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MULTISCALE ANALYSIS OF LINEARIZED PERIDYNAMICS*

TADELE MENGESHAT AND QIANG DU¥

Abstract. In this paper, we study the asymptotic behavior of a state-based multiscale hetero-
geneous peridynamic model. The model involves nonlocal interaction forces with highly oscillatory
perturbations representing the presence of heterogeneities on a finer spatial length scale. The two-scale
convergence theory is established for a steady state variational problem associated with the multiscale
linear model. We also examine the regularity of the limit nonlocal equation and present the strong
approximation to the solution of the peridyanmic model via a suitably scaled two-scale limit.
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1. Introduction

Understanding materials properties in the presence of heterogeneities has been an
important issue in the study of composite materials. One popular approach to model
and analyze the effect of heterogeneities at different length scales is given by the theory
of homogenization which has been thoroughly developed for continuum models based
on partial differential equations. Recently, the nonlocal continuum theory peridynamic
(PD), introduced by Silling in [17], has been applied successfully to model and simulate
various composite materials such as the fiber-enforced composites and composite lami-
nates [3, 4, 10, 11]. A large number of studies using PD models have taken a homogenized
approach so that the effective length scale is represented by the materials horizon which
measures the range of nonlocal interactions. Computationally, heterogeneities have also
been accounted for within the peridynamic model at the computational meshing level,
see for example [11]. On the theoretical side, a more explicit multiscale representation of
heterogeneity is considered in [1] for a bond-based peridynamic model of fiber-reinforced
composites. The material is treated as a heterogeneous peridynamic media involving
two distinct length scales over which different types of nonlocal bond forces interact. As
the PD based material models are receiving more and more attention [22], it is interest-
ing to explore the effective modeling and analysis of heterogeneities in more generality
such as in the context of the state-based peridynamic models introduced in [19, 21].

The multiscale analysis presented in [1] utilized the method of two scale conver-
gence [2, 12, 15] and is carried out for a bond-based PD model with a special influence
function. Bond based PD models were originally formulated by Silling [17] for isotropic
bond-spring systems, which correspond to materials with a Poisson ratio 1/4. On the
other hand, it is known that state-based PD models provide more general descriptions
for materials with all possible values of the Poisson ratio [6, 14, 19]. The objective of the
current work is to conduct the multiscale analysis on linear PD state models (otherwise
called linear peridynamic Navier equations) involving two length scales. More specif-
ically, we hypothesize that the presence of heterogeneities comes in two forms, with
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one due to the direct nonlocal interaction involving an oscillating peridynamic force,
similar to that assumed in [1], while the other is due to effective fine scale oscillations
in the local materials properties such as those associated with the elastic moduli. Such
two-scale coupled interactions naturally propagate to the indirect interactions incorpo-
rated in the state-based models. A nonlocal two-scale convergence can be established
within the nonlocal calculus of variations framework by adopting the similar concept
of two-scale convergence used for PDEs. The multi-scale analysis presented here ex-
tends the analysis in [1] and provides a nonlocal analog to that for the local elliptic
PDE models with high oscillatory coefficients. Indeed, the local limit as the nonlocal
horizon parameter § — 0, of the multiscale system considered here retains the multiscale
nature (see more discussions in Remark 1.3). Moreover, our analysis is aimed at vari-
ational problems based on the nonlocal stated-based peridynamic models with generic
influence functions rather than the special form presented in [1]. Multiscale analysis
nonlocal evolution problems will be treated elsewhere.

1.1. Main result. Assume that a heterogeneous solid occupies a region 2 in
R?, where heterogeneities are dispersed periodically on a length scale of €. Points in the
material will be denoted by x and the deformation inside the medium will be given in
terms of the displacement field u.(x). We assume that a portion of the solid © C ) is
held fixed. It will be derived in the next section that for an external force density b,
the displacement field u, solves the peridynamic system of linear equations

{Leue(x)be(x), xeN\ O

u. (x)=0,x€0, (L.1)

where, for a small positive parameter € (say 0 <e<1 for simplicity), the operator L. is
an integral operator of the following form

L= [ (o) +aulx ’))fffx”")<x’—x>[<x'—x>-<u<x’>—u<x>>]dx'

*X|2

T e ’)-(u(z)—u(x’))dz)dx'

+ [ e(x)pe(x,x)(x —x (/ —x)- (u(z) —u(x ))dz)dx

“,
J

Here,

ot () (47

€

with pg = po (&) being a nonnegative, even, and locally integrable function that is positive
in a neighborhood of the origin, p» being a nonnegative, even, compactly supported,
and locally integrable function and S(y,y’) is nonnegative, bounded, and periodic with
respect to the unit cell ¥ =[0,1] in both y and y’. The functions a.(x)=a (%),
ke(x)=k (%) are the shear and bulk moduli of the material component associated with
the material point x respectively, and «(y), k(y) are positive, Y-periodic, and bounded
functions. Unless otherwise specified, the functions « and k could be discontinuous. In

addition, we have the e-parameterized functions

%k (x) (%)

mZ(x)  me(x)’

Te(x) = and me(x):/Qpe(x,x’)|x’—x\2dxl (1.2)
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with m., the second moment of p., assumed to be finite for all e.

The derivation of the equilibrium equation (1.1) along with the existence of a unique
solution u, for any ¢ >0 and b, € L?(£;R9), will be proved in the next section. One
of the main results of this paper is the homogenization result given in the following
theorem.

THEOREM 1.1. Suppose that o,k € Lpe, (Y), and B€ Ly, (Y xY). Suppose also that b,

is a bounded sequence in L*(;R?) that two-scale converges to b(x,y) in L?(Q x Y;R4).
Then there exists a subsequence, without relabeling, of solutions u. to (1.1) and uée

L2(Qx Y;R?Y) such that u, 24 two scale in L? (QxY;RY) and u is the unique solution
to the nonlocal two scale system of equations

—(Lou)(x,y)=b(x,y), (x,y)E(Q\O)xY w3
u(x,y)=0, (x,y)€OxY. :

The operator L is a two scale operator in the sense that it acts on two scale vector
functions v(x,y) € L2(Q2 x Y;R?) and produces a two scale function (Lov)(x,y). An
explicit formula for £y will be given later; for now it suffices to say that it exhibits a
typical “unfolding” nature that accounts for the oscillatory properties of the coefficients
a, k, and f.

Using the notation () to represent averaging in the y variable, the two scale con-
vergence of u, to u€ L2(2 xY) implies that u. weakly converges to (u) in L?({;R?).
Denoting u” (x) = (u)(x), we see that over any subdomain V/,

lim uedx:/ u? (x)dx,
e—0 Jy/ A%

implying that uf captures the average, macroscopic property of the sequence u¢. After
extending u(x,y) to be Y-periodic in y to R? we would like, in fact, to establish the
strong approximation

||u6(x)fu(x,§)||L2%O, as €—0.

This requires, among other things, u(x,%) to be measurable which is, however, not
guaranteed since the solution u found in Theorem 1.1 is merely in L2(2x Y;R9). It
turns out that, with additional assumptions on the coefficients «, k 3, and the data b,
such strong approximation is possible, as summarized in the following theorem.

THEOREM 1.2. Suppose that a(y), k(y) and B(y,y’) are all continuous functions.
Suppose also that be is a bounded sequence that two scale converge to b(x,y) in
L2(QxY;R?), with the property that b(x,y) € L* (€% Cpe, (Y;R?)), and lim,_o||be(x) —
b(x,f)HL2 =0. Then there exists a subsequence of solutions u. to (1.1) and a vector-

valued function u(x,y) € L*(; Cper(Y;R?)) such that u, 24 and u solves

—(Lou) (x,y) =b(x,y), (x,y)e(Q\@) xY (1.4)
u(x,y)=0, (x,y)€OxY '
with the strong approximation property
li c—u(s,- =0. 1.5
Soll™ u e) L2(Q) (1.5)
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It should be understood that in (1.4), the vector functions u, and b are periodically
extended in the y variable.

The operator Ly in Theorem 1.2 is the same as that described after Theorem 1.1.
The fact that the two scale limit u satisfies the system (1.4) follows from the two scale
convergence as € — 0,

Lou, 2 Lou(x,y), in L*(Qx Y;Rd),

which is established later. The regularity implication that b(x,y) € L?(Q; Cper(Y;RY))
leads to u€ L(Q;Cper(Y;RY)) is nontrivial and is a consequence of the additional con-
tinuity assumption on the coefficients and the fact that the operator Ly is a linear
bounded operator on L?(2;Cpe, (Y;R?)). Rewriting (1.4) and realizing it as a Fredholm
integral equation of second kind, we are able to write solutions as a Neumann series,
from which the regularity and uniqueness is deduced. Finally the strong approximation
(1.5) provides a corrector result that will follow from an elliptic estimate of the type

| =( )
L2 L2

where the right hand side will be shown to approach to 0 as e — 0.

REMARK 1.3.  We should mention that for a fixed € >0, in the event of vanishing
nonlocality, the system of nonlocal equations (1.1) reduces to the heterogeneous Lame—
Navier linearized elasticity equation

——

b

et D= cow )|

€

—div(1. () V2 (%)) 4 V ((110(5) + Ao (30))divug (x)) = b (x). (L6)

In fact, if one replaces po (&) by a sequence of kernels p (&) = %ﬁ (I%\) |€]~2, with § being

the horizon parameter measuring the nonlocal interaction neighborhood, by setting
B=0, and taking ©={x€Q:dist(x,00) <d}, we get, when p is non-increasing, the
sequence of solutions u? to the nonlocal system

—L%u.=b., xcQ\O; u’=0xcO

converges strongly in L?(;R?) to u?. Moreover, u? e W, *(Q;R%) and solves the het-
erogeneous Lame-Navier linearized elasticity equation (1.6) for all x€ (), with Lame
coefficients

Qe 1 1
)= e 0= (gt o) e ),

We refer to [8, 13, 14] for details.
For completeness, we recall the definition of two scale convergence below.

DEFINITION 1.4 (Two-scale convergence [15, 2]). A sequence (v€) of functions in
LP(Q), is said to two-scale converge to a limit ve LP(QAxY) if, as e—0

/ ve(x)Y (x,%) dx — v(x,y)Y(x,y)dxdy (1.7)
Q Qxy

for all 1 € L' (Q; Cper (Y)). We often use v° 20 to denote that (v¢) two-scale converges
to v.
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The case p=2 is used mostly in the current work. If (v¢) is bounded in L?(Q),
the space L?(€; Cper(Y)) can be replaced by C2°(Q; Cpe,.(Y)) in Definition (1.4) (see
[12]). A motivation for Definition 1.4 is given by the following compactness result of

Nguetseng (see [15] and Allaire [2]).

THEOREM 1.5. Let (v¢) be a bounded sequence in L?(2). Then there erists a subse-
quence which two-scale converges to a function v€ L*(QxY).

The paper is organized as follows. In Section 2, we derive the nonlocal model for
linear peridynamic solids, equation (1.1). In Section 3 after reviewing the notion of two
scale convergence we prove Theorem 1.1. Under the additional continuity assumption
on the coefficients, the fact that u solves (1.4) will also be demonstrated in Section
3. Section 4 is devoted to examining the regularity of the solution u to the two scale
nonlocal system (1.4) and showing that it preserves some of the regularity of the right
hand side forcing term. In Section 5 we discuss the strong approximation to the solution
of the peridyanmic equilibrium equation via a scaled two scale limit. We conclude the
paper by giving a summary in Section 6.

2. The peridynamic formulation of continuum mechanics for heteroge-
neous materials

2.1. Analysis of Deformation.  Suppose a body occupying 2 has undergone
the deformation y(x)=x+u(x). The peridynamic model treats the body as a complex
mass spring system. As such any two material points x and x’ are assumed to be
connected by £ =x’ —x. The bond extension due to the deformation is given by

Eu](x'—x) =y(x') - y(x)| = [x' = x| =s[u](x,x)|x" - x|

where s[u](x’,x) = %:i‘(x)l —1 is the extension ratio of the bond x’ —x.

Taking into account the collective deformation of a neighborhood of x, we decom-
pose the bond extension as

Blu)(¢ ) = ol x|+ [su] (%) ~ oful ()| b ).

The quantity ¥[u](x) is the dilatational (volumetric) stretch rate whereas the remaining
s[u](x’,x) — 29[u](x) is the distortive (deviatoric) stretch rate. The dilatational stretch
rate depends on the stretch rate of all bonds attached to x, and in [21] it is proposed
that it can be taken as a weighted mean of the stretch rates of all the bonds with the
weighting dependent upon the strength of particle interactions. It is thus given by

7/ pe(x',x)s[u](x',x)dx’,
Q

where p.(x’,x) measures the interaction strength of the bond between x and x' =x+¢&
with small parameter € >0 being a measure of the fine scale heterogeneities, and m.(x)
is the weighted volume given by

me(x):/ﬂﬁe(xm')dx’. (2.1)

Note that the above definition of m.(x) is consistent with that given in (1.2) once we
introduce p, as p(x,x’) = pe(x,x’)/|x —x'|?.

Here, p.(x,x’) is assumed to be symmetric, i.e., p.(x,x’) = p.(x’,x), and integrable
for x € Q) with respect to x’. Its dependence on ¢ will be explicitly specified later.
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2.2. Strain energy density function. According to [21], the strain energy
density function is the sum of the energy density functions associated with dilatational
and deviatoric strains. For constitutively linear solid undergoing a deformation the
energy density function associated with the dilatational strain is given by

where k.(x) :kz(f) is the bulk modulus and the density function associated with the
deviatoric strain is given by

) | ) (s o0 2000 )

with a.(x) =« (f) being proportional to the classical shear modulus. The total stored
(strain) elastic energy is then given by

A(ke;X) (ﬁe[u](x))eraeéX)/Qﬁg(X,x’) <$[u}(x/,x)l9€[l:l](x)> dx/) dx. (2.2)

As in [19], we work under the assumption of a uniformly small displacement difference;
that is,

sup Ju(x’) —u(x)| < 1.
|x/—x|<é

Then it follows from simple approximation that

Elu](x —x) ~e(u)(x' —x) = l’;:; S(u(x) —u(x)),
st o) = () ()

with the latter symbolizing a linearized nonlocal strain [19] that also defines a nonlocal
divergence operator in the nonlocal vector calculus developed in [6] and as a consequence

9 [u](x) ~ d /Q ﬁe(x,7x)(u(x')—u(x))-(x’—x)dx/

T me(x) Jo I —x]?

which coincides with the definition of the weighted nonlocal divergence operator in [6].
Thus, the “linearized” total strain energy given in (2.2) can be simplified as

a0 [ o) (225 <u<x'>—u<x>>)2dx'] x(23)

X —xP

Pe(x' %)

==+ will be used as
[x/ —x]

where 7. is as defined by (1.2). It turns out that the function

_ pe(xx)

=tk which is the influence function introduced

frequently as p.. So we let pe(x/,x):
in [17, 19] for nonlocal interactions.
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2.3. The influence function. We model heterogeneity of the material body
through the kernel function p.(x,x’), similar to that presented in [1]. To this end,
let po(€) be a nonnegative, even, and locally integrable function that is a positive on

B(0,6), for small § >0; and p2(&) being a nonnegative even function which is integrable
and supported on B(0,v). Without loss of generality, we consider the case that v>¢
and 0 <e<k 1. A particular influence function we consider is given by

prxﬂzpaxtao+ﬁ(f,i)pax—xx

where p§(€) = eidpg (%) , and f(+,-) is a nonnegative, bounded function that is symmetric,

B(y,y")=B(y',y), and periodic in both variables with respect to the cell Y =[0,1]%.
While pg (&) describes the long-range part of the interaction, the quantity e parameterizes
the short-range oscillatory nature of the interactions described in the second term of
pe(x,€). For any point x €2, we see that m.(x)=mg(x)+ma,(x) where

(x' —x)|x" —x|%dx’.

mo(x):/on(x’fx)|x'7x|2dx/aundmz€ /ﬂ

m\x

x’'
6

After a simple change of variables, ma (x) =O(e?), one may think of m.(x) as a per-
turbation of mg(x). Let us first record the following elementary lemma.

LEMMA 2.1. The weighted volume mo(x) is a positive continuous function on Q, with
min, .5mo(x) >0, and as € =0, ||me —mgo|| L) — 0. Moreover, there exists a constant
C >0, such that for € small,

supsup . (x) <C,
e>0xeQ

dzk‘(x) ae(x)

o )Z ~ mo(e) s We have

and with 7§(x) =

HTG_T(§||L0<>(Q)—>O, as €—0.

Proof.  Note that on Q, m.=m.(x) is continuous and m.(x)>mg(z). After a
change of variables,

/7
X)|x’fx|2dx/

1 x x x
me) = [ polo =)l x4 2 [ B ol
Q € Q € €
:/pQ(X17X)|X/7X|2dX/+62/ xa(ez—x)3 (E,sz)pg(z)\dez
Q2 B(0,7) € €

which implies that as € —0, |[m,—mol|L (o) — 0 since 3 is a bounded function. The
other assertions easily follow from this convergence. |

Given any b, € L2(€;R), for the total strain energy function I1¢ given in (2.3), we
consider the minimizer of the energy

I1é(v) — /Qb6 -vdx

over the space Vg which, as in [14], is given by a subspace of L?({;R%):
Vo ={uec L*(R?Y):u(x) =0, for all x€ © }.
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Given u and v in L2(€2,R9), we define the bilinear form
B ()= [ 760 ([ pe s i) <o) (-0 )
( / m(xﬁx)(v(x’)—v(x))-<x'—x>dx’>
Q
+ac) [ pulxx) ((u(x'%u(x)) ﬂ) ((v(x’)w(x)) X —x )dx']dx

X —x] x —x]

and notice that 2I1¢(u) =B¢(u,u).
LEMMA 2.2. Given b, € L?(Q;R?), there exists a minimizer
= in |II°(v)— [ be-vdx]|,
u arg&rel%[ (v) /Q v x}

that satisfies the equation

BE(uE,V)z/bg-vdx, Vvele. (2.4)
Q

We refer to [8, 14] for a proof of the above result. Note that the bilinear form B¢
further induces a sequence of uniformly bounded (with respect to €) linear operator L.
in L2(Q,R%) where

/ —Lu-vdx=B(u,v), Vvelg.
Q

Using the new operator L., we can now rewrite the variational form (2.4) as

{Eeue(x)—be(x), vxeN\ O

u.(x)=0, VxeO. (2:5)

In a calculation that is similar to what is done in [8, 14, 19] and using the symmetry of
Pe, 1.e., for any x',x €, p.(x,x") = p(x',x), we can obtain a precise expression for the
operator L.u as

Lo(u)(x)= /Q <ae<x>+ae<x’>>f§f’j”"§<x’x)[(x’x) - (u(x') — u(x))dx’

x|

+ [ e =) ( / pe<x',z><z—x’>-(u(z)—u<x’>>dz) ax
+ [ 7o) (¢ =) ( / pe<x7z><z—x>~<u<z>—u<x>>dz) ax.

The nonlocal system of equation (2.5) is precisely the peridynamic equilibrium system
for heterogeneous materials as developed by Silling in [19].

3. Two scale limits of the peridynamic operator

The main objective of this section is to review the notion of two scale convergence
and prove Theorem 1.1. As we will show shortly, the main ingredient of the proof of
the theorems is the following result. For convenience and to simplify notation, let us
introduce the following notations:

Ai(&)=pi(§)E, A(X)Z/Ao(X’—X)dx, and Ki(é)_pi(é)g(@g, for i=0,2.

Q IGE
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THEOREM 3.1. Suppose that u, 20u two scale converge in L?(2 x Y;R?). Suppose that

aly),k(y) € Lpe, (Y), BE L, (Y xY). Then as €0, Louc(x) N (Lou)(x,y) two scale
converge in L?(Q2x Y ;R?) with the operator Ly given by

(Lou)(x,y)= /KO (% —x) () (') = u(x,y))dx’
+/QK0(X/—X)(<O<U>(X’) —(a)u(x,y))dx’
+/QA° (' =) /Q*O (z—x')- (7(x')(u)(z) — (ru) (x))dzdx’
+T(X’y)/§z}‘0(X/_X)/Q}‘O(Z_X>(Z_X)'(<u>(z)—u(x,y))dzdx’
+/B<y w>(a(y)+a(y/))f8(y’y/)K2(y'—Y)(U(X,.Y’)—u(x,.Y))dy’ (3.1)

where

T(x,y)= - and T(x)= — =(1)(x).

Before we prove the above theorem, let us deduce Theorem 1.1 as a corollary.

COROLLARY 3.2 (See also Theorem 1.1).  Under the assumption of Theorem 1.1,
suppose that u. solves the peridynamic system (1.1). Then there exists a vector function

u that is a unique solution to (1.3) and (up to a subsequence) u 2w in L2(QxY;R%).
Moreover, u minimizes the quadratic two scale functional

1
u=arg min {2P(u)—/ b(x,y)-u(x,y)dydx}
wZonoxy Y

7’(U)Z/QWT(XJY) (/Qxypo(X’—X)(X'—X)~(U(X7Y)—U(X’J'))dX’dY’)dedy

+/QxY y) /S)xYpO(X/ —x) <X:_X (u(x',y") - U(x,y))> 2dx’dy/d:)caly

[x' = x|

/ 2
+/ / a(y)B(y,y" ) p2(y' =) <y,y-(U(X7y’)—U(X7Y))) dy’ dxdy.
axy JB(y,7) ly' =yl
Proof. (Proof of Corollary 3.2.) We deduce from the uniform boundedness of the
solutions u, to (1.1) that up to a subsequence, u, two scale converges to ue L*(Q xY).
Moreover, by computing the two scale limits of the right and left hand side of (1.1),
and applying Theorem 3.1, u solves the two scale nonlocal equation (1.3). Our next
goal to prove the uniqueness of u by demonstrating that u is a minimizer of the energy
specified in the theorem. The fact that (1.3) is the corresponding Euler-Lagrange
equation satisfied by the minimizer follows from a tedious but simple manipulation that
is analogous to what is done in [14]. Let us introduce the bilinear form B:[L?(Q x
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Y;R%))2 =R given by

Bav)=[ i) ( / ny()(x'—x)-(u—u’)dx’dy')

X </ )\o(X/—X)-(V—V/)dX/dy/> dxdy
QxyY
+/ a(y)/ (v—v') - Ko(x' —x)(u—u)dx' dy'dxdy
Qxy QxYy

+ / a(¥)B(y.y)(v(xy) ~v(x.y))
QxY J B(y,y)

Ko(y'—y)(u(x,y) —u(x,y’))dx'dy’ dxdy

where we have used u' —u=u(x’,y’) —u(x,y) and v —v=v(x’,y’) —v(x,y) to make
the expressions shorter. The same notation is used in the rest of the discussion when
there is no ambiguity.

It is not difficult to see that B is a continuous bilinear form in [L?(Q2 x Y,R%)?] and
that B(u,u)=7P(u) for any uc L?(2 x Y,R%). Next, we show that B is coercive over the
set of vector functions in L2(£2 x Y;R?) that vanish on © x Y. We show this by proving
the following two inequalities:

a) There exists a constant C; >0 such that for all ue L?(Q x Y;R9)

x' —x

2
B(u,u)zCl/ / po(x' —x) (/-(u—u’)) dx'dy’dxdy.
Qxy Jaxy x' —x]|

b) There exists a constant Cy >0 such that for all ue L?(Q x Y;R?) that vanish
on O XY,

x' —x 2
L me=x (-(u—u')) dx' dy'dxdy > ColulZa ey
X X

[x' = x|

Part a) follows from the tedious but simple series of inequalities

x' —x 2
/ / po(x' —x) (,-(u—u’)> dx' dy'dx dy
axy Jaxy Ix" —x|
/ / 2 / (X/_X)
= plx —x)|x —x u—u)——=—
/QXY/QXY ( )| ‘ <( ) |XI*X|2

mol(x) /;2 YPo(x' 7X)(X' —x)- (uu/)dxldyl> dxdy

oy G Ly o =06 =0 (awaxay') iy

1 M
<| —4+—= .
<%+£%)mmw

where ag, kg are minimum values of a and k respectively, and M is maximum value
of mo(x) in Q. To show the inequality in part b), let us pick ue L?(Q x Y,R?), that
vanishes on © xY. Then we may write u= (u)(x)+w(x,y), a unique decomposition,
such that (w)(x)=0 for all x€ Q. It is clear that (u)(x)=0 on © and that

| epPaxiy= [ fPixs [ [ iwexpPacdy.  2)
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Now, on the one hand, a simple calculation shows that

/Qxy/ﬂxypo(X/_X) <|§:_z ’ (u_ul)>2dxldy’dxdy
= [t 0 (B2 () ) i

’_ 2
+/ / po(x' —x) <Xlx~(w(xl,y’)—w(x,y))> dx' dy'dxdy.
QxY JOxY Ix' —x|

One the other hand, by the nonlocal Poincaré-type inequality see [14, Proposition 2],
there exists a positive co=co(0) such that

[ o0 (2% <<u><x'><u><x>) ixixzc [ ()60

In addition, since (w)=0 for all x €,

2
/ / (x' —x (x o (w (X’,y’)—W(X,y))) dx'dy'dxdy
QXY Q><Y Ix' — x|

2
—2/ / (X/_X-(w(x,y)> dx'dy’ dxdy
Qxy Q><Y x —x]|

- /Q (Leowly)wlx.y))dxdy

2ty [ fwixy)Pdxdy
QxYy

for 0 <lp:=infxeqLL(x) where

Here we used [14, Lemma 2] that states that L(x) is a uniformly positive definite matrix
function. To complete the proof of part b) combine the two lower bounds and use the
decomposition 3.2. 0

3.1. Two scale convergence. Much of the discussions in this subsection are
standard and they are stated here to prepare for the proof of a lemma that will be used
to establish the two scale convergence result specific to our model problem.

Let (-) denote the average over Y. Based on the definitions of two-scale convergence
(1.4) and together with their natural extensions to vector fields, we record two well
known results on two-scale convergence that can be found in [12].

LEMMA 3.3.
1. Let (v) be a bounded sequence in L*(;RY) that two-scale converges to v €

L2(QxY;RY), then ve — (v)(x) weakly in L?(Q;R?) as e —0.
2. Suppose @ is in L (€ Cpe, (Y;R?)) or L2, (Y;C(QR?), then op(x, %) two-scale
converges to ¥ (x,y) and

i X2 — 2
lim xS = | bxy)Edy. (33
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Another important lemma we will be using is the following:

LEMMA 3.4.  Suppose that the sequence u. two scale converges to u(x,y) in L?(Q2x
Y;R%). Suppose also that o(y)€ L2, (Y). Then as e —0,

per

1. @(%)ue(x)iw(y)u(x,y) in L2(QxY;R?) and

2. if, ge L}, .(R?) the sequence of convolutions converges (up to a subsequence)

g%, (x) = g* (T)(x) strongly in L*>(Q;R?)

where

gL (x) = / 9(x' —x)u.(x')dx’ andg* (i) (x) = / g(x' —x) () (x')dx’

Q
and U is the extension of u by zero outside of ().

Before proving the lemma, let us give some important implications of the lemma

in relation to the sequence of functions in our operator. First, as o,k € Lg, (), from
part 1) it follows that for any bounded two scale convergent sequence ueiu(x,y)

aeueia(y)u(x,y) and T u, i7'(x,y)u(x,y) in L?(Q x Y;R?) where we have defined
d’k o _ d*(k o
r(y) = (y) oly) Fx)= (k) (a)

Cmo(x)2 mo(x) T ome(x)2 mo(x)

Consequently, we get that, as e—0, a.u.— (au), weakly in L?(;R%); rou. — (Tu),
weakly in L2(£2;R?). Moreover, 7. —7(x) weakly in L2(2). These products of sequences
of functions appear in the operator L.u. whose convergence property we would like to
study.

Second from part 2) of the above lemma is that if G(x) is a locally integrable
matrix function in R?, then as a finite sum of a sequence of convolutions, the sequence
of functions

Gx*u.(x)= Q(G(x’—x)ue(x')dxl—>(G>|<<ﬁ>(x): Q(G(x’—x)(u)(x’)clx'7 e—0

converges strongly in L?(£;R9), up to a subsequence. We should mention that part 2)
is a special case of a two scale convolution result given in [23, Proposition 2.13].

Proof. (Proof of Lemma 3.4.) Let us begin proving part 1) of the lemma. We begin
noting that ¢ (%)u. is a bounded sequence in L*(Q;R?) since ¢ € L32,.(Y). Thus, to

compute its two scale limit, it suffices to use test functions ¥ (x,y) € C°(£2; CSET(Y;Rd))
in Definition 1.4. To that end, let ¢, (y) € C,.(Y) such that ¢,, — ¢ strongly in L*(Y).

per

Then, it follows that for any ue L?(2 x Y;R?) we obtain

i [ ety eyixdy = [ puty) by)icdy. (64
QXY QxY

Now for each n, by adding, subtracting, and taking the limit as ¢ —0, we have

lim w(%)ue(X)~¢(x,§)dx=/ en(yY)ulx,y) 9 (x,y)dxdy

=0/ QxY
X

+ lim A (gp (—) —¥n (7)) u(x)-(x, %)dx.

e—0 €
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Taking the limit as n — oo, and using (3.4) we obtain that

e—0

. X X
lim go(f) ue(x)-'l,b(x,f)dx:/ e(y)ulx,y) ¢¥(x,y)dxdy
Q € € QxY
- x X x
+ Jim tim [ (%) = (7)) ueb0 e Dax
To complete the proof of part 1) of the lemma, it then suffices to show that

b i [ (5(2) - 2)) e,

In fact, since 1(x,x/¢) is bounded in L> () and u, is a bounded sequence in L?(2;R?),
applying the Cauchy—Schwarz inequality, we have

/Q@@)—%(f))ue( x)- w(x Z)dx <c!1£%</ ‘(p )‘ dx)l/z

<cl'/? (/Y lo(y) —<pn(Y)2dX> "

lim
e—0

The latter, of course, goes to 0 as n— co.

The proof of part 2) of the lemma follows from the fact that the convolution oper-
ator is a compact operator (see [5, Corollary 4.28]). Indeed, since u. — (u) weakly in
L2($;RY), the convolution g*u, is precompact in L2(Q;R?) and strongly converges to
g*(u). O

3.2. Proof of Theorem 3.1. Let us begin the proof of Theorem 3.1. Let us
first introduce an auxiliary operator Lf given by

psV(X) = /S Z(O‘E(x)—kae(xl))ps(x’){/)(X’—X)@(X/—x) (v(x')—v(x))dx'

o —x]?

+7e(x //\Oz x) - (v(z) —v(x))dz, (3.5)

which is, as the next lemma shows, is the first order approximation of L.

LeEMMA 3.5. L, is a bounded linear operator on L2(Q,R%). Moreover, the difference
of the operators L. and L, Lc—L;,—0 in the operator norm, as € — 0.

Proof. For any ue L?(Q;R?), the difference of the operator values (£, — L5, )u can
be written as

(Le— Ly )u=Jiu+Jsu+ Jsu+ Jju+Jsu+ Jiu

where the scaling A5(&) =4 A, (é)

stu= [ 76l ) ([ (505 250 x)- () u(x)ia ) ax
su= [ w6

m\N

A5 —x) ( / Ao<zx’>-<u<z>u<x’>>dz) ax,
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=7 Qﬁ(f LSIIEY —xdx) ([ 5 2x50ax)-(u(a) -y ).

It is not difficult to show that each of the operators J, for i=1,---,6 are bounded linear
operators on L?(£2;R%). Moreover, the operator norm of each of these operators goes to
0 as e —0. In fact, we claim that the following estimates:

| Jeul| 2 { Ce ifi=1,2,4,5

sup

uerz(Qrdy |z Cée® ifi=3,6

for a constant C' independent of e. We show the estimates in the above claim for i =1,
and ¢ =23 as illustrations of the technique. Note that there exists a constant C' such that
for each x,

T7u60] < sl [ po(' =)' =xldu(x)ix’
where
Pu(x) = ||5Hoo/ﬂf>§(x/ —2z)|z—x/|[u(z) —u(x')|dz.
Since p§ is supported on a ball of radius €4, it is not difficult to show that after a change
of variables

|pullzz <eClul L2, C >0 is independent of u.

Combining the above estimates we see that ||Jful|p2 <eC'||u| p2. Similarly,
5G| <Clrlle [ g5 )~ xlu(x)ax’ <cC [ gl = x)6ulx )i’
Q Q

Therefore, ||JSul|zz <e*C|lul|z2 as claimed. Hence, the conclusion of the theorem is
proved. 0

The implication of Lemma 3.5 is that for any bounded sequence u,. both L.u. and
L5 u,. have the same two scale limit in L?(Q x Y;R%). The following lemma computes
the two scale limit of £f u., (and, therefore, of L°u.). Its proof is also a proof of
Theorem 3.1.

LEMMA 3.6. Suppose that u 2u in L2(QxY;RY). Suppose also that o, k are Y-
periodic and bounded functions. Then the two scale limit (up to a subsequence) of L u.
in L2(Q xY;R?) is Lou(x,y), where the operator Ly is as given in (3.1).

Proof. Let u, Zuin L2(Q2x Y;R?), The derivation of the two scale limit rests on
the fact that £;_ u. is a finite sum of convolution type operators which are compact. We
first write

€ €1 €,2 €,3 €4
bsuf:ﬁbs u5+£bs u€+£bs +£bs U,



T. MENGESHA, AND Q. DU 1207

and we will compute the weak limit of each of the terms. First writing it as a sum of
convolution type integrals and applying Lemma 3.4 and the remark after it we see that

£luo= | (e() () 22X (6 (¢ —0) (u () — u())

X —xP

and

2 (x,y)A () / Az - %) ((u)(z) —u(x,y))dz

Q

two scale in L2(;RY), as e —0.
Again with a similar approach the two scale limit of Eque can be computed as

ﬁgfue(x)::/Q(ae(x)—i-ae(x'))ﬁ (f,f) ;KQ(X/;X)(ue(xl)—ue(x))dxl
(3.6)
2 " )(04()’)+a(yl))5(y,y’)K2(Y'—Y)(U(Xa}")—U(XaY))dY'

two scale in L2(Q x Y;R9), as e — 0. Indeed, write Lque (x) =Ifuc(x) — ISuc(x), where

0= [ (o)) (2, ) 203

€ €

(x' —x)® (x' —x)u (x")dx’
and

x X) PEOC %) (1 )@ (' — x)dx ().

.= [ (au(0+ax) (2.2)

€ €

We will find the weak limit of each of these terms. Let us begin with Ifu.. For each x,
after making the change of variables x’ =x+ ez, we have

I;us(x):/B(w(a (5) —|—O¢(§+z))ﬂ (%%—l—z) Ko (2) . (x+ €z)dz.

€

Now suppose that 1(x,y) is a smooth test function. Then for each z, denote ¥(x,y):=
(a(y)+a(y+2)B(y,y +2)¢¥(x,y) and after a change of variables we have that

/Qlfue(x)-'t/ﬁ(x,):)dx:/B(OW) pQZ(;) (/Qz-ue(x—l—ez)zdIl(x,f) dx) dz.
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We make two observations. For each z€Y, the function y— (a(y)+a(y+2))5(y,y +
z) is in Lpg, (V). Second, for each z, U°(x+ez) two scale converges to u(x,y+z) in

L?(Q xY;R%). Denoting the inner integral by Q¢(z), and applying part 1) of Lemma
3.4, it follows from the above observations that for each z, we have

Q(z) — A Y(@(Y) +a(y+2))B(y,y t2)z-u(x,y +2)z ¥ (x,y)dydx.

Also note that for each z, |Q°(z)| < C|lu.|| <C. Then applying the uniform bounded
convergence theorem, it follows that as e — 0,

/Ifue(x)-z,b(x,§)d><:/ p2(2) Q°(z)dz
Q B

0y Izl

p2(2)
B(0,v) |z|?

= / (a(y) +aly +2)B(y,y +2)z u(x,y +2)z- (x.y) dydxda.
QxY

Rewriting the last limit we observe that

lim Ifue(x)~'(/)(x,§)dx

e—=0 /o €
=/ (/ (04(}’)+a(y/))5(}’7y/)K2(yl—Y)U(XJ/)CZY/) P (x,y)dy dx.
Qxy B(y,y)
To find the two scale limit of I5u., we first observe after change of variables that

ISu (x)= (go (%) —l—fe(x)) u‘(x)

where (y) is the Y-periodic bounded matrix function given by
o)~ [ (aly)+aly+2)5(y.y+2)Ke(a)da
B(0,7)
and for any x €}

£ (x) = / (x(x+e2) — 1) (aly) + aly +2)) B (y,y +2) Ka(2) dz.
B(0,7)

Clearly f.(x)— 0 strongly in L?(Q2) for any p>1, and therefore, I5u.(x) and ¢ (%) u.
have the same weak limit. We now apply, again, part 1) of Lemma 3.4 to prove that as
e—0,

® <§) u > @(y)u(x,y) two scale converge in L*(Q x Y;R%).
€

We can then conclude that as € — 0,

Isu,(x) > . )(a(y)+a(y'))5(y,y’)Kz(y’—Y)dY’u(X,y),in L*(QxY;RY).
Y,y

Putting together the terms, we get a complete proof of the assertion. ]
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4. Some regularity of the two scale limit vector field

In this section we look at the limiting nonlocal equation (1.3) closely. In fact we
prove that the solution to (1.3) preserves some of the regularity of the right hand side
b=b(x,y), under additional continuity assumptions on the coefficients o, k and 8. The
following theorem is a restatement of part of Theorem 1.2 and will be proved in this
section.

THEOREM 4.1.  Suppose that o,k € Cper(Y'), are positive functions and € Cper (Y xY)
is nonnegative and symmetric. Suppose also that b, is a bounded sequence that two
scale converge to b(x,y) in L?(QxY;R%), and b(x,y) € L3(Q;Cper(Y;RY)). Then the
two scale limit u(x,y) of the sequence of solutions u. to (1.1) solves (1.3) and belongs
to L?(;Cper (Y;RY)).

We note that if u is a solution to (1.3) and it is periodically extended in the y
variable to R?, then the extended function u solves (1.3) for all (x,y)€ (Q\©)xR?
with a right hand side b that is also periodically extended. From now on we assume
that this is indeed the case.

Before proving Theorem 4.1, let us first do some preparations. We introduce the
function w(x,y) =u(x,y) — (u)(x). By definition w € L?(Q2 x Y), periodic in y, (w)(x) =
0, and w(x,y)=0 for all (x,y) €O xY. To prove the theorem, therefore, it suffices to
show that w € L2(;Cper(Y;R?)).

Now rewriting the operator Lou given in (3.1) and (1.3), w solves the equation

S y)w(x,y) = Mow(x,y) = Lu” (x,y) +b(x,y), (x,y) € (2\0) x Y, (4.1)

where S(x,y) is the matrix function given by

S(x,y) =(a(y)+ <a>)/ﬂKo(X' —x)dx’+7(x,y)A(x) ® A(x)

(4.2)
[ () el )y Kaly -3 iy
B(y,v)
the operator My is a convolution type operator given by
Mow(xy)= [ (aly)+al )5y Kaly ¥ )wlxy )iy’
B
’ (4.3)

v
+/QK0(X'—x)(aw)(x/)dx'—/Q}\(x'—X)A(Xl)~(TW)(xl)dx',

and

It turns out that under the hypothesis of Theorem 4.1, the matrix function S(x,y) is
bounded, periodic and uniformly positive definite for all (x,y) € (2\ ©) x Y, with inverse
that is also continuous and periodic in the y-variable, see Lemma 4.2 below. Equation
(4.1) can then be conveniently rewritten as

(I—T)W(x,y):S(x,y)_l(SuH(x,y)+b(x,y)) (44)
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where the operator 7T is given by
Tw(x,y)=S(x,y) " Mow(x,y), (4.5)

where My is as defined in (4.3).

The advantage of the formulation (4.4) is that the equation can now be viewed as
essentially a Fredholm integral equation of second kind. We already know a solution
w exist to (4.4). To obtain further finer properties of the solution we look for a way
to write the solution w in a somewhat “explicit way”. One way of doing is to write
w as Nuemann series that converges uniformly in appropriate spaces. To do that, we
write the operator as a sum of two operators 7 =71, + T2y, in such a way that 7y, is
a contraction and 75, is “smoothening”, as will be made clearer. The fact that 77, is
a contraction, will make it possible to invert (I —7y,)~!, from which the conclusion of
Theorem 4.1 is deduced. In a series of lemma that follow we will make this approach
work.

LEMMA 4.2. Under the assumption of Theorem 4.1, the matriz function S(x,y) is
bounded, periodic, and uniformly positive definite for all (x,y) € (Q\©) xY. Moreover,
both S(x,y) and its inverse are continuous and periodic in'y.

Proof. The continuity and periodicity of S are not difficult to see. Once we show
that S is uniformly positive, then the continuity and periodicity of S~! will also follow.
Let us write S as

Sy =By + [ (@)l By Kaly )y
Y.y

where Py (x,y) = (a(y) +(a)) [ Ko(x' —x)dx’ +7(x,y)A(x) ® A(x). It is not difficult to

show that P;(x,y) is the two scale limit of P!(x) which is defined as in [14] by,

P, (x) = /Q(oze(x) +ae(x)Ko(x' —x)dx" + 75 (x) A(x) @ A(x) .

Furthermore, for each ¢, the matrix function P!(x), also called the stability matrix of a
peridynamic operator £! associated with the kernel pg, is shown to be uniformly (in x
and €) positive definite for all x €\ O as a necessary condition for the existence of a
minimizer for the corresponding quadratic potential energy. That is, see [14, Lemma 4]
for details, there exists py >0 such that

sup sup (Pla,a)>polal®, VaeR“

e>0xeQ\O
Consequently, as a two scale limit of a sequence of positive definite matrix functions,
P(x,y) is also positive definite in (2\0) x Y.

The nonnegativity of the second part of S follows from the fact that « is positive

function that is bounded from below, the nonnegativity and continuity of 5, and the
nonnegativity of po. ]

LEMMA 4.3. Assume the hypothesis of Theorem 4.1 is satisfied. Suppose that the

operator T is given by (4.5). For each n €N, write T as a sum of two operators Ti,
and Tan =T — T1n where

Tonw(x,y)=S(x,y) ! / Ki (y,2)w(x,y +2)dz
B(0,7)N{p2(z)>n}

with the notation K1 (y,z) = (a(y) + a(y +2))8(y,y +2)|z| 2p2(z)(z®2z). Then we have
the following:
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1. The operator Ty, is a linear bounded operator on L%(Q\©;Cpe(Y;R?)) and
that there exists N such that for alln> N,

[ T1inll 22 (Q\05C er (ViRAY) = L2 (Q\0:Cper (viRA)) < 1

2. If we L2(Qx Y;R?), and is periodically evtended in the y variable, then the
vector function Ta, w(x,y) € L2(Q; Cper (Y;R?)), and that there exists a constant
C,, >0 such that

||7-2nw||L2(Q;Cper(Y;Rd)) < Cn||W||L2(S2xY)‘

Proof.  The proof of Part 1) follows. If we& L%(Q;Cper(Y;RY)), then the fact
that T, w € L2(Q;Cper (Y;RY)) is deduced from the definition of the operator and the
property that the convolution of a continuous function with an integrable function will
remain a continuous function. The boundedness follows after noting that there exists
a constant C' >0 such that for all w & L?(Q;Cpe,(Y;R?)), and for all (x,y) €QxY we
have

ITan(x,y)|<C</B(O )X{Pz(Z)Zn}(Z)p2(|Z|>dz> [[w () e (v)-
Y

Now since po integrable, by choosing n large we can make the norm of 77, as small as
we wish.

Let us prove Part 2). For any w(x,y) € L?(2xY) that is periodically extended in
the y variable, it is not difficult to see that 72, w(x,y) is indeed periodic in y. To show
that 72, w(x,y) is continuous in y for almost all x €, it suffices to show that,

p2(z)

|22

o (%,y) = / o X< (@ply.y 42 D o nw iy +a)de
B(0,y

is continuous in y for all almost all x, where we introduced the continuous and periodic
function ¢(y,y’):=(a(y)+a(y"))B(y,y’). This is because, S(x,y)~! is periodic and
continuous by Lemma 4.2 and the remaining terms involve multiplication by an L2-
function of x. To that end, for any y,y’ €Y,

|1/Jn (Xay) - ¢n (X7y/)|

Sn/ lo(y,y+z)w(x,y+z)— oy .y +z)w(x,y' +z)|dz
B(0,7)
<o [ lelyya) el +a)iwiy +a)ldz

B(0,v)

tulelle [ [y a) - (wixy' +2)ldz
B(0,y
=J1 (xy,y) + 13 (x,y.5).
Let us show that both J7* and JJ' converge to 0 as |y —y’| — 0. Observe that

nle(y,y+z)—o(y',y' +2z)||w(x,y+z)| =0

as |y —y’| =0, since ¢ is continuous. Moreover, for almost all x,

nle(y,y+z)— oy ,y' +2z)|lwxy+2z)| <nll¢||w(xy +2)| € L' (B(0,7)),
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where we used the fact that w(x,y)€ L?(2xY). Then by the dominated convergence
theorem, J*(x,y,y’) =0, as |[y —y’| = 0. To prove the convergence of J¥, we notice that
if h=y —y’, then by Cauchy—Schwarz inequality,

I3 (%,5,5") S nll@lloc| BO)[W () = W, ht-) [ 12y

Therefore, for almost all x € Q, J¥(x,y,y’) —0 as |y —y’| = 0. That proves the continu-
ity of T2, w(x,y) in the y variable, for almost all x € Q.

Next we prove the boundedness of the operator as stated in the lemma. From
the definition of 7s,, it follows that there exists a constant C >0 such that for all
(x,y)€QxY,

|7'2nW(x,y)|<C<n<|W>(X)+/sz(X—X’)<|W|>(X')dX’>-

which leads to the estimates || 72, W||12(,c,.. (vir)) < CollWllL2(@xy)- O
We are now ready to give the proof Theorem 4.1.

Proof. (Proof of Theorem 4.1.) Given that b€ L%(Q,Cpe,(Y;RY)), let ue L2(Q x
Y;R?) be a solution to (1.3). Our goal is to show that, in fact, u€ L2(Q,Cpe, (Y;R?)).
To that end, we argued that it is enough to show that w(x,y)=u(x,y)— (u)(x) is in
L2(Q,Cper (Y;RY)). In our discussion earlier, we showed that w solves 4.4. Decomposing
the operator 7 as a sum of 7y, and 7Ta,, we may rewrite 4.4 as

(I _7—1n)w(X>Y) :gn(x7y)7

where g,(x,y)=TonW(x,y) +S(x,y) ' (£u? (x,y) +b(x,y)). The key observation is
that by the continuity assumptions on the coefficients and by part 2) of Lemma 4.3
it follows that if b€ L?(2;Cpe,(Y;R?)), then g, (x,y) € L2((2\ ©); Cper (Y;R?)). More-
over, again by Lemma 4.3, we may choose n large such that the operator norm of 71,
is small. Therefore, w can be written as the Neumann series

w(x,y) =Y T ga(x,y)-

k=1

and the Neumann series actually converges in L2(Q;Cpe,(Y;R?)), for all n> N. There-
fore, w € L2((Q\ 0);Cper (Y;R?)). 0

Let us reiterate the importance of Theorem 4.1. If b€ L2(Q;Cpe, (Y;R?)), the so-
lution u=u(x,y) is in L?(Q;Cper(Y;R?)) and therefore, the scaled function u(x, %) is
measurable and is in L?(€;R?). A natural question that we will try to address next
is whether the sequence u(x,*) strongly approximates the actual solution u. of the
peridynamic equation (1.1).

5. Approximating the solution of the heterogeneous peridynamic equi-
librium equation

Our aim in this section is to prove the second part of Theorem 1.2 that provides
a means of obtaining strong approximation to the solution u. of (1.1) via a scaled two
scale limit u(x,*). We will also present a way of computing u(x,y).
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5.1. Strong approximation. The following restates the second part of Theo-
rem 1.2 on the strong approximation.

THEOREM 5.1.  Assume the hypothesis of Theorem 1.2 is satisfied. Suppose that the
sequence {b¢€ L?(Q;RY)} two scale converges to b(x,y), b€ L?(;Cpe,(Y;R?)) and
b —b(x,%)||12(Q) =0 as e—=0. Assume also that u(x,y) is a solution to (1.3) corre-
sponding to b(x,y). Then the solution u. of (1.1) can be approvimated by u(x,%):

lim Jlue(-) —ul, =)l r2 (@) =0-

Proof. The assumption on the forcing term b(x,y) and Theorem 4.1 implies
that the solution u(x,y) € L?(Q;Cper(Y;R?)) and that the scaled function u(x,¥)e
L*(;R%). We denote the difference of u, and u(x,*) by e‘(x) =u(x) —u(x,%), and
we will estimate this difference. Note that for x € 2\ © we may plug in y = * to equation
(1.3) to obtain 0= (Lou)(x,%)+b(x,*). Now recalling that

Lou(x)=L, (u(x))+Ru(x), with|R||—0,e—0,
we have the error vector function e®(x) satisfies the nonlocal equation
—Leef(x)=b —b(x,2)+D(x), ,Vx€Q\O
€
where D:= L} (u(x,%)) - (Lou)(x,%)+R(u(x,%)). We also observe that e‘(x)e&
L2(£2,RY) and vanishes on ©. Then from the basic energy estimate, nonlocal Poincaré
inequality, we have that

€ € X €
ez <€ (116 e, )20y + D 200). (1)
Now we claim that the functions D¢(x) € L?(Q2), and that
lim ||D€[|2(q) =0. (5.2)
e—0

To see this we write

where

X/

o)~ (W)(x))ax’,

a5 (x) = e () /Q Ko(x' - x)(u(x',

dS(X)=/QK0(X’—X)(045(X’)H(X'7 )= {au)(x'))dx’,

d5(x) = / Ko (x' — ) (o (x') () (') — ) ) ('),
d5(x) = / (@) — e () Ko (' — x)u(x, Z)dx',

€

z x’

509 = [ 7ol =0 [ Mot x) . %) -, ) .
= [ A6 ) [ Aol =)l ()~ () (<

€

dg(x) :Te(X)A(X)/QAo(Z*X) (u(z,-) — (u)(2))dz,

X

£(x) =R(u(x, ),
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and
x X X X
dg(x):/ [xalxtem)(a(D) +aZ+2)8, % +2)
B(0,7) € € € €
X x
Ko (z)(u(x+ez,— +2z) —u(x, 7))} dz
€ €

[ @) ralZea)sE X s aka) e +) - ux 2)da
B(0,7)

€

We show that for i=1,...,8, ||dS||z2 — 0 as e —0. The strong convergence of {dS(-)}5_,
to 0 follows from the fact that the associated operators are all of convolution type
and Lemma 3.4. Let us demonstrate this by showing ||d§||z2 =0 as e—0. Since

u€ L?(Cper (Y;R?Y)), we know that u(x,x/e) gu(x,y), two-scale in L?(2xY) and

therefore, a(x)u(x,x/e)z\ (au)(x), two scale in L2(Q;R?), by part 1) of Lemma 3.4.
Then apply part 2) of the same lemma to conclude the strong convergence of d§. Let
us estimate d$(-) as follows.

. x
197 ()22 = IR (ulx,x/€))l 22 < eCllulx, Z)llz2 <eCllufl L2 @xv).-
To estimate (), let ¢(y,y’) = (a(y) +a(y))B(y.y") and g (x) = d5" (x) + d5?(x) with
dg’l(x) :/ xao(x+ez)p <§, X +z) Ks(z)(u(x+ ez, X +z)—u(x, X +2z))dz,
B(Oﬂ’) € € € €

a760= [ nateren) 1o (E T 4n)Katae  +0) e )

Let us now show the strong convergence of each of these terms. Using Minkowski’s
inequality,

1/2
145 o <C [ @) ( [ (xalcten) - D2t e yax) o
B(0,v) Q

For each z € B(0,7), as e —0,
[ (a6t ) =12 o) e 0.

from which it follows that as e —0, ||d§’2(~)HL2(Q) — 0. To complete the proof we note
that

1/2
||d§,1(.)||L2(Q)§C o )pg(z) (/QXQ(X—&—GZ)Hu(x—l—ez,.)—u(x,.)||%x(y)dx) dz
ot

which, by the continuity result in Lemma 5.2 below, goes to 0, as ¢ — 0. O

Let us prove the following continuity result which is used in the above proof. It is
the usual continuity in LP adapted to that of functions whose value is in the Banach
space Cpe(Y;RY). The proof follows the argument used in [26, Theorem 8.19].

LEMMA 5.2. Let 1<p<oo. Then for any u€ LP(Q,Cper(Y;R?)), we have

1 ) — NP _
%%/Qnu(xm,) ()2 ey dx =0, (5.3)
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Proof.  We prove the lemma by showing that LP(Q,Cpe,(Y;R?)) CF where F is
a set of functions u(x,y) € LP(2 x RY) that satisfy (5.3). Clearly F is a linear space,
namely if u; and uy are in F, so is their sum u; +uy. Note that this implies that F is
closed under any finite linear combination.

Next we show that F is closed with respect to the LP(£2, L (Y;R?)) norm. To prove
this, let (ug)r>1 €F and ugy —w in LP(Q,L°(Y")). Then for almost every (x,y), all h,
and any k we have that,

|u(X+h’y) _u<xay)| < |u7€(x+h>Y) _u(X+h’y)| + |uk(x+h7y> —u(x,y)|
+uk(x,y) —u(x,y)|.

Then taking the supremum norm in y first and integrating both sides to the power p,
we obtain that

P P
Q||u(x—|—h7-)_u(ar,".)||Lm(y)dx§C’/QHuk(x—!—h,-)_u(x—!—h,-)||Loo(y)dx
"‘C/Q||uk(X+h7')—uk(x,-)Him(y)dX"'C/QHuk(%')—u(l”w)Hpoo(de

<C [ a6t ) =) e 4 2C [ () = e ) e
Q Q

for some positive constant C'. Now take h — 0 first and then k — oo to obtain that u eF.
The proof of the lemma is complete if we show that every element of LP (€2, Cpe,-(Y;R?)) is
a limit of a sequence of elements of F. To that end, we observe that for any subsetY’ c R?
and v(x) € LP(Q;RY), V(x,y) =v(x)xy(y) €F where xy- represents the characteristic
function of Y. This follows from the inequality: for almost all x, and all h,

[V(x+h,.) =v(x,.)|[=v) < [v(x+h) —v(x)],
and the well known continuity of the integral gives

i [[v(x-+h) = v(0) | oy =0,

that holds for all v € LP(;R?). It turns out that every element of LP(Q,Cper(Y;RY))
is a limit of a sequence of finite linear combinations of functions of the above form,
v(x)xy(y) for v(x)€ LP(Q;R?), see a proof given in [12]. But, for completeness we
include it here. Fix v € LP(Q,Cpe,(Y;R?)). Let n be a positive integer and {Y;} be a a
partition of Y consisting of cubes with side lengths n~% such that

TLd

YinY;|=0 ifi#j, [Yil=n""and Y= V.
i=1
We denote the characteristic function of Y; extended by Y-periodicity to R? by x;(y).
Let y; be an arbitrary point in Y;. Then we observe that

v(x,y;) €LP(QRY)  and  v(x,yi)xi(y) € LP( L%, (Y;RY)).

y Hper

We now define
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Then since v(x,-) is continuous for almost all x € §2, we have

Gn(X) = [[V(%,-) =V (X,")[| Lo (v) =0 as n— oo for almost all x € Q.
Moreover  |gn(x)| <2[|v(X,-)||L~(y) and from the definition of the space

LP(Q,Cper (Y;RY)), the function x+ ||v(x,)||re(y)€LP(Q).  Then by applying
the dominated convergence theorem, we have g,(x)—0 in LP(Q). That is,

/Q [Iv(x,) —va(x, -)||’zoo(y)dx—> 0 asn—oo.

This completes the proof of the lemma. 0

5.2. A coupled homogenized nonlocal equation. Recall that the two scale
limit u vanishes on © xY and solves the nonlocal equation

7£Ou(xay) :b(X,y), (X7y) € (Q\@) xY.

Denoting uf (x) = (u)(x), we see that over any subdomain V,

lim uedx:/ u? (x)dx,
v 1%

e—0
implyies that uf captures the average macroscopic property of the sequence u¢. When
b is regular enough, the microscopic fluctuations of u® from its the averaged behavior is

carried by the sequence w(x,x/¢), where w(x,y) =u(x,y) — ul (x). As we have proved
in the previous section, w(x,x/e) can serve as a corrector since when € —0,

luf (x) — u? (x) — w(x, §)| —0, strongly L%(Q).

The goal of this section is to present a means of solving for uf and w systematically.
Recall from (4.1) that w solves the nonlocal equation

S(x,y)W(X,y) — Mow(X,y) = Laveu™ (x) + Loscu™ (x,y) +b(x,y), (5.4)

for all (x,y) € (2\©) x Y. Integrating the above equation over the cell Y and using the
fact that (w)(x) =0, we obtain that

/Y/B(O )(a(y)+a(y’))6(y,y’)K2(y’—y)dy’w(x,y)dy+A(x)<aw>

(5.5)
+A(x) @A) (TW) — / Mow(x,y")dy' = Layeu™ (x)+ (b)(x),
Y
for all x€Q\ ©. Subtracting the above from (5.4) we obtain that
sywxy)- [ [ (aly)+at)sy Kaly ~3)dy wixy)dy
Y JB(y)
(5.6)

— A(x){aw) — A(x) ® A(x) (rw) - Mow(x,y) + /Y Mow(x,y')dy’

=Loscu” (x,5) +b(x,y) — (b)(x).
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Here, as defined before,
S(x,y) = (a(y) + () /Q Ko — x)dx’ +7(x,y)A(x) ® A(x)

+/ (aly)+a(y")Bly,y" ) Ke(y —y')dy’
B(y,v)

Mowlxy) = [ (aly) +alsy)3ly. Kaly -y wlx.y')dy
B(y,v) (58)
+ | Ko(x' —x){aw)(x')dx'— / A —x)A(x") - (Tw)(x")dx'.
Q Q

Observe that the left hand side of (5.6) can be written as (I — Z)w, where Z is a
sum of convolution type operators, using the techniques presented in Section 4 and as
such (5.6) is a Fredholm integral equation of second kind type. w can be solved as a

function of uf’. Once we obtain w(x,y), we plug in that in (5.5) to solve for u’’.

6. Conclusion

In this work, a multiscale analysis of a state-based peridynamic Navier equation is
provided. The study is focused on linear variational problems that allow generic nonlocal
interaction kernels and introduces fine scale oscillations in both effective local materials
properties and nonlocal interaction kernels. A nonlocal two scale convergence and the
strong approximation properties are established for model equations represented by a
large class of multiscale interaction functions.

There are a number of issues worthy to be studied further. First, as in [1], we may
generalize the analysis to time-dependent problems and problems with heterogeneous
mass densities. Secondly, most of the multiscale analysis carried out in this paper is
for interaction functions that are integrable so that the resulting peridynamic operators
are well defined in the standard L? space. The extension to non-integrable influence
functions remains to be worked out. Thirdly, the highly oscillatory interactions consid-
ered in the current study is rather weak given the special scaling hypothesized. We are
interested in cases where a stronger contribution can be resulted from such small scale
oscillations. Finally, it is also interesting to develop similar nonlocal multiscale analysis
tools for other nonlocal models and to make the analysis useful in the development of
effective models and efficient numerical schemes to treat heterogeneities encountered in
many practical applications.

Acknowledgment. This work was supported in part by the U.S. National Science
Foundation grants DMS-1318586 and DMS-1312809, and the US AFOSR MURI Center
for material failure prediction through peridynamics.
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