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STRANG SPLITTING METHODS FOR A QUASILINEAR
SCHRÖDINGER EQUATION: CONVERGENCE, INSTABILITY, AND

DYNAMICS∗

JIANFENG LU† AND JEREMY L. MARZUOLA‡

Abstract. We study the Strang splitting scheme for quasilinear Schrödinger equations. We estab-
lish the convergence of the scheme for solutions with small initial data. We analyze the linear instability
of the numerical scheme, which explains the numerical blow-up of large data solutions and connects
to the analytical breakdown of regularity of solutions to quasilinear Schrödinger equations. Numerical
tests are performed for a modified version of the superfluid thin film equation.
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1. Introduction
Consider a general quasilinear Schrödinger equation

iut=−Δu+uf(|u|2)+ug′(|u|2)Δg(|u|2), (1.1)

for f,g :R→R. Such equations can be written as{
iut+ajk(u,∇u)∂j∂ku=F (u,∇u), u :R×R

d→C
m

u(0,x)=u0(x)
(1.2)

with small initial data in a space with relatively low Sobolev regularity. Note, quadratic
quasilinear interactions can also be handled with some extra decay assumptions. Here

a :Cm×(Cm)d→R
d×d, F :Cm×(Cm)d→C

m

are smooth functions which we will assume satisfy

a(y,z)= Id+O(|y|2+ |z|2), F (y,z)=O(|y|3+ |z|3) near (y,z)=(0,0).

Quasilinear equations of this form have arisen in several models. See [44] for a
thorough list, but we mention here works related to the superfluid thin-film equation [35],
modeling ultrashort pulse lasers [16, 17], and time dependent density functional theory
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[13]. The model we will consider here numerically equates to setting g(s)=f(s)=s, and
hence

iut=−Δu+ |u|2u+uΔ(|u|2). (1.3)

This is a pseudo-attractive version of the superfluid thin-film equation which is given
by

iut=−Δu+ |u|2u−uΔ(|u|2) (1.4)

and can be seen as a leading order contribution to the ultrashort pulse laser models from
[16, 17]. Existence of solutions to quasilinear equations have been studied analytically
in several cases; see [16, 17, 31, 32, 33, 39, 40, 44] and many others. The reason we
choose to study (1.3) is that, while similar to (1.4) in that it is guaranteed to have
small data local well-posedness from [40] and hence can be used to verify our numerical
convergence results for general quasilinear models, the dynamics of (1.3) can lead to
a breakdown of regularity due to a non-positive definite conserved energy. The model
(1.4), on the other hand, has a positive energy quantity and, as a result, much more
stable dynamics.

The nonlinear flow will allow interesting singularities to form in the evolution for
large enough initial data. In particular, we observe blow-up at a particular amplitude
threshold, but these singularities are representative of a breakdown of regularity in the
higher derivatives and hence are not the standard self-similar style blow-up from the
semilinear Schrödinger equation. Such a threshold was observed as an obstruction to
local well-posedness using Nash–Moser type arguments in [36]. We show analytically
that this mechanism for instability is inherited by the Strang splitting scheme through a
rigorous convergence result and analysis of a finite frequency approximation. Moreover,
we observe numerically that this threshold for ill-posedness arises in several different
types of initial configurations and is rather robust. However, we note that this threshold
is not the numerically observed sharp threshold for long-time well-posedness, as indeed
the dynamics are able to drive nearby solutions to this critical amplitude. These features
of (1.3) will be explored in Section 2.

Let us consider the nonlinear part of the equation

ivt=vf(|v|2)+vg′(|v|2)Δg(|v|2). (1.5)

Taking the complex conjugate, we have

−isvt=svf(|v|2)+svg′(|v|2)Δg(|v|2).
We calculate

i∂t|v|2= isv∂tv+ iv∂tsv

= |v|2f(|v|2)+ |v|2g′(|v|2)Δg(|v|2)
−|v|2f(|v|2)−|v|2g′(|v|2)Δg(|v|2)

=0,

(1.6)

and hence, under the evolution (1.5), the amplitude is conserved. This will be a key
property used to develop the numerical scheme.

Inspired by the above discussion, we consider a Strang splitting method for the
quasilinear Schrödinger equation which is a composition of the exact flows of the differ-
ential equations

i∂tu=−Δu (1.7)
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and

i∂tu=uf(|u|2)+ug′(|u|2)Δg(|u|2). (1.8)

More concretely, we approximate u(tn) with tn=nτ for a step size τ >0 by un via

u−n+1/2= e
i
2 τΔun;

u+
n+1/2=u−n+1/2 exp

(
−iτ(f(|u−n+1/2|2)+g′(|u−n+1/2|2)Δg(|u−n+1/2|2)

))
; (1.9)

un+1= e
i
2 τΔu+

n+1/2.

We note that the scheme is explicit and symmetric thanks to the amplitude preserving
property (1.6) of (1.5). One can use a Fourier pseudo-spectral method for the spatial
discretization, and hence the flow exp( i

2τΔ) can be efficiently calculated using the fast
Fourier transform (FFT), and the flow (1.8) amounts to changing the phase of the
solution on each mesh point.

Due to the advantage of being structure-preserving, the Strang splitting scheme [47]
and higher order splitting schemes (e.g. [48, 53]) have been widely applied to a variety
of nonlinear Schrödinger equations, mainly semilinear Schrödinger equations, modeling
monochromatic light in nonlinear optics, Bose–Einstein condensates, as well as envelope
solutions for surface wave trains in fluids. See for example [4, 5, 7, 8, 9, 10, 11, 14, 19, 21,
26, 27, 41, 42, 43, 46, 52]. While we focus on the strengths and weaknesses of applying
the Strang splitting scheme for quasilinear Schrödinger equations, let us also mention
that many other time discretization approaches to solve non-linear evolution equations
have been developed, including Crank–Nicholson type schemes (see e.g. [45] and also
[2] and [24] for applications in studying numerical blow-ups and nonlinear scattering),
Magnus expansion approaches ([38] and also the recent review article [12]), exponential
time-differencing schemes (see e.g. [15, 28]), implicit-explicit methods (see e.g. [6]), the
comparison study in [49], and many others.

The convergence of splitting schemes for semilinear Schrödinger equations was an-
alyzed in [18, 20, 25, 37, 46, 50]. In the present work, we extend the previous works
to the quasilinear Schrödinger equation. The analysis follows the ideas in the seminal
contribution by Lubich in [37] where the main tools are the calculus of Lie derivatives.
We note that, however, there is a loss of derivatives associated with the nonlinear flow
component in the middle step of the continuous Strang Splitting algorithm. This makes
iteration of the approximation a challenge without taking smooth initial conditions. We
will prove the convergence of the time-splitting method to the original evolution for the
superfluid thin-film equation by first proving convergence to a mollified flow and then
using convergence of the mollified flow to full continous quasi-linear problems. This
allows us to do frequency cut-off dependent estimates. We will emphasize the regular-
ity of the time flow, for which the behavior of the quasilinear Schrödinger equation is
different from the semilinear ones. This is a Lie theoretic approach to the continuous
time approximation and Sobolev-based well-posedness results of the second author with
J. Metcalfe and D. Tataru in order to model small initial data solutions of finite time
intervals [39, 40]. The scheme is symplectic and is stable within a range of parameters,
motivated by the analysis in [40], where the analysis is done purely in Sobolev spaces
Hs for s sufficiently large. In addition, the Strang splitting method converges in the
order τ2 for time step τ .

Moreover, we are able to extend a linear instability observed in a quasilinear
Schrödinger equation in [36] to the numerical scheme used to approximate it, in a
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Fréchet derivative sense, justifying the accuracy of a numerically observed blow-up. We
study the dynamics of this blow-up solution using both Gaussian and plane-wave con-
figurations of initial data to observe that the threshold for instability is not the sharp
global well-posedness threshold for the equation and can indeed be reached through
frequency dynamics on lower-amplitude solutions. This is not the standard blow-up
through re-scaling of a nonlinear state but is a frequency instability of sorts that causes
high frequencies to grow exponentially in a method akin to a backwards heat map.

The result is laid out as follows. We begin with a numerical study of the modified
superfluid film equation in 1d (1.3) using the Strang splitting scheme (1.9). To analyze
the convergence of the scheme, we discuss the mollification argument and prove the
convergence of the mollified numerical scheme to the mollified flow for small data in
Section 3 by using Lie theoretic results and necessary multilinear estimates. To un-
derstand the blow-up behavior observed for large enough data, we analyze the stability
and instability of the scheme in Section 4. In Section 5, we discuss the regularity of the
time flow of the quasilinear Schrödinger equation and the time-splitting scheme. In [36],
an L∞ threshold for local well-posedness was observed through use of Fréchet deriva-
tives in a Nash–Moser scheme. We will show this similarly arises in analysis of exact
plane-wave solutions on the torus using analysis similar to that of [52]. In order to es-
tablish the differentiability of the numerical solution with respect to time to sufficiently
high accuracy, we rely on bounds in a much stronger topology in space. Finally, we tie
together the numerical scheme and full quasilinear flow by addressing the convergence
of mollified quasilinear equations to the full quasilinear flow in Section 6.

2. Numerical Results
To test the Strang splitting scheme (1.9) for quasilinear Schrödinger equations and

numerically study the regularity breakdown, we consider the modified superfluid thin-
film equation (see (1.3) and also [35, 44]) given by

iut+uxx= |u|2u+(|u|2)xxu (2.1)

on the domain (−π,π] with periodic boundary condition. We have done similar com-
putations for the ultrashort pulse laser equation as described in [16, 17], but no further
interesting features of the numerical analysis arose, so we do not present them here for
clarity of exposition.

2.1. Symmetric Gaussian initial condition Let us consider initial conditions
given by

u(0,x)=ae−x2/(2σ2) (2.2)

on the domain (−π,π] with periodic boundary condition. Here σ is the width and a is
the amplitude of the Gaussian profile.

We calculate the solution up to time T =π/4 with parameters a=1/5 and σ=1/5
for the initial condition using a Fourier pseudo-spectral method with N =256 spatial
grid points. To verify the second order accuracy of the time-splitting scheme, we choose
different numbers of time steps and estimate the error by comparing the numerical
solutions to a solution with Nt=105. The results in Table 2.1 and Figure 2.1 confirm
the second order convergence.

Provided the solution remains in H1, the PDE (2.1) conserves mass and energy
given by

M(u)=

∫
|u|2dx, (2.3)
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Nt L2-norm H1-seminorm
500 1.6973e−06 4.7783e−04
1000 4.2241e−07 1.1878e−04
2000 1.0545e−07 2.9642e−05
4000 2.6323e−08 7.3990e−06
8000 6.5487e−09 1.8407e−06

Table 2.1. Numerical error of the time-splitting scheme for initial data (2.2) with a=1/5 and
σ=1/5 at T =π/4.
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Fig. 2.1. Log-log plot of the numerical error in Table 2.1 measured in L2 norm and H1 seminorm.

E(u)=
1

2

∫
|ux|2dx+ 1

4

∫
|u|4dx− 1

4

∫
|(|u|2)x|2dx. (2.4)

The numerical scheme preserves the mass conservation law. While there is no energy
conservation law [4, table 1], the energy is observed to remain numerically conserved
with tiny deviation as shown in Figure 2.2.

Due to the nonlinearity of Equation (2.1), the problem becomes more stiff for initial
conditions with larger amplitude or derivatives. For the family of Gaussian initial data
(2.2), this means that one needs to increase a or reduce σ. We next consider the example
with a=0.625, σ=1/10, and T =π/4. This problem is considerably more difficult than
the one for the previous choice of parameters. We refine the spatial discretization to
N =512 to resolve the oscillatory profile of the solution. The numerical error can be
found in Table 2.2. We still observe second order accuracy, though, in this case, the
time step size cannot be too large otherwise the numerical scheme becomes unstable.

We remark that to make the scheme more stable it is possible to apply Fourier
spectrum truncation to eliminate spurious Fourier components of the numerical solu-
tion as introduced in [34]. At each time step, we set to zero all Fourier coefficients
with amplitude below a certain threshold δ times the maximum amplitude of Fourier
coefficients. In practice, for this example, we find the threshold δ=1e−3 makes the
scheme stable with Nt=2000 (recall that the solution is not stable for Nt=10000 with-
out Fourier truncation). On the other hand, the filtering may introduce inconsistency
in the numerical results.

To test the convergence with respect to the time step when a finer spatial mesh
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Fig. 2.2. Mass and energy conservation for the numerical solution. The initial condition is given
by (2.2) with a=1/5 and σ=1.5. The numerical solution is calculated up to time T =4π and with
Nt=32000 time steps. Energy and mass are recorded every 100 time steps.

Nt L2-norm H1-seminorm
10000 unstable
20000 3.5573e−04 1.2775e−01
40000 3.0928e−04 5.1125e−02
80000 8.2591e−05 1.5832e−02
160000 1.9494e−05 4.1212e−03
320000 4.4489e−06 9.6345e−04

Table 2.2. Numerical error of the time-splitting scheme for initial data (2.2) with a=0.625,
σ=1/10, and N =512 at T =π/4. The error is estimated by comparing the numerical solution with
Nt=106.

is used, we perform the same test with spatial discretization N =1024. The result is
given in Table 2.3 and Figure 2.3 (left). A second order convergence rate is observed
with the finer spatial mesh while the time step has to be smaller to ensure stability.
The numerical conservation of energy and mass of the solution is shown in Figure 2.3
(right).

Nt L2-norm H1-seminorm
40000 unstable
80000 1.9672e−05 1.5458e−02
160000 6.8359e−06 4.2625e−03
320000 5.0287e−06 1.7278e−03
640000 1.1201e−06 5.4682e−04
1280000 2.6178e−07 1.4149e−04
2560000 6.1957e−08 3.4011e−05

Table 2.3. Numerical error of the time-splitting scheme for initial data (2.2) with a=0.625,
σ=1/10, and N =1024 at T =π/4. The error is estimated by comparing the numerical solution with
Nt=10240000.
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Fig. 2.3. (Left) log-log plot of the numerical error in Table 2.3 measured in L2 norm and H1

seminorm. (Right) Mass and energy conservation for the numerical solution. The initial condition is
given by (2.2) with a=0.625, σ=1/10, and N =1024. The numerical solution is calculated up to time
T =π/4 and with Nt=80000 time steps. Energy and mass are recorded every 1000 time steps.

If we further increase the amplitude of the initial condition, the numerical results
indicate a “blow-up” behavior for the PDE. We increase the amplitude to a=0.65 while
keeping σ=1/10. The numerical solution is calculated up to T =5×10−3. Figure 2.4
shows max|u(·,t)| as a function of t for different choices of time step sizes. The sudden
jump and exponential increase of the magnitude of maximum around t=2.18×10−3

indicates a numerical “blow-up” of the solution. Note that the onset point of the
behavior does not depend on the choice of time step size indicating that this is not
due to numerical instability of the time integration. Here we have chosen N =4096
spatial grid points. The blow-up behavior persists for further refinement of the spatial
discretization.

To investigate more closely the above observed “blow-up”, we study the solution
around x=0 and the time when the “blow-up” occurs. We plot the absolute value of the
solution in Figure 2.5. The numerical simulation indicates that the solution develops a
“focusing peak” at x=0 with amplitude close to

√
2/2.

The numerical results suggest that the solution to the PDE becomes unstable for this
family of initial conditions when the amplitude reaches about

√
2/2. To further confirm

this, we compare the results for the initial condition with a=0.625 and σ=1/10; the
solution stays below the amplitude of

√
2/2 as in Figure 2.6. Numerically, no blow-up

is observed for a=0.625. The instability for large time step size is caused by pollution
in the Fourier spectrum but not the intrinsic instability of solutions to the PDE.

2.2. Plane-wave initial conditions

The only exact solution we are aware of for the superfluid equation (2.1) is the
family of wave trains:

u(x,t)=aexpi(kx−ωt). (2.5)

This is a solution to (2.1) provided that

ω=k2+ |a|2. (2.6)

Since |u(x,t)|= |a| for the solution (2.5) at any x and t, the splitting error of the Strang
splitting scheme vanishes since the potential commutes with the Δ operator.
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Fig. 2.4. max|u(·,t)| as a function of time for Gaussian initial conditions with a=0.65 and
σ=1/10. Five time step sizes are taken corresponding to Nt=10000, 20000, 40000, 80000, and 160000
(blue, green, red, cyan, and purple curves) for total simulation time T =π. The bottom panel zooms
in the region near the numerical blow-up. The dashed horizontal line indicates the level

√
2/2.

We study the instability by adjusting the amplitude a of the initial data u(x,0)=
aexp(ikx) of the solution (2.5). Figure 2.7 shows the simulation results for two solu-
tions with initial conditions given by (2.5) with a=

√
2/2−10−8 and a=

√
2/2+10−8,

respectively. Even though the amplitudes of the two solutions only differ by 2×10−8,
the behavior of the numerical solutions are completely different. While the numerical
solution for the former is stable and accurate, the local truncation error kicks off insta-
bility in the latter case. This indicates again that

√
2/2 is the threshold of instability.

We also study multiple Fourier mode solutions to observe if non-local interactions
can vary the blow-up profile. Hence, given a pseudospectral discretization scheme keep-
ing the first N Fourier modes, we take initial data of the form

u(x,0)=a
∑
j=1

expikjx (2.7)

for 0≤k1≤···≤kj�N . The blow-up behavior of these solutions become more com-
plicated; in particular, oscillations begin to factor around the blow-up after an initial
exponential growth of the maximum amplitude (see Figure 2.8). However, it seems that
generically

√
2/2 is still a threshold for blow-up.
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Fig. 2.5. Snapshots of the absolute value of the numerical solutions around the numerical blow-
up. The solution squeezes as time increases and leads to a blow-up. The reference horizontal line is
plotted at the value

√
2/2.

0 1 2 3 4 5

x 10
−3

0.55

0.6

0.65

0.7

0.75

0.8

t

m
ax

|u
|

Fig. 2.6. The maximum magnitude of u as a function of time for the initial condition with
a=0.625 and σ=1/10. Compare with the quite different behavior in Figure 2.4.

3. Convergence of the pseudo-spectral time-splitting scheme

In this section, we prove the convergence of a modified Strang splitting scheme to
closely match the pseudospectral scheme used numerically for small data initial condi-
tions. We suppose that the solution u(t) to the modified superfluid thin film equation
(2.1) in 1dis in H7 for 0≤ t≤T and wish to compare it to a Strang splitting flow de-
fined so that an implicit frequency cut-off occurs at each stage of computation with the
quasilinear nonlinearity. We show that the pseudo-spectral Strang splitting is well ap-
proximated by a mollified superfluid thin film equation. Since the analysis is somewhat
dissimilar to that presented in this section related to the numerical algorithm, later in
Section 6, we will compare the evolution of the mollified superfluid thin film equation
to (2.1).

Theorem 3.1. The numerical solution uε,n, given by the Strang splitting scheme with
frequency cut-off |k|≤ ε−1 (defined below in (3.17)) with time step size τ >0 on an
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Fig. 2.7. Numerical solution for (2.5) with a=
√
2/2−10−8 and a=

√
2/2+10−8, respectively.

The solution to the PDE is unstable when the amplitude is larger than
√
2/2.

interval of size T =Kτ for some K>0, has a second-order error bound in H1

‖uε,n−u(t0+τn)‖H1 ≤C1(m7,ε,T )τ
2+C2(m4,T )ε, (3.1)

where

mN = max
0≤t≤T

‖u(t)‖HN .

Remark 3.1. The small data local existence in Hs for the cubic quasilinear nonlinear
terms is established in Marzuola–Metcalfe–Tataru [39, 40] (see also the works of Pop-
penberg [44], Kenig–Ponce–Vega, and Kenig–Ponce–Rolvung–Vega [29, 30, 31, 32, 33]).
In particular, in the case of Equation (1.3) in dimension d,there exists a local in time
solution in Hσ as long as σ> d+5

2 provided u0 is sufficiently small. Therefore, the regu-
larity assumption m7<∞ holds for sufficiently small data in Hσ for σ sufficiently large
(and hence in L∞). This is far from sharp, however, and much work must be done to
explore the threshold between well-posedness and blow-up.
Remark 3.2. The interplay between the τ and ε parameters arises only from the
order ε bounds on the H1 remainder of cutting the initial data off to frequencies below
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Fig. 2.8. max|u(·,t)| as a function of time for multiple Fourier mode initial conditions with
a=0.65 and frequencies 2,8 in the 2-mode setting (top), and 2,8,14,20 in the 4-mode setting (bottom).
Four time step sizes are taken corresponding to Nt=10000, 20000, 40000, and 80000 (blue, green,
red, and cyan curves) for total simulation time T =0.15. The right panel zooms in the region near the
numerical blow-up. The dashed horizontal line indicates the level

√
2/2.

ε−1 and evolving with a mollified Schrödinger flow. This will fully be addressed in
Section 6 while below we compute the dependence with respect to τ . Indeed, the authors
observed numerically that instability occurs when τ is taken too large. However, the work
presented below represents the worst possible error bounds with relation to the effect of
mollifying the equation which we think of as being related to the number of spatial grid
points. Generically, the constant C in front of τ2 can currently be quite large requiring
very small τ to observe good convergence. In addition, the order of the ε dependent term
in the convergence estimate can be improved by increasing the regularity of the initial
data. The overall convergence estimates can be improved greatly by providing stronger
regularity of the initial data, using smallness of the solution as required for the analysis
in [39, 40], or, of course, shrinking the time interval [0,T ] as one must do for large data
analysis of quasilinear problems.

We will actually prove the result for arbitrary spatial dimension d,since the ideas
are the same for any dimension. To start, we wish to establish the stability of the Strang
splitting scheme with respect to a fixed time step. Before we begin, let us take

mk=‖u(t)‖L∞Hk , k≤max
(
7,
d+6

2
+η

)
, (3.2)

for any η>0 such that u, the solution to (1.1) with small initial data, can be defined in
Hk using [39, 40].

We can approximate the solution through the continuous time generators of the
split step equations:

iψ̇=−Δψ, (3.3)

iψ̇=V [ψ]ψ, (3.4)
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where

V [ψ]= |ψ|2+Δ(|ψ|2). (3.5)

The generators of the split step method can thus be described as exponential maps of
the vector fields given by

T̂ (ψ)= iΔψ, (3.6)

V̂ (ψ)=−iV [ψ]ψ=−i[|ψ|2+Δ(|ψ|2)]ψ. (3.7)

The key estimate we will require is of the type

‖Δ(uv)w‖Hs ≤C‖u‖
Hs+4+d

2
+η‖v‖Hs+4+d

2
+η‖w‖Hs (3.8)

for s>0 using the L∞×L∞×L2→L2 Hölder’s inequality and the Sobolev embedding
for L∞. Note, the total loss of regularity on a given component of the multilinear
estimates can be reduced with other estimates such as

‖Δ(uv)w‖Hs ≤C‖u‖
Hs+6+d

3
‖v‖

Hs+6+d
3
‖w‖

Hs+ d
3

(3.9)

for s≥0 using L6×L6×L6→L2 Hölder’s inequality and the Sobolev embedding for
L6 as well as moving to Lp based spaces and applying the techniques of Strichartz
estimates, etc. However, we will use (3.8) throughout since in the mollification the loss
in ε will be scale invariant for any choice, plus it turns out to be beneficial to have one
component remain free of derivatives to take advantage of the short time gains we will
observe in the Lie Theory.

Before computing Lie derivatives, we want to understand the stability of the evo-
lution generated by V̂ . To do this, we study

iν̇=V [ψ]ν, ν(0)=ψ. (3.10)

For ψ sufficiently regular, it is possible to show that the evolution varies continuously
with the choice of initial data in a weak topology. In particular, given

iν̇=V [ψ]ν, ν(0)=ψ,

iμ̇=V [φ]μ, μ(0)=φ,

by looking at the difference of these two evolutions, expanding V [φ]μ−V [ψ]ν=(V [φ]−
V [ψ])μ−V [ψ](ν−μ), and applying (3.8), we have

‖μ(t)−ν(t)‖Hs ≤‖ψ−φ‖Hs +C1t‖ψ−φ‖
Hs+ d+4

2
+η +C2

∫ t

0

‖μ(s)−ν(s)‖Hs (3.11)

for any η>0 and s> d+4
2 chosen sufficiently large to control the evolution where C1,

C2 both depend upon Ms=max0≤t≤T {‖φ‖Hs ,‖ψ‖Hs}. As a result, a Gronwall type
argument shows

‖μ(t)−ν(t)‖Hs ≤ eC0τ‖ψ−φ‖
Hs+ d+5

2
, (3.12)

where C0 depends upon mk.
Unfortunately, the above estimate comes with a regularity loss (it requires higher

Sobolev on the previous time step). As a result, it is not sufficient to provide an



J. LU AND J.L. MARZUOLA 1063

error estimate unless we assume that the solution is smooth.1 This can be dealt with
for certain types of derivative nonlinearities that are not quasilinear; see for instance
[23]. See also [3] for a recent analytic treatment of convergence of mollified derivative
Schrödinger equations on the torus.

To resolve the issue, let us introduce a mollified equation given by

iuε,t+uε,xx=Gε ∗ [|uε|2uε]+Gε ∗ [Δ(|uε|2)uε], (3.13)

where Gε is a smooth, compactly supported mollifier that cuts off the high frequency
terms of the evolution such that if u∈Hs we have

‖Gεu−u‖Hs−1 ≤Cε‖u‖Hs and (3.14)

‖Gεu‖Hs+1 ≤Cε−1‖Gεu‖Hs . (3.15)

Note, Gε is a standard, smooth, Littlewood–Paley cut-off in frequency space at the
frequency O(1/ε). See for instance [3, Section 2] for the construction of such a mollifier.

As will be shown in Section 6, the mollified flow and the original flow are close for
small initial data using the frequency envelope type arguments of [39, 40] that prove
the high frequency terms remain small over the order 1 lifespan. If ‖u0‖Hs+3 is small,
then

‖uε(t)−u(t)‖L∞Hs ≤Cε. (3.16)

Hence, we will analyze the Strang splitting on the mollified flow (3.13). From the point
of view of the fully discretized flow, e.g. with pseudospectral method, the inclusion of
a frequency cut-off is also quite natural. Actually, the numerical result in Section 2 can
be understood as discretizations of (3.13) since the number of Fourier modes N is fixed
as the time step is reduced, and the numerical solution is compared to that with a tiny
time step (but fixed spatial resolution).

For the mollified flow, the Strang splitting scheme converges with second order error,
albeit with a possibly large constant depending upon the regularity of the initial data.
Proposition 3.2. Consider the numerical solutions uε,n given by the Strang splitting
scheme on the mollified equation:

u−ε,n+1/2= e
i
2 τΔuε,n;

u+
ε,n+1/2=u−ε,n+1/2 exp

(−iτGε(|u−ε,n+1/2|2+Δ|u−ε,n+1/2|2)
)
;

uε,n+1= e
i
2 τΔ(Gεu

+
ε,n+1/2).

(3.17)

The numerical solution converges to the solution of the mollified equation as τ→0 pro-
vided that τ is sufficiently small:

‖uε,n−uε(t0+τn)‖H1 ≤C(m7,ε,T )τ
2. (3.18)

Remark 3.3. In the mollified Strang splitting algorithm above, it is possible that there
is small loss of L2 norm conservation in the splitting scheme due to cutting off at high-
frequency in the third step of the method. However, we note that in the pseudo-spectral

1The authors thank Ludwig Gauckler for pointing this out which fixes an error in an earlier version
of the argument.



1064 STRANG SPLITTING FOR QLS

method the evaluation of the product of the nonlinear phase and u−ε,n+1/2 in the middle

step is done completely on the spatial side which already includes essentially a cut-off
below a given frequency scale related to the grid spacing. Hence, in the fully discrete
implementation, the L2 norm is actually conserved.
Remark 3.4. Theorem 3.1 follows from the above remark and Proposition 6.1 in Sec-
tion 6.

Proof. The convergence proof follows a Lie theoretic idea of Lubich [37] for semi-
linear nonlinear Schrödinger equations.

Denote

Vε[ψ]=Gε ∗ [|ψ|2]+Gε ∗ [Δ(|ψ|2)]
and consider two flows given by

iν̇=Vε[ψ]ν, ν(0)=ψ;

iμ̇=Vε[φ]μ, μ(0)=φ.

Using essentially the same calculation leading to (3.11), we arrive at

‖μ(t)−ν(t)‖Hs ≤‖ψ−φ‖Hs +C1t‖Gε ∗(ψ−φ)‖
Hs+ d+4

2
+η +C2

∫ t

0

‖μ(s)−ν(s)‖Hs

≤‖ψ−φ‖Hs +C1tε
−(d+4)/2−η‖ψ−φ‖Hs +C2

∫ t

0

‖μ(s)−ν(s)‖Hs .

(3.19)
Note that in the last step we have used an inverse inequality thanks to the frequency
cut-off in Gε. Therefore, a Gronwall type argument gives

‖μ(t)−ν(t)‖Hs ≤ eC0(ε)t‖ψ−φ‖Hs , (3.20)

where C0 depends on mk, for k=s+ d
2 +2+η, in terms of the size of the data as well

as the ε in the mollifier.
Now, to compare the full evolution to the mollified split-step method, we must

compute the Lie commutators between generating vector fields. As mollification will
only reduce norms, below, for simplicity, we work with continuous versions of the Strang
splitting flow. However, in the discussion below, the reader should keep in mind the
case when V =Vε. We observe

[T̂ ,V̂ ]ψ=Δ
(|ψ|2ψ−Δ(|ψ|2)ψ)

−[
2Δψ(ψ̄ψ−ψ2Δψ)

]
(3.21)

−[
Δ(Δψψ̄)ψ−Δ(ψΔψ)ψ+Δ(|ψ|2)Δψ

]
.

Hence,

‖[T̂ ,V̂ ](ψ)‖H1 ≤C‖ψ‖3
Hmax(5, 4+d

2
+)
. (3.22)

In addition, we then can easily compute

‖[T̂ , [T̂ ,V̂ ]](ψ)‖H1 ≤C‖ψ‖3
Hmax(7, 6+d

2
+)
. (3.23)

Setting the vector field Ĥ= T̂ + V̂ , the underlying idea is that the evolution of the full
quasilinear Schrödinger equation, given by the exact evolution

ψ(τ)=exp(τDH)Id(ψ0) (3.24)
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when well defined (by making the initial condition sufficiently high regularity), can be
compared through a double Duhamel expansion to the split-step generator

ψSS(τ)=exp(
1

2
τDT )exp(τDV )exp(

1

2
τDT )Id(ψ0), (3.25)

the error terms of which can be written using the Lie commutators. Since the frequency
mollifier we wish to include in the pseudo-spectral implementation commutes with the
left-most exp( 12τDT ) iteration, we again proceed with the continuous estimates and
recognize that, in the end, we will cut-off in frequency which only reduces norms.

Indeed, the error estimates come from successive application of the quadrature first
order error formula

τf(
1

2
τ)−

∫ τ

0

f(s)ds= τ2
∫ 1

0

κ1(θ)f
′(θτ)dθ (3.26)

and the second-order error formula

τf(
1

2
τ)−

∫ τ

0

f(s)ds= τ3
∫ 1

0

κ2(θ)f
′′(θτ)dθ, (3.27)

where κ1(θ) and κ2(θ) are the Peano kernels for the midpoint rule,

f(s)=exp((τ−s)DT )DV exp(sDT )Id(ψ0),

and hence

f ′(s)= eisΔ[T̂ ,V̂ ]ei(τ−s)Δψ0,

f ′′(s)= eisΔ[T̂ , [T̂ ,V̂ ]]ei(τ−s)Δψ0.

Note, the Peano kernels are defined as the integral kernels of the linear transformation

L :Ck+1[0,T ]→R

such that

L(f)=f−
k∑

j=0

f (j)(0)

j!
T j =

1

k!

∫ T

0

κk(s)f
(k+1)(s)ds.

Hence we observe that, using the mid-point rule, the f ′(t/2) term vanishes explaining
why there is not a quadratic term in (3.27), though the expressions (3.26) and (3.27)
can still vary due to the nature of the error term expansions in both cases. Hence, it is
essential for the argument below we can prove that for our approximation we have f(s)∈
C3 which strongly relates to the analyticity of the linear Schrödinger evolution kernel in
the Strang splitting scheme since, in particular, a generic quasilinear Schrödinger flow
cannot be shown to be more than C0 by the purely dispersive techniques in [39, 40].
We will come back to this in more detail in Section 5.

Applying (3.24), (3.25), (3.22), (3.23), and (3.11) in succession, as in [37], gives

‖un,ε−uε(tn)‖H1 ≤C(mK0
,ε,T )τ2 (3.28)

for tn=nτ ≤T and K0=max(7, d+6
2 +η) for the mollified flow when τ is small compared

to ε.
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From the continuous point of view, in order to obtain the τ2 convergence here, it is
important to compute the double commutator bound leading to (3.25) in order to expand
out to 3rd order in the Lie derivatives. However, we note the same quadratic convergence
would hold in L2 with only K0=max(5, d+5

2 +η) as then the double Duhamel commu-
tator would not be required and we would be mostly restricted by the well-posedness
threshold for (1.1).
Remark 3.5. So far we have considered the convergence of the time-splitting flow to
the flow of the original PDE. We further discretize the spatial degree of freedom using a
Fourier pseudo-spectral method. The convergence of the fully discretized scheme follows
if we can show that the fully discretized scheme converges to the time-splitting flow,
though this is beyond the scope of our aim in this work. See, for instance, [20, 46, 51, 22]
for analysis of the fully discretized scheme for semilinear Schrödinger equations. The
importance of analysis of the fully discretized scheme moving forward is quite clear
from the necessity of mollifying the Strang splitting algorithm here. The authors hope
to consider this more carefully in future work.
Remark 3.6. Since the mollified equation becomes effectively semi-linear, one could
pose the question as to whether or not much of the quasilinear analysis on the contin-
uous problem presented here is necessary for proof of convergence or if the semilinear
tools could be applied. Actually, one can apply the semilinear techniques to the mollified
continuous flow, however the existence time of the model for the initial data would be-
come exponentially small depending upon the ε threshold in the frequency cut-off. Hence,
using the quasilinear flow estimates is quite important in order to get uniform control
on the continuous mollified problem over the time 1 existence interval for the full con-
tinuous problem. However, in using Strang-Splitting methods with the derivative part of
the nonlinearity in the potential step, we are locally treating the evolution of this term
as a semilinear approximation which means we must figure out how to uniformly apply
the ideas of [37] and why the time step τ must be taken to be short enough to allow
uniform errors with relation to the mollification.

4. Stability and instability of the numerical scheme
As discussed in Section 2, for large data, we observe blow-up behavior in the nu-

merical study. In this section, we will investigate the numerical instability of the scheme
which will shed some light on the blow-up behavior.

4.1. Linear stability analysis for wave train
For the uniform wave trains solution (2.5), we study the stability for perturbations

around the solution. Consider a perturbed solution of the form

u(x,t)=u0(x,t)(1+ε(x,t)), (4.1)

where u0 is the plane-wave solution aei(kx−ωt) and |ε|2�1. For the leading order, we
get

iεt+2ikεx+εxx= |a|2(ε+sε)+ |a|2(ε+sε)xx. (4.2)

Let us expand ε in a Fourier series (with ξn=n for ε periodic on [0,2π]):

ε(x,t)=

∞∑
n=−∞

ε̂n(t)exp(iξnx). (4.3)

The equation of ε can then be written as a system of ODEs,

d

dt

(
ε̂n

ŝε−n

)
=Gn

(
ε̂n

ŝε−n

)
, (4.4)
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where

Gn= i

(−2kξn−|ξn|2−|a|2+ |a|2|ξn|2 −|a|2+ |a|2|ξn|2
|a|2−|a|2|ξn|2 −2kξn+ |ξn|2+ |a|2−|a|2|ξn|2

)
. (4.5)

The eigenvalue of Gn, λn, is given by

λn=−2ikξn±|ξn|
√
−|ξn|2−2|a|2+2|a|2|ξn|2. (4.6)

The solution becomes unstable if one of the eigenvalues has a positive real part or,
equivalently,

2|a|2|ξn|2−2|a|2−|ξn|2>0. (4.7)

A sufficient condition for stability is

|a|≤
√
2/2. (4.8)

Note that the stability threshold
√
2/2 agrees with the numerical observations in Sec-

tion 2.

4.2. Linear Stability Analysis for the Strang splitting algorithm
To study the stability of general initial data, where an explicit solution is not avail-

able, we linearize around a solution to (1.1). Locally, the linear instability is essentially
equivalent to the plane-wave instability observed in Section 2.2 and analyzed in the pre-
vious subsection. The key observation is that the instability occurs for all k. This has
been done in [36, Equation (8)] where one observes that perturbation around a solution
u=w+z leads to

zt=a [MwΔz+Gw∇z+Hwz]+f(t), z(0)=g, (4.9)

where, for w=w1+ iw2, we observe

Mw=

[
2w1w2 2w2

2−1
1−2w2

1 −2w1w2

]
which has determinant 1−2|w|2. The matrix functions Gw and Hw come from the
linearization and will be expressed in full in (4.10) below. Using this linearization and
a Fréchet based iteration argument in the space H∞, the authors then show local well-
posedness for small data solutions to equations of the form (1.1).

To understand the instability of the numerical scheme, we linearize the discretized
Strang splitting algorithm and show that the linear instability threshold in the continu-
ous problem exists in the discretized version as well. Letting u=w+z for some solution
w of (1.4), and generally writing h(x,t)=h1(x,t)+ ih2(x,t) for any complex function h,
we have that the linearized continuous PDE (4.9) takes the form (see also [36])[

z1
z2

]
t

=

[
2w1w2Δ (2w2

2−1)Δ
(1−2w2

1)Δ −2w1w2Δ

][
z1
z2

]
+

[
2w2

2+2w1w2 w2
1+w2

2

−[3w2
1+w2

2] −2w1w2

][
z1
z2

]
(4.10)

+

[
4w2∇w1 ·∇ 4w2∇w2 ·∇
− [4w1∇w1 ·∇] − [4w1∇w2 ·∇]

][
z1
z2

]
+

[
2w2Δw1

∑2
j=12∇·(wj∇wj))+2w2Δw2

−
[∑2

j=12∇·(wj∇wj)+2w1Δw1

]
−2w1Δw2

][
z1
z2

]
.
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We then have

Mw=

[
2w1w2 2w2

2−1
1−2w2

1 −2w1w2

]
, Gw=

[
4w2∇wT

1 4w2∇wT
2

−4w1∇wT
1 −4w1∇wT

2

]
,

Hw=

[
2w2

2+2w1w2+2w2Δw1 H12

−H21 −[2w1w2+2w1Δw2]

]
,

where

H12=w2
1+w2

2+2w1Δw1+2∇w1 ·∇w1+4w2Δw2+2∇w2 ·∇w2,

H21=3w2
1+w2

2+4w1Δw1+2∇w1 ·∇w1+2w2Δw2+2∇w2 ·∇w2+4w1∇w1.

We wish to compare the linearization of the full PDE to the discretized linearization
of the form

z−n+1/2= e
i
2 τΔzn;

z+n+1/2=exp
(
−iτ(|w−n+1/2|2+Δ(|w−n+1/2|2)

))(
Id− iτH̃w−

n+1/2

)
z−n+1/2; (4.11)

zn+1= e
i
2 τΔz+n+1/2,

where, taking w−n+1/2=w1+ iw2, we have

H̃w−
n+1/2

=

[
2w1w2Δ 2w2

2Δ
−2w2

1Δ −2w1w2Δ

]
+

[
2w2

2+2w1w2 w2
1+w2

2

−[3w2
1+w2

2] −2w1w2

]
+

[
4w2∇w1 ·∇ 4w2∇nw2 ·∇
− [4w1∇w1 ·∇] − [4w1∇w2 ·∇]

]
+

[
2w2Δw1

∑2
j=12∇·(wj∇wj)+2w2Δw2

−
[∑2

j=12∇·(wj∇wj)+2w1Δw1

]
− [2w1Δw2]

]
.

To address the linear stability of the Strang splitting scheme, consider a linearly
unstable mode corresponding to (4.10) such that z is regular. The linearized splitting
scheme to the leading order works as

z−n+1/2=

(
Id+

1

2

( −τΔ
τΔ 0

))
zn;

z+n+1/2=

(
Id+τ

(
2w1w2Δn 2w2

2Δn

−2w2
1Δn −2w1w2Δn

))
z−n+1/2; (4.12)

zn+1=

(
Id+

1

2

( −τΔ
τΔ 0

))
z+n+1/2,

and hence

zn+1= zn+τ

(
2w1w2Δ (2w2

2−1)Δ
(1−2w2

1)Δ −2w1w2Δ

)
zn+O(τ2). (4.13)

As a result, if w1 and w2 are constant (which we can assume only locally with any accu-
racy) and 2|w|2−1>0, we observe that each Fourier mode zn+1,k can be approximated
by the linearized dynamical system

zn+1,k= zn,k+τ

(−2w1w2k
2 −(2w2

2−1)k2

(2w2
1−1)k2 2w1w2k

2

)
zn,k (4.14)
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which has eigenvalues 1±τk2
√
2|w|2−1 and hence would clearly grow exponentially

for |w|>√2/2. For sufficiently large k, we observe that all the Fourier modes of w1

and w2 are small perturbations and hence exponential growth will occur just as in
the backwards heat flow generated from the continuous approximation. Indeed, for τ
sufficiently small, we have that the linearized Strang splitting flow well approximates
the unstable backwards heat flow and hence displays linear instability. However, of
course, the nonlinear effects are ignored in this computation.

To make this more precise, we observe from [40] that for the full PDE model (1.3)
we can construct initial data for (1.4) having L∞ norm larger than

√
2/2 but sufficiently

localized in frequency such that the solution exists locally in time. A simple example
of a solution with a global existence time and initial L∞ norm larger than

√
2/2 is an

exact plane-wave solution for the periodic problem. However, perturbations of such
exact solutions are still linearly unstable as calculated in Section 4.1. The backward
heat equation that represents the linearization of the continuous model exists locally in
time when considering frequency localized data; however, this time scale will depend
on the frequency cut-off and potentially be quite short given the nonlinear interactions.
Using Theorem 3.1, we observe that in the semi-discretized equation choosing τ�1
sufficiently small compared to the scale of local existence for (1.4), the numerical solution
computed using the Strang splitting scheme is O(τ2) provided the solution is sufficiently
regular. Of course, from (4.13), on a single time-step, the Strang splitting solution has
a polynomial instability. However, the linearized equations in (4.10) give exponential
growth dynamics for the full solution on the time scale of local existence. Since, on
the scale of existence, the numerical solution remains O(τ2), the linear instability is
inherited by the numerical solution over repeated iterations of the time step.

5. Regularity of the Time Evolution
In the analysis of the convergence of the Strang splitting scheme, we have used

the analyticity of the linear Schrödinger evolution. However, this is not the case in
general for the quasilinear Schrödinger evolution. The Strang splitting scheme actually
regularizes the time flow of the original PDE. In this section, we give some further
discussion for the regularity of the time evolution.

Let us show that the solution map of a quasilinear Schrödinger evolution is contin-
uous in time for (1.1). The continuity partially hinges upon the proof of uniqueness for
the evolution. In particular, take two solutions to a more general quasilinear model of
the form (1.2), say u1 and u2. Setting v=u1−u2 and linearizing, we have an equation
of the form {

ivt+ajk(u)∂j∂kv+V∇v+Wv=0,
v(0,x)=u1(0)−u2(0)

with

V =V (u1,∇u1,u2,∇u2), W =h(u1,∇u1,u2,∇u2)+g(u1,u2)∇2u1

for functions V , h, and g related to the Taylor expansion of the metric and the non-
linearity. Then, to solve this linear equation, we use [40, Proposition 5.1] (see also [39,
Proposition 5.2]) to show that the weak Lipschitz bound

‖v‖L∞Hσ �‖v(0)‖Hσ (5.1)

holds for any 0≤σ≤s−1 via energy estimates on the linearized equation where we
recall that the initial condition lies in Hs for s> d+5

2 . However, in the well-posedness
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result for the linearized version of (1.1) (see Proposition 5.1 of [40], for instance), we
have at most continuity of the solution map with respect to time in the Hs norm.

The key ideas of the proof follow from the theory of frequency envelopes as discussed
in both [39, 40, Sections 2 and 5] where it is proven that the size of a dyadic frequency
component of the solution to (1.1) in a natural energy space is bounded by a uniform
constant times the corresponding dyadic frequency component of the initial data in
Hs. To be more precise, we shall use a Littlewood-Paley decomposition of the spatial
frequencies,

∞∑
i=0

Si(D)=1,

where Si localizes to frequency |ξ|∈ [2i−1,2i+1] for i>0 and to frequencies |ξ|≤2 for
i=0. By a frequency envelope, we recall from [39, Section 2.4] that we mean that given
a translation invariant space U such that

‖u‖2U ∼
∞∑
k=0

‖Sku‖2U ,

a frequency envelope for u in U is a positive sequence aj so that

‖Sju‖U ≤aj‖u‖U ,
∑

a2j ≈1. (5.2)

We say that a frequency envelope is admissible if a0≈1 and it is slowly varying,

aj≤2δ|j−k|ak, j,k≥0, 0<δ�1.

An admissible frequency envelope always exists, say by

aj =2−δj+‖u‖−1
U max

k
2−δ|j−k|‖Sku‖U . (5.3)

Abusing notation and avoiding for simplicity the atomic space formulations in [39, 40],
we rely upon a uniform bound over the evolution such that effectively

‖u‖L∞Hs �‖u0‖Hs . (5.4)

We note that the L∞Hs norm appearing in the estimate here is due to the cubic
interactions in the nonlinearity and the compactness of our domain, otherwise one must
enforce further summability as in [39]. A key estimate is the following proposition.

Proposition 5.1 (Proposition 5.3, [39]; Proposition 5.4, [40]). Let u be a small
data solution to (1.1) which satisfies (5.4). Let {aj} be an admissible frequency envelope
for the initial data u0 in Hs. Then {aj} is also a frequency envelope for u in L∞Hs.

Once we have Proposition 5.1, the continuity of the solution map can be established
as in Section 5.7 of [39]. Namely, we consider a sequence of initial data {un

0}→u0 in
Hs. Frequency envelope bounds can then be chosen such that there exists a uniform
Nε for which

‖a(n)Nε
‖≤ ε

for all n, which gives a uniform upper bound by Proposition 5.1 on the high frequencies

of each corresponding solution u(n) to (1.1) with initial data u
(n)
0 in the L∞Hs norm.
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Separating into low and high frequencies and using the smallness of the high frequencies
and the uniform convergence in weaker Sobolev norms provided by (5.1), the result
follows.

Let us emphasize, however, that we generally gain no more than continuity of the
solution map from such arguments. Hence, in order to accurately compare the flow of
the full solution map defined by (1.1) and that of the Strang splitting method, we rely
on differentiating the equation and the balancing of spatial and time regularity as in
Section 3.

6. Convergence of the Pseudospectral Flow
In this section, we address the closeness of the flow from the continuous equation

to a mollified equation representing the effects of a full pseudo-spectral discretization
scheme. Namely, we take

iuε,t+uε,xx=Gε ∗ [|uε|2uε]+Gε ∗ [Δ(|uε|2)uε] (6.1)

for Gε∈C∞c a smooth, compactly supported mollifier such that if u∈Hs we have

‖Gεu−u‖Hs−1 ≤Cε‖u‖Hs

as ε→0. Note, this is essentially an exponentially decaying cut-off in frequency space
S<Nε for Nε=O(1/ε). We wish to compare this to the evolution of (2.1).
Proposition 6.1. For ‖u0‖Hs�1 sufficiently small with s>3, (6.1) has a solution
that exists for time 1 and remains sufficiently small. In addition, if u solves (2.1) we
have ‖u−uε‖L∞([0,1]×Hσ)=O(ε) as ε→0 for all σ<s−3.

Proof. Intuitively, we rely on the paradifferential scheme providing the frequency
envelope bounds of [40] which states that, at least for small enough data with enough
regularity, on time 1 intervals the high frequencies do not change the flow very much.
In particular, we use the fact that the flow of both equations is well-defined in Hs for
s> d+5

2 .
Let us, for the sake of completeness, briefly review paradifferential estimates from

[40]. We are interested for our particular numerical purposes in (1.1), but, since the
results are also true in higher dimensions, let us work with a more general quasilinear
equation of the form (1.2). We use a Picard iteration scheme to boil down finding a
solution to solving the linear problem{

(i∂t+∂ka
kl(w)∂l)u+V∇u+Wu=H,

u(0)=u0

(6.2)

and {
(i∂t+∂ka

kl(w)∂l)u+V∇u=H,

u(0)=u0

(6.3)

under the assumption that

gkl−δkl=hkl(w(t,x)),

where h(z)=O(|z|2) near |z|=0 with w a small function in an energy space and H a
generic forcing term that is small in the dual to that energy space at the moment. We
include H so that the error term from frequency cut-offs can be included below.
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We want to use a paradifferential scheme such that uj at frequency j solves{
(i∂t+∂ka

kl
<j−4∂l)uj =Gj+Hj ,

uj(0)=u0j ,

where akl<j−4=S<j−4a
kl is cut-off to slightly lower frequencies, and hence

Gj =−Sj∂kg
kl
>j−4∂lu− [Sj ,∂kg

kl
<j−4∂l]u−SjV∇u−SjWu.

Then, we construct a full solution by summing over frequency.
Applying the general energy estimates from Proposition 4.1 to each of these equa-

tions, we see that

‖u‖2l2Xσ �‖u0‖2Hσ +‖H‖2l2Y σ +
∑
j

‖Gj‖2l2Y σ .

If W =0, we can take σ=s, otherwise we work with σ=s−1. However, these estimates
are strong enough to give a bootstrapping argument. The spaces l2Xσ, l2Y σ here
require using smoothing properties of the linear Schrödinger equation and will not be
discussed in detail here. See [40] for more details on their construction.

Convergence estimates in Sobolev spaces follows directly from energy estimates for
the truncated equation and the frequency envelope analysis in Section 5 on solutions to
(2.1). Note that we make no claims that our convergence estimates for the pseudospec-
tral scheme are sharp, and, in fact, being more careful with convergence estimates above
might improve future results. Since we are largely worried about the L2 and H1 con-
vergence, there is a relatively simple approach inspired by Propositions 5.1 and 5.2
from [40] that gives a frequency envelope decomposition for the solution u of (2.1). We
observe

‖u−uε‖L∞([0,1]×Hσ)≤C
(‖(1−Gε)u0‖Hσ +‖|u|2u−Gε(|Gεu|2Gεu)‖Hσ

+‖(|u|2)xxu−Gε((|Gεu|2)xxGεu)‖Hσ

)
≤C(‖u‖L∞Hσ+3)ε,

where we have emphasized the dependence on the constant in the final inequality on
‖u‖L∞Hσ+3 . The convergence is easily controlled using the frequency envelopes of u,
and hence the nonlinear expressions of u, using that s>d/2 and the smallness of u. As
a result, if the initial datum has a small ‖·‖Hσ+3 norm, ‖u‖L∞Hσ+3 is controlled and
hence so is the difference between u and uε.

7. Conclusion
In this work, we have studied the Strang splitting scheme for quasilinear nonlinear

Schrödinger equations. The splitting scheme is proved to have second order convergence
for small data. We further investigate the regularity of the time flow and the instability
of the numerical scheme which leads to numerically observed blow-ups.

Our work is motivated by numerical approaches towards time-dependent density
functional theory computations as discussed in the documentation of the software pack-
age Octopus [1, 13] and references therein. The mathematical analysis and numerical
schemes for time-dependent density functional theory will be an exciting direction to
explore in the future.
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