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Abstract. We propose a simple model of inter-bank borrowing and lending where the evolution of
the log-monetary reserves of N banks is described by a system of diffusion processes coupled through
their drifts in such a way that stability of the system depends on the rate of inter-bank borrowing
and lending. Systemic risk is characterized by a large number of banks reaching a default threshold
by a given time horizon. Our model incorporates a game feature where each bank controls its rate
of borrowing/lending to a central bank. The optimization reflects the desire of each bank to borrow
from the central bank when its monetary reserve falls below a critical level or lend if it rises above this
critical level which is chosen here as the average monetary reserve. Borrowing from or lending to the
central bank is also subject to a quadratic cost at a rate which can be fixed by the regulator. We solve
explicitly for Nash equilibria with finitely many players, and we show that in this model the central
bank acts as a clearing house, adding liquidity to the system without affecting its systemic risk. We
also study the corresponding Mean Field Game in the limit of a large number of banks in the presence
of a common noise.
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1. Introduction
Systemic risk is becoming a central research topic. We refer to the Handbook [8]

for recent developments on systemic risk from many points of view (Statistics, Finance,
Mathematical Finance, Behavioral Finance, Networks, Counterparty Risk, High Fre-
quency Trading, ...). Here, we propose a simple model of inter-bank borrowing and
lending where the evolution of the log-monetary reserves of N banks is described by a
system of diffusion processes coupled through their drifts in such a way that stability
of the system depends on the rate of inter-bank borrowing and lending. Systemic risk
is characterized by a large number of banks reaching a default threshold by a given
time horizon. This type of interaction and the relation stability–systemic risk has been
recently studied in [9, 10, 11, 12]. Here, we introduce a game feature where each bank
controls its rate of borrowing/lending to a central bank. The control of each individual
bank reflects the desire to borrow from the central bank when its monetary reserve falls
below a critical level or lend if it rises above this critical level which is chosen here as the
average monetary reserve. Borrowing from or lending to the central bank is also subject
to a quadratic cost at a rate which can be fixed by the regulator. As written, our model
is an example of Linear-Quadratic Mean Field Game with finitely many players which
can be solved explicitly. We first solve for open-loop equilibria using the Pontryagin
stochastic maximum principle. We also solve for closed-loop equilibria using the prob-
abilistic approach based on the Pontryagin stochastic maximum principle leading to
the solution of Forward-Backward Stochastic Differential Equations, and the dynamic
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programming principle leading to the solution of Hamilton-Jacobi-Bellman partial dif-
ferential equations. We also study the corresponding Mean Field Game in the limit of
a large number of banks. Adding a game component to the model has a non-trivial
effect on the stability of the system which our simple model enables to analyze. Our
conclusion is that inter-bank borrowing and lending creates stability, this stability is
enhanced by the possibility of borrowing and lending from a central bank which in our
model appears as a clearing house providing additional liquidity, and systemic risk is
described as a rare event with probability quantified by large deviation theory.

In the model discussed below, the diffusion processes Xi
t for i = 1, . . . , N repre-

sent the log-monetary reserves of N banks lending to and borrowing from each other.
The system is driven by N (possibly correlated) standard Brownian motions W̃ i

t , i =

1, · · · , N written as W̃ i
t = ρW 0

t +
√
1− ρ2W i

t , where W j
t , j = 0, 1, · · · , N are inde-

pendent standard Brownian motions, W 0
t being the common noise, and |ρ| ≤ 1. The

system starts at time t = 0 from i.i.d. random variables Xi
0 = ξi independent of the

Brownian motions and such that E(ξi) = 0. We assume that the diffusion coefficients
are constant and identical, denoted by σ > 0. Our model of lending and borrowing
consists in introducing an interaction through drift terms representing the rate at which
bank i borrows from or lends to bank j. In this case, the rates are proportional to the
difference in log-monetary reserves, and our model is:

dXi
t =

a

N

N∑
j=1

(Xj
t −Xi

t) dt+ αi
tdt+ σdW̃ i

t , i = 1, . . . , N, (1.1)

where the overall rate of “mean-reversion” a/N has been normalized by the number
of banks with a ≥ 0. Bank i controls its rate of borrowing/lending to a central bank
through the control rate αi

t. Using the notation

Xt =
1

N

N∑
i=1

Xi
t ,

for the empirical mean, the dynamics can be rewritten in the mean field form:

dXi
t =

[
a(Xt −Xi

t) + αi
t

]
dt+ σdW̃ i

t , i = 1, · · · , N. (1.2)

Bank i ∈ {1, · · · , N} controls its rate of lending and borrowing at time t by choosing
the control αi

t in order to minimize

J i(α1, · · · , αN ) = E

{∫ T

0

fi(Xt, α
i
t)dt+ gi(X

i
T )

}
, (1.3)

where the running cost function fi is defined by

fi(x, α
i) =

[
1

2
(αi)2 − qαi(x− xi) +

ε

2
(x− xi)2

]
, (1.4)

and the terminal cost function gi by

gi(x) =
c

2

(
x− xi

)2
. (1.5)

Notice that the running quadratic cost 1
2 (α

i)2 has been normalized and that the effect
of the parameter q > 0 is to control the incentive to borrowing or lending: the bank i
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will want to borrow (αi
t > 0) if Xi

t is smaller than the empirical mean (Xt) and lend
(αi

t < 0) if Xi
t is larger than Xt. Equivalently, after dividing by q > 0, this parameter

can be thought as a control by the regulator of the cost of borrowing or lending (with
q large meaning low fees).

The quadratic terms in
(
x− xi

)2
in the running cost (ε > 0) and in the terminal

cost (c > 0) penalize departure from the average. We assume that

q2 ≤ ε, (1.6)

so that fi(x, α) is convex in (x, α).
In the spirit of structural models of defaults, we introduce a default level D < 0

and say that bank i defaults by time T if its log-monetary reserve reached the level D
before time T . Note that in this simple model, even after reaching the default level,
bank i stays in the system until time T and continues to participate in inter-bank and
central bank borrowing and lending activities.

The paper is organized as follows. In Section 2 we recall the results of the descriptive
model presented in [10] without control, that is αi

t = 0. We illustrate the fact that inter-
bank borrowing and lending creates stability, and we define and quantify the systemic
risk.

Section 3 is devoted to the analysis of the stochastic differential game (1.2-1.3). We
derive exact Nash equilibria for the open-loop as well as for the closed-loop Markovian
models, using both probabilist and analytic approaches.

The financial implications in terms of liquidity and role of a central bank are dis-
cussed in Section 4.

Stochastic differential games with a large number of players are usually not tract-
able. It is because of the very special nature of our model (linear dynamics, quadratic
costs, and interactions through the empirical mean) that we are able to construct ex-
plicitly Nash equilibria, both open and closed loops. For generic models which are not
amenable to explicit solutions, Lasry and Lions [18, 19, 20] have recently provided an
elegant way to tackle the construction of approximate Nash equilibria for large games
with mean field interactions. Their methodology, known as Mean Field Game (MFG),
has been applied to a wide variety of problems (see [13, 17] for some examples). A sim-
ilar research program was developed independently by Caines, Huang, and Malhamé
with the name of Nash Certainty Equivalent. See for example [14] and [15]. The ap-
proach of Lasry and Lions (e.g. [20]) is based on the solution of a system of partial
differential equations (PDEs): a Hamilton-Jacobi-Bellman equation evolving backward
in time, and a Kolmogorov equation evolving forward in time, these two PDEs being
strongly coupled. By its probabilistic nature, it is natural to recast the MFG strategy
using appropriate forms of the Pontryagin stochastic maximum principle, leading to the
solution of new models. See, for example, [2, 4, 5, 6, 7] for a probabilistic approach
based on the weak formulation of stochastic control. We consider the MFG problem
and discuss the existence of approximate Nash equilibria in Section 5.

2. Stability and systemic risk
In this section, we consider a system of N banks without the possibility of borrowing

or lending to a central bank, that is (1.1) or (1.2) with αi
t = 0:

dXi
t =

a

N

N∑
j=1

(Xj
t −Xi

t) dt+ σdW̃ i
t

= a(Xt −Xi
t)dt+ σdW̃ i

t , i = 1, · · · , N. (2.1)
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Fig. 2.1. One realization of N = 10 trajectories of the coupled diffusions (2.1) (left plot) with
a = 10 and trajectories of independent Brownian motions (a = 0) (right plot) using the same Gaussian
increments. The solid horizontal line represents the “default” level D = −0.7.

To start with, we assume that the Brownian motions W̃ i are independent, that is ρ = 0
and W̃ i = W i. For simplicity, we also assume that Xi

0 = ξi = 0. In Section 2.4, we will
consider the correlated (or common noise) case.

2.1. Simulations. In figure 2.1 we show a typical realization of the N trajec-
tories with a relatively large rate of borrowing/lending a = 10, the diffusion coefficient
being set at σ = 1 (we used the Euler scheme with a time-step Δ = 10−4, up to time
T = 1). We see that the trajectories generated by (2.1) are more grouped than the ones
generated by independent Brownian motions corresponding to no inter-bank borrowing
or lending (a = 0). This is the “swarming” or “flocking” effect more pronounced for a
larger rate a. Consequently, less (or almost no) trajectories will reach the default level
D, creating stability of the system.

Next, we compare the loss distribution (distribution of number of defaults) for the
coupled and independent cases. We compute these loss distributions by Monte Carlo
method using 104 simulations, and with the same parameters as previously.

In the independent case (a = 0), the loss distribution is Binomial(N, p) with pa-
rameter p given by

p = P

(
min

0≤t≤T
(σWt) ≤ D

)
= 2Φ

(
D

σ
√
T

)
,

where Φ denotes the N (0, 1)-cdf, and we used the explicitly known distribution of the
minimum of a Brownian motion. With our choice of parameters, we have p ≈ 0.5 and
therefore, the corresponding loss distribution is almost symmetric as can be seen on
the left panels (dashed lines) in figures 2.2 and 2.3. We see that increasing a, that is
the rate of inter-bank borrowing and lending, pushes most of the mass to zero default,
in other words, it improves the stability of the system by keeping the diffusions near
zero (away from default) most of the time. However, we also see that there is a small
but non-negligible probability that almost all diffusions reach the default level. On the
right panels of figures 2.2 and 2.3 we zoom in on this tail probability. In fact, this tail
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Fig. 2.2. On the left, we show plots of the loss distribution for the coupled diffusions with a = 10
(solid line) and for the independent Brownian motions (dashed line). The plots on the right show the
corresponding tail probabilities.
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Fig. 2.3. On the left, we show plots of the loss distribution for the coupled diffusions with a = 100
(solid line) and for the independent Brownian motions (dashed line). The plots on the right show the
corresponding tail probabilities.

corresponds to the small probability of the ensemble average reaching the default level,
and to almost all diffusions following this average due to “flocking” for large a.

2.2. Mean-field limit. From (2.1) we see that the processes (Xi
t)’s are “OUs”

mean-reverting to their ensemble average (Xt). Summing up the equations in (2.1) and
using Xi

0 = 0, i = 1, . . . , N , one observes that this ensemble average is given by

Xt =
σ

N

N∑
i=1

W i
t , (2.2)
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which is distributed as a Brownian motion with diffusion coefficient σ/
√
N indepen-

dently of a.
In the limit N →∞, the strong law of large numbers gives

1

N

N∑
j=1

W j
t → 0 a.s.,

and, more generally, the processes Xi
t given by

Xi
t =

σ

N

N∑
j=1

W j
t + σe−at

∫ t

0

easdW i
s −

σ

N

N∑
j=1

(
e−at

∫ t

0

easdW j
s

)
,

converge to the independent OU processes σe−αt
∫ t

0
eαsdW i

s with long-run mean zero.
This is in fact a simple example of a mean-field limit and propagation of chaos studied
in general in [21].

2.3. Large deviations and systemic risk. In this section, we focus on the event
where the ensemble average given by (2.2) reaches the default level. The probability
of this event is small (when N becomes large), and is given by the theory of Large
Deviations. In our simple example, this probability can be computed explicitly as
follows:

P

(
min

0≤t≤T

(
σ

N

N∑
i=1

W i
t

)
≤ D

)
= P

(
min

0≤t≤T
W̃t ≤ D

√
N

σ

)

= 2Φ

(
D
√
N

σ
√
T

)
, (2.3)

where W̃ is a standard Brownian motion and Φ is the N (0, 1)-cdf. Therefore, using
classical equivalent for the Gaussian cumulative distribution function, we obtain

lim
N→∞

− 1

N
logP

(
min

0≤t≤T

(
σ

N

N∑
i=1

W i
t

)
≤ D

)
=

D2

2σ2T
. (2.4)

In other words, for a large number of banks, the probability that the ensemble average
reaches the default barrier is of order exp(−D2N/(2σ2T )). Recalling (2.2), we identify{

min
0≤t≤T

Xt ≤ D

}
(2.5)

as a systemic event. Observe that this event does not depend on a > 0. In other words,
increasing stability by increasing the rate of borrowing and lending a does not prevent
a systemic event where a large number of banks default. In fact, once in this event,
increasing a creates even more defaults by “flocking to default”. This is illustrated in the
figure 2.3, where a = 100 and the probability of systemic risk is roughly 3% (obtained
using formula (2.3)).

To summarize this section, our simple model with prescribed dynamics (no game)
and independent noises shows that “lending and borrowing improve stability but also
contribute to systemic risk”. We have quantified this behavior and identified the crucial
role played by the inter-bank rate of borrowing and lending.
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2.4. Systemic risk and common noise. In this section, we discuss the coupled
diffusions driven by correlated Brownian motions (W̃ i

t ) and without control (αi = 0).
The dynamics (1.1) or (1.2) become:

dXi
t = a

⎛⎝ 1

N

N∑
j=1

Xj
t −Xi

t

⎞⎠ dt+ σ
(
ρdW 0

t +
√

1− ρ2dW i
t

)
, i = 1, · · · , N, (2.6)

where
(
W 0

t ,W
i
t , i = 1, · · · , N)

are independent standard Brownian motions and W 0
t is

a common noise. As previously, we calculate the ensemble average

1

N

N∑
i=1

Xi
t =

σ

N

N∑
i=1

W̃ i
t = σ

(
ρW 0

t +

√
1− ρ2

N

N∑
i=1

W i
t

)
D
= σ

√
ρ2 +

(1− ρ2)

N
Bt,

where Bt is a standard Brownian motion. Moreover, the explicit solution for Xi
t is

Xi
t = σρW 0

t + σ
√

1− ρ2

⎛⎝ 1

N

N∑
j=1

W j
t +

∫ t

0

ea(s−t)dW i
s −

1

N

N∑
j=1

∫ t

0

ea(s−t)dW j
s

⎞⎠ .

The probability of the systemic event (2.5) becomes

P

(
min

0≤s≤T

1

N

N∑
i=1

Xi
s < D

)
= P

(
min

0≤s≤T
Bs <

D

σ

√
N

Nρ2 + (1− ρ2)

)

= 2Φ

(
D

σ
√
T

√
N

Nρ2 + (1− ρ2)

)
.

From the formula above, we see that in the correlated case (ρ 	= 0), the probability of

systemic risk does not vanish as N becomes large; instead it converges to 2Φ
(

D
σ|ρ|√T

)
.

This is in dramatic contrast with the independent case (ρ = 0) where the probability of
systemic risk is exponentially small in N . We illustrate this instability created by the
common noise in figure 2.4.

3. Constructions of exact Nash equilibria
We now return to the model where each bank controls its rate of borrowing and

lending and we search for Nash equilibria of the system (1.2-1.5). We first construct
open-loop equilibria using the Pontryagin stochastic maximum principle leading natu-
rally to the solution of Forward-Backward SDEs (FBSDEs). Next, we construct closed-
loop Markovian equilibria using two different approaches: the first one based on a
modified version of Pontryagin stochastic maximum principle used in the open-loop
case, and the other one based on the dynamic programming principle leading to the
solution Hamilton-Jacobi-Bellman (HJB) PDEs. Recall that in all cases we try to find
an equilibrium for the following borrowing-and-lending problem. The dynamics of the
log-capitalizations Xi

t for i = 1, · · · , N are in the form:

dXi
t =

[
a(Xt −Xi

t) + αi
t

]
dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (3.1)
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Fig. 2.4. One realization of N = 10 trajectories of the coupled diffusions with independent
Brownian motions (2.1) (left plot) and trajectories of the coupled diffusions with correlated Brownian
motions with ρ = 0.5 (2.6) (right plot) using the common a = 10. The solid horizontal line represents
the “default” level D = −0.7.

where W i
t , i = 0, 1, . . . , N are independent Brownian motions, σ > 0 and a ≥ 0. Bank

i ∈ {1, · · · , N} controls its rate of lending and borrowing (to a central bank) at time t
by choosing the control αi

t in order to minimize

J i(α1, · · · , αN ) = E

{∫ T

0

fi(Xt, α
i
t)dt+ gi(X

i
T )

}
, (3.2)

with

fi(x, α
i) =

[
1

2
(αi)2 − qαi(x− xi) +

ε

2
(x− xi)2

]
, (3.3)

gi(x) =
c

2

(
x− xi

)2
, (3.4)

and where fi(x, α) is convex in (x, α) under the assumption q2 ≤ ε.
Our model falls in the class of Linear-Quadratic (LQ) Mean-Field games. What

differentiates the various problems is the set of admissible strategies {αi
t, i = 1, · · · , N}

searched for equilibria.

3.1. Open-loop equilibria. In the deterministic case (σ = 0), the open-loop
problem corresponds to searching for an equilibrium among strategies which are (de-
terministic) functions {αi

t, i = 1, · · · , N} given at time t = 0. See for instance [1]. In
the stochastic case (σ > 0), the open-loop problem consists in searching for an equilib-
rium among strategies {αi

t, i = 1, · · · , N} which are adapted processes satisfying some

integrability property such as E
(∫ T

0
|αi

t|dt
)
<∞. See [3] for example.

The Hamiltonian for bank i is given by

Hi(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN )

=

N∑
k=1

[
a(x− xk) + αk

]
yi,k +

1

2
(αi)2 − qαi(x− xi) +

ε

2
(x− xi)2. (3.5)
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For a given α = (αi)i=1,··· ,n, the controlled forward dynamics of the states Xi
t are given

by (3.1) with initial conditions Xi
0 = xi, and the adjoint processes Y i

t = (Y i,j
t ; j =

1, · · · , N) and Zi
t = (Zi,j,k

t ; j = 1, · · · , N, k = 0, 1, · · · , N) for i = 1, · · · , N are defined
as the solutions of the backward stochastic differential equations (BSDEs):

dY i,j
t = −∂xjHi(Xt, Y

i
t , αt)dt+

N∑
k=0

Zi,j,k
t dW k

t (3.6)

with terminal conditions Y i,j
T = ∂xjgi(XT ) for i, j = 1, · · · , N . For each admissible (i.e.

satisfying the above integrability condition) strategy profile α = (αi)i=1,··· ,n, standard
existence and uniqueness results for BSDEs apply and the existence of the adjoint
processes is guaranteed. Note that from (3.5), we have

∂xjHi =
a

N

N∑
k=1

(yi,k − yi,j)− qαi(
1

N
− δi,j) + ε(x− xi)(

1

N
− δi,j).

The necessary condition of the Pontryagin stochastic maximum principle suggests that
one minimizes the Hamiltonian Hi with respect to αi. See for example the discussion
of the Isaacs conditions in [3]. This leads to the choice:

α̂i = −yi,i + q(x− xi). (3.7)

In order to prove that these candidates actually form a Nash equilibrium, we assume
that all players are making that choice, and let player i finds his best response by solving
the BSDE (3.6) to identify his own adjoint process. With this choice for the controls
αi, the forward equation (3.1) becomes coupled with the backward equation (3.6) and
this forward-backward coupled system is in general extremely difficult to solve. In the
present linear case, we make the ansatz

Y i,j
t = (

1

N
− δi,j)(Xt −Xi

t)φt, (3.8)

for some deterministic scalar function φt satisfying the terminal condition φT = c. Using
this ansatz, a careful computation shows that the backward equation (3.6) becomes

dY i,j
t = (

1

N
− δi,j)(Xt −Xi

t)

[
(a+ (1− 1

N
)q)φt − (ε− q2)

]
dt+

N∑
k=0

Zi,j,k
t dW k

t . (3.9)

Using (3.7) and (3.8), the forward equation (3.1) becomes

dXi
t =

[
a+ q + (1− 1

N
)φt

]
(Xt −Xi

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (3.10)

which by summation gives

dXt = σρdW 0
t + σ

√
1− ρ2

(
1

N

N∑
i=1

dW i
t

)
. (3.11)

Consequently, one obtains

d(Xt −Xi
t) = −

[
a+ q + (1− 1

N
)φt

]
(Xt −Xi

t)dt+ σ
√

1− ρ2

(
1

N

N∑
k=1

dW k
t − dW i

t

)
.

(3.12)
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Differentiating the ansatz (3.8) and using (3.12), we get

dY i,j
t = (

1

N
− δi,j)(Xt −Xi

t)

[
φ̇t − φt

(
a+ q + (1− 1

N
)φt

)]
dt

+φtσ
√
1− ρ2(

1

N
− δi,j)

(
1

N

N∑
k=1

dW k
t − dW i

t

)
, (3.13)

where φ̇t denotes the time-derivative of φt. Comparing the two Itô decompositions (3.9)

and (3.13), the martingale terms give the processes Zi,j,k
t

Zi,j,0
t = 0, Zi,j,k

t = φtσ
√
1− ρ2(

1

N
− δi,j)(

1

N
− δi,k) for k = 1, · · · , N,

which turn out to be deterministic in our case and hence adapted. Identifying the drift
terms shows that the function φt must satisfy the scalar Riccati equation

φ̇t = 2(a+ (1− 1

2N
)q)φt + (1− 1

N
)φ2

t − (ε− q2), (3.14)

with the terminal condition φT = c. This equation can be solved explicitly. We defer
the solution to Section 3.4 where we will provide a comparison with the closed-loop
case for which a similar equation appears. We also defer to Section 4 the discussion of
the financial interpretation of this equilibrium which will be similar to the one for the
closed-loop equilibrium.

Note that the form (3.7) of the control αi
t, and the ansatz (3.8) combine to give:

αi
t =

[
q + (1− 1

N
)φt

]
(Xt −Xi

t). (3.15)

It is interesting to remark that these controls, while constructed to form an open-loop
equilibrium, are in fact in closed-loop feedback form! In this equilibrium, each bank i
can implement its strategy by knowing Xt−Xi

t . Further implications will be discussed
in Section 4. For the time being, we note here that since the optimal strategies are
functions of Xt − Xi

t , in equilibrium, Xt = (Xi
t)1=1,··· ,N are Markovian . So it is

natural to search for equilibria within closed-loop Markovian strategies as we discuss
next.

3.2. Closed-loop equilibria, still via the FBSDE approach. In this section
we solve for an exact Nash equilibrium in closed-loop form when the players/banks at
time t have complete information of the states of all the other players at time t, and
use Markovian strategies.

In this context, when all the other players k 	= i have chosen strategies in feed-
back form given by deterministic functions αk(t, x) of time and state, player i needs to
solve a Markovian control problem to find his best response to these choices, and the
Hamiltonian of his control problem is given by (see [3]):

Hi(x, yi,1, · · · , yi,N , α1(t, x), · · · , αi
t, · · · , αN (t, x))

=
∑
k �=i

[
a(x− xk) + αk(t, x)

]
yi,k +

[
a(x− xi) + αi

]
yi,i

+
1

2
(αi)2 − qαi(x− xi) +

ε

2
(x− xi)2. (3.16)
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The dynamics of the state Xt = (Xi
t)i=1,··· ,N are again given by (3.1) with initial

conditions Xi
0 = xi, and the adjoint processes Y i = (Y i,j)j=1,··· ,N and Zi =

(Zi,j,k)j=1,··· ,N, k=0,1,··· ,N of player i are the solutions of the same BSDE (3.6) with Hi

given in (3.16). Consequently, ∂xjHi is computed from (3.16), giving:

∂xjHi = a

N∑
k=1

(
1

N
− δk,j)y

i,k +
∑
k �=i

(∂xj
αk(t, x))yi,k

−qαi(
1

N
− δi,j) + ε(x− xi)(

1

N
− δi,j). (3.17)

Again, the necessary part of the stochastic maximum principle suggests that one mini-
mizes Hi with respect to αi, leading again to the choice (3.7). Injecting these functions
of Xi

t and Y i,i
t into the state equations and the adjoint equations gives, as before, a large

system of forward backward stochastic differential equations which, if solved, provides
a Markovian Nash equilibrium because of the sufficient part of the stochastic maximum
principle. In order to solve this large FBSDE, we make an ansatz of the same form as
in (3.8):

Y i,j
t =

(
1

N
− δi,j

)
(Xt −Xi

t)ηt, (3.18)

for some deterministic scalar function ηt satisfying the terminal condition ηT = c. This
choice ensures that the control αi is a feedback control. With this choice of optimal
controls and ansatz (3.18), we get

αk(t, x) =

[
q + (1− 1

N
)ηt

]
(x− xk),

∂xjαk(t, x) =

[
q + (1− 1

N
)ηt

]
(
1

N
− δk,j),

and a straightforward computation using (3.17) reduces the backward equations to

dY i,j
t = −∂xjHidt+

N∑
k=0

Zi,j,k
t dW k

t

= (
1

N
− δi,j)(Xt −Xi

t)

[
(a+ q)ηt − 1

N
(
1

N
− 1)η2t + q2 − ε

]
dt

+

N∑
k=0

Zi,j,k
t dW k

t , (3.19)

with terminal conditions Y i,j
T = c( 1

N − δi,j)(XT − Xi
T ). Using (3.7) and (3.18), the

forward equations become:

dXi
t =

[
a+ q + (1− 1

N
)ηt

]
(Xt −Xi

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (3.20)

and by summation we deduce that Xt satisfies again (3.11). Differentiating the ansatz
(3.18) and using (3.11) and (3.20) for the forward dynamics, we obtain that Y i,j

t satisfies
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the equation (3.13) with φt replaced with ηt:

dY i,j
t =

(
1

N
− δi,j

)
(Xt −Xi

t)

[
η̇t −

(
a+ q + (1− 1

N
)ηt

)
ηt

]
dt

+ηtσ
√
1− ρ2(

1

N
− δi,j)

N∑
k=1

(
1

N
− δi,k)dW

k
t . (3.21)

Next, identifying term by term the two Itô decompositions (3.19) and (3.21), we obtain
from the martingale terms

Zi,j,0
t = 0, Zi,j,k

t = ηtσ
√
1− ρ2(

1

N
− δi,j)(

1

N
− δi,k) for k = 1, · · · , N,

which are indeed adapted and square integrable, and from the drift terms:

η̇t −
(
a+ q + (1− 1

N
)ηt

)
ηt = (a+ q)ηt − 1

N
(
1

N
− 1)η2t + q2 − ε.

Therefore, ηt must satisfy the scalar Riccati equation

η̇t = 2(a+ q)ηt + (1− 1

N2
)η2t − (ε− q2), (3.22)

with the terminal condition ηT = c. Equation (3.22) admits the solution

ηt =
−(ε− q2)

(
e(δ

+−δ−)(T−t) − 1
)
− c

(
δ+e(δ

+−δ−)(T−t) − δ−
)

(
δ−e(δ+−δ−)(T−t) − δ+

)− c(1− 1
N2 )

(
e(δ+−δ−)(T−t) − 1

) , (3.23)

where we used the notation

δ± = −(a+ q)±
√
R, (3.24)

with

R := (a+ q)2 +

(
1− 1

N2

)
(ε− q2) > 0. (3.25)

Observe that ηt is well defined for any t ≤ T since the denominator in (3.23) can be
written as

−
(
e(δ

+−δ−)(T−t) + 1
)√

R−
(
a+ q + c

(
1− 1

N2

))(
e(δ

+−δ−)(T−t) − 1
)
,

which stays negative because δ+ − δ− = 2
√
R > 0. In fact, using q2 ≤ ε, we see that ηt

is positive with ηT = c as required and illustrated in figure 3.1.
We delay the discussion of the implications of our analysis in terms of banking

system to Section 4. We first briefly present the dynamic programming approach to the
problem which produces the same equilibrium as the one obtained in this section.

3.3. Closed-loop equilibria via the HJB approach. In the Markovian set-
ting, the value function of player i is given by

V i(t, x) = inf
α

Et,x

{∫ T

t

fi(Xs, α
i
s)ds+ gi(X

i
T )

}
,
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with the cost functions fi and gi given in (3.3) and (3.4), and where the dynamics of
Xt is given as before by:

dXi
t =

[
a(Xt −Xi

t) + αi
t

]
dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, i = 1, · · · , N.

Using the dynamic programming principle in search for a closed-loop equilibrium, the
corresponding HJB equations read

∂tV
i + inf

α

{ N∑
j=1

[
a
(
x− xj

)
+ αj

]
∂xjV i

+
σ2

2

N∑
j=1

N∑
k=1

(
ρ2 + δj,k(1− ρ2)

)
∂xjxkV i

+
(αi)2

2
− qαi

(
x− xi

)
+

ε

2
(x− xi)2

}
= 0, (3.26)

with terminal conditions V i(T, x) = c
2 (x − xi)2. Assuming that all controls αj for

j 	= i are chosen, player i will choose the optimal strategy α̂i = q(x − xi) − ∂xiV i

where V i is still unknown. Next, assuming that all players are following the strategies
α̂i = q(x− xi)− ∂xiV i, the HJB equation (3.26) become

∂tV
i +

N∑
j=1

[
(a+ q)

(
x− xj

)− ∂xjV j
]
∂xjV i

+
σ2

2

N∑
j=1

N∑
k=1

(
ρ2 + δj,k(1− ρ2)

)
∂xjxkV i

+
1

2
(ε− q2)

(
x− xi

)2
+

1

2
(∂xiV i)2 = 0. (3.27)

We then make the ansatz

V i(t, x) =
η̃t
2
(x− xi)2 + μt, (3.28)

where η̃t and μt are deterministic functions satisfying η̃T = c and μT = 0 in order to
match the terminal conditions for V i. Note that the adjoint variables yi,j introduced
in the FBSDE approach correspond to ∂xjV i and the ansatz (3.28) corresponds to the
ansatz (3.18). The optimal strategies will be

α̂i = q(Xt −Xi
t)− ∂xiV i =

(
q + (1− 1

N
)η̃t

)
(Xt −Xi

t), (3.29)

and the controlled dynamics will become

dXi
t =

(
a+ q + (1− 1

N
)η̃t

)
(Xt −Xi

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
. (3.30)

Using

∂xjV i = (
1

N
− δi,j)

(
x− xi

)
η̃t, ∂xjxkV i = (

1

N
− δi,j)(

1

N
− δi,k)η̃t,
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plugging into (3.27), and canceling terms in
(
x− xi

)2
and state-independent terms, we

obtain

˙̃ηt = 2(a+ q)η̃t + (1− 1

N2
)η̃2t − (ε− q2), (3.31)

μ̇t = −1

2
σ2(1− ρ2)

(
1− 1

N

)
η̃t, (3.32)

with the terminal conditions η̃T = c and μT = 0. Therefore, η̃t must satisfy the
same Riccati equation as the one satisfied by ηt (3.22). They have the same terminal
conditions and by unicity of the solution for this equation, we deduce that η̃t = ηt for all
t ≤ T , and, consequently, the two closed-loop approaches (FBSDE and HJB) produce
the same equilibrium. The explicit solution for ηt is given by (3.23), and, furthermore,
the solution μt of (3.32) with the terminal condition μT = 0 is given by

μt =
1

2
σ2(1− ρ2)

(
1− 1

N

)∫ T

t

η̃s ds, (3.33)

and the value functions V i under this exact Nash equilibrium are given by (3.28). Note
that the correlation, quantified by the parameter ρ, affects the controls α̂i

t given by
(3.29) only through the dynamics of Xt −Xi

t since ηt does not depend on ρ. However,
it affects the value function V i given by (3.28) also through the state-independent term
μt.

3.4. Comparison of the open- and closed-loop equilibria. Our analysis in
sections 3.1 and 3.2 shows that the two equilibria we obtained are very similar. In fact,
the only difference is that in the open-loop case we obtained the Riccati equation (3.14)
for the function φt (with a factor (1− 1

N ) in front of φ2
t and a factor (1− 1

2N ) in front of
q), and in the closed-loop case we obtained the Riccati equation (3.22) for the function
ηt (with a factor (1− 1

N2 ) in front of η2t and a factor 1 in front of q).
In the closed-loop case we saw that the optimal strategy is given by

αi
t =

[
q + (1− 1

N
)ηt

]
(Xt −Xi

t),

and the forward dynamics are:

dXi
t =

[
a+ q + (1− 1

N
)ηt

]
(Xt −Xi

t)dt+ σ

(√
1− ρ2dW i

t + ρdW 0
t

)
,

with

dXt = σ

(
ρdW 0

t +
√
1− ρ2

1

N

N∑
k=1

dW k
t

)
.

These equations are identical in the open-loop case with ηt replaced by φt. Note that ηt
is given explicitly by formula (3.23) and φt can be obtained similarly by replacing the
factor (1− 1

N2 ) with (1− 1
N ) and using

δ± = −(a+ (1− 1

2N
)q)±

√
R,

with

R := (a+ (1− 1

2N
)q)2 +

(
1− 1

N

)
(ε− q2) > 0.
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Fig. 3.1. Plots of φt (solid line) and ηt (dashed line) with N = 10, a = 1, q = 1, ε = 10, T = 1,
and c = 0 on the left, c = 1 on the right.

In figure 3.1, we show the functions φt and ηt involved respectively in the open-loop
and closed-loop strategies. As expected, the difference is relatively small for N = 10.
However, it is enhanced by our choice of ε = 10 giving a rather large factor ε − q2 in
front of (1 − 1

N ) in the open-loop case or in front of (1 − 1
N2 ) in the closed-loop case.

Note that the presence of a terminal cost c = 1 in the right panel produces a significant
difference.

The individual value functions can be calculated as follows. Considering for instance
the closed-loop case, we want to calculate

V i(x) = E

{∫ T

0

[
1

2
(αi)2 − qαi(Xt −Xi

t) +
ε

2
(Xt −Xi

t)
2

]
dt+

c

2
(XT −Xi

T )
2

}
,

where x is the initial position of the system and (αi
t, X

i
t , Xt) are given by the equations

above. Then, one easily obtains by direct computation

V i(x) =
1

2

∫ T

0

[
ε− q2 + (1− 1

N
)2η2t

]
E
{
(Xt −Xi

t)
2
}
dt+

c

2
E
{
(XT −Xi

T )
2
}
,

with

E
{
(Xt −Xi

t)
2
}
= (x− xi)2e−2

∫ t
0
(a+q+(1− 1

N )ηs)ds

+(1− 1

N
)σ2(1− ρ2)

∫ t

0

e−2
∫ t
s
(a+q+(1− 1

N )ηu)duds.

The formula in the open-loop case is simply obtained by replacing ηt by φt.
In figure 3.2, we compare the value functions V i in the open-loop and closed-loop

equilibria. For the choice of parameters and as N → ∞, these two functions are very
close.

4. Financial implications
The comments below made in the case of the closed-loop equilibrium with the

function ηt would be identical in the case of the open-loop equilibrium with ηt replaced
by φt.
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Fig. 3.2. Plots of the value function V i at t = 0 and xi = 0 for i = 1, · · · , N , as N increases:
open loop (solid line), closed loop (dashed line), and common limit as N →∞ (dotted line) with a = 1,
q = 1, ε = 10, ρ = 0.2, T = 1, and c = 10.

1. Once the function ηt has been obtained in (3.23), bank i implements its strategy
by using its control α̂i given by (3.29). It requires its own log-reserve Xi

t but
also the average reserve Xt which may or may not be known to the individual
bank i. Here, we assume that the central bank/regulator observes the mone-
tary reserves of all banks and therefore Xt, and that it gives this aggregated
information to each individual banks. Consequently, even though Xt is given
by (3.11), the banks do not need to know the two parameters σ and ρ in or-
der to implement their optimal strategies. Observe also that the average Xt is
identical to the average found in Section 2.4. Therefore, systemic risk occurs
in the same manner as in the case of uncontrolled dynamics with or without
common noise as presented respectively in sections 2.4 and 2.3.

2. However, (3.30) shows that the control affects the rate of borrowing and lending
by adding the time-varying component q + (1 − 1

N )ηt to the uncontrolled rate
a.

3. In fact, from (3.30) rewritten as

dXi
t =

(
a+ q + (1− 1

N
)ηt

)
1

N

N∑
j=1

(Xj
t −Xi

t)dt

+σ

(√
1− ρ2dW i

t + ρdW 0
t

)
, (4.1)

we see that the effect of the banks using their optimal strategies corresponds
to inter-bank borrowing and lending at the increased effective rate

At := a+ q + (1− 1

N
)ηt

with no central bank (or a central bank acting as an instantaneous clearing
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Fig. 4.1. Plots of ηt with c = 0, a = 1, q = 1, ε = 2 and T = 1 on the left, T = 100 on the right
with η ∼ 0.24 (here we used 1/N ≡ 0).

house). As a consequence, under this equilibrium, the system is operating as
if banks were borrowing from and lending to each other at the rate At, and the
net effect is additional liquidity quantified by the rate of lending/borrowing.
Note that the comment above is valid not only if a > 0, in which case the
effect of the game is to increase the rate of inter-bank lending and borrowing,
but also if a = 0, in which case the effect of the game is to “create” an inter-
bank lending and borrowing activity. In both cases, the central bank acts as
a clearing house but needs to provide the information Xt so that individual
banks can implement their strategies.

4. Observe that the presence of a common noise (quantified by ρ) does not affect
the form of the optimal strategies (the function ηt does not depend on ρ).
However it affects the value function V i(t, x) and the dynamics Xi

t , and, as we
have seen in Section 2.4, it has a drastic effect on systemic risk.

5. It is also interesting to note that for T large, most of the time (T − t large), ηt
is mainly constant. For instance, with c = 0,

lim
T→∞

ηt =
ε− q2

−δ− := η,

as illustrated on right panel of figure 4.1. Therefore, in this infinite-horizon
equilibrium, banks are borrowing and lending to each other at the constant
rate

A := a+ q + (1− 1

N
)η. (4.2)

In figure 4.2 we show the constant effective rates A (for infinite horizon) for
the open-loop and closed-loop equilibria as N increases. Note that liquidity
(quantified by the effective rate of lending/borrowing A) is higher under the
open-loop equilibrium and increases with N .

Remarks on possible extensions. We indicate here a few possible extensions
of the model. From the beginning, we assumed for simplicity that all the banks had
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Fig. 4.2. Plots of the effective rate A (4.2) for the open-loop equilibrium (solid line) and for the
closed-loop equilibrium (dashed line) with a = 1, q = 1, ε = 10, and as N increases. The dotted line
shows the common limit as N →∞

the same volatility σ. In fact, it is straightforward to generalize the results to the case
where each bank has its own constant volatility σi. For the study in Section 3 with a
finite number N of banks there is no restriction on these σi which will simply enter in
the averaging of the Brownian motions in (3.11). In the analysis when N → ∞, one
needs to impose a condition of the form

lim
N→∞

1

N

N∑
i=1

σ2
i = σ2,

with 0 < σ < ∞, and that is the effective volatility which will appear in the limiting
formulas. Treating the case of non constant volatilities such as σi(t,X

i
t) is much more

involved and no explicit solution can be expected in general.
Our analysis relies heavily on the symmetry of the model in the dynamics and in

the cost functions. One way to depart from that symmetry would be to study models
with groups of banks with symmetry within the groups. One would have to deal with
coupled matrix Riccati equations. This is outside of the scope of this paper but a work
in progress.

In the following section, we discuss asymptotics as N →∞.

5. Approximate Nash equilibria
Why would we want an approximate Nash equilibrium when we can compute an

exact one?
The game presented in the previous section was essentially designed to provide

explicit Nash equilibria, and the fact that it does is already remarkable! However,
slight modifications, even minor, dramatically change the equilibrium structures. For
instance, the presence in the dynamics of the Xi

t or in the objective functions J i of a
nonlinear term in Xt renders the computation of exact Nash equilibria hopeless. The
Mean Field Game strategy is based on the solution of effective equations in the limit
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N → ∞, providing through the theory of the propagation of chaos, approximate Nash
equilibria for the case N finite and large. We review this strategy in the context of the
model presented in the previous section, and compare its output to the exact solutions
derived earlier.

5.1. The mean field game / FBSDE approach. If it was not for the
presence of a common noise, we could apply the results of [5] to obtain approximate
Nash equilibria from the solution of the Mean Field Game (MFG). Notice that linear
quadratic MFGs are studied in [2] and [6]. While the latter does not include the cross
term −qα(x−xi) in the running cost of player i, the proofs of [6] apply mutatis mutandis
to the model of the present paper when ρ = 0. We review the MFG strategy. It is based
on the following three steps:

1. Fix (mt)t≥0, which should be thought of as a candidate for the limit of Xt as
N →∞:

mt = lim
N→∞

Xt.

Because of the presence of the common noise, (mt)t≥0 is a process adapted to
the filtration generated by W 0, and one should think of mt as a function of
(W 0

s )s≤t;

2. Solve the one-player standard control problem

inf
α=(αt)∈A

E

{∫ T

0

[
α2
t

2
− qαt(mt −Xt) +

ε

2
(mt −Xt)

2

]
dt+

c

2
(mT −XT )

2

}
,

subject to the dynamics

dXt = [a(mt −Xt) + αt] dt+ σ
(
ρdW 0

t +
√
1− ρ2dWt

)
,

whereW 0
t andWt are independent Brownian motions, independent of the initial

value X0 which may be a square integrable random variable ξ.

3. Solve the fixed point problem: find mt so that mt = E[Xt | (W 0
s )s≤t] for all t.

We treat the above stochastic control problem as a problem of control of non-
Markovian dynamics with random coefficients. The Hamiltonian of the system is given
by

H(t, x, y, α) = [a(mt − x) + α] y +
1

2
α2 − qα(mt − x) +

ε

2
(mt − x)2,

which is strictly convex in (x, α) under the condition q2 ≤ ε and attains its minimum at

∂H

∂α
= 0 −→ α̂ = q(mt − x)− y.

The corresponding adjoint forward-backward equations are given by

dXt =
∂H

∂y
(α̂)dt+ σ

(
ρdW 0

t +
√
1− ρ2dWt

)
= [(a+ q)(mt −Xt)− Yt] dt+ σ

(
ρdW 0

t +
√
1− ρ2dWt

)
, X0 = ξ (5.1)

dYt = −∂H

∂x
(α̂)dt+ Z0

t dW
0
t + ZtdWt

=
[
(a+ q)Yt + (ε− q2)(mt −Xt)

]
dt+ Z0

t dW
0
t + ZtdWt, (5.2)

YT = c(XT −mT ),
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for some adapted square integrable processes (Z0
t , Zt). Despite its simple looking struc-

ture, such linear systems do not always have solutions. The existence of a solution in
the present situation is argued in [6] where a solution is shown to exist. To iden-
tify it in the present situation, we use the notation mX

t = E[Xt | (W 0
s )s≤t] and

mY
t = E[Yt | (W 0

s )s≤t]. Taking conditional expectation given (W 0
s )s≤t in the second

equation (5.2), and using the fact that in equilibrium (i.e. after solving for the fixed
point), we have mt = mX

t for all t ≤ T which in turn implies mY
T = c(mX

T −mT ) = 0,
we obtain:

mY
t = −

∫ T

t

e(a+q)(s−t)Z0
sdW

0
s . (5.3)

Next, taking conditional expectations of both sides of equation (5.1), we deduce that,
in equilibrium, we shall have

dmX
t = −mY

t dt+ ρσdW 0
t . (5.4)

Now, we make the (educated) ansatz

Yt = −ηt(mt −Xt), (5.5)

for some deterministic function t ↪→ ηt to be determined. Differentiating this ansatz
and using (5.1) and (5.4) leads to

dYt = −η̇t(mt −Xt)dt− ηtd(mt −Xt)

=
[
(−η̇t + ηt(a+ q + ηt)) (mt −Xt) + ηtm

Y
t

]
dt+ ηtσ

√
1− ρ2dWt. (5.6)

Plugging the ansatz (5.5) in (5.2) gives

dYt =
[−(a+ q)ηt + (ε− q2)

]
(mt −Xt)dt+ Z0

t dW
0
t + ZtdWt. (5.7)

Identifying the two Itô decompositions (5.6) and (5.7), we deduce first from the mar-

tingale terms that Z0
t ≡ 0 and Zt = ηtσ

√
1− ρ2. Thus, from (5.3) we obtain mY

t = 0,
and equating the drift terms we see that ηt must be a solution to the Riccati equation

η̇t = 2(a+ q)ηt + η2t − (ε− q2), (5.8)

with terminal condition ηT = c. As expected, the solution for ηt is given explicitly in
(3.23) after taking the limit N → ∞. Observe that from mY

t = 0 and (5.4) we deduce
that mX

t = E(ξ) + ρσW 0
t , which will enter in the optimal control (q + ηt)(m

X
t −Xt).

An important result of the theory of MFGs (see for example [5]) is the fact that,
once a solution to the MFG is found, one can use it to construct approximate Nash
equilibria for the games with finitely many players. Here, if one assumes that each
player is given the information Xt, and if player i uses the strategy

αi
t = (q + ηt)(Xt −Xi

t),

which is the limit as N → ∞ of the strategy used in the finite players game, one sees
how solving the limiting MFG problem can provide approximate Nash equilibria for
which the financial implications are identical as the ones given in Section 4 for the exact
Nash equilibria.
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5.2. The Mean Field Game / HJB approach. It is interesting to go through
the derivation of the MFG solution using the HJB approach since it involves additional
difficulties due to the presence of the common noise. In our toy model, it can be handled
explicitly and we briefly outline this derivation.

For Markovian strategies of the form α(t, x), the dynamics are given as previously
by

dXt = [a(mt −Xt) + α(t,Xt)] dt+ σ
(
ρdW 0

t +
√

1− ρ2dWt

)
.

Here, we should think of (W 0
t ) as given, so that the forward equation for the conditional

density of Xt becomes a stochastic PDE (SPDE) which can be written as

dpt =

{
−∂x [(a(mt − x) + α(t, x)) pt] +

1

2
σ2∂xxpt

}
dt− ρσ(∂xpt)dW

0
t ,

with the initial density p0 being the density of ξ. Here α(t, x) is given and mt =∫
xpt(x)dx. Consequently, mt, the conditional mean of Xt given W 0, is a stochastic

process which will turn out to be Markovian with its infinitesimal generator denoted by
Lm. The HJB equation for the value function V (t, x,m) can be written as

∂tV +

[
1

2
σ2∂xxV + LmV + (∂xmV )

d〈m,X〉
dt

]
+ inf

α

{
[a(m− x) + α] ∂xV +

α2

2
− qα(m− x) +

ε

2
(m− x)2

}
= 0

Next, we minimize in α to get α̂ = q(m−x)−∂xV , and we make the ansatz V (t, x,m) =
ηt

2 (m − x)2 + μt. Plugging in the forward equation for pt, multiplying by x, and inte-
grating with respect to x gives

dmt = ρσdW 0
t .

Therefore, conditionally in W 0, Lm = 1
2ρ

2σ2∂mm and d〈m,X〉 = ρ2σ2dt. Then, verify-
ing that the ansatz satisfies the HJB equation, by canceling terms in (m−x)2 we obtain
that ηt must satisfy the Riccati equation (5.8), and canceling state-independent terms
leads to μ̇t = − 1

2σ
2(1− ρ2)ηt and therefore

μt =
1

2
σ2(1− ρ2)

∫ T

t

ηsds.

5.3. Controlling McKean-Vlasov dynamics: possibly a different solution.
In this subsection we search for a different type of approximate equilibrium. As before,

we require that all the banks use the same feedback function α to compute their lending
and borrowing rate from their private information, but we now work with a different
notion of equilibrium. We now base the notion of a critical point for the optimization
on a simultaneous deviation of all the strategies at once. So instead of stress-testing by
perturbing the lending and borrowing policy one at a time like in the search for Nash
equilibria, we perturb them simultaneously. This form of equilibrium was tentatively
called franchised equilibrium in [4]. See also [6] for a comparison with the results of the
MFG models. Our interest in this model comes from the results of these two papers
which show that, despite strong similarities, these two models can lead to different
solutions, even in the case of linear - quadratic models.
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The theory of the propagation of chaos implies that, when N →∞, the individual
states Xi

t become independent and identically distributed, their common distribution
being the law of the solution of an equation of the McKean-Vlasov type:

dXt = [a(E[Xt]−Xt) + α(t,Xt)]dt+ σdWt, (5.9)

for some Wiener process (Wt). See for example [21] or [16]. Accordingly, the expected
cost that the players try to minimize becomes

J(φ) = E

[ ∫ T

0

f(Xt,PXt , α(Xt))dt+ g(XT ,PXT
)

]
,

where we use the notation PY to denote the law of the random variable Y . In the
linear-quadratic case at hand, both functions f and g do not depend upon the entire
distribution PXt , but only upon the first two moments E[Xt] and E[X2

t ]. The search for
equilibrium considered in this subsection amounts to minimizing J(α) over a set of ad-
missible feedback functions α under the constraint (5.9). The probabilistic approach to
the solution of this problem is developed in [4], where a Pontryagin stochastic maximum
principle is proved in full generality. Adjoint equations are identified and it is shown
that they are different than in the MFG case. However, in the present situation, the
fact that the cost functions f(x, μ, α) and g(x, μ) depend only upon the distance from
the argument x to the mean of the measure μ implies that the expectation E[Yt] of the
adjoint process vanishes, and the correction to the driver of the MFG adjoint equation
vanishes as well. In the notation of [6], this corresponds to the fact that q = −q and
mt = −mt, implying that the differences exhibited there between the solutions of linear
quadratic MFG and McKean-Vlasov controlled dynamics do not exist in this instance.
Again, this is due to the special form of interaction between the players throughXt−Xi

t .

In any case, the two forms of approximate equilibria, though different in general,
do coincide in our model of lending and borrowing!
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