 holds for

all x∈ [0,cos−1a) and the limit gives aρ−η≥0 when ξ→ cos−1a. Combining equations
(4.27) and (4.28) yields

q1(ξ)

q2(ξ)
=

(
aρ−η

a(1− a
cosξ )(1− b

cosξ )
k
+

η

a(1− b
cosξ )

k

)
k∑

j=0

ρj
(

η

cosξ

)k−j

, (4.29)

where the identity ρ− η
cosξ =ρ− η

a +
η
a

(
1− a

cosξ

)
is applied. From Equation (4.29), it is

trivial to see that q1(ξ)
q2(ξ)

increases monotonously in the domain [0,cos−1a).

• Case E3: When k=1 and p �=0, we have

ρ̂−1
E =

1

m2

(s−p)+ v+p
cos2 ξ

(1− a
cosξ )(1− b

cosξ )

and thus the energy density also has only one hump by utilizing an argument similar to
that used in the situation of k∈Z+ and p �=0 (see above Case E1 and Case E2).
• Case E4: When k∈{2,3,4, · · ·}, p �=0 and ω=0, we have a= b=0, and Equation
(4.22) becomes

g′1(ξ)
h′1(ξ)

=s−ptank−1 ξ,

which implies that #e
I

[
g′1
h′1

]
≤1 and thus #e

I

[
ρ̂−k
E

]≤3 for equations (4.19) and (4.21).

That is, the energy density has at most two humps.

• Case E5: When k=2, p �=0 and ω �=0, Equation (4.22) becomes
1

p

g2(ξ)

h2(ξ)
=

s
p−tanξ

(1− b
cosξ )(1− c

cosξ )
, (4.30)

from which it is easy to see that 1
p
g2(ξ)
h2(ξ)

decreases monotonously as ξ goes from −cos−1a

to cos−1a when s=0 or as ξ goes from −cos−1a to 0 when s
p >0, and ξ=0 is not the

extreme point of 1
p
g2(ξ)
h2(ξ)

for(
1

p

g2(ξ)

h2(ξ)

)′
ξ=0

=− 1

(1−b)(1−c)
<0.

That is, #e
I

[
g2
h2

]
=0 holds for s=0 and #e

I

[
g2
h2

]
=#e

I1

[
g2
h2

]
is true for s

p >0 where I1=

(0,cos−1a). When s
p >0, using Lemma 4.2 further gives

#e
I

[
g2
h2

]
=#e

I1

[
g2
h2

]
≤#e

I1

[
g′2
h′2

]
+#z

I1 [h
′
2]+1≤2, (4.31)
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where in the last inequality we have used #z
I1
[h′2]=0 for Equation (4.24) as well as

#e
I1

[
g′2
h′2

]
≤1 for

(
g′2(ξ)
h′2(ξ)

)′
=

p(2bc−(b+c)cos3 ξ)

(h′2(ξ)cos3 ξ)2
.

By a similar argument, we can easily show that #e
I

[
g2
h2

]
≤2 also holds for s

p <0. There-

fore, #e
I

[
g2
h2

]
≤2 is always true and thus we have #e

I

[
ρ̂−k
E

]≤4 for equations (4.19),

(4.21) and (4.22), which means that the energy density has at most two humps.
• Case E6: When k∈{3,5,7, · · ·}, p �=0 and ω �=0, from Equation (4.26), we find that
1
p
g′2(ξ)
h′2(ξ)

is even and increases monotonously as ξ goes from 0 to cos−1a, then #e
I

[
g′2
h′2

]
=1

and #e
I

[
ρ̂−k
E

]≤5 for equations (4.19), (4.21), (4.23) and (4.25), which means that the
energy density has at most three humps.

• Case E7: When k∈{4,6,8, · · ·}, p �=0 and ω �=0, from Equation (4.26), we find that
1
p
g′2(ξ)
h′2(ξ)

is odd and increases monotonously as ξ goes from 0 to cos−1a, then #e
I

[
g′2
h′2

]
=0

and #e
I

[
ρ̂−k
E

]≤4 for equations (4.19), (4.21), (4.23) and (4.25), which means that the
energy density has at most two humps.

Remark 4.4. Our analysis has shown that: (i) the energy density has only one hump
under the linear combination of the scalar and vector self-interactions; (ii) The energy
density has at most three humps for (s,p,v)∈Ek and ω∈Fk when k∈Z+ and m>ω≥0;
(iii) The NLD solitary wave with the three-hump energy density can only appear in the
situation of higher nonlinearity of even power, i.e. k∈{3,5,7, · · ·}, while for the case
of k∈{2,4,6, · · ·}, the energy density has at most two humps; (iv) under the linear
combination of the vector and pseudoscalar self-interactions (i.e. v �=0,p �=0,s=0) with
k∈{3,5,7 · · ·}, the energy density also has at most two humps because setting s=0 in
Equation (4.22) leads to

−1
p

g′1(ξ)
h′1(ξ)

=
tank−1 ξ

(1− b
cosξ )

k−1(1− c
cosξ )

,

which is even and increases monotonously as ξ goes from 0 to cos−1a, then #e
I

[
g′1
h′1

]
=1

and #e
I

[
ρ̂−k
E

]≤3 for equations (4.19) and (4.21); (v) The energy density can indeed
have two humps or three humps as shown in Figure 4.3.

Everything we have discussed above is about the standing wave (i.e. the velocity
V =0) from which we can obtain the moving wave (i.e. 0<V <1) by the Lorentz boost
(see equations (4.33) and (4.34)) in terms of variable of φ as follows

tanhφ=V, coshφ=γ, sinhφ=γV, cosh
φ

2
=

√
γ+1

2
, sinh

φ

2
=

√
γ−1
2

, (4.32)

where γ := 1√
1−V 2

is the Lorentz factor. The resulting relation between the right moving

wave denoted by Ψmw and the standing wave denoted by Ψsw in equations (3.1) and
(3.11) reads

Ψmw(x,t)=SΨsw(x̃, t̃), S :=

(
cosh φ

2 sinh φ
2

sinh φ
2 cosh φ

2

)
, (4.33)
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Fig. 4.3: The two-hump and three-hump energy densities are plotted in (a) with respect to ω with
other parameters being m=1, s=1, p=0.25, v=−0.05, k=7. The critical value for the two-hump

energy densities transiting to the three-hump ones is ω= 1035−√
856185

1920
�0.05713. It is noted that the

charge densities with the same parameters have only two humps, see (b).

where (
t
x

)
=Λ

(
t̃
x̃

)
, Λ :=

(
coshφ sinhφ
sinhφ coshφ

)
, (4.34)

is the so-called Lorentz transformation between the moving frame (x,t) and the rest
frame (x̃, t̃) [28, 35]. Combining equations (2.6), (3.1), (3.10) and (4.33) yields

j0[Ψmw](x,t)=γj0[Ψsw](x̃, t̃). (4.35)

Moreover, it is straightforward to show that

∂μ=Λμ
μ̃∂

μ̃, S†γ0=γ0S−1, S−1γμS=Λμ
μ̃γ

μ̃, ημν =Λμ
μ̃Λ

ν
ν̃η

μ̃ν̃ ,

where Λμ
μ̃ is the (μ,μ̃) entry of Λ in Equation (4.34), and then

Tμν [Ψmw](x,t)=Λμ
μ̃Λ

ν
ν̃T

μ̃ν̃ [Ψsw](x̃, t̃), (4.36)

from which we can readily verify

T 00[Ψmw](x,t)=γ2T 00[Ψsw](x̃, t̃), (4.37)

T 01[Ψmw](x,t)=V γ2T 00[Ψsw](x̃, t̃), (4.38)

for equations (3.7), (3.13) and (4.32). It is easy to see that, Equation (4.35) (resp.
(4.37)) implies the charge (resp. energy) density for Ψmw has the same multi-hump
structure as that for Ψsw, while the momentum density for Ψmw has the same multi-
hump structure as the energy density for Equation (4.38).

4.2. k=1 and ω=m>0. When k=1, ω=m>0 and (s,p,v)∈E−1 , the profile
of the charge density ρQ(x) has either one hump or two humps. The reason is shown
as follows. Recall from the discussion in Section 4.1 that the number of humps in the
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charge density ρQ(x) can be determined by the number of zeros of
dρQ(x)

dx which has the
form

dρQ(x)

dx
=

16m3x

(G(x))2

(
s+v− 4(s−p)

(4m2x2+1)2

)
, (4.39)

for Equation (3.42). From Equation (4.39), it is easy to see that the charge density

has three extreme points at x=0,x=±
√√

4(s−p)
s+v −1

2m (i.e. two humps) if 3s−4p−v<0,
otherwise has only one hump at x=0. As for the energy density, combining equations
(3.40) (3.42) and (4.16) leads to

ρE(x)=
2m2(1−(2mx)2)

(s−p)((2mx)2−1)2+(v+p)((2mx)2+1)2
,

then

dρE(x)

dx
=

16m4x
(
(s+v)(4m2x2−1)2−4(v+p)

)
((s−p)((2mx)2−1)2+(v+p)((2mx)2+1)2)

2 ,

from which we have that the energy density ρE(x) has two humps at x=±

√
1−2

√
v+p
s+v

2m if
3v+4p−s>0, otherwise has only one hump at x=0. From equations (4.35) and (4.37),
we have that the charge or energy density for the moving wave has the same multi-hump
structure as that for the standing wave as shown above. According to Equation (4.38),
the momentum density for the moving wave also has the same multi-hump structure as
the energy density.

5. Conclusion
In this study, the NLD solitary waves under the linear combined self-interaction

to the power of the integer k+1 have been analytically derived and the multi-hump
structure in the charge, energy and momentum densities has been rigorously analyzed.
We have proved that for a given integer k, the number of solitary humps for the charge
density is bounded above by 4, while that for the energy density is bounded above by 3.
Besides the two-hump structure first reported in [28], the three-hump and four-hump
charge densities have been observed. We have also proved that the four-hump charge
density can only exist in the situation of higher nonlinearity, i.e. k∈{5,6,7, · · ·}, while the
three-hump one can appear in the situation of k∈{3,4,5, · · ·}. The three-hump energy
density which can only occur in the situation of k∈{3,5,7, · · ·} has also been pointed
out. It has been shown that the momentum density has the same multi-hump structure
as the energy density. Our analysis has further revealed that, the linear combined self-
interaction in which p �=0 as well as at least one of s,v is not zero is crucial for generating
more than two humps (resp. one hump) in the charge (resp. energy) density. Actually,
under the pure scalar self-interaction (i.e. s �=0, p=v=0), the charge density can be
either one-hump or two-hump while the energy density can only be one-hump; under the
pure vector self-interaction (i.e. v �=0, s=p=0), both the charge density and the energy
density have only one hump; under the linear combination of the scalar and vector
self-interactions (i.e. s �=0,v �=0, p=0), the charge density can be either one-hump or
two-hump while the energy density can only be one-hump; no physical solutions exist
under the pure pseudoscalar self-interaction (i.e. p �=0, s=v=0). In addition, when
k=1 and ω=m>0, the NLD solitary wave with polynomial decay exists and to our
knowledge, it has not been reported before this work.
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