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Abstract. We derive bounds on the volume of an inclusion in a body in two or three dimensions
when the conductivities of the inclusion and the surrounding body are complex and assumed to be
known. The bounds are derived in terms of average values of the electric field, current, and certain
products of the electric field and current. All of these average values are computed from a single
electrical impedance tomography measurement of the voltage and current on the boundary of the
body. Additionally, the bounds are tight in the sense that at least one of the bounds gives the exact
volume of the inclusion for certain geometries and boundary conditions.

Key words. Volume fraction bounds, electrical impedance tomography, size estimation.

MSC2010 Subject Classification. 35Q60, 31A25, 31B20, 35J57.

1. Introduction
Electrical impedance tomography (EIT) is a noninvasive imaging technique in which

one utilizes measurements of the voltage and current at the boundary of a body Ω to
determine information about the electrical properties inside Ω. EIT has applications in
the nondestructive testing of materials, geophysical prospection, and medical imaging —
see the review articles by Borcea [6] and Cheney, Isaacson, and Newell [8] and references
therein. In the context of medical imaging, EIT can be used for breast cancer detection
[8] and the screening of organs for degradation prior to transplantation surgery [4, 11].
In these applications the complex conductivities of the healthy and cancerous/degraded
tissues differ, so information about the conductivity distribution would allow one to
estimate the location and/or size of the cancerous/degraded tissue. For many other
medical applications see the work by Hamilton and Mueller [13] and the references
therein.

Our goal in this paper is to find bounds on the volume fraction occupied by an
inclusion D inside a body Ω. In the context of organ screening, for example, D could
represent the degraded tissue and Ω\D could represent the healthy tissue; it would be
useful to estimate the volume of degraded tissue (the volume of D) before the organ is
transplanted [4, 11]. We will assume that the complex conductivity inside Ω is of the
form

σ=σ(1)χ(D)+σ(2)χ(Ω\D)

where σ(α)=σ
(α)
1 +iσ

(α)
2 for α=1,2 and χ(D) is the indicator function of D. We require

σ
(α)
1 >0 for α=1,2, which corresponds to energy dissipation [6]. More generally, we will

follow Kang, Kim, and Milton [17] and consider a two-phase material with conductivity

σ(x)=σ(1)χ(1)(x)+σ(2)χ(2)(x)
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where σ(1) and σ(2) are as before and χ(1) is the characteristic function of phase 1,
namely

χ(1)(x)=1−χ(2)(x)=

{
1 if x∈phase 1

0 if x∈phase 2.

We will also assume that each phase is homogeneous and isotropic, so σ(1) and σ(2) are
constant complex scalars (as discussed by Beretta, Francini, and Vessella [4], this is a
reasonable assumption in the contexts of breast cancer detection and organ screening).

EIT operates in the quasistatic regime, where the wavelengths of all relevant electric
and magnetic fields are much larger than Ω. In EIT, one typically prescribes either the
voltage or current on ∂Ω. Under these conditions the voltage V satisfies

∇·(σ∇V )=0 in Ω (1.1)

subject to either the Dirichlet boundary condition

V =V0 on ∂Ω (1.2)

or the Neumann boundary condition⎧⎪⎪⎨⎪⎪⎩
σ
∂V

∂n
= I0 on ∂Ω∫

∂Ω

I0=

∫
∂Ω

V =0,
(1.3)

where n is the outward unit normal to ∂Ω and ∂V
∂n =∇V ·n [6]. The PDE (1.1) can be

equivalently written in the form

E=−∇V, ∇·J=0, and J=σE, (1.4)

where E is the electric field and J is the current density [6]. For a derivation of (1.1),
(1.4) and the boundary conditions (1.2), (1.3), see [8, 12].

Our data will be the measurements
(
V0, σ

∂V
∂n

∣∣
∂Ω

)
when the Dirichlet boundary

condition (1.2) is prescribed or (I0, V |∂Ω) when the Neumann boundary condition (1.3)
is prescribed. (The measurements σ ∂V

∂n

∣∣
∂Ω

and V |∂Ω are known as the Dirichlet-to-
Neumann and Neumann-to-Dirichlet maps, respectively — see [6] and the references
therein for a more complete description and properties of these maps. Also note that
we are assuming that we know the voltage and current around the entire boundary ∂Ω
[6, 14]). Our goal is to use a single measurement of the voltage and current on ∂Ω to
derive lower and upper bounds on the volume fraction of phase 1, namely f (1)= 〈χ(1)〉,
where

〈u〉= 1

|Ω|
∫
Ω

u (1.5)

denotes the average of a vector-valued (or scalar) function u over Ω and |Ω| denotes the
Lebesgue measure of Ω.

Several methods for deriving these bounds have been explored in the literature. In
the real conductivity case, Alessandrini, Rosset, and Seo [3], Alessandrini and Rosset
[2], Ikehata [16], and Kang, Seo, and Sheen [21] utilized a single boundary measurement
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and methods from elliptic PDE to bound the volume of an inclusion D in Ω. In [2, 3]
the authors made the technical assumption that

d(D,∂Ω)≥d0>0 (1.6)

where d(D,∂Ω) is the distance between D and ∂Ω. The bounds they derived involve
constants that are not easy to determine. Beretta, Francini, and Vessella [4] used similar
methods to derive bounds in the complex conductivity case — however they were able
to remove the assumption (1.6) with certain restrictions on σ(1) and σ(2), which, as
pointed out in their paper, is important in the application to organ screening as some
of the degraded tissue may be present on the surface of the organ. Their bounds also
involve constants that in general may be difficult to determine, although they can be
evaluated in some cases when special boundary conditions are imposed (see in particular
Proposition 3.3 in their paper).

Capdeboscq and Vogelius [7] utilized multiple boundary measurements and the
Lipton bounds on polarization tensors [22] in the real conductivity case to find optimal
asymptotic estimates on the volume of inclusions as the volume of the inclusions tends
to 0.

If the body Ω contains a statistically homogeneous or periodic composite, then
bounds on the effective tensors of this composite can be used in an inverse fashion to
bound the volume fraction [10, 26, 27, 33]. Similarly, the universal bounds of Nemat-
Nasser and Hori [32] on the response of a body Ω containing two phases in any config-
uration can be easily inverted to bound the volume fraction [29]. Moreover, Milton [29]
used measurements of the voltage and current on ∂Ω with special boundary conditions
to determine properties of the effective tensor of a composite containing rescaled copies
of Ω packed to fill all space. Bounds on this effective tensor led to universal bounds on
the response of the body when the special boundary conditions are applied; these bounds
were then inverted to bound the volume fraction. We note that all of the bounds de-
scribed in this paragraph can be computed in terms of known data (e.g., measurements
of effective moduli or boundary measurements of the voltage and current).

In the real conductivity case, variational methods have also been used to bound
the volume fraction. Several variational formulations of the PDE (1.1) were derived by
Cherkaev and Gibiansky in [9]. Berryman and Kohn [5] were the first to use variational
methods in the context of EIT to determine information about the conductivity in a
body. Kang, Kim, and Milton [17] used the translation method introduced by Murat
and Tartar [31, 34, 35] and independently by Lurie and Cherkaev [23, 24] (see also
[28]) to derive sharp bounds on the volume fraction using 2 boundary measurements of
the voltage and current in 2 dimensions. The bounds are easily computed in terms of
these measurements. Kang, Kim, and Milton [17] also found geometries in which one
of the bounds gives the true volume fraction. Kang and Milton applied the translation
method in 3 dimensions to find bounds on the volume fraction in [19]; these bounds can
be computed using 3 boundary measurements. The translation method was also used
by Kang, Milton, and Wang [20] to bound the size of an inclusion in the context of the
shallow shell equations.

Rather than derive variational principles, we will use the fact that certain variations
are nonnegative — see (3.5) and the paragraph following it, for example. Matheron [25]
used this idea to rederive the famous Hashin–Shtrikman bounds [15] on the effective
conductivity of an isotropic composite — also see Section 16.5 of [28]. We will also
apply the “splitting method”, introduced in the context of elasticity by Milton and
Nguyen [30], in which one derives bounds by splitting Ω into its constituent phases and
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correlating information about the fact that variations in each phase are nonnegative
and averages of certain quantities (null Lagrangians) are known. Using this technique,
in theorems 4.2 and 6.4 we establish some elementary bounds that can be computed
from the single voltage and current measurement on ∂Ω.

In theorems 5.7 and 6.9 we derive a method for numerically computing “better”
bounds — we say “better” because these bounds may or may not be tighter than the
above mentioned elementary bounds — see Section 7. The method can be described
as follows. Let f ∈Ae⊆ (0,1), where Ae is an interval determined by the elementary
bounds. We call f a test value. The splitting method implies that f could potentially be

the volume fraction of phase 1 if and only if certain 2×2 matrices S
(1)
f (x,y) and S

(2)
f (x,y)

(one for each phase) are simultaneously positive-semidefinite at some point (x,y)∈R2.
This, in turn, is equivalent to requiring that two elliptic disks in the (x,y)-plane have
a nonempty intersection. (By elliptic disk we mean an ellipse in the plane union its
interior.) In other words, if the elliptic disks intersect, f could be the true volume
fraction; if the elliptic disks do not intersect, f cannot be the true volume fraction.
This allows us to eliminate those values of f ∈Ae for which the elliptic disks do not
intersect, leaving us with a set A⊆Ae of admissible values. Any f ∈A could be the
true volume fraction of phase 1, so bounds on A give us bounds on f (1). Unfortunately
these bounds must be computed numerically, but we emphasize that their computation
is elementary and involves finding the interval (or intervals) of values where a certain
function is positive and only requires a single measurement of the voltage and current
on ∂Ω.

We find the bounds are exceedingly tight for a particular two dimensional geometry
consisting of an annulus and surrounding material. At this stage we have not explored
the question as to whether the bounds are tight for more general geometries nor the
question as to how good the bounds are for three dimensional geometries.

Finally, since we use the fact that variations are nonnegative rather than PDE
methods or variational principles, we can easily determine attainability conditions for
the bounds, i.e., conditions on the electric field that guarantee that the lower or upper
elementary bound is exactly equal to the true volume fraction. Our method also enables
us to remove the assumption (1.6); in fact, as long as the PDE (1.1) subject to the
boundary conditions (1.2) or (1.3) has a unique (weak) solution, our method can be
applied.

It is worth mentioning the connection between the splitting method and the transla-
tion method. The translation method uses the classical variational principles in conjunc-
tion with constraints on the fields imposed by the null Lagrangians (or more generally
quasiconvex functions): each constraint is taken into account with Lagrange multipli-
ers. The classical variational principles can themselves be derived from the positivity
of variations and using integration by parts, or equivalently using the fact that certain
quantities are null Lagrangians: see, for example, Section 13.1 of [28]. The idea of the
splitting method is to directly derive the bounds by using the positivity of the variations
and the null Lagrangians. Since they use the same ingredients the bounds we derive
here could presumably be derived using the translation method, but the application of
this method when we take into account all the null Lagrangians simultaneously is less
transparent since we would need to introduce a Lagrange multiplier for each of the many
constraints. By contrast the splitting method is ideally suited to problems where there
are a lot of null Lagrangians but relatively few relevant variations of which to keep track.
Thus it is well suited to the complex conductivity problem where one measurement is
used but less suited to the complex conductivity problem where two or more measure-
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ments are used. Recently Kang, Kim, Lee, Li, and Milton very successfully applied the
translation method to the two-measurement problem [18], but not while taking all null
Lagrangians simultaneously into account.

The remainder of this paper is organized as follows. In Section 2 we introduce our
notation and assumptions. In Section 3, we apply the splitting method to several null
Lagrangians, which are functionals of the electric field and current density that can be
expressed in terms of the boundary voltage and current data. In Section 4 we derive the
elementary bounds. We derive a geometrical method for computing “better” bounds
in Section 5. Our work in sections 2–5 applies in 2 or 3 dimensions. In Section 6 we
use 2 additional null Lagrangians to derive even better bounds in the 2D case, and in
Section 7 we apply our method to a test problem.

2. Preliminaries
As discussed in the introduction, we consider a two-phase mixture and also the case

of an inclusion in a body. The region of interest (the unit cell of periodicity in the former
case and the union of the inclusion and the body in the latter case) will be denoted by
Ω. We assume that the conductivity in each phase is homogeneous and isotropic; then
for x∈Ω we have

σ(x)=σ(1)χ(1)(x)+σ(2)χ(2)(x),

where σ(α)=σ
(α)
1 +iσ

(α)
2 for α=1, 2 are complex constants that we assume are known,

σ
(α)
1 >0 (as required physically), 0< |σ(α)|<∞, and σ(1) 	=σ(2). We will see later that

we must also assume

β :=σ
(1)
1 σ

(2)
2 −σ(1)

2 σ
(2)
1 	=0,

so that Argσ(1) 	=Argσ(2). This implies that our results do not directly extend to the
case when both phases have real conductivities.

The average value of an integrable vector field (or scalar function) u is defined in
(1.5). The volume fraction of phase α is denoted by f (α), so

f (1)= 〈χ(1)〉 and f (2)=1−f (1)= 〈χ(2)〉.
The electric potential, electric field, and current density will be denoted by V =V1+iV2,
E=E1+iE2, and J=J1+iJ2, respectively (so for m=1, 2, Vm, Em, and Jm are real).
Recall that V satisfies (1.1) subject to either (1.2) or (1.3), E=−∇V , and J=σE.

Let u=u1+iu2 be a complex-valued vector field in C2 or C3. Then we set u(α)(x) :=

χ(α)(x)u(x) and u
(α)
m (x) :=χ(α)(x)um(x) for α,m=1, 2. The symbol “·” will denote

the usual Euclidean dot product on R2 or R3, while the Euclidean norm of a real-valued
vector field q(x)∈R2 or R3 will be denoted by ‖q(x)‖=√q(x) ·q(x). For any complex

number z= z1+iz2 the modulus of z will be denoted by |z|=
√
z21+z

2
2 .

3. The splitting method
In this section we introduce the ideas behind the splitting method [30] and apply

this method to our problem.

3.1. Null Lagrangians. We assume that we have full knowledge of a single
applied boundary voltage V0 and corresponding current σ ∂V

∂n |∂Ω on ∂Ω (in the case of
the Dirichlet problem — in the case of the Neumann problem, we assume that we have
complete knowledge of the single applied current I0 and corresponding voltage V |∂Ω
on ∂Ω — see the introduction). In order to derive bounds on the volume fraction f (1)
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(hence f (2)=1−f (1)) using this data, we make use of certain null Lagrangians, which
are functionals that can be expressed in terms of boundary data. For k, l=1, 2 we use
integration by parts to find

〈Ek〉=− 1

|Ω|
∫
∂Ω

Vkn; 〈Jl〉= 1

|Ω|
∫
∂Ω

x(Jl ·n); 〈Ek ·Jl〉=− 1

|Ω|
∫
∂Ω

Vk (Jl ·n); (3.1)

n is the unit outward normal to ∂Ω and, in the 2D case, all boundary integrals are taken
in the positive (counterclockwise) orientation. We emphasize that the values Vk|∂Ω and

(Jl ·n)|∂Ω= −σ ∂Vl

∂n

∣∣
∂Ω

are known from our measurement.
In two dimensions, we have the additional null Lagrangians

〈E1 ·R⊥E2〉= 1

|Ω|
∫
∂Ω

V1
∂V2
∂t

and 〈J1 ·R⊥J2〉=− 1

|Ω|
∫
∂Ω

[
(J1 ·n)

∫ x

x0

(J2 ·n)
]
,

(3.2)
where R⊥ is the 2×2 matrix for a 90◦ clockwise rotation, namely

R⊥=

[
0 1
−1 0

]
, (3.3)

t=−R⊥n=RT
⊥n is the unit tangent vector to ∂Ω, ∂V2

∂t =∇V2 ·t, x0∈∂Ω is arbitrary,
x∈∂Ω, and all of the integrals over ∂Ω are taken in the positive (counterclockwise)
orientation. The first formula in (3.2) is found by integration by parts while the deriva-
tion of the second formula can be found in [17]. We note that if the material under
consideration is a periodic composite, it is well known that (3.1) and (3.2) become⎧⎪⎨⎪⎩

〈Ek ·Jl〉= 〈Ek〉 · 〈Jl〉,
〈E1 ·R⊥E2〉= 〈E1〉 ·R⊥〈E2〉,
〈J1 ·R⊥J2〉= 〈J1〉 ·R⊥〈J2〉.

(3.4)

3.2. Main idea. For x∈Ω, c(α)∈R2, and α=1,2 we define

g(α)(x;c(α)) :=

2∑
m=1

c(α)m

[
E(α)

m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]
, (3.5)

where E
(α)
m (x)=χ(α)(x)Em(x).

The meaning of the field g(α) can be understood in the following way. We let Ω(α)

denote the set occupied by phase α and |Ω(α)| denote the Lebesgue measure of Ω(α).
Then |Ω|−1=f (α)(|Ω(α)|)−1 and

〈E(α)
m 〉= 1

|Ω|
∫
Ω

χ(α)(x)Em(x)dx=
f (α)

|Ω(α)|
∫
Ω(α)

Em(x)dx=f (α)〈Em〉Ω(α) ,

where 〈Em〉Ω(α) denotes the average of the field Em over phase α. This implies we can
write g(α) as

g(α)(x;c(α))=

2∑
m=1

c(α)m

[
χ(α)(x)Em(x)−χ(α)(x)〈Em〉Ω(α)

]
.

Thus, up to the constants c
(α)
m , the field g(α) describes how the real and imaginary parts

of the electric field E vary from their average values over phase α. Also, for any field
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e(x), and in particular for

e(x)=
2∑

m=1

c(α)m Em(x),

the minimum of 〈[χ(α)e−χ(α)v] · [χ(α)e−χ(α)v]〉 over constant vectors v occurs when
v= 〈e〉Ω(α) .

Note that 〈g(α)〉=0 for all c(α)∈R2. We must also have 〈g(α) ·g(α)〉≥0 for all
c(α)∈R2; a computation [36] shows this is equivalent to requiring

c(α) ·S(α)c(α)≥0 for all c(α)∈R2, (3.6)

where

S(α)=

⎡⎢⎢⎢⎣
A

(α)
11 −

〈E(α)
1 〉 · 〈E(α)

1 〉
f (α)

A
(α)
12 −

〈E(α)
1 〉 · 〈E(α)

2 〉
f (α)

A
(α)
21 −

〈E(α)
2 〉 · 〈E(α)

1 〉
f (α)

A
(α)
22 −

〈E(α)
2 〉 · 〈E(α)

2 〉
f (α)

⎤⎥⎥⎥⎦ (3.7)

and

A(α)
mn= 〈E(α)

m ·E(α)
n 〉 (for α, m, n=1, 2). (3.8)

The matrix S(α) is symmetric by (3.7)–(3.8); it must also be positive-semidefinite by
(3.6).

We note that the quantities 〈E(α)
m 〉 are known; this can be seen as follows. Since

J=σE,

J1=σ1E1−σ2E2 and J2=σ2E1+σ1E2.

For a field u, we can “split” its average value over Ω into two parts as follows:

〈u〉= 〈χ(1)u〉+〈χ(2)u〉. (3.9)

Note that the averages in (3.9) are taken over Ω; in particular 〈χ(α)u〉 is not the average
of u over phase α.

We apply this “splitting method” to E and J and recall that the conductivity is
homogeneous in each phase to obtain the system

〈E(1)〉+〈E(2)〉= 〈E〉 and σ(1)〈E(1)〉+σ(2)〈E(2)〉= 〈J〉,
which is easily solved for 〈E(1)〉 and 〈E(2)〉:

〈E(1)〉= σ(2)〈E〉−〈J〉
σ(2)−σ(1)

and 〈E(2)〉= −σ
(1)〈E〉+〈J〉
σ(2)−σ(1)

. (3.10)

Since 〈E〉 and 〈J〉 are known, the real and imaginary parts of 〈E(1)〉 and 〈E(2)〉 can
be determined from (3.10) by equating the real and imaginary parts of the left- and
right-hand sides of each equation.

In a similar manner, for k, l=1, 2 we have

〈Ek ·Jl〉= 〈χ(1)Ek ·Jl〉+〈χ(2)Ek ·Jl〉. (3.11)
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The equations in (3.11) are equivalent to the linear system

⎡⎢⎢⎢⎢⎣
σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2 0 0

σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1 0 0

0 0 σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2

0 0 σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
11

A
(2)
11

A
(1)
21

A
(2)
21

A
(1)
22

A
(2)
22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
〈E1 ·J1〉
〈E1 ·J2〉
〈E2 ·J1〉
〈E2 ·J2〉

⎤⎥⎥⎥⎦ . (3.12)

Recall that the right-hand side of this system is known from our measurement (see
(3.1)). Since this is an underdetermined system with infinitely many solutions, we set

x :=A
(1)
11 and y :=A

(2)
11 and solve the system (3.12) in terms of the “free variables” x and

y. In particular, we solve the system

⎡⎢⎢⎢⎢⎣
−σ(1)

2 −σ(2)
2 0 0

σ
(1)
1 σ

(2)
1 0 0

σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2

σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
A

(1)
21

A
(2)
21

A
(1)
22

A
(2)
22

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
〈E1 ·J1〉−σ(1)

1 x−σ(2)
1 y

〈E1 ·J2〉−σ(1)
2 x−σ(2)

2 y

〈E2 ·J1〉
〈E2 ·J2〉

⎤⎥⎥⎥⎥⎦ . (3.13)

The system (3.13) has a unique solution if and only if β :=σ
(1)
1 σ

(2)
2 −σ(1)

2 σ
(2)
1 	=0, so for

the remainder of this paper we assume that β 	=0.

Remark 3.1. We chose x=A
(1)
11 and y=A

(2)
11 arbitrarily. We could have taken x=A

(α)
mn

for α, m, n either 1 or 2 and y=A
(α)
mn such that y 	=x. In any of these cases, we would

still have arrived at an underdetermined system like that in (3.12) that has a unique
solution if and only if β 	=0, so the condition β 	=0 is independent of how x and y are
defined.

Remark 3.2. The requirement β 	=0 implies that the results of this paper cannot be
applied if σ(1) and σ(2) are both real.

Using Maple, we solve (3.13) in terms of x and y, insert the results into the matrices
S(1) and S(2) (see (3.7)), and replace f (1) by a test value f . Denoting the resulting

matrices by S
(1)
f and S

(2)
f we find

S
(1)
f (x,y) :=

⎡⎢⎢⎣x−
‖〈E(1)

1 〉‖2
f

S
(1)
21 (x,y,f)

S
(1)
21 (x,y,f) −x+η(1)− ‖〈E

(1)
2 〉‖2
f

⎤⎥⎥⎦

S
(2)
f (x,y) :=

⎡⎢⎢⎣y−
‖〈E(2)

1 〉‖2
1−f S

(2)
21 (x,y,f)

S
(2)
21 (x,y,f) −y+η(2)− ‖〈E

(2)
2 〉‖2

1−f

⎤⎥⎥⎦
(3.14)
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for f ∈ (0,1), where

S
(1)
21 (x,y,f)=−γx−ψ(1)y+ξ(1)− 〈E

(1)
1 〉 · 〈E(1)

2 〉
f

;

S
(2)
21 (x,y,f)=ψ(2)x+γy−ξ(2)− 〈E

(2)
1 〉 · 〈E(2)

2 〉
1−f ;

β=σ
(1)
1 σ

(2)
2 −σ(1)

2 σ
(2)
1 ; γ=

σ
(1)
1 σ

(2)
1 +σ

(1)
2 σ

(2)
2

β
; ψ(1)=

|σ(2)|2
β

; ψ(2)=
|σ(1)|2
β

;

ξ(1)=
σ
(2)
2 〈E1 ·J2〉+σ(2)

1 〈E1 ·J1〉
β

; ξ(2)=
σ
(1)
2 〈E1 ·J2〉+σ(1)

1 〈E1 ·J1〉
β

;

η(1)=
σ
(2)
1 (〈E2 ·J1〉−〈E1 ·J2〉)+σ(2)

2 (〈E1 ·J1〉+〈E2 ·J2〉)
β

;

η(2)=
σ
(1)
1 (〈E1 ·J2〉−〈E2 ·J1〉)−σ(1)

2 (〈E1 ·J1〉+〈E2 ·J2〉)
β

.

(3.15)
Note that β, γ, ψ(1), ψ(2), ξ(1), ξ(2), η(1), and η(2) are known. Moreover, we can use the
relationship J=σE to rewrite η(α) as

η(α)= 〈χ(α)
(‖E1‖2+‖E2‖2

)〉= 〈‖E(α)
1 ‖2〉+〈‖E(α)

2 ‖2〉.

Note that η(α)≥0 with equality if and only if E(α)=E
(α)
1 +iE

(α)
2 ≡0 (up to a set of

measure 0); that is, η(α)=0 if and only if the electric field is 0 in phase α. In two
dimensions with D having smooth boundary the condition that the field is zero in
one phase implies that it is zero everywhere; thus η(α)=0 only for trivial boundary
conditions. In three dimensions the situation is less clear [1], but in practice the field
will almost always be zero in one of the phases only for trivial boundary conditions.
Therefore we assume throughout the rest of this paper that η(1) 	=0 and η(2) 	=0.

Definition 3.3. For f ∈ (0,1) we set

F (α)
f :={(x,y)∈R2 :S

(α)
f (x,y) is positive-semidefinite}.

Then the set Ff :=F (1)
f ∩F (2)

f is called the feasible region associated with f . In addition,
the set A :={f ∈ (0,1) :Ff 	=∅} is called the set of admissible test values.

Practically, given f ∈ (0,1), we check to see whether or not there are regions in the

xy−plane for which S
(1)
f (x,y) and S

(2)
f (x,y) are simultaneously positive-semidefinite —

that is, whether or not Ff 	=∅. If the feasible region Ff is nonempty, then f is an
admissible test value, so f ∈A; that is, f may be the true volume fraction of phase
1. If Ff =∅ we can conclude that f is not the true volume fraction of phase 1. This
argument is based on the fact that Ff(1) cannot be empty by (3.6).

Our goal is to find the set A. If A is connected, the desired lower and upper bounds
on f (1) will be infA and supA, respectively. If A is not connected, the structure of
the bounds will be more complicated — see Figure 3.1. In Figure 3.1(b), the set of
admissible test values is A=A∗∪A∗∗. In the examples we have encountered A has
always been connected.
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0 1
A

Lower Bound Upper Bound

(a) A connected

0 1
A∗

Lower
Bound 1

Upper
Bound 1

A∗∗

Lower
Bound 2

Upper
Bound 2

(b) A disconnected

Fig. 3.1: (a) When A (the darkened interval) is connected, we have infA≤f (1)≤ supA. (b)
When A=A∗∪A∗∗ is disconnected, there will be multiple bounds on f (1). In the example above,
we know that either infA∗≤f (1)≤ supA∗ or infA∗∗≤f (1)≤ supA∗∗.

4. Elementary bounds
Recall that a symmetric 2×2 matrix

L=

[
a b
b c

]
is positive-semidefinite if and only if a≥0, c≥0, and ac−b2=detL≥0. In this section

we use the above requirements on the diagonal components of the matrices S
(1)
f (x,y)

and S
(2)
f (x,y) to derive elementary bounds on f (1).

By Definition 3.3 and the above statement, f ∈A only if there is at least one point

(x,y)∈R2 such that S
(α)
f,mm(x,y)≥0 for α, m=1, 2. That is, the following inequalities

must hold for all admissible volume fractions f (see (3.14)):

‖〈E(1)
1 〉‖2
f

≤x≤η(1)− ‖〈E
(1)
2 〉‖2
f

, (4.1a)

‖〈E(2)
1 〉‖2

1−f ≤y≤η(2)− ‖〈E
(2)
2 〉‖2

1−f . (4.1b)

Definition 4.1. For f ∈ (0,1), the set

Ff,e :=
{
(x,y)∈R2 : both (4.1a) and (4.1b) hold

}
is called the elementary feasible region associated with f . The set Ae :=
{f ∈ (0,1) :Ff,e 	=∅} is called the elementary set of admissible test values.

Geometrically, for each admissible f ∈ (0,1), the set Ff,e will be the closed rectangle
in R2 defined by the inequalities in (4.1a) and (4.1b). For a given f ∈ (0,1), the set Ff,e
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will be nonempty if and only if both of the following inequalities hold:

‖〈E(1)
1 〉‖2
f

≤η(1)− ‖〈E
(1)
2 〉‖2
f

, (4.2a)

‖〈E(2)
1 〉‖2

1−f ≤η(2)− ‖〈E
(2)
2 〉‖2

1−f . (4.2b)

As stated earlier we assume that η(α) 	=0 (⇔E(α) 	≡0) for α=1, 2. Then the in-
equalities in (4.2a) and (4.2b) may be rewritten as

f ≥fe,l := ‖〈E
(1)
1 〉‖2+‖〈E(1)

2 〉‖2
η(1)

, (4.3a)

f ≤fe,u :=1− ‖〈E
(2)
1 〉‖2+‖〈E(2)

2 〉‖2
η(2)

, (4.3b)

so Ae=[fe,l,fe,u]. We obtain elementary bounds on f (1) by combining (4.3a) and (4.3b)
and noting that f (1) must be in Ae:

fe,l≤f (1)≤fe,u. (4.4)

We emphasize that fe,l and fe,u can be computed from the boundary measurements —
see (3.10) and (3.15). Note that 0≤fe,l and fe,u≤1. Since〈∥∥∥∥E(α)

m − χ(α)

f (α)

〈
E(α)

m

〉∥∥∥∥2
〉
≥0 ⇔ ‖〈E(α)

m 〉‖2≤f (α)〈‖E(α)
m ‖2〉, (4.5)

we have fe,l−fe,u≤f (1)+f (2)−1=0, and so fe,l≤fe,u.
We also note that the previous sentence leads to a simpler proof of the elementary

bounds. In particular, (4.5) implies that

‖〈E(α)
1 〉‖2+‖〈E(α)

2 〉‖2≤f (α)
[
〈‖E(α)

1 ‖2〉+〈‖E(α)
2 ‖2〉

]
.

The first and second inequalities in (4.4) follow from this by taking α=1 and α=2,
respectively (recall f (2)=1−f (1)).

Now, (4.5) holds as an equality if and only if

E(α)
m (x)=χ(α)(x)

〈E(α)
m 〉

f (α)
;

that is, (4.5) holds as an equality if and only if Em is a constant in phase α. From this,
we see that fe,l=f

(1) if and only if E(1)=χ(1)E is a constant (which must be nonzero
since we are assuming η(1) 	=0⇔E(1) 	≡0) and fe,u=f

(1) if and only if E(2)=χ(2)E is
a (nonzero) constant. This implies that the bounds in (4.4) are sharp in the sense that
the lower bound (upper bound) is satisfied as an equality for geometries in which the
electric field is constant in phase 1 (phase 2).

For example, if phase 1 is a disk of radius r centered at the origin and phase 2 is
a concentric disk of radius R>r, then E(1) will be a constant for the affine Dirichlet
boundary condition V0=u ·x, where u 	=0∈C2. In this case fe,l=f

(1). If we relabel the
phases, then E(2) will be a constant, so fe,u=f

(1). A simple laminate of materials with
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conductivities σ(1) and σ(2) has the property that the electric field is constant in both
phases, so fe,l=fe,u=f

(1) in that case. In 2D there are many examples of inclusions
inside which the electric field is constant for certain boundary conditions — see [17] for
elegant constructions of these so-called EΩ inclusions. Although the argument in [17]
was applied in the real conductivity case, it extends to the complex conductivity case
as well. So for appropriate boundary conditions the field inside an EΩ inclusion will be
uniform even when the conductivities are complex. We have thus proven the following
theorem.

Theorem 4.2 (Elementary bounds). Assume that β 	=0 (where β is defined in (3.15)),
η(α) 	=0 (⇔E(α) 	≡0) for α=1, 2, fe,l 	=0, and fe,u 	=1. Then fe,l≤f (1)≤fe,u. More-
over, fe,l=f

(1) if and only if E(1) is a nonzero constant and fe,u=f
(1) if and only if

E(2) is a nonzero constant.

In particular, this theorem states that

Ae=[fe,l,fe,u] . (4.6)

We illustrate these ideas by considering an example, shown in Figure 4.1. We
consider an annular ring with conductivity σ(2) and a discontinuous “inclusion phase”
D consisting of the core and surrounding material outside the annulus with conductivity
σ(1). Figure 4.1(a) is a sketch of the region Ω. In Figure 4.1(b) we plot the bounds
from (4.1a) and (4.1b) versus f . In particular, the lower bound in (4.1a) is plotted as a
red dashed line and is decreasing, while the upper bound is plotted as a red solid line
and is increasing. The red upper shaded region indicates the values of f for which the
bounds in (4.1a) hold, i.e., the values of f for which there is at least one value of x such
that (4.1a) holds. Similarly, the lower bound in (4.1b) is plotted as a blue dash-dotted
line and is increasing, while the upper bound is plotted as a blue dotted line and is
decreasing. The blue lower shaded region indicates the values of f for which there is
at least one value of y such that the bounds in (4.1b) hold. The left and right black
vertical lines indicate the elementary lower and upper bounds fe,l and fe,u, respectively;
the dashed vertical magenta line indicates the true volume fraction f (1). The elementary
set of admissible test values, Ae, is indicated by the darkened interval between fe,l and
fe,u.

5. More sophisticated bounds

Throughout this section, we assume that η(1) and η(2) (see (3.15)) are both nonzero.
We derive a method to determine bounds by using the additional requirement that

S
(α)
f (x,y) is positive-semidefinite only if detS

(α)
f (x,y)≥0. Using (3.14) we find, for

α=1, 2,

p
(α)
f (x,y) :=detS

(α)
f (x,y)=a

(α)
1 x2+2a

(α)
2 xy+a

(α)
3 y2+2a

(α)
4 x+2a

(α)
5 y+a

(α)
6 (5.1)
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σ(1)

σ(2)

σ(1)

R1

R2

R3

B
ou

n
d
s

f

0.75 0.85fe,l fe,uf (1)

(a) (b)

Fig. 4.1: (a) A sketch of the region under consideration — our discontinuous “inclusion phase”
D (with conductivity σ(1) and volume fraction f (1)) is the core plus the surrounding material
outside the annulus. (b) Construction of the elementary bounds. The following parameters were
used to create these plots: radii R1=2; R2=3; R3=5; conductivities σ(1)=3+8i; σ(2)=8+6i;

the Dirichlet boundary condition was V0=u ·x, where u=
(−2+i, 3

5
− 7

5
i
)T

. The elementary
lower and upper bounds were fe,l≈0.794 and fe,u≈0.808, respectively. The true volume fraction
was f (1)=0.8.

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(1)
1 =−(1+γ2); a

(1)
2 =−γψ(1); a

(1)
3 =−

[
ψ(1)

]2
;

a
(1)
4 =

1

2

{
η(1)− ‖〈E

(1)
2 〉‖2
f

+
‖〈E(1)

1 〉‖2
f

+2γ

[
ξ(1)− 〈E

(1)
1 〉 · 〈E(1)

2 〉
f

]}
;

a
(1)
5 =ψ(1)

[
ξ(1)− 〈E

(1)
1 〉 · 〈E(1)

2 〉
f

]
;

a
(1)
6 =−

⎧⎨⎩‖〈E(1)
1 〉‖2
f

[
η(1)− ‖〈E

(1)
2 〉‖2
f

]
+

[
ξ(1)− 〈E

(1)
1 〉 · 〈E(1)

2 〉
f

]2⎫⎬⎭ ;

(5.2)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(2)
1 =−

[
ψ(2)

]2
; a

(2)
2 =−γψ(2); a

(2)
3 =−(1+γ2) ;

a
(2)
4 =ψ(2)

[
ξ(2)+

〈E(2)
1 〉 · 〈E(2)

2 〉
1−f

]
;

a
(2)
5 =

1

2

{
η(2)− ‖〈E

(2)
2 〉‖2

1−f +
‖〈E(2)

1 〉‖2
1−f +2γ

[
ξ(2)+

〈E(2)
1 〉 · 〈E(2)

2 〉
1−f

]}
;

a
(2)
6 =−

⎧⎨⎩‖〈E(2)
1 〉‖2

1−f

[
η(2)− ‖〈E

(2)
2 〉‖2

1−f

]
+

[
ξ(2)+

〈E(2)
1 〉 · 〈E(2)

2 〉
1−f

]2⎫⎬⎭ .
(5.3)

Definition 5.1. For α=1, 2 and for f ∈Ae (= [fe,l,fe,u]) we define

E(α)f :={(x,y)∈R2 :p
(α)
f (x,y)≥0} and Ef :=E(1)f ∩E(2)f .
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We will now prove several lemmas in order to establish some useful properties of

the sets E(α)f .

Lemma 5.2. Assume that β 	=0, η(α) 	=0 for α=1,2, fe,l 	=0, and fe,u 	=1. Then the
following properties hold.

(1) For f ∈ (fe,l,fe,u) and α=1, 2, E(α)f is a closed elliptic disk; its boundary is the

ellipse ∂E(α)f ={(x,y)∈R2 :p
(α)
f (x,y)=0};

(2) E(1)fe,l
is a point and E(2)fe,l

is a closed elliptic disk;

(3) E(1)fe,u
is a closed elliptic disk and E(2)fe,u

is a point.

Proof. The discriminant of p
(α)
f is a

(α)
1 a

(α)
3 −

[
a
(α)
2

]2
=
[
ψ(α)

]2
>0 for all f ∈Ae.

Thus the graph of p
(α)
f is an elliptic paraboloid for all f ∈Ae. The Hessian matrix of

p
(α)
f is

H
(α)
f :=

[
2a

(α)
1 2a

(α)
2

2a
(α)
2 2a

(α)
3

]
.

By (3.15), (5.2), and (5.3), a
(α)
1 <0 and detH

(α)
f =4

[
ψ(α)

]2
>0, so H

(α)
f is negative-

definite for all f ∈Ae; thus p
(α)
f is concave for all f ∈Ae. By Definition 5.1, therefore,

E(α)f is the intersection of the plane z=0 with the graph of p
(α)
f .

For f ∈Ae we define

p
(α)
f,max := max

(x,y)∈R2
p
(α)
f (x,y).

Then E(α)f will be a closed elliptic disk with boundary ∂E(α)f ={(x,y)∈R2 :p
(α)
f (x,y)=0}

if and only if p
(α)
f,max>0, a point if and only if p

(α)
f,max=0, or the empty set if and only if

p
(α)
f,max<0. Using calculus, we find that the maximum of p

(α)
f occurs at the point

r
(α)
f :=

(
x
(α)
f ,y

(α)
f

)
:=

(
a
(α)
2 a

(α)
5 −a(α)3 a

(α)
4[

ψ(α)
]2 ,

a
(α)
2 a

(α)
4 −a(α)1 a

(α)
5[

ψ(α)
]2

)
. (5.4)

Then we have

p
(α)
f,max=

1

4f2∗

{
η(α)f∗−

[
‖〈E(α)

1 〉‖2+‖〈E(α)
2 〉‖2

]}2

,

where

f∗ :=

{
f if α=1

1−f if α=2.
(5.5)

Thus p
(α)
f,max≥0 for all f ∈Ae; in particular p

(1)
f,max=0 if and only if f =fe,l (see (4.3a))

while p
(2)
f,max=0 if and only if f =fe,u (see (4.3b)). Therefore E(α)f is a closed elliptic
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disk for f ∈ (fe,l,fe,u), E(1)fe,l
is a point and E(2)fe,l

is a closed elliptic disk, and E(1)fe,u
is a

closed elliptic disk and E(2)fe,u
is a point.

Lemma 5.3. Suppose β 	=0, η(α) 	=0 for α=1,2, fe,l 	=0, and fe,u 	=1. Then for each
f ∈Ae (= [fe,l,fe,u]), Ef ⊆Ff,e.

Remark 5.4. This Lemma states that, for each f ∈Ae, the intersection of the elliptic
disks (the set Ef ) is contained in the elementary feasible region associated with f (the
set Ff,e). Thus the feasible region associated with f (the set Ff ) is simply the set Ef .
In other words, if the elliptic disks E(1)f and E(2)f intersect so that Ef 	=∅, then f ∈A; if
the elliptic disks do not intersect so that Ef =∅, then f /∈A.

Proof. For each f ∈ [fe,l,fe,u] the set Ff,e contains F (1)
f . The boundary of the set

F (1)
f is described by the equation p

(1)
f (x,y)=0 which, according to Lemma 5.2, is either

an ellipse, a point, or the empty set. Therefore E(1)f =F (1)
f ⊆Ff,e. A similar argument

shows that E(2)f =F (2)
f ⊆Ff,e.

Remark 5.5. In fact, motivated by (4.1a), one can show that the ellipse ∂E(1)f is
tangent to the boundary of the set

Xf :=

{
(x,y)∈R2 :

‖〈E(1)
1 〉‖2
f

≤x≤η(1)− ‖〈E
(1)
2 〉‖
f

}

for f ∈ (fe,l,fe,u]. Similarly, motivated by (4.1b) one can also show that the ellipse ∂E(2)f

is tangent to the boundary of the set

Yf :=

{
(x,y)∈R2 :

‖〈E(2)
1 〉‖2

1−f ≤y≤η(2)− ‖〈E
(2)
2 〉‖2

1−f

}

for f ∈ [fe,l,fe,u). See Figure 5.1 for an illustration of this fact. The set Xf ∩Yf is in
fact the rectangle Ff,e and the test values f where this rectangle collapses to a line
segment are the elementary bounds.

Lemma 5.6. Suppose β 	=0, η(α) 	=0 for α=1,2, fe,l 	=0, and fe,u 	=1. Then, for each

f ∈Ae, the set ∂E(1)f ∩∂E(2)f contains at most 2 points.

Proof. Fix f ∈Ae and suppose that the point (x,y)∈∂E(1)f ∩∂E(2)f (note that

∂E(α)f 	=∅ by Lemma 5.2). Then for α=1, 2 we must have p
(α)
f (x,y)=0, where p

(α)
f is

defined in (5.1). This implies that

0= |σ(1)|2p(1)f (x,y)−|σ(2)|2p(2)f (x,y)=μ4x+μ5y+μ6, (5.6)

where μk= |σ(1)|2a(1)k −|σ(2)|2a(2)k for k=1, 3, and 6, and μk=2|σ(1)|2a(1)k −2|σ(2)|2a(2)k

for k=2, 4, and 5. By (5.2) and (5.3), μ1=μ2=μ3=0 for all f ∈Ae. We solve (5.6) for
y to find

y=−μ4x+μ6

μ5
. (5.7)
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Lemma 5.3 implies that y is finite for all f ∈Ae. Inserting (5.7) into the equation
p(1)(x,y)=0 we find that x must be a root of the quadratic

q(x) :=ν1x
2+ν2x+ν3,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ν1=a

(1)
1 μ2

5−2a
(1)
2 μ4μ5+a

(1)
3 μ2

4;

ν2=2
[
−a(1)2 μ5μ6+a

(1)
3 μ4μ6+a

(1)
4 μ2

5−a(1)5 μ4μ5

]
;

ν3=a
(1)
3 μ2

6−2a
(1)
5 μ5μ6+a

(1)
6 μ2

5.

(Note that ν1, ν2, and ν3 are all functions of f .) The discriminant of q is

Δf :=ν
2
2−4ν1ν3. (5.8)

Therefore the set ∂E(1)f ∩∂E(2)f will be 2 (real) points if Δf >0, 1 (real) point if Δf =0,
and 0 (real) points if Δf <0.

Lemma 5.2 implies that E(1)f and E(2)f are nonempty for all f ∈Ae, and Lemma 5.3
implies that Ff =Ef for all f ∈Ae. Therefore f ∈A if Δf ≥0, since Δf ≥0 implies
Ef 	=∅. If Δf <0, Ef may be empty or nonempty. For example, if one of the elliptic
disks is completely inside the other, Δf <0 but Ef 	=∅.

To determine whether or not Ef is empty when Δf <0 we examine the following 4
possibilities.

(1) If p
(1)
f (r(2))<0 and p

(2)
f (r(1))<0, then the elliptic disks (which may be points)

are disjoint since neither elliptic disk contains the center of the other. Thus
Ef =∅ which implies that f /∈A;

(2) if p
(1)
f (r(2))≥0 and p

(2)
f (r(1))<0, then the elliptic disk E(1)f contains the center of

the elliptic disk E(2)f but not vice versa. In this case E(2)f �E(1)f ⇒Ef 	=∅⇒f ∈A;

(3) if p
(1)
f (r(2))<0 and p

(2)
f (r(1))≥0, then E(1)f �E(2)f ⇒Ef 	=∅⇒f ∈A;

(4) if p
(1)
f (r(2))≥0 and p

(2)
f (r(1))≥0, we can conclude that Ef 	=∅ and so f ∈A.

Unfortunately Δf is a complicated function of f , so it is difficult if not impossible
to determine the sign of Δf analytically. The expressions for p(1)(r(2)) and p(2)(r(1)) are
nontrivial as well, so the above steps must be carried out numerically. (For example, for
the configuration considered in Figure 4.1(a), Δf is essentially a rational function with
an irreducible polynomial of degree 8 in the numerator and an irreducible polynomial

of degree 2 in the denominator. The functions p
(1)
f (r(2)) and p

(2)
f (r(1)) are rational

functions with irreducible polynomials of degree 4 in the numerator.) We have thus
proven the following theorem.

Theorem 5.7. Suppose β 	=0, η(α) 	=0 for α=1,2, fe,l 	=0, and fe,u 	=1. Then for
f ∈Ae, if Δf ≥0, then f ∈A, where Δf is defined in (5.8). If Δf <0, then f /∈A if and

only if p
(1)
f (r(2))<0 and p

(2)
f (r(1))<0.

As mentioned in the introduction, the bounds derived in this section may or may
not be tighter than the elementary bounds from Section 4. For example, the bounds
from this section would be the same as the elementary bounds if Δf ≥0 for all f ∈Ae.
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We also note that lemmas 5.2 and 5.6 hold for all f ∈ (0,1). This shows the importance
of the elementary bounds: if we did not take them into account and only looked at the
set Ef for all f ∈ (0,1), it may be that Ef 	=∅ for all f ∈ (0,1) (this is indeed the case for
the configuration in Figure 4.1). This would only give the trivial bounds 0<f (1)<1.
Although we do not know if this is generally the case, in all of the 2D examples we have
encountered thus far the “more sophisticated” bounds determined using the elliptic disks
have been the same as the elementary bounds — see figures 5.1 and 7.1, for example. So
it is not clear if the “more sophisticated” bounds are ever better than the elementary
bounds. Irrespective of this, the analysis presented here is useful for the treatment
presented in the next section where we do obtain tighter bounds using elliptic disks.
Also, the more sophisticated bounds developed here are beneficial for periodic composite
materials, where one may be given the volume fraction and wish to determine bounds
on the possible values of the complex pair (〈E〉,〈J〉).

In figures 5.1(a)–5.1(h) we plot the sets E(1)f (red) and E(2)f (blue) at various values of
f ∈Ae=[fe,l,fe,u]; the centers of each ellipse are indicated by dots. The black box is the

boundary of the set Ff,e defined by the inequalities (4.1a) and (4.1b). Note that ∂E(1)f is

tangent to the vertical segments of the black box and ∂E(2)f is tangent to the horizontal

segments, as remarked after Lemma 5.3. In particular, at f =fe,l (Figure 5.1(a)), E(1)fe,l

is a point (represented by the red dot); at f =fe,u (Figure 5.1(h)), E(2)fe,u
is a point

(represented by the blue dot). In Figure 5.1(i) we plot Δf (solid black line), p
(1)
f (r(2))

(red increasing dashed line), and p
(2)
f (r(1)) (blue decreasing dash-dotted line) over the

interval Ae. The true volume fraction is represented by the magenta (vertical) dashed
line, and the horizontal gray line represents the f−axis. Figure 5.1(i) shows that each
f ∈Ae is admissible; when Δf <0, we have either p(2)(r(1))≥0 and p(1)(r(2))<0 (so

E(1)f ⊂E(2)f ) or p(1)(r(2))≥0 and p(2)(r(1))<0 (so E(2)f ⊂E(1)f ). Thus, for each f ∈Ae the
set Ff =Ef is nonempty, and we conclude that A=Ae; in this example the bounds
computed using the ellipses are no better than the elementary bounds.

6. Additional null Lagrangians in two dimensions
In two dimensions we can include information from the null Lagrangians 〈E1 ·R⊥E2〉

and 〈J1 ·R⊥J2〉 — see (3.2). The details presented below are similar in nature to those
in the previous two sections.

6.1. Improved elementary bounds. For arbitrary vectors c(α), d(α) in R2 and
for α=1, 2 we define

h(α)(x;c(α),d(α)) :=

2∑
m=1

c(α)m

[
E(α)

m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]

+
2∑

n=1

d(α)n

[
R⊥E(α)

n (x)− χ(α)(x)

f (α)
〈R⊥E(α)

n 〉
]
.

For α=1, 2, and up to the constants c
(α)
m and d

(α)
n , the field h(α) measures how the

real and imaginary parts of the fields E and R⊥E vary around their average values over
phase α. (The proof of this statement is exactly the same as that in the paragraph
following (3.5).) Note that 〈h(α)〉=0 and 〈h(α) ·h(α)〉≥0 for all c(α), d(α)∈R2. A
computation [36] shows that this inequality is equivalent to

C(α) ·M (α)C(α)≥0 for all C(α)∈R4,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (g)(c) (d) (e) (f) (h)

Δf

p(1)(r(2))

p(2)(r(1))

(i)

Fig. 5.1: The rectangle Ff,e (outlined in black) and the sets E(1)
f (in red) and E(2)

f (in blue) at

test values (a) f =fe,l≈0.794; (b) f ≈0.795 (where Δf =0); (c) f ≈0.797 (where p(2)(r(1))=0);
(d) f =f (1)=0.80; (e) f ≈0.802 (intersection of p(1)(r(2)) and p(2)(r(1))); (f) f ≈0.805 (where
p(1)(r(2))=0); (g) f ≈0.806 (where Δf =0); (h) f =fe,u≈0.808. (i) A plot of Δf (black solid

line), p
(1)
f (r(2)) (red increasing dashed line), and p

(2)
f (r(1)) (blue decreasing dash-dotted line)

for f ∈Ae=[fe,l,fe,u] (the horizontal gray line is the f−axis). The parameters used to create
this figure are the same as those in Figure 4.1. In this case we only recover the elementary
bounds 0.794≤f (1)≤0.808.

where we have written

C(α)=

[
c(α)

d(α)

]

for arbitrary c(α), d(α)∈R2.
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For α=1, 2 the 4×4 matrix M (α) is

M (α)=

[
S(α) T (α)

−T (α) S(α)

]
,

where

T (α)=

⎡⎢⎣B(α)
11 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
1 〉 B

(α)
12 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉

B
(α)
21 −

1

f (α)
〈E(α)

2 〉 ·R⊥〈E(α)
1 〉 B

(α)
22 −

1

f (α)
〈E(α)

2 〉 ·R⊥〈E(α)
2 〉

⎤⎥⎦ ,
B(α)

mn= 〈χ(α)Em ·R⊥En〉= 〈E(α)
m ·R⊥E(α)

n 〉 (for m, n=1, 2),

and R⊥ and S(α) are as before (see (3.3) and (3.7), respectively). Note that T
(α)
11 =

T
(α)
22 =0 for α=1, 2. Also, T

(α)
12 =−T (α)

21 since RT
⊥=−R⊥.

For f ∈Ae we define

M
(α)
f (x,y) :=

[
S
(α)
f (x,y) T

(α)
f

−T (α)
f S

(α)
f (x,y)

]
, (6.1)

where S
(α)
f (x,y) is defined in (3.14),

T
(α)
f =−

[
T

(α)
f

]T
=

⎡⎣ 0
√
τ
(α)
f

−
√
τ
(α)
f 0

⎤⎦
where

τ
(α)
f :=detT

(α)
f =

[
B

(α)
12 −

1

f∗
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉
]2
≥0,

and f∗ is defined in (5.5). Since S
(α)
f is symmetric for all (x,y)∈R2 and T

(α)
f is anti-

symmetric, M
(α)
f (x,y) is symmetric for f ∈Ae and all (x,y)∈R2.

We apply the splitting method to 〈E1 ·R⊥E2〉 and 〈J1 ·R⊥J2〉 (see (3.9)) and obtain
the system [

1 1
|σ(1)|2 |σ(2)|2

][
B

(1)
12

B
(2)
12

]
=

[
〈E1 ·R⊥E2〉
〈J1 ·R⊥J2〉

]
.

As long as |σ(1)| 	= |σ(2)|, we can solve this system for B
(1)
12 and B

(2)
12 ; in that case[

B
(1)
12

B
(2)
12

]
=

1

|σ(2)|2−|σ(1)|2
[
|σ(2)|2〈E1 ·R⊥E2〉−〈J1 ·R⊥J2〉
−|σ(1)|2〈E1 ·R⊥E2〉+〈J1 ·R⊥J2〉

]
(6.2)

and B
(1)
12 and B

(2)
12 (hence T

(1)
f and T

(2)
f ) are known.

Definition 6.1. For f ∈Ae, we set

F̃ (α)
f :={(x,y)∈R2 :M

(α)
f (x,y) is positive-semidefinite}.
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Then the set F̃f := F̃ (1)
f ∩F̃ (2)

f is called the restricted feasible region associated with f .

In addition, the set Ã :={f ∈Ae : F̃f 	=∅} is called the restricted set of admissible test
values.

To find the set Ã, we need to find the values of f ∈Ae such that there is at least one

point (x,y)∈R2 at which both M
(1)
f (x,y) and M

(2)
f (x,y) are simultaneously positive-

semidefinite. We will see that Ã⊆A, so the bounds in this section are in general tighter
than those in the previous sections.

Lemma 6.2. Suppose β 	=0, η(α) 	=0 for α=1,2, fe,l 	=0, fe,u 	=1, and |σ(1)| 	= |σ(2)|.
Then for f ∈Ae and α=1, 2, the matrix M

(α)
f (x,y) defined in (6.1) is positive-

semidefinite if and only if p
(α)
f (x,y)=detS

(α)
f (x,y)≥ τ (α)f .

Proof. Recall that a symmetric matrix is positive-semidefinite if and only if all of

its eigenvalues are nonnegative. For α=1, 2 the eigenvalues ofM
(α)
f , each with algebraic

multiplicity 2, are

λ
(α)
f,±(x,y)=

1

2

{
trS

(α)
f ±

√[
trS

(α)
f

]2
−4
[
detS

(α)
f −detT

(α)
f

]}
. (6.3)

(We have suppressed the dependence on x and y on the right-hand side of the above
expression.)

By (3.14), (4.2a), and (4.2b), trS
(α)
f (x,y) is independent of x and y and is non-

negative if and only if f ∈Ae. We note that the expression under the square root in

(6.3) must be nonnegative for all points (x,y)∈R2 and all f ∈Ae since M
(α)
f (x,y) is

symmetric for all such values of x, y, and f .

The previous paragraph implies that the eigenvalues λ
(α)
f,±(x,y) will be nonnegative

for those points (x,y)∈R2 and those values of f ∈Ae for which

4
[
detS

(α)
f (x,y)−detT

(α)
f

]
≥0⇔detS

(α)
f (x,y)≥ τ (α)f .

This completes the proof.

Now p
(α)
f ≥ τ (α)f if and only if p̃

(α)
f ≥0, where p̃

(α)
f :=p

(α)
f −τ (α)f . Using calculus we

find

p̃
(α)
f,max := max

(x,y)∈R2
p̃
(α)
f (x,y)=

1

4f2∗

[
〈‖v(α)

+ ‖2〉f∗−‖〈v(α)
+ 〉‖2

]
·
[
〈‖v(α)

− ‖2〉f∗−‖〈v(α)
− 〉‖2

]
,

(6.4)
where f∗ is defined in (3.6) and

v
(α)
± :=χ(α) (E1±R⊥E2)=E

(α)
1 ±R⊥E(α)

2 .

Note that 〈v(α)
± 〉= 〈E(α)

1 〉±R⊥〈E(α)
2 〉 is known (by the statement following (3.10)) and

〈v(α)
± ·v(α)

± 〉=η(α)±2B
(α)
12 is known if and only if |σ(1)| 	= |σ(2)| (by (3.15) and (6.2)). For

now we will assume that v
(α)
± 	≡0 and η(α) 	=0 (physically, this means that we assume

that the real and imaginary parts of the electric field are nonperpendicular and nonzero

in both phases). We will show that p̃
(α)
f,max<0 on a subset of Ae; such values of f are

not admissible by Lemma 6.2.
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Now p̃
(1)
f,max≥0 if and only if

f ≥ f̃e,l :=max

{
‖〈v(1)

− 〉‖2
〈‖v(1)

− ‖2〉
,
‖〈v(1)

+ 〉‖2
〈‖v(1)

+ ‖2〉

}
, (6.5)

or f ≤Q(1) :=min

{
‖〈v(1)

− 〉‖2
〈‖v(1)

− ‖2〉
,
‖〈v(1)

+ 〉‖2
〈‖v(1)

+ ‖2〉

}
. (6.6)

A computation [36] shows that Q(1)≤fe,l≤ f̃e,l, so the inequality in (6.6) will not be
satisfied for all f ≥fe,l and can safely be ignored. Moreover, we will have the chain of

equalities Q(1)=fe,l= f̃e,l if and only if

B
(1)
12 fe,l= 〈E(1)

1 〉 ·R⊥〈E(1)
2 〉. (6.7)

If E(1) is a constant, then (6.7) becomes fe,l=f
(1), which is consistent with our work

in Section 4. We also note that f̃e,l can be rewritten as

f̃e,l=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

if B
(1)
12 fe,l≤〈E(1)

1 〉 ·R⊥〈E(1)
2 〉,

‖〈v(1)
− 〉‖2

〈‖v(1)
− ‖2〉

if B
(1)
12 fe,l> 〈E(1)

1 〉 ·R⊥〈E(1)
2 〉.

(6.8)

The above computations are summarized in Figure 6.1, which is a plot of the functions

p̃
(α)
f,max as a function of f . The function p̃

(1)
f,max is plotted as a red solid curve. If (6.7) does

not hold, its zeros Q(1) and f̃e,l are below and above the elementary lower bound fe,l,

respectively. Thus all values of f ∈ [fe,l, f̃e,l) are not admissible, giving us the improved

elementary lower bound f̃e,l≤f (1). If (6.7) holds, then Q(1)= f̃e,l=fe,l, and we do not
obtain an improved elementary lower bound. In Figure 6.1, fe,l is indicated with the

left gray vertical line while f̃e,l is indicated by the left black vertical line.

Similarly, p̃
(2)
f,max≥0 if and only if

f ≤ f̃e,u :=min

{
1− ‖〈v

(2)
− 〉‖2

〈‖v(2)
− ‖2〉

,1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

}
, (6.9)

or f ≥Q(2) :=max

{
1− ‖〈v

(2)
− 〉‖2

〈‖v(2)
− ‖2〉

,1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

}
. (6.10)

Again, a computation [36] shows that f̃e,u≤fe,u≤Q(2). We will have the chain of

equalities f̃e,u=fe,u=Q
(2) if and only if

B
(2)
12 (1−fe,u)= 〈E(2)

1 〉 ·R⊥〈E(2)
2 〉. (6.11)

If E(2) is a constant, then (6.11) becomes fe,u=f
(1), which is consistent with our work

in Section 4. We also note that f̃e,u can be rewritten as

f̃e,u=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− ‖〈v

(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

if B
(2)
12 (1−fe,u)≤〈E(2)

1 〉 ·R⊥〈E(2)
2 〉,

1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

if B
(2)
12 (1−fe,u)> 〈E(2)

1 〉 ·R⊥〈E(2)
2 〉.

(6.12)
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The function p̃
(2)
f,max is plotted as a blue dashed curve in Figure 6.1. If (6.11) does

not hold, the values of f ∈ (f̃e,u,fe,u] are not admissible so we obtain the improved

elementary upper bound f ≤ f̃e,u; if (6.11) holds, then Q(2)= f̃e,u=fe,u and we do not

obtain an improved elementary upper bound. In Figure 6.1, fe,u and f̃e,u are indicated
by the right gray and black vertical lines, respectively.

Finally, we can show that f̃e,l≤ f̃e,u and provide a much simpler derivation of the
improved elementary bounds as follows. We begin by noting that〈∥∥∥∥v(α)

± − χ(α)

f (α)
〈v(α)
± 〉
∥∥∥∥2
〉
≥0,

which is equivalent to

‖〈v(α)
± 〉‖2≤f (α)〈‖v(α)

± ‖2〉⇔ ‖〈v(α)
± 〉‖2

〈‖v(α)
± ‖2〉

≤f (α),

with equality if and only if v
(α)
± is a (nonzero) constant. This implies that

f̃e,l≤f (1) and f̃e,u≥1−f (2)=f (1).

The first inequality above will be satisfied as an equality if and only if v
(1)
+ or v

(1)
− is a

(nonzero) constant; the second inequality above will be satisfied as an equality if and

only if v
(2)
+ or v

(2)
− is a (nonzero) constant.

Definition 6.3. The set Ãe :={f ∈Ae : f̃e,l≤f ≤ f̃e,u} is called the restricted elemen-
tary set of admissible test values.

The set Ãe is highlighted by the darkened interval in Figure 6.1, while the true
volume fraction f (1) is indicated by the magenta (vertical) dashed line. We note that

Ãe⊆Ae with equality if and only if (6.7) and (6.11) hold. We have thus proven the
following theorem.

Theorem 6.4 (Improved elementary bounds). Suppose β 	=0, η(α) 	=0 for α=1, 2,

fe,l 	=0, fe,u 	=1, |σ(1)| 	= |σ(2)|, and v
(α)
± 	≡0. Then the volume fraction f (1)= 〈χ(1)〉

satisfies the bounds f̃e,l≤f (1)≤ f̃e,u where f̃e,l and f̃e,u are defined in (6.5) and (6.9),
respectively (also see (6.8) and (6.12)). Moreover, the lower bound is satisfied as an

equality (i.e., f̃e,l=f
(1)) if and only if v

(1)
+ or v

(1)
− is a nonzero constant while the upper

bound is satisfied as an equality (i.e., f̃e,u=f
(1)) if and only if v

(2)
+ or v

(2)
− is a nonzero

constant. Finally, these are tighter bounds than those discussed in Theorem 4.2, i.e.,
fe,l≤ f̃e,l with equality if and only if (6.7) holds and f̃e,u≤fe,u with equality if and only
if (6.11) holds.

6.2. Example of the improved elementary bounds being attained. We
now consider a configuration of concentric disks for which the improved elementary lower
bound from Section 6.1 gives the exact volume fraction while the original elementary
lower bound from Section 4 only gives a lower bound on the volume fraction. Thus for
this example we will see that

fe,l<f̃e,l=f
(1)<f̃e,u≤fe,u.



A.E. THALER AND G.W. MILTON 885

We denote the radii and conductivities of the inner disk (core) and outer annulus (shell)
by R1 and R2 and σ(1) and σ(2), respectively. Throughout this section we will take
z=x+iy= reiθ; the complex conjugate of z will be denoted by z and is given by z=

x− iy= re−iθ. We note that the condition v
(α)
+ being constant is equivalent to the

potential in phase α being the sum of a function linear in z and a function g(z), or

conversely v
(α)
− being constant is equivalent to the potential in phase α being a function

linear in z plus a function g(z) [36].
We will take the Dirichlet boundary condition

V (R2,θ)=V0(R2,θ)=

(
aR2+

b

R2

)
eiθ+

(
cR2

2+
d

R2
2

)
e−2iθ,

where

a=
σ(1)+σ(2)

2σ(2)
; b=−R

2
1[σ

(1)+σ(2)]

2σ(2)
; c=

k[σ(1)+σ(2)]

2σ(2)
; d=−kR

4
1[σ

(1)−σ(2)]

2σ(2)
;

(6.13)
k∈R (entering (6.13)) is a given constant. The potential in the core (for 0<r<R1) is
then given by

V (1)(z,z)= z+k(z)2. (6.14)

The potential in the shell (R1<r<R2) can be found by using the continuity of the
potential V and the current −σ∇V ·n across the boundary at r=R1; in particular we
find

V (2)(z,z)=az+
b

z
+c(z)2+

d

z2
, (6.15)

f
fe,l fe,uQ(1)

f̃e,l f̃e,u

Q(2)f (1)

f

fe,l fe,uf̃e,l f̃e,uf (1)

(a) (b)

Fig. 6.1: (a) A plot of p̃
(1)
f,max (red solid curve) and p̃

(2)
f,max (blue dashed curve) — the horizontal

gray line represents the f−axis. The geometry and parameters used to create these plots are
the same as those used to create Figure 4.1. (b) A zoomed-in version of (a) — here we plot

the functions over the interval [fe,l,fe,u]. In both figures the set Ãe=[f̃e,l, f̃e,u] is highlighted

by the darkened interval. Some relevant numbers are fe,l≈0.794, fe,u≈0.808, f̃e,l≈0.798,

f̃e,u≈0.802, Q(1)≈0.776, Q(2)≈0.828, and f (1)=0.8. So we obtain the better bounds 0.798≤
f (1)≤0.802.
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where a, b, c, and d are given in (6.13). Let

x̂=

[
1
0

]
and ŷ=

[
0
1

]
be the standard orthonormal basis for R2. Then, since E=−∇V , the electric field in
each phase is given by

E(1)=−(1+2kz)x̂− i(1−2kz)ŷ,

E(2)=−
[
a− b

(z)2
+2cz− 2d

z3

]
x̂− i

[
a+

b

(z)2
−2cz− 2d

z3

]
ŷ.

(6.16)

We emphasize that neither of these fields is constant; therefore Theorem 4.2 implies

fe,l<f
(1)<fe,u.

In particular,

fe,l=

(
1

1+2k2R2
1

)
R2

1

R2
2

. (6.17)

For k 	=0 this is strictly less than f (1)=
R2

1

R2
2

.

Recall that v
(α)
± =E

(α)
1 ±R⊥E(α)

2 . We can compute

v
(1)
+ =−2x̂ and v

(1)
− =4k(−xx̂+yŷ) . (6.18)

So v
(1)
+ is a constant. We note that both fields v

(2)
± are not uniform. Theorem 6.4 thus

implies that f̃e,l=f
(1) and f (1)<f̃e,u.

Finally, if k=0, note that (6.16) implies that E(1)=−x̂− iŷ is a constant. Thus
Theorem 4.2 implies that fe,l=f

(1), which is verified by (6.17). Additionally, (6.18)

implies that v
(1)
− ≡0, so Theorem 6.4 implies that f̃e,l=fe,l.

6.3. More sophisticated bounds. We now proceed to find improved bounds;
the method is very similar to that in Section 5.

Definition 6.5. For α=1, 2 and for f ∈Ãe we define

Ẽ(α)f :={(x,y)∈R2 :p
(α)
f (x,y)≥ τ (α)f } and Ẽf := Ẽ(1)f ∩Ẽ(2)f .

Since τ
(α)
f ≥0, Lemma 6.2 implies that Ẽ(α)f ⊆E(α)f ; that is, the elliptic disks in this

case will be smaller than those in the previous section (for which τ
(α)
f ≡0). For each

f ∈Ãe we check to see whether or not Ẽf is empty. If Ẽf 	=∅ then f ∈Ã; if Ẽf =∅
then f /∈Ã. As in Section 5, we cannot work through everything explicitly due to
the complexity of the expressions involved. However, lemmas 5.2–5.6 (and therefore
Theorem 5.7) extend immediately; we present their extensions here for completeness.

Lemma 6.6. Assume that β 	=0, η(α) 	=0 for α=1, 2, fe,l 	=0, fe,u 	=1, |σ(1)| 	= |σ(2)|,
and v

(α)
± 	=0. Then the following properties hold.
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(1) For f ∈ (f̃e,l, f̃e,u) and α=1, 2, Ẽ(α)f is a closed elliptic disk; its boundary is the

ellipse ∂Ẽ(α)f ={(x,y)∈R2 : p̃
(α)
f (x,y)=0};

(2) Ẽ(1)
˜fe,l

is a point and Ẽ(2)
˜fe,l

is a closed elliptic disk;

(3) Ẽ(1)
˜fe,u

is a closed elliptic disk and Ẽ(2)
˜fe,u

is a point.

Proof. We simply apply the proof of Lemma 5.2 to p̃
(α)
f .

Lemma 6.7. Assume that β 	=0, η(α) 	=0 for α=1, 2, fe,l 	=0, fe,u 	=1, |σ(1)| 	= |σ(2)|,
and v

(α)
± 	=0. Then for each f ∈Ãe, Ẽf ⊆Ff,e.

Proof. For each f ∈Ãe, Ẽf ⊆Ef by Lemma 6.2; since Ef ⊆Ff,e for each f ∈Ae⊇Ãe

by Lemma 5.3, Ẽf ⊆Ff,e for each f ∈Ãe.

Lemma 6.8. Assume that β 	=0, η(α) 	=0 for α=1, 2, fe,l 	=0, fe,u 	=1, |σ(1)| 	= |σ(2)|,
and v

(α)
± 	=0. Then for each f ∈Ãe the set ∂Ẽ(1)f ∩∂Ẽ(2)f contains at most 2 points.

Proof. The proof is a word-for-word repeat of the proof of Lemma 5.6 applied to

p̃
(α)
f .

Therefore we can numerically search for tighter bounds as follows. For each f ∈Ãe,

if Δ̃f ≥0 then f ∈Ã (where Δ̃f is the same as Δf but with a
(α)
6 replaced by ã

(α)
6 :=

a
(α)
6 −τ (α)f ). If Δ̃f <0, then f /∈Ã if and only if p̃

(1)
f (r(2))<0 and p̃(2)(r(1))<0, where

r(1) and r(2) are defined in (5.4). We have thus proven the following theorem.

Theorem 6.9. Assume that β 	=0, η(α) 	=0 for α=1, 2, fe,l 	=0, fe,u 	=1, |σ(1)| 	= |σ(2)|,
and v

(α)
± 	=0. Then for f ∈Ãe (= [f̃e,l, f̃e,u]), if Δ̃f ≥0, then f ∈Ã where Δ̃f is defined

in (5.8) by replacing a
(α)
6 by ã

(α)
6 =a

(α)
6 −τ (α)f . If Δ̃f <0, then f /∈Ã if and only if

p̃
(1)
f (r(2))<0 and p̃

(2)
f

(
r(1)
)
<0.

The numerically computed bounds may or may not be tighter than the improved
elementary bounds, depending on the problem under consideration — see the last para-
graph in Section 4. If we consider concentric disks in which the inner disk is labeled as
phase 1, then the improved elementary lower bound will be exactly equal to the volume

fraction, i.e., f̃e,l=f
(1). In this case the field inside the inner disk is constant, so v

(1)
+

and v
(1)
− are both constants as well. This example is somewhat trivial in the sense that

the original elementary lower bound is also equal to the volume fraction, i.e., fe,l=f
(1)

(see the last paragraph in Section 4). In the case of a two-phase simple laminate we find

that fe,l= f̃e,l= f̃e,u=fe,u=f
(1) since the electric field is constant in both phases. In

Section 6.2 we gave an example of a geometry in which the improved elementary lower
bound f̃e,l is equal to the true volume fraction f (1) but the elementary lower bound fe,l
is strictly less than the volume fraction.

In figures 6.2(a)–6.2(h) we plot the sets Ẽ(1)f (red) and Ẽ(2)f (blue) at various values

of f ∈Ãe=[f̃e,l, f̃e,u]; the centers of each ellipse are indicated by a dot while the black

box is the boundary of the set Ff,e (see Definition 4.1). For comparison we plot E(1)f (red

dashed ellipse) and E(2)f (blue dashed ellipse). Note that Ef 	=∅ in figures 6.2(a)–6.2(h)

but Ẽf 	=∅ only in figures 6.2(c)–6.2(f). In Figure 6.2(i) we plot Δ̃f (solid black line),

p̃
(1)
f (r(2)) (red dashed line), and p̃

(2)
f (r(1)) (blue dash-dotted line) over the interval Ãe.
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The true volume fraction is represented by the magenta dashed line and the horizontal
gray line represents the f−axis. In addition, the set Ã is indicated by the darkened
interval. In this case Ã⊂Ãe (which is in contrast to the example in Figure 5.1 where

A=Ae) — since p̃(1)(r(2)) and p̃(2)(r(1)) are both negative for all f ∈Ãe, the set Ã is

simply the set on which Δ̃f ≥0.

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (c) (f)(b) (g)(d) (e) (h)

Δ̃f

p̃(1)(r(2))

p̃(2)(r(1))

(i)

Fig. 6.2: The rectangle Ff,e (outlined in black) and the sets Ẽ(1)
f (red) and Ẽ(2)

f (blue) at test

volume fractions (a) f = f̃e,l≈0.7982; (b) f ≈0.7984; (c) f ≈0.7987 (where Δ̃f =0); (d) f =

f (1)=0.80; (e) f ≈0.8006; (f) f ≈0.8012 (where Δ̃f =0); (g) f ≈0.8016; (h) f = f̃e,u≈0.8020.

The red (blue) dashed ellipse is the boundary of E(1)
f (E(2)

f ). (i) A plot of Δ̃f (black solid line),
1
5
p̃
(1)
f (r(2)) (red increasing dashed line), and 1

5
p̃
(2)
f (r(1)) (blue decreasing dash-dotted line) for

f ∈Ãe=[f̃e,l, f̃e,u]. The parameters used to create this figure were the same as those used to
construct Figure 4.1. We obtain the bounds 0.7987≤f (1)≤0.8012, which are better than the
improved elementary bounds from Section 6.1 and Figure 6.1.

To search for geometries for which these more sophisticated bounds are attained
one could look for geometries such that for some choice of real vectors c(1), d(1) not
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both zero and c(2), d(2) not both zero,{
h(1)(x;c(1),d(1))≡0 for x∈phase 1,

h(2)(x;c(2),d(2))≡0 for x∈phase 2.
(6.19)

In this case p̃
(1)
f and p̃

(2)
f will both be zero and (x,y) must be at an intersection point

of the boundary of the elliptic disk Ẽ(1)f and the boundary of the elliptic disk Ẽ(2)f .
Conversely if (x,y) is at such an intersection point then (6.19) must hold. Additionally
we require that the two ellipses only touch at one point and the meaning of this condition
in terms of fields is not so clear. Therefore (6.19) is a necessary, but not sufficient,
condition for attainability of the bounds. A similar remark applies to the attainability
of the “more sophisticated” bounds derived in Section 5.

6.4. Degenerate cases. In this section we briefly discuss the degenerate cases.

If v
(1)
+ or v

(1)
− ≡0 (v

(2)
+ or v

(2)
− ≡0), then p̃

(1)
f,max≡0 (p̃

(2)
f,max≡0) for all f ∈Ae by (6.4), so

we are unable to derive a tighter lower (upper) elementary bound. If v
(α)
± =0 for α=1,

2 we again have Ãe=Ae. In table 6.1, we summarize the restricted elementary set of
admissible volume fractions, Ãe, assuming η(α) 	=0 for α=1, 2. As the table shows,

if v
(α)
± =0 we have Ãe=Ae (which is given in (4.6)). One can apply the procedure

discussed in the paragraphs preceding Theorem 6.9 to try to improve these elementary
bounds.

v
(1)
± 	≡0

and v
(2)
± 	≡0

v
(1)
+ or v

(1)
− ≡0

and v
(2)
± 	≡0

v
(2)
+ or v

(2)
− ≡0

and v
(1)
± 	≡0

v
(1)
± ≡0

and v
(2)
± ≡0

[f̃e,l, f̃e,u] [fe,l, f̃e,u] [f̃e,l,fe,u] [fe,l,fe,u]=Ae

Table 6.1: This table gives a summary of the improved elementary bounds in various cases,
including degenerate cases.

7. Numerical example

true volume fraction f (1) 0.8

elementary bounds (fe,l≤f (1)≤fe,u) 0.794≤f (1)≤0.808

ellipse bounds (infA≤f (1)≤ supA) 0.794≤f (1)≤0.808

improved elementary bounds (f̃e,l≤f (1)≤ f̃e,u) 0.7982≤f (1)≤0.8020

improved ellipse bounds (inf Ã≤f (1)≤ supÃ) 0.7987≤f (1)≤0.8012

Table 7.1: This table gives a summary of our bounds corresponding to the test problem described
in Figure 4.1.

In this section we present the results of several numerical experiments. We used
the two dimensional configuration and boundary conditions from Figure 4.1 to create
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1.54

B
ou

n
d
s
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f (1)

(c) (d)

fe,l/f
(1)

infA/f (1)
fe,u/f

(1)

supA/f (1)
f̃e,l/f

(1)

inf Ã/f (1)
f̃e,u/f

(1)

sup Ã/f (1)

Fig. 7.1: A plot of the bounds in the case of an annulus (see Figure 4.1(a)) for several vol-
ume fractions ranging from f (1)=0.01 to f (1)=0.99. In each subfigure the conductivity of the
annular ring is σ(2)=1, while the conductivity of the surrounding medium in each subfigure is:
(a) σ(1)=2+0.5i; (b) σ(1)=2+10i; (c) σ(1)=10+10i; (d) σ(1)=10+0.5i. The legend at the
bottom indicates the symbol used to represent each bound; in particular we used the following
labels: red (lower) circles — elementary lower bound (fe,l — see Section 4); red (lower) stars
— “sophisticated” lower bound (see Section 5); red (lower) crosses — improved elementary

lower bound (f̃e,l — see Section 6.1); red (lower) squares — improved “sophisticated” lower
bound (see Section 6.3); blue (upper) circles — elementary upper bound (fe,u — see Section 4);
blue (upper) stars — “sophisticated” upper bound (see Section 5); blue (upper) crosses — im-

proved elementary upper bound (f̃e,u — see Section 6.1); blue (upper) squares — improved
“sophisticated” upper bound (see Section 6.3).

the plots in Figure 7.1. In each subplot σ(1) is fixed and σ(2)=1; we varied the volume
fraction by fixing R1=0.45 and R3=5 while varying R2 between approximately 0.6727
and 4.995.

Each subplot contains the following data scaled by f (1): fe,l (red stars); infA (red

circles); f̃e,l (red crosses); inf Ã (red squares); fe,u (blue stars); supA (blue circles);

f̃e,u (blue crosses); supÃ (blue squares). In all of the plots, fe,l/f
(1)=infA/f (1) and
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fe,u/f
(1)=supA/f (1), so the bounds obtained by using the elliptic disks E(1)f and E(2)f

from Section 5 (namely infA and supA) are simply the elementary bounds fe,l and fe,u
from Section 4.

For many cases in this 2D example the bounds obtained by using the elliptic disks

Ẽ(1)f and Ẽ(2)f from Section 6.3 (namely inf Ã and supÃ) are substantially better than

the improved elementary bounds f̃e,l and f̃e,u from Section 6.1. In particular, the extra

information from the elliptic disks Ẽ(1) and Ẽ(2) gives us lower bounds that, most of
the time, are better than the improved elementary bounds f̃e,l and f̃e,u; this extra
information does not seem to improve the upper bound in most cases, however. We
summarize our bounds for the 2D example in table 7.1.
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