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TOPOLOGY PRESERVATION FOR
IMAGE-REGISTRATION-RELATED DEFORMATION FIELDS∗

SOLÈNE OZERÉ† AND CAROLE LE GUYADER‡

Abstract. In this paper, we address the issue of designing a theoretically well-motivated and
computationally efficient method ensuring topology preservation on image-registration-related defor-
mation fields. The model is motivated by a mathematical characterization of topology preservation for
a deformation field mapping two subsets of Z2, namely, positivity of the four approximations to the
Jacobian determinant of the deformation on a square patch. The first step of the proposed algorithm
thus consists in correcting the gradient vector field of the deformation (that does not comply with the
topology preservation criteria) at the discrete level in order to fulfill this positivity condition. Once
this step is achieved, it thus remains to reconstruct the deformation field, given its full set of discrete
gradient vectors. We propose to decompose the reconstruction problem into independent problems of
smaller dimensions, yielding a natural parallelization of the computations and enabling us to reduce
drastically the computational time (up to 80 in some applications). For each subdomain, a functional
minimization problem under Lagrange interpolation constraints is introduced and its well-posedness
is studied: existence/uniqueness of the solution, characterization of the solution, convergence of the
method when the number of data increases to infinity, discretization with the Finite Element Method
and discussion on the properties of the matrix involved in the linear system. Numerical simulations
based on OpenMP parallelization and MKL multi-threading demonstrating the ability of the model to
handle large deformations (contrary to classical methods) and the interest of having decomposed the
problem into smaller ones are provided.

Key words. Dm-splines, constrained optimization, variational formulation, convergence, finite
element method, image registration.
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1. Introduction

Given two images called Template and Reference, registration consists in determin-
ing an optimal diffeomorphic transformation ϕ such that the deformed Template image
is aligned with the Reference. This technique is encountered in a wide range of fields,
such as medical imaging, when comparing data to a common Reference frame, when
fusing images that have not necessarily been acquired through similar sensors, or when
tracking shapes. For images of the same modality, the goal of registration is to corre-
late the geometrical features and the intensity level distribution of the Reference and
those of the Template. For images produced by different mechanisms and possessing
distinct modalities, the goal of registration is to correlate the images while maintaining
the modality of the Template. For an extensive overview of existing parametric and
non-parametric registration methods, we refer the reader to the work by Modersitzki
[28] and [29].

Generally, a physical interpretation is given to the problem of registration: the
shapes to be matched are considered to be the observations of a body subjected to
deformations. The deformation must thus remain physically and mechanically mean-
ingful, and reflect material properties: self-penetration of the matter (indicating that the
transformation is not injective, which is not physically consistent) should be prohibited.
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Mathematically, topology preservation (or orientation preservation) for a deformation
field mapping two subdomains of Z2 can be expressed by the following equivalent state-
ments (see [25] for further details): positivity of the four approximations to the Jacobian
determinant of the deformation on a square patch, corresponding angles of the deformed
configuration between 0 and π, or positivity of the signed areas of triangles defined on
the deformed configuration. When any of these characterizations is violated, the con-
vexity of the deformed region is infringed, signifying that the images of the corner points
of a square patch cross over the diagonal connecting their neighbors. Visually, the de-
formation field exhibits overlaps (see Figure 1.1 for such an example). This currently
occurs when dealing with problems involving large magnitude deformations.

Fig. 1.1: Academic example: Registration of a black disk to the letter C without topology-preserving
conditions. From left to right: Template image, Reference image and deformation field. The deforma-
tion map clearly exhibits overlaps.

The necessity of preserving topology arises in brain mapping for instance. It is
well-known that the cortical surface has a spherical topology (i.e., is homeomorphic
to the sphere or equivalently, the cortical surface has genus zero), so throughout the
registration process, this feature must be preserved. This medical illustration, among
others, constitutes a motivation for our work. We refer the reader to [23] and [24]
for further discussion about this anatomical property. Generally speaking, as soon as
the shapes to be correlated are homeomorphic, the preservation of orientation must be
ensured.

The main goal of the paper is thus to design a theoretically well-motivated and
computationally efficient method taking as input the deformation field that does not
comply with the topology preservation criteria, and giving as output, a corrected version
of this deformation, as faithful as possible to the original one.

Prior related works addressed this question of maintaining topology. In variational
frameworks, the main idea is to control the Jacobian determinant of the deformation,
proper measure for the local volume transformation under the considered deformation.
We would like to mention the work by Ashburner et al. (see [5, 6] and [7]) and the work
by Musse et al. (see [30]). In [30], the deformation map is modeled as a hierarchical dis-
placement field decomposed on a multiresolution B-splines basis. Topology preservation
is enforced by controlling the Jacobian of the transformation. The problem amounts
to solving a constrained optimization problem: the residual energy between the target
and the deformed source image is minimized under constraints on the Jacobian. This
paper is then extended to the 3D case by Noblet et al. (see [32]). The main difference
with the proposed approach is that, in our case, the set of feasible transformations is
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not restricted to a certain class of mappings.
In [14] (work dedicated to registration under nonlinear elasticity principles), Droske and
Rumpf address the issue of non-rigid registration of multi-modal image data. A suitable
deformation is determined via the minimization of a morphological matching functional
which locally measures the defect of the normal fields of the set of level lines of the Tem-
plate image and the deformed Reference image. The matching criterion includes first
order derivatives of the deformation and is complemented by a nonlinear elastic regu-

larization of the form

∫
Ω

W (DΦ,CofDΦ,detDΦ)dx, where W :R3×3×R
3×3×R→R is

supposed to be convex, DΦ is the Jacobian matrix of the deformation Φ, CofDΦ, the
cofactor matrix of DΦ and detDΦ, the Jacobian determinant.

In [27], Le Guyader and Vese introduce a non-parametric combined segmenta-
tion/registration model in which the shapes to be matched are viewed as Ciarlet–
Geymonat materials. The stored energy function of such a material is built so that
it becomes infinite when the Jacobian determinant of the deformation tends to 0+. In
[21], Haber and Modersitzki address the issue of non-parametric image registration un-
der volume-preserving constraints. They propose to restrict the set of feasible mappings
by adding a volume-preserving constraint which forces the Jacobian of the deformation
to be equal to 1. In [22], the authors pursue in the same direction: they propose
to keep the Jacobian determinant bounded, which leads to an inequality-constrained
minimization problem.

An information-theoretic-based approach is proposed in [34] to generate diffeomor-
phic mappings and to monitor the statistical distribution of the Jacobian determinant.
The authors propose to quantify the magnitude of the deformation by means of the
Kullback–Leibler distance between the probability density function associated with the
deformation and the identity mapping.

Although theoretically well-motivated, the above mentioned models are hard to
handle numerically, requiring for instance, the use of optimization techniques such as
logarithmic barrier methods or special discretization schemes (see [33] or [29]). This
observation led us to disconnect the registration problem from the topology-preserving
question.

An alternative to the straight penalization of the Jacobian of the deformation was
proposed by Christensen and collaborators. In [11], they introduce a viscous fluid reg-
istration model in which objects are viewed as fluids evolving in accordance with the
fluid dynamics Navier–Stokes equations. This model is complemented by a regridding
technique ensuring positivity of the Jacobian determinant. The method consists in mon-
itoring the values of the Jacobian determinant of the deformation. If the values drop
below a defined threshold, the process is reinitialized taking as initialization the last
computed deformed Template. However, for problems involving large deformations, nu-
merous regridding steps might be required, which is memory-consuming since one needs
to store the last computed deformation field before each reinitialization. Numerically,
the resulting deformation field (computed as the composite of intermediate deforma-
tions) may not fulfill the topology-preserving conditions, even if the intermediate ones
do.

In this paper, we propose a theoretically well-motivated algorithm that falls within
the framework of a previous work by the second author ([26]). In this preliminary
work, the authors, inspired by [25], design a two-step-algorithm enforcing topology
preservation, independently of the registration technique used. The algorithm is thus
independent of the selected registration model. It can be applied at intermediate steps
of the registration process or at the end.
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The first step consists in correcting the gradient vector field of the deformation
(that does not comply with the topology preservation criteria) at the discrete level
in order to fulfill a set of conditions ensuring topology preservation in the continuous
domain after bilinear interpolation (see also [25]). Basically, it consists in balancing
the gradient vectors of the displacement field u (related to the deformation field ϕ by
the relation ϕ=id+u) by a parameter α belonging to ]0,1[. The proposed algorithm
provides a unique optimal parameter α at each node of the grid. Once the correction
stage is achieved, it remains to reconstruct the deformation field, given its full set of
discrete gradient vectors. The problem is phrased as a regularized least-squares problem
but as is, one would fail to get the uniqueness of the solution (the solutions would be
defined up to a constant). It is thus complemented by a constraint on the mean of the
deformation field, thus ensuring uniqueness of the solution. The algorithm is shown to
be efficient and has demonstrated its ability to handle large deformations. Also, it has
been compared with Christensen et al.’s regridding technique on complex slices of brain
data in the case of brain mapping to a disk. In many cases, the proposed algorithm
outperforms the regridding technique. Nevertheless, some criticisms can be raised:

• First of all, the computations are carried out on the whole image domain, even
though the regions exhibiting overlaps are generally very few and localized on
the image domain, which leads to superfluous calculations and strays us from
real-time computation requirements. In practice, the deformation components
are recomputed over the whole domain, altering somewhat the physics of the
problem.

• Besides, the constraint that complements the approximation problem (being
about the mean of the deformation) is rather artificial and cannot be physically
interpreted. It is global and may not render well the complexity of variations
of the deformation components.

We thus propose in this paper to decompose the original reconstruction problem
into independent problems of smaller dimensions, yielding a natural parallelization of
the computations. We localize the regions exhibiting overlaps, and formulate for each
domain a functional minimization problem equipped with interpolation constraints on
the boundary, reproducing more accurately the physics of the problem. The algorithm
acts locally (the deformation is left unaltered where the topology-preserving criterion
is fulfilled) and the obtained result thus remains more consistent with the physics of
the problem (due also to the Lagrange interpolation constraints stemming from the
unaltered deformation field). One could object that when applied at the end of the pro-
cess, the obtained deformation field is no longer a solution of the optimization process.
This is indeed true, but as previously mentioned, the proposed algorithm acts locally
and the minimization problems are constrained with Lagrange interpolation constraints
stemming from the unaltered deformation. Besides, the proposed algorithm is applied
when the registration process produces a deformation field that is itself mechanically
and physically meaningless (a minimization problem in registration can be well-posed
with the guarantee of existence of minimizers —for instance in the nonlinear elasticity
framework—but may numerically generate overlaps). It thus makes sense to correct
the obtained deformation field. At last, the algorithm acts on the magnitude of the
displacement vectors, not on their direction.

One could also claim that registration models involving controls on the Jacobian
determinant are more relevant than the proposed modelling. We answer first, that for
many of those methods, no theoretical result of existence of minimizers is provided (or
theoretical results are given but the theoretical model is not the one that is implemented
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in practice). It thus means that the numerical scheme, at best, makes the energy
decrease to the infimum, but the optimization problem does not necessarily admit a
minimizer. Besides, some numerical artifices are often used. For instance, for the fluid
registration model by Christensen et al., a detailed algorithm is provided in [28]. In

the main loop, the displacement vector field is updated in the following way: �U (k+1)=

�U (k)+δt(k)δ�U (k) with

{
δu

(k)
max= ||δ�U (k)||V ,

δt(k)=min
(
1,tolu/δu

(k)
max

) . It means that this procedure has

the same effect as the method we propose: the direction of the obtained displacement
vector field is preserved while the magnitude can be modified. This strategy of rescaling
is further discussed p. 183 of [28] for variational non-parametric registration methods.

From the second author’s experience, the implementation of such methods (without
heavy numerical artifices) does not guarantee either that the obtained deformation field
is topology-preserving and fails to correctly align the shapes when the deformations are
too large. That is why we took the side of decoupling the registration process from the
topology-preserving question. When applied at intermediate steps of the registration
process, the corrected deformation field can be interpreted as a new initial condition of
the problem. At last, one could also argue that decomposing the original problem into
smaller dimension independent ones may destroy the global coupling. For the reasons
stated above, we believe that this decoupling does not affect the result. In particular,
the proposed results are qualitatively comparable to those presented in [26], when no
decomposition into subproblems is considered.

The novelty of the paper thus rests upon:

• the decomposition of the original problem into independent problems of smaller
dimensions, enabling us to significantly reduce the computational time (up to
a factor 80 for some critical applications).

• the proof of the existence/uniqueness of the solution of the introduced functional
minimization problem on each subdomain,

• a theoretical result of convergence when the size of the data to approximate
increases to infinity, ensuring the well-posedness of the problem.

• a result of convergence of the method in the discrete setting.

• a precise depiction of the discretization of the problem: generic finite element,
basis functions, properties of the systems to be solved, and in particular a
result of nonsingularity of the symmetric indefinite matrix involved in the linear
systems.

The remainder of the paper is organized as follows. In Section 2, the first step of
the method is recalled. Section 3 is dedicated to the modelling of the reconstruction
step. Theoretical results are established such as the result of existence/uniqueness of
the solution of the involved minimization problem, the characterization of the solution,
a result of convergence as well as the discretization of the problem. Section 4 is devoted
to numerical simulations demonstrating the ability of the model to handle large defor-
mations and the interest of having decomposed the problem into independent smaller
ones from a computational viewpoint. Let us emphasize that the focus of the paper is
on the mathematical presentation and well-posedness of the method. Hence, the com-
putational results are currently still restricted to two dimensions. A comment on the
extension of the model to 3D is given at the end of Section 3.



1140 TOPOLOGY PRESERVATION FOR DEFORMATION FIELDS

2. Correction of the deformation
The first step consists in applying the same procedure as the one adopted by Le

Guyader et al. in [26] (inspired by prior related work [25] but slightly different). For
the sake of completeness, we remind the reader about this correction stage.

Let Ω be a connected bounded open subset of R2 representing the reference config-
uration, with Lipschitz boundary ∂Ω.

Let h :

∣∣∣∣∣Ω→R
2

(x,y) �→h(x,y)=
(
f(x,y),g(x,y)

)T be the deformation of the reference con-

figuration.
A deformation is a smooth mapping that is orientation-preserving and injective

except possibly on ∂Ω. We denote by u the displacement field associated with h, i.e.,
h=id+u.

The deformation gradient is ∇h :Ω→M2(R) defined by ∇h= I2+∇u with M2(R)
the set of 2×2 real square matrices.

The correction algorithm is based on the following proposition that provides a set
of conditions to be fulfilled in the discrete setting to ensure topology preservation in the
continuous domain. More precisely, Proposition 2.1 relates conditions of positivity of
some discrete Jacobians to a property of topology-preservation in the continuous domain
after bilinear interpolation. This approach seems relevant since we work in practice with
digital images: the centers of gravity of the pixels coincide with the nodes of the discrete
domain.

Proposition 2.1 (From Karaçali and Davatzikos in [25]).
Let C be the class of deformation fields h=(f,g) defined over a discrete rectangle

Ω=[0,1, . . . ,M ]× [0,1, . . . ,N ]⊂N
2 for which Jff , Jfb, Jbf , Jbb are positive for all (x,y)∈

Ω.
Let h=(f,g) be a deformation field belonging to C. Then its continuous counterpart

determined by the interpolation of h over the domain ΩC =[0,M ]× [0,N ]⊂R
2 using the

interpolant Φ given by Φ(x,y)=Ψ(x)Ψ(y) with

Ψ(t)=

⎧⎨⎩ 1+ t if −1≤ t<0
1− t if 0≤ t<1
0 otherwise

preserves topology, with the backward and forward finite difference schemes f b
x, f

f
x , f

b
y ,

ff
y to approximate the partial derivatives of f (similarly for g) and∣∣∣∣∣∣∣∣∣∣

Jff = ffx (p1)g
f
y (p1)− ffy (p1)g

f
x(p1)

Jbf = fbx(p2)g
f
y (p2)− ffy (p2)g

b
x(p2)

Jfb= ffx (p3)g
b
y(p3)− fby(p3)g

f
x(p3)

Jbb= fbx(p4)g
b
y(p4)− fby(p4)g

b
x(p4).

We recall (similarly for g) that:∣∣∣∣∣∣∣∣∣∣
ffx (x,y)= f(x+1,y)− f(x,y)

fbx(x,y)= f(x,y)− f(x−1,y)

ffy (x,y)= f(x,y+1)− f(x,y)

fby(x,y)= f(x,y)− f(x,y−1).
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Fig. 2.1: Layout of the points on a reference square [0,1]× [0,1]. This representation is given as
an example: only the order of the points p1, p2, p3 and p4 matters for the definition of the discrete
Jacobians. These points coincide with the centers of gravity of the pixels. In the sequel, these will be
denoted by ai.

Remark 2.2. It is shown in [25] that if a deformation field is continuous and globally
one-to-one, it preserves topology. It is from this angle that the issue of topology preser-
vation is addressed here. By construction, the continuous counterpart of h denoted by
hc is continuous. The one-to-one property is conditional to the local behavior of hc: if
the continuous deformation field hc is one-to-one over all square patches that partition
the continuous domain defined by the discrete grid, then hc is globally one-to-one. If
we go back to Proposition 2.1, it involves discrete Jacobians, that is, differences. The
continuity of the function is thus sufficient to ensure that the mathematical writing is
correct. More precisely, inside a given square (for the purpose of illustration [0,1]× [0,1]
and p1=(0,0), p2=(1,0), p3=(0,1) and p4=(1,1)), the components of h=(f,g) are
differentiable (as polynomials) and more precisely, with the notations of Proposition
2.1,

∂f

∂x
(x,y)=(f(1,0)− f(0,0))(1−y)+(f(1,1)− f(0,1))(1−y),

∂g

∂x
(x,y)=(g(1,0)−g(0,0))(1−y)+(g(1,1)−g(0,1))(1−y),

∂f

∂y
(x,y)=(f(1,1)− f(1,0))x+(f(0,1)− f(0,0))(1−x),

∂g

∂y
(x,y)=(g(1,1)−g(1,0))x+(g(0,1)−g(0,0))(1−x),

and after intermediate computations, the Jacobian determinant J =J(x,y) is given by:

J(x,y)=Jbf x(1−y)+Jff (1−x)(1−y)+Jbbxy+Jfb (1−x)y,

that is, a convex combination of the 4 positive discrete Jacobians. It means that the
Jacobian determinant J is positive everywhere inside the square patch. Continuity
of the bilinear interpolant provides continuity of hc over the square and hc is locally
one-to-one over all such squares and globally one-to-one over the domain.

The general idea resulting from Proposition 2.1 is to balance, at the discrete level
and at each node of the grid, the gradients of the displacement vectors by a parameter
α∈]0,1[, in order to comply with the above conditions of positivity of the discrete
Jacobians. The construction of the algorithm is motivated by the following observation.
In the continuous domain, if we decompose the deformation field h=(f,g) into h=id+u
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with u=(u1,u2) the displacement vector field, we can compute the Jacobian J(x,y) at
any point (x,y).

If now we focus on the related deformation field hα : (x,y) �→ (id+αu)(x,y)=
(fα(x,y),gα(x,y))=(x+αu1(x,y),y+αu2(x,y)), we can similarly calculate the Jaco-
bian Jα(x,y) at any point (x,y) by:

Jα(x,y)=

(
1+α

∂u1

∂x
(x,y)

)(
1+α

∂u2

∂y
(x,y)

)
−α2 ∂u2

∂x
(x,y)

∂u1

∂y
(x,y).

It exhibits the following properties:

• Jα(x,y) is a polynomial of order 2 in α,

• lim
α→0

Jα(x,y)=1,

• lim
α→1

Jα(x,y)=J(x,y).

If we suppose that J(x,y)<0 then, according to the intermediate value theorem,
there exists α∗∈]0,1[ such that Jα∗(x,y)=ε∈ [0,1]. The idea is thus to confine the
Jacobian values to a positive interval by correcting the gradients of the displacement
vector field.

Strictly, we should consider the deformation field defined by hα : (x,y) �→
(x+α(x,y)u1(x,y),y+α(x,y)u2(x,y)) in the continuous domain.

But the aim is to adapt the previous idea to the discrete setting. At each node of
the grid, a correction parameter is computed and applied not to the displacement vector
field itself, but to the gradients of the displacement vector field. Note that applying the
correction stage at the level of the displacement vector field itself would not guarantee
that the discrete Jacobians obtained fulfill the conditions of Proposition 2.1.

We adapt the previous idea to the discrete setting: the algorithm produces a unique
optimal correction parameter α at each node. If J(x,y)<0, there are four possible
shapes for Jα(x,y):

1. Jα(x,y) reaches its minimum over ]0,1] (cf. Figure 2.2, solid line),

2. Jα(x,y) reaches its minimum over ]1,+∞] (cf. Figure 2.2, dotted line),

3. Jα(x,y) reaches its maximum over [0,1[ (cf. Figure 2.2, dashed line),

4. Jα(x,y) reaches its maximum over ]−∞,0] (cf. Figure 2.2, dash-dotted line).

Consequently, if α∗∈]0,1[ is such that Jα∗(x,y)=0, then for 0<α<α∗, Jα(x,y)>0. For
instance, suppose that for a given node, the four Jacobians are negative (in practice,
this is the most common case). Then we compute four correction parameters α∗

ff , α
∗
fb,

α∗
bf and α∗

bb associated to each combination. It suffices to take the minimum of these
four values to guarantee that the four Jacobians are positive.

Now suppose that three Jacobians are negative, for instance, Jff , Jbf and Jfb. Then
we compute α∗

ff , α
∗
fb and α∗

bf , and we set αint=min(α∗
ff ,α

∗
fb,α

∗
bf ). The second-degree

polynomial in α, Jα
bb is computed for αint. If Jαint

bb (x,y)>0, then α∗=αint, otherwise
we take α∗=min

(
roots(Jα

bb(x,y))
)
. And so on for the other cases.

The algorithm thus provides a unique optimal correction parameter per grid node
(when necessary) and the approximated gradients of the displacement vector field are
corrected in compliance with the obtained correction parameters.

Thanks to this parameter α, we can compute the corrected (when necessary) Jaco-
bian matrix at the considered grid node: the output of the first step is then this discrete
set of corrected (when necessary) Jacobian matrices hereinafter denoted by {ωi}.
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Fig. 2.2: The four possible representations of the Jacobian.

3. Deformation reconstruction
The issue to be addressed now lies in the reconstruction of the deformation field,

given its discrete set of gradients, with the fewest computations possible (real-time
computations should be expected).

Unlike our previous model on this topic, formulated as a functional minimization
problem on the whole domain Ω (meaning in particular that the computations were
made even on regions of the deformation map complying with the orientation-preserving
requirement), we propose to concentrate the computational effort on the subdomains of
the deformation grid exhibiting overlaps and to set Lagrange interpolation conditions
on the boundary of the subdomains, reproducing more faithfully the physics of the
problem. This allows us to apply the reconstruction process on each region indepen-
dently and to reduce significantly the computational cost. In the sequel, we assume that
we have identified (manually for the moment) N nonempty connected bounded open
subsets Ωi of Ω with Lipschitz boundary, i∈{1, · · · ,N} on which orientation preserva-
tion is violated. ∀i∈{1, · · · ,N}, Ωi⊂Ω and Ωi∩Ωj =∅ for i �= j. We then introduce
our mathematical model of reconstruction, valid for each subdomain Ωi, i∈{1, · · · ,N}.
A Dm-spline approach is retained (cf. [2]). Generally speaking, the Dm-splines over
an open subset of Rn are multidimensional minimizing splines, i.e., functions defined
on Ω subjected to interpolation or smoothing conditions and that minimize an energy
functional involving derivatives of order m. This choice of methodology is guided by
the authors’ experience in the field of approximation. This technique proves to be very
satisfactory both in terms of theory (convergence results validate the approach) and
applications: it provides accurate results. Here again we refer the reader to [2] for more
details. Of course, other strategies could have been considered.

3.1. Functional to be minimized. We remind the reader that ∀i∈{1, · · · ,N},
Ωi is a nonempty connected bounded open subset of Ω⊂R

2 with Lipschitz boundary.
Let ν be an integer such that ν ∈{1, · · · ,N}. Inspired by the Dm-spline approach,
we introduce a regularized least-squares problem defined on a space of vector-valued
functions, in order to fit the discrete set of corrected gradient vectors of the defor-
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mation and to satisfy Lagrange interpolation constraints. More precisely, the problem
is phrased as a constrained functional minimization problem on a convex subspace of
the Hilbert space H3(Ων ,R

2) so that the Sobolev’s embedding H3(Ων ,R
2)�C1(Ων ,R

2)
holds (it means that the inclusion of H3(Ων ,R

2) into C1(Ων ,R
2) is continuous, that is

to say: H3(Ων ,R
2)⊂C1(Ων ,R

2) and there exists C>0, depending only on Ων , such
that ∀u∈H3(Ων ,R

2),‖u‖C1(Ων ,R2)≤C‖u‖H3(Ων ,R2), see [1] or [8]). It guarantees, in par-
ticular, that the pointwise fitting term dealing with the derivatives of the unknown is
well-defined. We thus rebuild a smoother-than-required deformation field (by smoother,
we mean more regular) but retain only the values of the deformation components ob-
tained at the grid nodes (centers of gravity of the pixels). Before depicting our model,
we introduce some fundamental mathematical notions that will be useful to state the
functional minimization problem.

For any γ=(γ1,γ2)∈N2, we write |γ|=γ1+γ2 and ∂γ =
∂|γ|

∂xγ1

1 ∂xγ2

2

. We recall the

standard inner product and the induced norm on H3(Ων ,R
2):

((u,v))H3(Ων ,R2)=
∑
|γ|≤3

∫
Ων

〈∂γu,∂γv〉2dx1dx2 and ‖v‖2H3(Ων ,R2)=((v,v))H3(Ων ,R2),

and the semi-inner product and the semi-norm:

(u,v)3,Ων ,R2 =
∑
|γ|=3

∫
Ων

〈∂γu,∂γv〉2dx1dx2 and |v|23,Ων ,R2 =(v,v)3,Ων ,R2

where 〈·, ·〉2 denotes the Euclidean scalar product in R
2. For the sake of clarity, we

recall the general definition of a P -unisolvent set.

Definition 3.1 (see [2]). For any l∈N, we denote by Pl the space of polynomial
functions defined over R

n of degree ≤ l with respect to the set of variables, and for
any l∈N and for any nonempty connected open subset Ω in R

n, by Pl(Ω) the space of
restrictions to Ω of the functions in Pl. A set A={a1, · · · ,aN} of N points of Rn is
Pl-unisolvent if ∀{α1, · · · ,αN}⊂R, ∃!Ψ∈Pl, ∀i∈{1, · · · ,N}, Ψ(ai)=αi.

In particular, ∃!Ψ∈Pl, ∀i∈{1, · · · ,N}, Ψ(ai)=0. It is clear that a necessary con-
dition for the set A to be Pl-unisolvent is that N =dimPl.

Let A={ai}i=1,···,N be a set of N points of Ων containing a P1-unisolvent subset.
As the set A contains a P1-unisolvent subset, we can only infer that N ≥dim P1. In our
application, the set A is made of the coordinates of the image pixels included in Ων .

Let also {ωi}i=1,···,N be the set of N Jacobian matrices of the deformation given
at {ai}i=1,···,N . This set is made of the corrected gradient vectors of the deformation
obtained at the correction step of the algorithm. At last, let {bi}i=1,···,l be l points

of Ων where the discrete gradient vectors of the deformation have been unaltered (so
the deformation is unchanged). In all our applications, these points will belong to the
boundary ∂Ων of Ων . We set Lagrange interpolation constraints at these points (see
Figure 3.1). It means that if h denotes the unaltered deformation and v denotes the
unknown deformation of the minimization problem, we must have:

∀i∈{1, · · · ,l} , v(bi)=h(bi).
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Fig. 3.1: Example of a subdomain (white zone) Ω1⊂Ω on the boundary of which, interpolation
conditions are prescribed (black dots representing the bi, i∈{1, · · · ,l}).

Let K be the set defined by K={v∈H3(Ων ,R
2),β(v)=η}, with β the mapping:

β :

∣∣∣∣H3(Ων ,R
2)→R

2l

v �→β(v)=
(
v(b1), · · · ,v(bl)

)T
and η=

(
h(b1), · · · , h(bl)

)T
. The convex set K is closed as the reciprocal image of a

closed set by a continuous mapping (see [8]). The approximation problem can be stated
as follows: given the set of N Jacobian matrices defined at {ai}i=1,···,N , search for v
sufficiently smooth such that ∀i∈{1, · · · ,N}, the Jacobian matrix Dv evaluated at ai
is close to wi and such that ∀i∈{1, · · · ,l}, v(bi)=h(bi). For this purpose, we need the
following additional notations. We denote by ρ the operator defined by:

ρ :

∣∣∣∣H2(Ων ,R
2×2)→ (R2×2)N

v �→ρ(v)=
(
v(a1),v(a2), · · · ,v(aN )

)T . (3.1)

The problem is then cast as an optimization one by means of the functional Jε defined
by:

Jε :

∣∣∣∣H3(Ων ,R
2)→R

v �→ 〈ρ(Dv)−w〉2N +ε |v|23,Ων ,R2 ,

with ε>0 a tuning parameter and with w=
(
w1,w2, · · · ,wN

)T ∈ (R2×2
)N

. The opera-

tor 〈·, ·〉N is defined as follows: ∀ξ∈ (R2×2
)N

, ∀η∈ (R2×2
)N

, 〈ξ,η〉N =

N∑
i=1

4∑
j=1

ξijηij and

〈ξ〉N = 〈ξ,ξ〉 1
2

N . The first term of the functional Jε ensures closeness to the data while the
second component is a regularizing component. We consider the following minimization
problem: {

Search for σε∈K such that

∀v∈K, Jε(σε)≤Jε(v).
(3.2)
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We can notice that minimizing Jε with respect to v is equivalent to minimizing:

〈ρ(Dv)〉2N −2〈ρ(Dv),ω〉N +ε |v|23,Ων ,R2 .

From now on, we thus denote by Jε the new functional:

Jε :

∣∣∣∣H3(Ων ,R
2)→R

v �→ 〈ρ(Dv)〉2N −2〈ρ(Dv),ω〉N +ε |v|23,Ων ,R2 .

Our goal being to prove the existence/uniqueness of the solution of the introduced
functional minimization problem, we rephrase functional Jε in terms of the bilinear
form a and the linear form L defined hereafter. Let a be the symmetric bilinear form
such that:

a :

∣∣∣∣H3(Ων ,R
2)×H3(Ων ,R

2)→R

(u,v) �→ 〈ρ(Du),ρ(Dv)〉N +ε(u,v)3,Ων ,R2 .

Let also L be the linear form defined by:

L :

∣∣∣∣H3(Ων ,R
2)→R

v �→ 〈ρ(Dv),ω〉N .

The minimization problem thus becomes:{
Search for σε∈K such that

∀v∈K,a(σε,σε)−2L(σε)≤a(v,v)−2L(v).
(3.3)

The mappings a and L are continuous, but the trouble is that the bilinear form a is
not H3(Ων ,R

2)-elliptic, which prevents us from applying Stampacchia’s theorem ([8])
straightforwardly. To circumvent this issue, we introduce an artificial term in the min-
imization problem formulation as follows:{

Search for σε∈K such that

∀v∈K,a(σε,σε)−2L(σε)+‖β(σε)‖22l≤a(v,v)−2L(v)+‖β(v)‖22l.
(3.4)

This new phrasing involves the bilinear form denoted by â defined by

â :

∣∣∣∣H3(Ων ,R
2)×H3(Ων ,R

2)→R

(u,v) �→a(u,v)+〈β(u),β(v)〉2l
and the following propositions hold.

Proposition 3.2. The mapping ‖̂.‖ defined on H3(Ων ,R
2) by

‖̂.‖ :
∣∣∣∣H3(Ων ,R

2)→R

v �→√â(v,v)

is an Hilbertian norm.

Proof. The proof is based on the argument of connectedness of Ων and the property
of P1-unisolvence of the set A.

• It is obvious that ‖λ̂v‖= |λ|‖v̂‖, ∀λ∈R according to the definition of â.
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• The triangle inequality is also obvious as a result of the definition of â and the
inner product.

• Let us prove that ‖v̂‖=0⇒v≡0.

Let v∈H3(Ων ,R
2) be such that ‖v̂‖=0.

It implies that:

– |v|3,Ων ,R2 =0 and as Ων is connected, it yields v∈P2(Ων ,R
2).

– Also, <ρ(Dv)>N=0. As v∈P2(Ων ,R
2), it follows that Dv∈P1(Ων ,R

2×2)
and from the unisolvence property we conclude that Dv=0R2×2 . The

mapping v can thus be written as v=

(
c1
c2

)
where c1 and c2 are constants.

– At last, <β(v)>2
R2l=0⇔β(v)=0R2l and so c1= c2=0.

It yields v≡0.

Proposition 3.3. The norm ‖̂.‖ is equivalent to the norm ‖.‖H3(Ων ,R2) on H3(Ων ,R
2).

Proof. The proof is based on a theorem of equivalence of norms by Nec̆as (Theorem
7.1, [31]) and on the continuity of the bilinear form â on H3(Ων ,R

2)×H3(Ων ,R
2).

The continuity of the bilinear form â results from the continuity of a and the following
inequality: ∀(u,v)∈H3(Ων ,R

2)×H3(Ων ,R
2),

|<β(u),β(v)>R2l |≤ |β(u)|R2l |β(v)|R2l (Cauchy–Schwarz inequality)

with |β(u)|R2l =

√
l∑

i=1

<u(bi)>2
2.

But<u(bi)>2≤‖u‖C0(Ων ,R2) with ‖u‖C0(Ων ,R2)= sup
x∈Ων

<u(x)>2 and using the Sobolev’s

embedding theorem, we have : <u(bi)>2≤C‖u‖H3(Ων ,R2).

Therefore, |β(u)|R2l ≤√lC‖u‖H3(Ων ,R2) and

|<β(u),β(v)>R2l |≤ lC2‖u‖H3(Ων ,R2)‖v‖H3(Ων ,R2).

The bilinear form â being continuous on H3(Ων ,R
2)×H3(Ων ,R

2), there exists a constant
c>0 such that ∀v∈H3(Ων ,R

2):

â(v,v)=‖v̂‖2≤ c‖v‖2H3(Ων ,R2).

For the second part of the inequality, we use Nec̆as’ theorem with k=3 and p=2.

We take 1√
ε
ρ for f1 and 1√

ε
β for f2. ∀v∈P2(Ων ,R

2),
2∑

i=1

|fiv|2=0⇔v≡0 from the

unisolvence property of the set A. From Nec̆as’ theorem, we then get that there exists
a constant c1>0 such that:

c21‖v‖2H3(Ων ,R2)≤|v|23,Ων ,R2 +
1
ε <ρ(Dv)>2

N + 1
ε ‖β(v)‖2R2l

⇔ εc21‖v‖2H3(Ων ,R2)≤ ε |v|23,Ων ,R2+<ρ(Dv)>2
N +‖β(v)‖2

R2l

⇔ ‖v‖2H3(Ων ,R2)≤ 1
εc21
‖v̂‖2.

It results in the following theorem:

Theorem 3.4. Problem (3.2) admits a unique solution σε∈K. This solution is
characterized by the variational inequality: ∀v∈K, â(σε,v−σε)≥L(v−σε).

Proof. The proof is based on Stampacchia’s theorem ([8]).
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3.2. Characterization of the solution. Let K0 be the vector subspace of
H3(Ων ,R

2) defined by

K0={v∈H3(Ων ,R
2) |β(v)=0R2l}.

Let S be the set defined by

S={u∈H3(Ων ,R
2) | ∀v∈K0, a(u,v)=L(v)}.

Then the following proposition holds:

Proposition 3.5. The unique solution σε of problem (3.2) is characterized by:

{σε}=K∩S.
This is mainly an abstract result that will be useful to prove Theorem 3.6.

Proof. First, let us prove that {σε}⊂K∩S.
From Stampacchia’s theorem, we have ∀v∈K:

â(σε,v−σε)≥L(v−σε).

But v−σε∈K0 so â(σε,v−σε)=a(σε,v−σε)≥L(v−σε).
Moreover, −(v−σε)∈K0 since K0 is a vector space, so ∀v∈K:

â(σε,−(v−σε))≥L(−(v−σε))⇐⇒ â(σε,v−σε)≤L(v−σε).

By gathering the two above results, it yields â(σε,v−σε)=L(v−σε), which means that
∀v0∈K0, a(σε,v0)=L(v0).

Therefore σε∈K∩S. Now, let us prove that K∩S⊂{σε}. Let w∈K∩S. So w∈K
and ∀v0∈K0, a(w,v0)=L(v0).∀v∈K,v−w∈K0 so:

a(w,v−w)=L(v−w)≥L(v−w).

Therefore, w is a solution of Problem (3.2) and by uniqueness of the solution, w=σε.
It yields K∩S⊂{σε}.

3.3. Lagrange multipliers. We now introduce Lagrange multipliers, which
enables us to define the variational formulation of problem (3.2) on the whole space
H3(Ων ,R

2) and to obtain a variational equality (efficiently tractable in the context of the
Finite Element Method) instead of a variational inequality. Let K⊥

0 be the orthogonal
complement of K0 in H3(Ων ,R

2) for the scalar product â(·, ·):
K⊥

0 ={u∈H3(Ων ,R
2) | â(u,v)=0, ∀v∈K0}.

The space H3(Ων ,R
2) can be written as the direct sum H3(Ων ,R

2)=K⊥
0 ⊕K0. Let us

denote by β|K⊥
0
the restriction of β to K⊥

0 . Then β|K⊥
0
is a topological isomorphism (in

particular, it is obvious that kerβ|K⊥
0
=K0∩K⊥

0 ={0}). The main theorem is stated as
follows:

Theorem 3.6. If σε is the unique solution of problem (3.2), then σε is also the solution
of the following problem with Lagrange multipliers:{

Search for (σε,λ)∈K×R
2l,

∀v∈H3(Ων ,R
2), a(σε,v)−L(v)+〈λ,β(v)〉2l=0.

(3.5)
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Proof. Assume that (u,λ)∈K×R
2l is a solution of problem (3.5). Then ∀v∈K0,

we have:

a(u,v)−L(v)=0,

since β(v)=0R2l . Thus u∈K∩S and from Proposition 3.5, u=σε.
Conversely, from Proposition 3.5, {σε}=K∩S so ∀v0∈K0, a(σε,v0)=L(v0). Let us
consider the linear form defined ∀w∈K⊥

0 by:

L :

∣∣∣∣K⊥
0 →R

w �→−a(σε,w)+L(w).

We remind the reader that, denoting by E and F two normed vector spaces and by A a
continuous linear mapping from E to F , the adjoint operator At :F ′→E′ is defined by:

∀v∈E,∀w∈F ′,<Atw,v>E′,E=<w,Av>F ′,F .

The mapping β|K⊥
0
:K⊥

0 →R
2l is a topological isomorphism and consequently so is the

mapping βt
|K⊥

0
:R2l→ (K⊥

0 )′.

As L∈ (K⊥
0 )′, there exists a unique λ∈R2l such that βt

|K⊥
0
(λ)=L. It means that:

L(w)=−a(σε,w)+L(w)=<βt
|K⊥

0
(λ),w>(K⊥

0 )′,K⊥
0
,

⇐⇒a(σε,w)−L(w)+<βt
|K⊥

0
(λ),w>(K⊥

0 )′,K⊥
0
=0,

⇐⇒a(σε,w)−L(w)+<λ,β|K⊥
0
(w)>(R2l)′,R2l=0.

Let v∈H3(Ων ,R
2). Since H3(Ων ,R

2)=K⊥
0 ⊕K0, ∃!(v0,w)∈K⊥

0 ×K0, v=v0+w.
From the last equality, it yields ∃!λ∈R2l, such that ∀v∈H3(Ων ,R

2):

a(σε,v)−L(v)−a(σε,v0)+L(v0)+<λ,β(w)>(R2l)′,R2l=0,

⇐⇒a(σε,v)−L(v)+<λ,β(w)>(R2l)′,R2l=0,

since v0∈K0, and a(σε,v0)=L(v0) from Proposition 3.5. To conclude, β(w)=β(v−
v0)=β(v) since β(v0)=0R2l .

Finally,

∃!λ∈R2l,∀v∈H3(Ων ,R
2), a(σε,v)−L(v)+<λ,β(v)>(R2l)′,R2l=0

3.4. Theoretical convergence result. We now provide a theoretical conver-
gence result that is an abtract result highlighting the well-posedness of the modelling.
Let D be a subset of ]0,+∞[ admitting 0 as an accumulation point (this implies that
0∈D). For each d∈D, let Ad be a set of N =N(d) distinct points of Ων containing a
P1-unisolvent subset (we cannot say much on N except that N ≥dimP1 and as d tends
to 0, N(d) increases to +∞).

We suppose that

sup
x∈Ων

δ(x,Ad)=d, (3.6)
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where δ is the Euclidean distance in R
2. Let us observe that the left-hand side of

(3.6) is just the Hausdorff distance between Ad and Ων . Consequently, it implies that
D is bounded and that this distance tends to 0 as d does. Thus d is the radius of
the largest sphere included in Ων that contains no point from Ad (Hausdorff distance).
Let us remark the ambiguity in the meaning of d defined first as an index and next,
independently, in (3.6). This situation is analogous to that found in the Finite Element
theory (see [2] and [12]).

We point out that the hypotheses 0∈D and (3.6) imply the weaker condition

lim
d→0

sup
x∈Ων

δ(x,Ad)=0. (3.7)

For all d∈D, we denote by ρd the mapping defined by:

ρd :

∣∣∣∣∣H2(Ων ,R
2×2)→ (R2×2)N(d)

v �→ρd(v)=
(
(v(a))a∈Ad

)T .

Then we introduce the norm ‖̂·‖d equivalent to the norm ‖·‖H3(Ων ,R2) on H3(Ων ,R
2)

defined by: ∀v∈H3(Ων ,R
2),

‖v̂‖d=
[
<ρd(Dv)>2

N(d)+ε |v|23,Ων ,R2 +‖β(v)‖22l
] 1

2 .

(It is possible to check that ‖̂·‖d is a norm by applying similar arguments to those in
Proposition 3.2). The following lemma holds and allows to state Theorem 3.8.

Lemma 3.7. Suppose that (3.7) holds. Let A0={b01, . . . ,b0ℵ} be a fixed P1-unisolvent
subset of Ων .

∀j=1, . . . ,ℵ, ∃(ad0j)d∈D
,
(∀d∈D,ad0j ∈Ad

)
and

(
b0j = lim

d→0
ad0j
)
. (3.8)

For all d∈D, let Ad
0 be the set {ad01, . . . ,ad0ℵ} and ‖.‖Ad

0
be the mapping defined by:

∀v∈H3(Ων ,R
2),

‖v‖Ad
0
=

⎡⎣ ℵ∑
j=1

<Dv(ad0j)>
2
4+ε |v|23,Ων ,R2 +‖β(v)‖22l

⎤⎦ 1
2

.

Then, there exists μ>0 such that for all d≤μ, the set Ad
0 is P1-unisolvent and ‖̂·‖Ad

0
is

a norm on H3(Ων ,R
2) uniformly equivalent on D∩]0,μ] to the norm ‖·‖H3(Ων ,R2).

Theorem 3.8. Suppose that there exists a function f̂ ∈K such that for all d∈D:
ρd(Df̂)=ω, and ε= ε(d)∈]0,ε0],ε0>0.

For all d∈D, we denote by σd
ε the unique solution of problem (3.2), then under the

above assumptions we have:

lim
d→0

‖σd
ε − f̂‖H3(Ων ,R2)=0.
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Proof. The proof is divided into four steps.

First step

We start by proving that the sequence
(
σd
ε

)
d∈D∩]0,μ]
ε∈]0,ε0]

is bounded in H3(Ων ,R
2) in-

dependently of d. By taking v= f̂ in problem (3.2) and using the equivalence of norm
given in Lemma 3.7, we establish that:

∃ν̃ >0,∀d∈D,∀ε∈]0,ε0],
(
d≤μ⇒‖σd

ε ‖H3(Ων ,R2)≤ ν̃
)
.

The sequence
(
σd
ε

)
d∈D∩]0,μ]
ε∈]0,ε0]

is bounded in H3(Ων ,R
2), so one can extract a subsequence(

σdl
εl

)
l∈N

with lim
l→∞

dl=0 (since 0 is an accumulation point of D) and εl∈]0,ε0], ∀l∈N
—we assume that ε= ε(d) —that weakly converges to an element of H3(Ων ,R

2) denoted
by f∗.

Second step

In this step, we argue by contradiction and prove that Df∗=Df̂ using compactness
arguments (Sobolev’s embeddings in Hölder’s spaces and Rellich–Kondrachov’s theorem,

see [8]). Finally, the Lagrange interpolation constraints give us that f∗= f̂ .

Third step

The aim is to prove that
(
σdl
εl

)
l∈N

strongly converges to f̂ in H3(Ων ,R
2).

Thanks to Rellich–Kondrachov’s compact embedding theorem, we obtain that
(
σdl
εl

)
l∈N

strongly converges to f̂ in H2(Ων ,R
2). Since

‖σdl
εl
− f̂‖2H3(Ων ,R2)=‖σdl

εl
− f̂‖2H2(Ων ,R2)+ |σdl

εl
− f̂ |23,Ων ,R2 ,

we just need to prove that lim
l→∞

|σdl
εl
− f̂ |3,Ων ,R2 =0.We have:

|σdl
εl
− f̂ |23,Ων ,R2 = |σdl

εl
|23,Ων ,R2 + |f̂ |23,Ων ,R2−2(σdl

εl
, f̂)3,Ων ,R2 .

But |σdl
εl
|3,Ων ,R2 ≤|f̂ |3,Ων ,R2 , so

|σdl
εl
− f̂ |23,Ων ,R2 ≤2|f̂ |23,Ων ,R2−2(σdl

εl
, f̂)3,Ων ,R2 .

However, σdl
εl

H3(Ων ,R
2)

⇀ f̂ , consequently

∀ϕ∈L2(Ων ,R
2), (∂ασdl

εl
,ϕ)L2(Ων ,R2) −→

l→+∞
(∂αf̂ ,ϕ)L2(Ων ,R2), ∀α∈N, |α|=3. Taking ϕ=

∂αf̂ with |α|=3, it yields:

(∂ασdl
εl
,∂αf̂)L2(Ων ,R2) −→

l→+∞
||∂αf̂ ||2L2(Ων ,R2) and (σdl

εl
, f̂)3,Ων ,R2 −→|f̂ |3,Ων ,R2 .

It follows from the previous inequality that lim
l→∞

‖σdl
εl
− f̂‖H3(Ων ,R2)=0.

Fourth Step

Assume that ‖σd
ε − f̂‖H3(Ων ,R2) does not tend to 0 when d tends to 0.

It means that there exist a real number α>0 and two sequences (dk)k∈N
and (εk)k∈N

such that dk −→
k→+∞

0 and εk= ε(dk) and ∀k∈N,

‖σdk
εk
− f̂‖H3(Ων ,R2)>α. (3.9)

Following the same steps as previously done, there exists a subsequence of
(
σdk
εk

)
k∈N

that strongly converges to f̂ in H3(Ων ,R
2), which is in contradiction with (3.9).
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3.5. Discretization. We now discretize the variational problem (3.5). To do so,
we will use classical notations used in the Finite Element theory (similar to those in [2]
and [12]). Let H be an open bounded subset of ]0,+∞[ admitting 0 as accumulation
point. Let us recall that the elements of class Ck′

can be used for the computation
of discrete Dm-splines (in our case m=3) with m≤k′+1 (where k′ is an integer).
Consequently, (k′,m)=(2,3) is a satisfactory combination. We also recall that for all
n∈N and for all subsets E of R2, Ql(E) denotes the space of the restrictions to E of
the polynomial functions over R2 of degree ≤ l with respect to each variable. ∀h∈H, let
(Vh)

2 be the subspace of H3(Ων ,R
2) of finite dimension with (Vh)

2�C1(Ων ,R
2). The

reference finite element is the Bogner–Fox–Schmit C2 rectangle (cf. [12]). It is defined
as the following triplet (K,PK ,ΣK):

• Let b00=
(
b100,b

2
00

)∈R2, h1,h2>0. K⊂Ων is the rectangle with vertices bγ =
b00+γ1h1 �e1+γ2h2 �e2 with γ=(γ1,γ2)∈N2 such that 0≤γ1≤1 and 0≤γ2≤1,
and (�e1, �e2) the canonical basis of R2.

• PK =Q5(K).

• The set of linear mappings ΣK is defined by: ΣK ={v �→∂αv(bγ) | |α|∞≤2},
where, if α=(α1,α2), |α|∞=max(α1,α2).

The number of degrees of freedom of the Bogner–Fox–Schmit rectangle of class C2
is thus equal to 36.

The basis functions are defined by pγα(x1,x2)=hα1
1 hα2

2 qγ1
α1

(
x1−b100

h1

)
qγ2
α2

(
x2−b200

h2

)
with:

q00(t)=(1− t)3(6t2+3t+1), q01(t)= t(1− t)3(3t+1), q02(t)=
1

2
t2(1− t)3

q10(t)= t3(6t2−15t+10), q11(t)= t3(1− t)(3t−4), q12(t)=
1

2
t3(t−1)2.

We can prove that problem (3.5) is decoupled with respect to each component. Let
(vq)q=1,2 be the components of v∈H3(Ων ,R

2), ((ωi
q)

T )q=1,2 the qth row of ωi, ∀i∈
{1, . . . ,N}, and λ=(λq)q=1,2 with λq ∈Rl.
Problem (3.5) can therefore be stated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Search for (σε=(σq
ε )q=1,2,λ=(λq)q=1,2)∈H3(Ων ,R

2)×R
2l such that

σε∈K,

∀v=(vq)q=1,2∈H3(Ων ,R
2), ∀q∈{1,2} ,

N∑
i=1

〈∇σq
ε (ai),∇vq(ai)〉2+ε(σq

ε ,v
q)3,Ων ,R+

l∑
i=1

λq
i v

q(bi)=

N∑
i=1

〈∇vq(ai),ω
i
q〉2.

(3.10)

We solve (3.10) in Vh for q=1,2. Let Mh be the dimension of Vh and {Ph
j }j=1,...,Mh

be
basis functions (for the sake of clarity, from now on, we use this notation for the basis
functions). We denote by (σh,q

ε )q=1,2 the approximate solution of (3.10) in (Vh)
2; σh,q

ε

is decomposed into the basis {Ph
j }j=1,...,Mh

as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀q=1,2,

∃(αq
j)j=1,...,Mh

∈R such that

σh,q
ε =

Mh∑
j=1

αq
jP

h
j .

(3.11)
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For q=1,2, taking successively vq =Ph
k , k=1, . . . ,Mh in (3.10), the studied problem

becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Search for αq ∈RMh such that

Mh∑
i=1

αq
iP

h
i (bj)=ηqj , ∀j∈{1, · · · ,l} ,

∀k=1, . . . ,Mh,

N∑
i=1

Mh∑
j=1

αq
j〈∇Ph

j (ai),∇Ph
k (ai)〉2+ε

Mh∑
j=1

αq
j(P

h
j ,P

h
k )3,Ων ,R−

N∑
i=1

〈∇Ph
k (ai),ω

i
q〉2

+

l∑
i=1

λq
iP

h
k (bi)=0.

(3.12)

The numerical problem amounts to solving two decoupled sparse linear systems of di-
mension (Mh+ l)×(Mh+ l) which can be written by means of matrices Ah, Bh and
Rh,

Ah=

(
∂Ph

j

∂x1
(ai)

)
1≤i≤N,
1≤j≤Mh

, Bh=

(
∂Ph

j

∂x2
(ai)

)
1≤i≤N,
1≤j≤Mh

∈ (MN×Mh
(R))

2
,

Rh=
((

Ph
j ,P

h
i

)
3,Ω,R

)
1≤i≤Mh,1≤j≤Mh

∈MMh×Mh
(R).

Both systems are written in the following way:{(
(Ah)TAh+(Bh)TBh+εR

)
αq+(Ph)Tλq = ξq,

with Phαq =ηq, ∀q∈{1,2} , (3.13)

where Ph=
(
Ph
j (bi)

)
1≤i≤l,

1≤j≤Mh

∈Ml×Mh
(R) and ξq =

(
N∑
i=1

〈∇Ph
k (ai),ω

i
q〉2
)

1≤k≤Mh

. We

group the unknown αq and λq in a single unknown vector, and we write the system
as a matrix equation of the form:

κh

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mh l⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Mh (Ah)TAh+(Bh)TBh+εR (Ph)T

l Ph 0

⎛⎜⎜⎜⎜⎝
αq

λq

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
ξq

ηq

⎞⎟⎟⎟⎟⎠

Remark 3.9. A result of convergence analogous to the one in Theorem 3.8 can be
obtained in the discrete setting.

Remark 3.10. The matrix κh of the system is symmetric indefinite.

Remark 3.11. In practice, the interpolation conditions are set on the boundary nodes
of the finite element mesh. In this case, we have the following result:

Proposition 3.12. Matrix κh is nonsingular.



1154 TOPOLOGY PRESERVATION FOR DEFORMATION FIELDS

Proof. For the sake of clarity, we denote by Ch the matrix Ch=(Ah)TAh+
(Bh)TBh+εR. The proof is based on Lemma 16.1 of [33] that states that if Z is a
basis for the null space of Ph and if the reduced Hessian ZTChZ is positive definite and(
Ph
)T

has full rank, then κh is nonsingular.
As the interpolation conditions are set on the boundary of the finite element

mesh, the columns of
(
Ph
)T

are made of l independent vectors of the canonical ba-

sis of R
Mh , so

(
Ph
)T

has full rank. More precisely, if the column of index p of(
Ph
)T

denoted by
(
Ph
)T
p

is related to node q(p) of the finite element mesh, one has:(
Ph
)T
j,p

=

∣∣∣∣ 1 if j=9(q−1)+1,
0 otherwise

, j∈{1, · · · ,Mh}.
The columns (Z1, · · · ,ZMh−l) of Z are thus made of the Mh− l (independent) vectors of

the canonical basis of RMh orthogonal to the columns of
(
Ph
)T

.
The matrix Ch is semi-positive definite. Indeed, ∀α∈RMh , αT Chα=a(vh,vh)≥0

with vh=

Mh∑
j=1

αjP
h
j . From what was previously done, the quantity a(vh,vh) van-

ishes when vh is a constant c1, which corresponds to α=(αj)
Mh

j=1 such that αj =∣∣∣∣ c1 if j=1+9s, s∈{0, · · · , Mh

9 −1
}
,

0 otherwise
. In particular, the vector ξ∈RMh defined by

ξj =

∣∣∣∣ 1 if j=1+9s, s∈{0, · · · , Mh

9 −1
}
,

0 otherwise
is not spanned by (Z1, · · · ,ZMh−l). Let us now

take X ∈RMh−l \{0
R

Mh−l}. It is clear that ZX /∈ span(ξ) so XTZTChZX>0, which
achieves the proof.

A large variety of methods can be found in the literature to solve the considered
linear systems: null-space methods ([17, 3]), direct solvers ([9]), the classical Uzawa
algorithm ([4]), the inexact Uzawa algorithm ([16]), splitting schemes ([15]), augmented
Lagrangian approach ([18]). In our application, we use the diagonal pivoting method due
to Bunch and Parlett ([9]) which computes a permutation P such that PAPT =LDLT

—when solving a linear system whose symmetric matrix is A—whereD is a direct sum of
1 by 1 and 2 by 2 pivot blocks and L is unit lower triangular (see also [19]). P is chosen
so that the entries in the unit lower triangular L satisfy |lij |≤1. This factorization

involves n3

3 flops and once computed can be used to solve Ax= b with O(n2) work.

Remark 3.13 (Extension of the algorithm to the 3D case). The main brake to the
straight extension of the model to 3D is the phase of identification of subdomains (in
practice small cubes) where the computations need to be done. (In 2D, visual inspection
suffices to determine these regions.) The semi-automation of this process, based on
segmentation techniques, is a project in progress. The idea is to work with the 3D images
of the discrete Jacobians and to partition the images into two smooth regions: a region
for which the discrete Jacobians are greater than a defined threshold and a region for
which they are lower (region that thus needs to be processed). This binary partition of
the data can be performed using a Chan–Vese like ([10]) segmentation criterion in a level
set framework. This step is done for each discrete Jacobian. The regions to be processed
are thus localized and are embedded in cubes. The derivation of the topology-preserving
conditions in the 3D case is quite analogous to the 2D case. We impose that the 8 corner
Jacobians are positive (see [25] for justifications). The Jacobian Jα(x,y,z) is now a
polynomial of degree 3 in α but the method, as in the 2D case, amounts to studying the
roots of polynomials, here of degree 3. The theoretical results in the reconstruction stage
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hold in three dimensions. The numerical problem consists in solving three decoupled
sparse linear systems of dimension (Mh+ l)×(Mh+ l) but this time there are 33 basis
functions per node so Mh=dimVh=33×number of mesh nodes. The basis functions
are still obtained by tensor product from the 1D case and the system matrix structure
is the same, except that the block (1,1) is of the form (Ah)TAh+(Bh)TBh+(Ch)TCh+

εR, with Ch=

(
∂Ph

j

∂x3
(ai)

)
1≤i≤N,
1≤j≤Mh

. The optimization computational tools are the same

as the ones in Section 4. Some very preliminary experiments have been made on cubes
of size 36×36×36 and the computational time decreases to 23 seconds.

4. Numerical experiments

In the sequel, we provide numerical simulations. Classically, in the Dm-spline set-
ting, parameter ε balancing the semi-norm is set to 10−6. (There also exist methods
for an automatic choice of ε mainly based on statistical considerations as the gener-
alized cross-validation and the generalized maximum likelihood methods, see [13] and
[20].) From our experience, we have realized that it suffices to fix the value ε in a
neighborhood of 10−6 to produce satisfactory results. Besides, the method proves to
be not too sensitive to the choice of this parameter. That is why we did not resort to
the generalized cross-validation method to set parameter ε. Owing to the fact that the
proposed algorithm calls basic linear algebra functions such that transposing matrices,
summing matrices, multiplying matrices or solving linear systems, it appeared rele-
vant to use LAPACK and Basic Linear Algebra Subprogram routines (official websites:
http://www.netlib.org/blas/ and http://www.netlib.org/lapack/). BLAS is a
corpus of routines that provides standard building blocks for performing basic vector
and matrix operations. LAPACK (designed at the outset to exploit BLAS routines) pro-
vides routines for solving systems of linear equations among others. For each subdomain
Ων , ν ∈{1, · · · ,N}, we obtain two disconnected linear systems to be solved with the same
matrix. Our resorting to BLAS/LAPACK thus seems apposite. We particularly focused
on the dsysv function provided by the software package LAPACK which computes the
solution of a real system of linear equations AX=B (where A is an N -by-N symmetric
matrix and X and B are N -by-NRHS matrices) using the diagonal pivoting method.
Also, we capitalized on the dgemm routine to perform matrix-matrix operations. The
computations on each subdomain Ων being independent, the use of OpenMP appeared
relevant. The OpenMP Application Program Interface supports multi-platform shared-
memory programing in C/C++ and Fortran on all architectures (see the official web-
site http://openmp.org/wp/). In the sequel, the OMP NUM THREADS environment
variable sets the number of threads that the program uses. The MKL NUM THREAD
environment variable enables to MKL threading inside the threading of the application.
For our configuration, the maximal number of threads is equal to 12.

4.1. First example: a slice of the brain. In the first application, the goal
is to map a disk to a slice of the brain (courtesy of the Laboratory of Neuro-Imaging,
School of Medicine, University of California) defined on the same image domain (size
120 × 190), while preserving topology (see Figure 4.1 (a)). In this example, we only
aim to align the shapes, i.e., the contour of the slice of brain with the boundary of the
disk (whatever the genus of the shapes is).

When applying the combined segmentation/registration model developed in [27]
without regridding steps, we obtain a deformation field exhibiting two regions with
overlaps as depicted in Figure 4.1 (b)–(d). If we merely apply the method developed in
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(a) Reference image and boundary
(in red) of the disk constituting the

Template image.

(b) Obtained global deformation field
when topology preservation

is notenforced.

(c) Zoom on the first region
exhibiting overlaps.

(d) Zoom on the second region
exhibiting overlaps.

Fig. 4.1: Example of the slice of the brain: obtained uncorrected deformation field.

(a) Global obtained deforma-
tion field.

min:0.045

max:3.002

(b) Jacobian determinant of
the obtained deformation field.

(c) Zoom on the corrected
first region: min

(
Jff

)
=0.20,

min
(
Jfb

)
=0.21, min

(
Jbf

)
=0.17

and min(Jbb)=0.19.

(d) Zoom on the corrected sec-
ond region: min

(
Jff

)
=0.13,

min
(
Jfb

)
=0.19, min

(
Jbf

)
=

0.21 and min(Jbb)=0.23.

Fig. 4.2: Example of the slice of the brain: obtained orientation-preserving deformation
field.
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(a) Boundary of the disk con-
stituting the Template image
superimposed on the Refer-
ence image.

(b) Obtained global defor-
mation field when topology
preservation is not enforced.

(c) Zoom on the first region
exhibiting overlaps.

(d) Zoom on the second re-
gion exhibiting overlaps.

Fig. 4.3: Example of the slice of the brain with large deformations: obtained uncorrected
deformation field.

(a) Global obtained deforma-
tion field.

(b) Zoom on the corrected
first region: min

(
Jff

)
=0.21,

min
(
Jfb

)
=0.20, min

(
Jbf

)
=

0.21 and min(Jbb)=0.20.

(c) Zoom on the cor-
rected second re-
gion: min

(
Jff

)
=0.24,

min
(
Jfb

)
=0.19,

min
(
Jbf

)
=0.31 and

min(Jbb)=0.30.

(d) Obtained result with
Christensen et al’s regridding
technique ([11])

Fig. 4.4: Example of the slice of the brain with large deformations: obtained orientation-
preserving deformation field.
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[26] (which consists in applying the correction/reconstruction algorithm on the whole
image domain with global condition on the deformation component means), the execu-
tion time reaches 50.9 seconds. By applying our proposed method, the computational
time drops to 0.63 second, which means a depletion by a factor 80. We display the
obtained topology-preserving deformation fields together with the values of the discrete
Jacobians in Figure 4.2.

4.2. Second example: brain mapping. A second example still dedicated
to brain mapping (courtesy of the Laboratory of Neuro-Imaging, School of Medicine,
University of California) is given in Figure 4.3, demonstrating the ability of the method
to handle high-magnitude deformations. The goal is to register a disk to the outer
boundary of the brain, both defined on the same image domain of size 61×81, while
maintaining topology. When applying the combined segmentation/registration model
developed in [27] without regridding steps, we obtain a deformation field exhibiting two
regions with overlaps as depicted in Figure 4.3.

Applying the algorithm developed in [26] on the whole image domain yields a compu-
tational time of 2.62 seconds. By comparison, when the proposed algorithm is applied si-
multaneously on the two regions depicted in Figure 4.3(c) and Figure 4.3(d) (respectively
of size 53×61 and 21×61), the computational time drops to 0.66 second, which means
a depletion by a factor 4. We display the obtained topology-preserving deformation
field together with the values of the discrete Jacobians in Figure 4.4. With Christensen
et al.’s regridding technique ([11]) (in the spirit of our methodology, we compared what
was comparable, namely the topology-preserving method: we applied Christensen et
al.’s regridding technique within the registration model [26]), 3 regridding steps were
necessary: the transformation was considered as admissible if the Jacobian exceeded
0.075. Unfortunately, at the end of the process, the minimum of the Jacobian of the
transformation is equal to -0.5288 and overlaps are still visible on the grid (see Figure
4.4) (d).

4.3. Third example: the disks. Another application involving large defor-
mations is provided in Figure 4.5 and is similar to an application given in [27] in the
case of topology-preserving segmentation. The synthetic Reference image represents
two disks. The Template image, which is defined on the same image domain (100 ×
100), is made of a black ellipse such that when superimposed on the Reference image its
boundary encloses the two disks (see Figure 4.5 (a)). The application of the combined
segmentation-registration process alone yields two regions exhibiting overlaps (Figure
4.5(b)): the upper part of the image including the upper disk (size 50 × 50) and the
lower part of the image containing the lower disk (size 50 × 50). We thus propose to
apply our proposed algorithm on each region independently. The computational time
drops to 0.52 second, which means a depletion by a factor 6.9 in comparison to the com-
putational time inherent to the application of the method [26] on the whole domain. We
display the obtained topology-preserving deformation fields together with the values of
the discrete Jacobians in Figure 4.5 (c) and Figure 4.5 (d).
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(a) Reference image and
boundary of the ellipse con-
stituting the Template image
superimposed.

(b) Obtained global defor-
mation field when topology
preservation is not enforced.

(c) Corrected first region:
min

(
Jff

)
=0.06, min

(
Jfb

)
=

0.08, min
(
Jbf

)
=0.09 and

min(Jbb)=0.11.

(d) Corrected second region:
min

(
Jff

)
=0.33, min

(
Jfb

)
=

0.31, min
(
Jbf

)
=0.35 and

min(Jbb)=0.29.

Fig. 4.5: Example of the disks.
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