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HOMOGENIZED DESCRIPTION OF DEFECT MODES IN PERIODIC
STRUCTURES WITH LOCALIZED DEFECTS*
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Abstract. A spatially localized initial condition for an energy-conserving wave equation with
periodic coefficients disperses (spatially spreads) and decays in amplitude as time advances. This
dispersion is associated with the continuous spectrum of the underlying differential operator and the
absence of discrete eigenvalues. The introduction of spatially localized perturbations in a periodic
medium leads to defect modes, states in which energy remains trapped and spatially localized. In this
paper we study weak, O(\), 0 <A< 1, localized perturbations of one-dimensional periodic Schrédinger
operators. Such perturbations give rise to such defect modes, and are associated with the emergence
of discrete eigenvalues from the continuous spectrum. Since these isolated eigenvalues are located near
a spectral band edge, there is strong scale-separation between the medium period (~ order 1) and

the localization length of the defect mode (~ order |defect eigenvalue\f% =A"1>1). Bound states
therefore have a multi-scale structure: a “carrier Bloch wave” X a “wave envelope”, which is governed
by a homogenized Schrédinger operator with associated effective mass, depending on the spectral band
edge which is the site of the bifurcation. Our analysis is based on a reformulation of the eigenvalue
problem in Bloch quasi-momentum space, using the Gelfand-Bloch transform and a Lyapunov-Schmidt
reduction to a closed equation for the near-band-edge frequency components of the bound state. A
rescaling of the latter equation yields the homogenized effective equation for the wave envelope, and
approximations to bifurcating eigenvalues and eigenfunctions.
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1. Introduction

A spatially localized initial condition for an energy-conserving wave equation with
periodic coefficients disperses (spatially spreads) and decays in amplitude as time ad-
vances. This (Floquet-Bloch) dispersion is associated with the continuous spectrum
(extended states) of the underlying differential operator and the absence of discrete
eigenvalues (localized bound states) [31, 36]. The introduction of localized perturba-
tions in a periodic medium leads to defect modes, states in which energy remains trapped
and spatially localized. This phenomenon is of great importance in fundamental and
applied science - from the existence of stable states of matter in atomic systems to the
engineering of materials with desirable energy transport properties through localized
doping of ordered materials.

The process by which the system undergoes a transition from one with only propa-
gating delocalized states to one which supports both localized and propagating states is
associated with the emergence or bifurcation of discrete eigenvalues from the continuous
spectrum associated with the unperturbed periodic structure. In this paper, we discuss
this bifurcation phenomenon in detail for the Schrédinger operator

Hg=—8;+Q(x), (1.1)
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where Q(z) is a continuous, real-valued, periodic potential:

Qa+1)=Q(a). (1.2)

The spectrum, spec(Hg), of the Schrédinger operator is continuous and is the union
of closed intervals called spectral bands [36]. The complement of the spectrum is a union
of open intervals called spectral gaps. The spectrum is determined by the family of
self-adjoint eigenvalue problems parameterized by the quasi-momentum k€ (—1/2,1/2]:

Hou(z;k)=FE u(z;k),
u(z+1;k) =Ry (2 k).

That is, we seek k— pseudo-periodic solutions of the eigenvalue equation. For each
ke (—1/2,1/2], the self-adjoint eigenvalue problem (1.3)-(1.4) has discrete eigenvalue-
spectrum (listed with multiplicity):

Eo(k)<Ei(k)<---<Ep(k)<... (1.5)
with corresponding k— pseudo-periodic eigenfunctions:
up (k) =€ py(x3k), py(w+13k) =po(2;k), b>0. (1.6)

The b" spectral band is given by

B= |J BE&). (1.7)

ke(—1/2,1/2]

The spectrum of Hg is given by:

spec(Hg) = UBb: U U Ey(k). (1.8)

b>0 b>0ke(—1/2,1/2]

Since the boundary condition (1.4) is invariant with respect to k— k41, the functions
Ey(k) can be extended to all R as periodic functions of k. The minima and maxima of
Ey(k) occur at k=Fk, €{0,1/2}; see Figure 1.1. In cases where extrema border spectral
gap, we have that 07F,(k.) is either strictly positive or strictly negative [20, 36]; see
Lemma 2.2.

Consider now the perturbed operator Hgyyv, where V(x) is sufficiently localized
in space. By Weyl’s theorem on the stability of the essential spectrum, one has
SpeCeont (Ho+v ) =Speceont (Hg) [36]. The effect of a localized perturbation is to pos-
sibly introduce discrete eigenvalues into the open spectral gaps. Note that in our set-
ting, Hg4v does not have discrete eigenvalues embedded in its continuous spectrum;
see [25, 37].

In this paper we present a detailed study of the bifurcation of localized bound states
into gaps of the continuous spectrum induced by a small and localized perturbation of
HQ:

HQ+AvE—6§+Q($)+/\V(ZE), A>0, (19)

where A is taken sufficiently small. Here Q(z) is a continuous, 1—periodic function
defined on R and V() is spatially localized. We next turn to a summary of our results.
See Theorem 3.1 and Theorem 3.4 for detailed statements.
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Let E.=Ey, (k.), k.€{0,1/2}, denote an endpoint (uppermost or lowermost) of
the (b,)'" spectral band, bordering a spectral gap. We show that under the condition:

02E,. (k.) x/ lup, (3 )PV () da <0, (1.10)
R

the following holds: there exists a positive number, Ao, such that for all 0 <A< g,
Hg4v has a simple discrete eigenvalue

E\)=E. +Xp+0(\T%), a>0. (1.11)

which bifurcates from the edge, F. = Ej, (k.«), of By, into a spectral gap.
L I 02Ey, (ki) >0 and [g|up, (z:k,)[* V(2) do <0, then <0 and E()) lies near
the lowermost edge of By, ; see the center panel of Figure 1.1.
2. If OFEy, (k) <0 and [ |up, (@;k.)|* V(x) dz>0, then p>0 and E() lies near
the uppermost edge of By, ; see the right panel of Figure 1.1.
For 0 < A< \g, ¥*(2), the eigenstate corresponding to the eigenvalue, E()), is well-
approximated in L by go(Ax), where go(y) denotes the unique eigenstate of the ho-

mogenized operator

d d

R A ) 1.12
i b*’ﬁder be,cff0(Y) (1.12)

with constant effective parameters A, . and By, . Here,

Hy, o =—

1
Ap, et = 55 0i B, (k) (1.13)

is the inverse effective mass associated to the spectral edge, F. = Ey, (k.),
Bun= [ Jun. (wih.)?V ) d, (114
R

and 0(y) denotes the Dirac delta mass at y=0. The unique discrete eigenvalue, fi, of
the eigenvalue problem: Hy,_ ogt) = p1), is easily seen to be

BE eff
=——. 1.15
/’(‘* 4Ab*7eﬁ' ( )

REMARK 1.1. The notion of effective mass is well known in condensed matter physics [2].
The effective mass for an evolving wave-packet may be derived by multi-scale per-
turbation theory and is related to the general problem of homogenization of periodic
structures; see the very influential book of Bensoussan, Lions, & Papanicolaou [3]; see
also [1, 4, 5, 6, 7.

REMARK 1.2. For the case Q=0, Ho = Hy=—0? and its spectrum consists of a semi-
infinite interval, spec(Hy)=1[0,00), the union of touching bands with no finite length
gaps. Furthermore, py(z;k)=1 for all |k|<1/2 and 6>0. The only band edge which
borders a gap is located at F, = Ey(0)=0, where we have: k, =0, Ey(k)=47%k?, and
02 Eo(k.) =8n>. In this case, our results describe the bifurcation of an eigenvalue from
the edge of the continuous spectrum of Hj induced by a small and localized perturbation:
Hyy =—02+\V, under the condition fRV < 0. The homogenized operator is

d2
HO,eH:—TyQ+A/Vd$; (1.16)
R

see the discussion below of [38].
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Fic. 1.1. Sketch of spectra. Eigenvalues, Ey(k), ke (—1/2,1/2], b=0,1,2,..., are displayed in
green. The continuous spectrum is in blue, and discrete eigenvalues are indicated through cross mark-
ers. The left panel corresponds to spec(Hq), Q periodic. The center (resp. right) panel corresponds
to spec(Hgav ), where AV is small, localized negative (resp. positive).

1.1. Previous related work. The case Q=0, where Hoi v =—A+V(z),
was considered by Simon [38] in one and two spatial dimensions. In one dimension, it
is proven that if V is sufficiently localized and —oo<fRV<0, then H,y has a small
negative eigenvalue E(\) of order \?; see the Corollary 3.3 and the discussion following
it. The case of perturbations of one-dimensional periodic Schrodinger operators (@ non-
trivial, 1—periodic) is treated by Gesztesy & Simon [25], where sufficient conditions are
given for the bifurcation of eigenvalues in the gaps of the continuous spectrum. Borisov
and Gadyl’shin [9] obtain results closely related to the current work, although using
very different methods. A formal asymptotic study, in terms of a Floquet-Bloch decom-
position, in one and two spatial dimensions was given in Wang et. al. [39]. Parzygnat
et. al. [34] formulate a variational principle for defect modes with frequencies in spectral
gaps. They use formal trial function arguments to show the existence of such defect
modes in spatial dimensions one and two. By formal asymptotic arguments, they obtain
the condition (1.10), for the case of the first spectral gap. Deift & Hempel [14] obtained
results on the existence and number of eigenstates in spectral gaps for operators of
the general type H — AW, where H has a band spectrum and W is bounded. Figotin
& Klein [22, 23] studied localized defect modes in the context of acoustic and electro-
magnetic waves. Results on bound states and scattering resonances of one-dimensional
Schrodinger operators with compactly supported potentials appear in work of Bron-
ski & Rapti [10] and Korotyaev [29, 30], respectively. Bifurcations of defect modes into
spectral gaps was considered in dimensions d=1,2, and 3 by Hoefer & Weinstein [26] for
operators of the form —A+Q(x) +e2V (ex), where Q is periodic on R? and V is spatially
localized. This scaling was motivated by work of Ilan & Weinstein [27] on the bifurca-
tion of nonlinear bound states from continuous spectra for the nonlinear Schrédinger/
Gross-Pitaevskii equation. The works [26, 27] employ the general Lyapunov-Schmidt
reduction strategy used in the present work; see also [15, 16, 35].

1.2. Outline, remarks on the proof, and future directions. In Section 2
we present background material concerning spectral properties of Schrédinger operators
with periodic potentials defined on R. In Section 3 we give precise technical statements
of our main results: Theorem 3.1 and Theorem 3.4.

Our strategy of proof is to transform the eigenvalue problem, using the appropriate
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spectral transform (Fourier or Floquet-Bloch), to a formulation in frequency (quasi-
momentum) space. Anticipating a bifurcation from the spectral edge, we express the
eigenvalue problem in terms of coupled equations governing the frequency components
located mear the band edge and those which are far from the band edge. The precise
frequency cutoff depends on the small parameter, A. We employ a Lyapunov-Schmidt
reduction strategy [33] in which we solve for the far-frequency components as a func-
tional of the near-frequency components. This yields a reduction to a closed bifurcation
equation for the near-frequency components. In contrast to classical applications of this
strategy, our reduced equation is infinite dimensional. For A small, in an appropriate
scaled limit, the bifurcation equation is asymptotically exactly solvable; it is the eigen-
value problem for the homogenized/ effective operator Hy, of. In Section 4, we prove a
general technical lemma, crucial to the analyses of sections 5 and 6, covering the kinds
of bifurcation equations which arise. Finally, appendices A and B contain the proof of
results stated in lemmas 2.2 and 2.3, and in Appendix C we give proofs, by a bootstrap
method, of Corollary 3.3 and Corollary 3.6 which contain more detailed expansions
and sharper error terms for the bifurcating eigenstates than those in Theorem 3.1 and
Theorem 3.4.

We conclude this section with several possible extensions of the present work.

1. The results of this paper describe the bifurcation of eigensolutions in the case
where the perturbing potential is small in the strong sense (in norm). What
of the case where the perturbing potential converges weakly to zero? This cor-
responds to the question of the effective behavior of high-contrast microstruc-
tures. In [18], the authors consider a class of problems, depending on a small
parameter, ¢, including the case where the potential, ¢(*)(z)=q(z,2/¢), con-
verges weakly as € tends to zero. In particular, we considered the small ¢
limit of the scattering and time-evolution properties for operators of the form
H©®) =92+ q(x,2/¢), where y+sq(-,y) is oscillatory (including periodic and
certain almost periodic cases) and '+ ¢(z,-) is spatially localized. An impor-
tant subtlety arises in the case where gy (%)= [pq(z,y)dy=0, i.e. ¢ tends
to zero weakly; see [19] for the case where ga,(x)#0 is generic. In this case,
classical homogenization theory breaks down at low energies. Indeed, the ho-
mogenized operator, obtained by averaging the potential over its fast varia-
tions, is Hy=—02, which does not capture key spectral and scattering infor-
mation. Among these are the low energy behavior of the transmission co-
efficient (related to the spectral measure) and the existence of a bifurcating
bound state at a very small negative energy. We show that the correct be-
havior is captured by an effective Hamiltonian with effective potential well:

Hé? =—0; —*Ner(y), Aesi(y) >0. Using Theorem 3.1 and the results of [38],
we conclude that H() has a bound state with negative energy of the order &%,
with a precise expansion for £ small.

In [17], we use our approach in order to extend the results of the present
paper to families of potentials, ¢., which converge weakly to a nontrivial periodic
potential, Q(z).

2. Further, in [18] there is a multi-scale local energy time-decay estimate, for
localized initial conditions orthogonal to the bound state, in which the different
dispersive time-dynamics on different time-scales is explicit. In particular, the
decay rate is O(t~2) for times t<<e 2 and O(t~2) for t>e"2. We believe
that our methods can be extended to give detailed properties of the resolvent
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(—8£+Q+/\V—E)_1 and therefore the spectral measure [36] near the band
edges. Such information could be used to derive the detailed dispersive time-
decay behavior. However, the decay estimates of the type obtained in [18] can
be expected to hold only for initial conditions which are spectrally localized
near band edges. Initial conditions with spectral components away from the
band edge can sample a regime where, for () non-zero, the dispersion relation has
higher degeneracy, yielding different (slower) dispersive time-decay [11, 13, 24].

3. Finally, it would be of interest to extend the methods of the current paper
to the study of bifurcations of eigenvalues for multiplicatively small or weakly
convergent spatially localized perturbations of the higher-dimensional periodic
Schrédinger operator, —A+ Q. In spatial dimension n=2 and the case @ =0,
Simon [38] proved that the bound state generated by a multiplicatively small
perturbation is exponentially close to the edge of the continuous spectrum. Such
results have been extended by Borisov [8] in the periodic (@ nontrivial) case.
Formal asymptotics were obtained in Wang et. al. [39]. In spatial dimensions
n >3, it is well known that for sufficiently small A, —A+ AV does not have a
discrete spectrum, by the Cwikel-Lieb-Rozenblum bound. Finally, Parzygnat
et. al. [34] also treat the case of dimensions n >3, where the defect potential,
V' is localized along in one or two dimensions.

1.3. Definitions and notation. = We denote by C a constant, which does not
depend on the small parameter, A\. It may depend on norms of Q(z) and V (), which
are assumed finite. C(¢1,(2,...) is a constant depending on (1, (o, .... We write ASB
if AKCB, and A=~Bif ASB and B< A.

x and X are the characteristic functions defined by

wO=xd<n={y 57 w@-xd<i=1-xid<s. @)

For f,g€ L?(R), the Fourier transform and its inverse are given by
FINO=Fe) = [ ¥ fapde, FH{g)w)=g(a)= [ =gl
R R

7 and 7! denote the Gelfand-Bloch transform and its inverse; see Section 2.
LP#(R) is the space of functions F:R—R such that (1+|-|?)*/2F € LP(R), endowed
with the norm

1F oy = (14| [2)* /2 F 1oy <00, 1<p<oo. (1.18)

WkP(R) is the space of functions F': R — R such that 9J F € LP(R) for 0 < j <k, endowed
with the norm

k

1l (r) EZH%FHLP(R) <00, 1<p<oo.
=0
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2. Mathematical preliminaries

In this section we summarize basic results on the spectral theory of Schrédinger
operators with periodic potentials defined on R. For a detailed discussion, see for
example, [20, 32, 36].

2.1. Floquet-Bloch states. We seek solutions of the k— pseudo-periodic
eigenvalue problem

(=92 +Q(x))u(z) = Fu(z), u(zx+1)=e*""u(z), (2.1)

for k€ (—1/2,1/2], the Brillouin zone. Setting u(z;k)=e*"*%p(z;k), we equivalently
seek eigensolutions (p(x;k),F) of the periodic elliptic boundary value problem:

(=0 +2mik)? +Q(x)) p(w; k) = E(k)p(:k),  pla+1;:k) =p(z;k) (2.2)

for each ke (—1/2,1/2].

The eigenvalue problem (2.2) has a sequence of eigenpairs {(py(z;k),Ep(k))}o>0
satisfying (1.5) and (1.6). The functions p(z;k) may be chosen so that {py(z;k)}p>0 is,
for each fixed k € (—1/2,1/2], a complete orthonormal set in L2_,([0,1]). It can be shown
that the set of Floquet-Bloch states {u(z;k) =e* %@ p,(2;k), bEN, —1/2<k<1/2} is
complete in L?(R), i.e. for any fe L?(R),

1/2
f@- 3 [ kw0
o<b<N”—1/2
in L?(R) as N 1oo.
Recall further that the spectrum of —92+Q(x) is continuous, and equal to the
union of the closed intervals, the spectral bands; see (1.7), (1.8).

DEFINITION 2.1. We say there is a spectral gap between the b'" and (b+1)%t bands if

sup |Ep(k)| < inf |Epyq1(k)l. (2.3)
[k|<1/2 [k|<1/2

Our study of eigenvalue bifurcation from the band edge E. = Ej, (k) into a spectral
gap requires regularity and detailed properties of E}(k) near its edges. These are sum-
marized in the following results (see a sketch of E,(k) in Figure 1.1, left panel). Proofs
and references to proofs are given in appendices A and B.

LEMMA 2.2. Assume Ey(ky) is an endpoint of a spectral band of —02+Q(x), which
borders on a spectral gap; see (2.3). Then k. €{0,1/2} and the following results hold:
1. Eyp(ky) is a simple eigenvalue of the eigenvalue problem (2.1).
2. b even: Ey(0) corresponds to the left (lowermost) end point of the band,
Ey(1/2) corresponds to the right (uppermost) end point.
b odd: Ey(0) corresponds to the right (uppermost) end point of the band,
Ey(1/2) corresponds to the left (lowermost) end point.
3. 8kEb(k*) :0, 6,§’Eb(k*) :0,'
4. b even: 03E,(0)>0, 92E(1/2) <0;
b odd: 92E,(0) <0, 02E,(1/2)>0;
LEMMA 2.3.  Let Ey(k1) denote a simple eigenvalue; thus ki =ks. as above applies.
Then, the mappings kv Ep(k), k> up(z;k), with up normalized, can be chosen to be

analytic for k in a sufficiently small complex neighborhood of ky. Moreover, for k real
and in this neighborhood, (Ey(k),us(x;k)) are Floguet-Bloch eigenpairs.
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2.2. The Gelfand-Bloch transform. Given fe€ L?(R), we introduce the
Gelfand-Bloch transform 7 and its inverse as follows:

~ 1/2 .
TUOY=Flaik)= Y florn), T {Fa)a) = [ ot flaikydr,
nez —1/2
One can check that 717 =1d. Let
u(w;k) = e " p(ak) (2.4)

denote a Floquet-Bloch mode. Then, by the Poisson summation formula, we have that

(u(-k), 2y = (p(.k), F(5K)) L2, (o,1))-

Define

To{ F}(k) = (po(5k), F(5K)) 12,

1 ~
([0.1]) —/ (@i k) f (k) da. (2.5)

By completeness of {py(x;k)}p>0, the spectral decomposition of f€ L?*(R) in terms of
Floquet-Bloch states is

)= S T Rpolaik), @)=Y / ol £} (Yo s ) .

b>0 b>0

Recall the Sobolev space, H®, the space of functions with square integrable deriva-
tives up to order s. It is natural to construct the following X® norm in terms of
Floquet-Bloch states:

= [ S0+ )0 (2:6)
b>O

ProPOSITION 2.4.  H?*(R) is isomorphic to X* for s >0. Moreover, there exist positive
constants C1, Cy such that for all $ € H*(R), we have

Culgll e @) < [16ll - < Collllre my-

Proof. Since Eo(0)=infspec(—0%+@Q), then Lo=—-02+Q— Ey(0) is a non-
negative operator and H®(R) has the equivalent norm defined by |[¢| g==|(I+
Lo)*/?@|| 2. Using orthogonality, it follows that

1/2
11177+ 2 1I(I+Lo)*/*¢l|72 = Z/ [T {0} (B)[?[1+ By (k) — Eo(0)[*dk

b>0

1/2 _
() [ me)as= 1303

XS.
b>0

The last line follows from the Weyl asymptotics Ej, (k) ~ b?; see, for example, [12]. This
completes the proof of Proposition 2.4. ]
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We conclude this section with a Lemma, which gives various estimates on the
Floquet-Bloch states of Hg and the spectrum of Hg4av, for a class of periodic po-
tentials, @, and localized potentials, V. These estimates are used within the proof of
Theorem 3.4, in Section 6.

LEMMA 2.5. Assume that Q is continuous, l1—periodic, and V is such that
(1+]-)V(-)€ L. Let Q be a small neighborhood of ki a simple eigenvalue, such that
Lemma 2.3 applies. Then one has:

@, s [l < e L) g | <
ke(— ke(=3.3lnez
(b) Sup||8kpb ||Loo§SUPZ‘<5kpb 2m.>L2([0,1])‘<O°‘

Proof. We begin by proving that py(x;k) is uniformly bounded for z €R and
€(—1/2,1/2]. Since py(-;k) is 1—periodic, it is bounded if its Fourier coefficients are
summable. Thus we study

D (k) ™) 2o =

nez nez

1
/ py(x;k)e™ 2™ dy|
0

Since k€ (—1/2,1/2], we can use integration by parts for n#0, the Cauchy-Schwarz
inequality, and equation (2.2) for p,(z;k) to obtain

> o (5k), €™ ™) 2 0,1))|

nez
ngb(x;k)HLz 01])||1HL2 ([0,1])
1 S
+ Z / — Ey(k))py (x5 k) <2m(n—k)) eI dy
neZ\{0}

<1+ Z (n—k) 2“ —Ev(k))py '?k)Hm([o,u)'

nGZ\{O}

Thus,
SR < emin < 0.

ke(_slu/I2)71/2]Hpb( i ke(_slu/g71/2 nZE:Z‘ - herop] <oe

We now turn to the study of Oxpy(z;k) in (b). Differentiating (2.2) with respect to
k yields

(—(0s+2mik)* + Q(z)) Oppy (23 k)
=Ey(k)Oepy(2;k) + (On By (k) +Ami (9, + 2mik)) py (23 k).

Following the same method as above yields

[0kpo (5 8) | L < D [(Opo(-58), €% ™) p2 0,17 |
nez
<C([|@| - Eo (k) |[0rpe (w3 8)]| 12 (0,17, + C (O Eo (k). k)).
The finiteness of Hakpb HL2 (0.1]) and OpEp(k) for k€ is a consequence of

Lemma 2.3; thus (b) follows. O
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3. Bifurcation of defect states into gaps; main results
Consider the eigenvalue problem:

(02 +Q(z) + AV (2)) p* = B, € L*(R),

where Q(z) is continuous, 1—periodic, A>0 is small, and V(x) is spatially localized.
Our first result concerns the case where QQ =0:

THEOREM 3.1 (Q= O) Let V be such that V€ WL (R); thus Je(A+z))|V (x)] do<
oo suffices. Assume V =[xV <0. There exists posztwe constants Ao and C(V, o),

such that for all 0 <A < )\0, there exists an eigenpair (E*,4™), solution of the eigenvalue
problem

(<03 + AV (@) Y N (2) = B (), (3.1)

with negative eigenvalue of the order 2. Specifically,
A2 2
A — R —
Pl (V)]
A A 1/2
Y™ (x) —exp 5 Vx| <CA/=. (3.3)
R

The eigenvalue, E*, is unique in the neighborhood defined by (3.2), and the correspond-
ing eigenfunction, v, is unique up to a multiplicative constant.

<O/, (3.2)

sup
z€R

REMARK 3.2. Theorem 3.1 shows, and is essentially proved by demonstrating, that
for small positive A, the leading order behavior of the eigenstate (E/\7’(/J)‘ (x)) is a scaling
of the unique eigenstate of the attractive Dirac delta potential:

(EAa 1/))\(:]])) ~ ()‘20(2)3 go()\fﬂ)),

where p=—1 [,V >0 and go(y) = e~ %Iyl satisty
-0+ [ V00| ot =~ Banto) (34

The error bounds in Theorem 3.1 are not optimal. However, the bootstrap argument
of Appendix C can be used to recover a higher order expansion on E*, similar to that
obtained in [38].

COROLLARY 3.3. Assume (1+|z|?)V € L!, and V =[xV (2) d2<0 . Then E*, as
defined in Theorem 3.1, satisfies E> =—X2 [0(\)]?, wzth

,77/‘/77)\// )| —y|V (y)dedy+O(N2), (3.5)

Simon [38] and Klaus [28] prove expansion (3.5), under the conditions: (1+
|z])|V (z) € L'(R) and [,V <0, with the error term o(\). Corollary 3.3 gives a sharper
error term under a more stringent decay condition on V. That Theorem 3.1 implies
Corollary 3.3 is proved in Appendix C.
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THEOREM 3.4 (Q non-trivial, 1—periodic). Let Q be continuous, 1—periodic, and let
V' be such that [(1+|z|)V(z)dx<oo and V € L. Let By, :ke(—1/2,1/2] - R denote
the band dispersion function associated with the (b.)!" band of the continuous spectrum
of =024+ Q(z). Fiz a spectral band edge of the (b,)" band; thus E.= Ey, (k.), where
k.=0 ork.=1/2 (see Lemma 2.2).

Assume either

O2E,. (k)>0 and / o, (23 k) 2V () dz < 0, (3.6)
R
or

O2E,. (k) <0 and / lup, (23 k) |2V () > 0. (3.7)
R

Then, there are positive constants, A\g and C=C(X,V,Q), such that for all A< X\, the
following assertions hold:

1. There exists an eigenpair (EA,@[J)‘(JC)) of the eigenvalue problem

(024 Q(z) + AV (2)) Y (x) = E** (2), ¥ € L*(R). (3.8)
2. Define
T e, (k) PV (@) d
ap= 57 E, () <0, (3.9)

where the inequality holds by (3.6) and (3.7). Then, E* and ¢*(x) satisfy the
following approximations:

|E* — ( By, (k) + X2Ep)| <OX*TH/4, (3.10)
sup lw)‘(x) —Uup, (x;k‘*)exp(/\oz0|x|)| < C/\1/4, (3.11)

z€ER

where
2
2% . i) PV ()| o2
2= :
%r%aiEb* (k*)

Note that the direction of bifurcation of E* is given by:
sgn (Ez) = —sgn (923, (k).

3. The eigenstate, (E*,3?), is unique (up to a multiplicative constant for ) in
the neighborhood defined by (3.10), (3.11).

REMARK 3.5. By Theorem 3.4, the bifurcating eigenvalue E* lies in the spectral gap
of =92+ Q(x) at a distance O(\?) near the spectral edge F,; see Figure 1.1. Moreover,
F, is the unique eigenvalue and go(y)=e®/¥! is the unique (up to multiplication by a
constant) eigenfunction of the effective (homogenized) Hamiltonian:
Ha= =0 00 (k)24 [ fun s PV (@) x 0)
fA=——" —> x) = up, (23 ks x)dz .
i dy 82 kb dy  J_o b Y
The following refinement of Theorem 3.4 can be proved via the bootstrap argument
presented in Appendix C.
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COROLLARY 3.6. Assume [,(1+]|z[*)V(2)dz<oco and that the hypotheses of Theo-
rem (3.4) hold. Then,

872

E)_—E 2(E E 3+1/4 2 o™
b*(k) /\( 2+ A 3)+O<)‘ ) —A aZEb*(k*)

O], (3.13)

where Ey is as in (3.12),

By = W% ([ kv ao)

(// ) |up, (2302 = yllus, (y; k) PV (y) da d;,),
**fjlub (k) PV () d

a0 = /1 N 2
A 82Eb /RQV s, (z3k:) @ —yllus, (y;5.)1*V (y) d dy

+O(A1+1/4). (3.14)

and

REMARK 3.7. For the case @ =0, the spectrum consists of only one semi-infinite band
which we can label the b=0 band. In this case, ug(z;k. =0)=1 and Ey(k)=4n2k>.
Therefore, to leading order, relation (3.14) simplifies to the result of Corollary 3.3 and
the two results are consistent.

4. Key general technical results
In this section, we study the operator Ly[6], defined by:

Lol1F(6) = (4n2 A€ +6%) F(€) — B (1¢] < A7) / (<A B Fopy dn. (41)

Here, A, B, and 8 are fixed positive constants. The operator 20[0] appears in the
bifurcation equations we derived via the Lyapunov-Schmidt reduction; see Section 1.2.
In 2— space, we have that £y[f] is a rank one perturbation of —A@; +62%:

bl = -0+ ) 1) = 55 (e (55 ) £0) sne(5). )

where sinc(z) =sin(z)/z. Lo[f] is a band-limited regularization of the operator:

(HAP 4+0%) f = (— A0 — B(y)+6°) £, (4.3)
appearing in the effective equations governing the leading order behavior of bifurcating
eigenstates; see remarks 3.2 and 3.5.

4.1. The operator Eo.
LEMMA 4.1. Fiz constants A>0, B>0, and $>0. Define, for §2>0, the linear
operator Lo[0] with

~

Lo[01f(€) = (4n2 A€ +62) f(€) — Bx (|| < A7P) /R X (Inl <A=7) f(n)dn. (4.4)

Note that Lo[]: L*(R) — LY ~2(R); see (1.18).
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~

There exists a unique 03 >0 such that Lo [0o] has a non-trivial kernel.

o

The “eigenvalue” 03 is the unique positive solution of

x(jEl<A?)

3. The kernel of Ly[o] is given by:
~ ~ ~ x (J€] < A7
kernel (LO [00]) = span{fo (5)}7 where fo(§)= 47T(|21|4§2+98)' (4.6)
4. 0o="00(N\) can be approximated as follows:
6o — 2\F‘ <33 A (4.7)
5. Define g(z) =exp(ao|z|), with ag=—2L; <0. Then one has
1| & ]- B
sup| 7 { o} (2) ~ o) <C(A,B)N. (4.8)

zeR

Proof.  First note, by rearranging terms in the equation 50[90}§:O, that any
element, g(§), of the kernel of 20[9], is a constant multiple of the function ]?,\(5;0) =
X([El < A7P) x (472 A2 +60%)~L. Thus, if g is non-trivial then it is strictly positive or
strictly negative and therefore fR/g\sé 0. Next, note that a necessary condition for g to
lie in the kernel of Zg [0] is that equation (4.5) holds. To see this, divide the equation
Lo [00]g=0 by (4m2A&> +902) and integrate d¢ over R. This yields:

x(€<A)
/_ gl€)dx [ 1- B/ 2A§2+02d§}_0. (4.9)
By the above discussion, if g is non-trivial then fRZi# 0. Hence 6? satisfies
N e (R P
J(O*)=1 B/—oo747r2‘4§2+02 d¢=0.

Since J:(0,00) =R is smooth, J'(X)>0, lim J(X)=—o00, and lim J(X)=1, the
X—=0 X —00

function J has a unique positive root, which we denote by 63. One can check by
direct substitution and the condition J(63) =0 that any multiple of

Fol&)= Ja(&00)=x(Ig] <A™7) x (4n*A&>+67) (4.10)

satisfies Lo [00]]?0(5) =0
The approximation to fg()), (4.7), is obtained as follows. Let 62 denote the unique
solution of J(63)=0 and 6 its positive square root. Then,

1_/x(|§<>\‘5)d§:/ L0 (lE<A0) 1)

B Jg 4m2 A2 402 472 AL? + 6%

o v (g <A -1
= N 90—1—/]1% 47r2A§2+03 dg. (4.11)




790 HOMOGENIZED DESCRIPTION OF DEFECT MODES

The last term can be bounded as follows:

1— <\ P B
/X<|£2)d§ :/ dg S < A (4.12)
R 47T2A§2+90 |5|2/\_ﬁ 471'214624-90 271'214

Relations (4.11), (4.12), after rearrangement of terms, yield (4.7).
Finally, we turn to the asymptotic expression for F~'{ fo}(z) given in (4.8). By
—20&0

. It follows that
47m2(€|2 + a3 47r2A|§|2

residue computation, one has g(§) =

sup fﬁl{ﬁ)}(x)*ég(x) ’SH fﬁég’ﬂ

z€R

s/R = |de
S/R d£+/R

A bound on the second term follows from (4.12). The first term is easily bounded,
using (4.7), by C(A, B)\?, with some constant C'(A,B) > 0. Estimate (4.8) follows, and
the proof of Lemma 4.1 is now complete. 0

x (1€l <A=7) 1

AmPAC+05 A2 AlE? +

X (€ <A7?)  x (gl <A7?)
M AL +08 4m2AlgP+ B

1—x (Il <A™7)
471'214524—3—2

de.

We shall also require a result on the solvability of the inhomogeneous equation

(Zol60]) () =h(©). (4.13)

where Lo[0o] is defined in (4.4).
LEMMA 4.2. The equation (4.13) is solvable if and only if h s such that
X ([l <ATPYR(E) =h(€) and satisfies the orthogonality condition

<foﬁ>L2(R) =0, (4.14)

where ]?0, displayed in (4.6), spans the kernel of 20[90], In that case,

1. any solution of the inhomogeneous equation (4.13) is of the form

TN = X (€l <A7)

@(5)E(C+h(€))fo(£)5(c+h(§))m, (4.15)

for some constant C.
2. The unique solution of (4.13) such that [, $=0 is obtained by choosing C' =0:

P(&) =h(&)fo()- (4.16)
Proof. The solvability condition x(|§|<)\_5) h(€)=h(€) is straightforward,
and (4.14) is obtained by taking the inner product of (4.13) with 7o, and using that

EO [6o] is symmetric and Eo [60] fo
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To show that (4.15) solves the inhomogeneous equation (4.13) we simply insert the
function (4.15) into (4.13) and use the properties: Lo(6o)fo="0 and <J?o,/f\l>L2 =0. This

gives

(Zoloule) (€)= (44 + IR Fol©) - B (1l <X ) [~ Rl oty

X (Il < A=P)h(e)
42 AE? + 63

(472 A 4 62) ~Bx (|6l < X ) (fooh) | =h(e).

L2(R)
The converse clearly holds by Lemma 4.1, since the difference of solutions of the

inhomogeneous equation solves the homogeneous equation (4.4). Finally, using the
orthogonality condition <f0ﬁ> , =0, one has that Jg®= CfRﬁ) =0 if and only if C'=0.
L

4.2. A perturbation result for Eg. As discussed in the introduction, our
strategy is to obtain a reduction of the eigenvalue problem for Hg4 v to an eigenvalue
problem (the bifurcation equation) for functions supported at energies near the band-
edge. These reduced equations have a general form which we study in this section.

Let Z; and Z, denote Banach spaces with 217ZQCL110C. Assume that for any
(f,9) € 21 X 25,

() izl Sz, lallz, 79l 2, S 15D 2, 9l o s and H(1+€2>‘1fHZQSHfH?- |
417

Furthermore, we also assume that fo € Z1 N 29, where (937%) is the unique normalized

solution of the homogeneous equation EO [9]]?: 0; see Lemma 4.1.

REMARK 4.3. In order to prove theorems 3.1 and 3.4, we shall apply Lemma 4.4,
below, with

e Case Q=0: (Z1,25)=(L>,L') in the case Q=0; and
e Q non-trivial, 1—periodic: (Z1,22)=(L*~*,L*'), where L?* is the space of
locally integrable functions such that

1] o S NAHIEP)2E o < 00

It is straightforward to check that such spaces satisfy (4.17), and ﬁ) €Z1NZs.
We seek a solution of the equation:
Lolo)f=R(F), (4.18)

where Lo(0) is the operator defined in (4.4) and the mapping f— R(ﬂ is linear and
satisfies the following properties:

Assumptions R, g: There exist constants >0, 8>0, and Cr >0 such that for any
€2,
Xl <A P)R(F)(© =R(f)(€) and ’ (4.19)

In the above setting we have the following

<CRA*
Z
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LEMMA 4.4.  Let (98,}6(5)) be the solution of /30(00)]% =0, as defined in Lemma 4.1,
where A, B and >0 are fired. Let R:f€ Zy— 2, be a linear mapping satisfying
assumptions Ry p displayed in (4.19), where 21,25 satisfy (4.17). Then there exists
Ao >0 such that for any 0 <A<\, the following holds:
1. There exists a unique solution (e,f(g)) €R™ x Z5 of the equation (4.18), such
that

7=

<oNe, /f €) de =0,

with C=C(A,B,CRg, (), independent of \.
2. Moreover, one has f( )=x(]g] <A™ ﬁ)f(f) and 6% — 63| <CA°.

Proof.  Our strategy is to use a fixed point argument. We seek a solution (62, f)
to (4.18) of the form

02502—1—92 and fzﬁﬁ—ﬁ.

Clearly, any solution f of (4.18) satisfies f( )=x (| <A7P) f({) Therefore, since one

has, by definition, fo( )=x (|§\ <A\T 5) fo(f), it follows that fl( )zx(\ﬂ <)\*B)]?1(§).
Substitution of these expressions into (4.18) yields

(4n2 A2+ 0% (g1 <A~ (Fo+ 1) (©)
(el <x B [l <3 ) (Fo ) yin =R (Fo ) 9

— 00

Rearranging terms yields the following equation for fl, in which 6% is a parameter to
be determined:

(Zolbolfi) () =—03 (Fo+ i) ©+R(Fo+Fi) (©). (4.20)
]/B\y Lemma 4.2, (4.20) is solvable in L? only if the right hand side is L?- orthogonal to
fo:
(i (s8R (0 5)),, -0

Solving for 67, we obtain

(a5 7)),
<J?O’J?O>L2 +<f0’f1>L2 |

In summary, equation (4.18) can be rewritten equivalently as two coupled equations in
terms of f1 and 67: (4.20)(4.21).
Substitution of 6 in (4.20), or equivalently projecting the right hand side of (4.20)

6? = (4.21)

onto the orthogonal complement of span{fo}, yields the following closed equation for

i
; ];(fz;)% (h+h)©+r(f+R)@©. (122

(Zolbol 1) (€)=~ o



V. DUCHENE, I. VUKICEVIC, AND M.I. WEINSTEIN 793
By Lemma 4.2, f; is a solution of (4.22) with [, fi =0 if and only if:

f(&)=G(f1)(6), (4.23)

gy (- (or(RrR))

JRIORS e ey TRy o (f+F)©+R(fo+ i) ©

(4.24)
We solve the fixed point equation (4.23) by the contraction mapping principle. Once f;
has been obtained, 67 is determined using (4.21).
Introduce

S= {fe Zy: Hﬂ‘ZQ SCH)\”‘}7 for some fixed Cy > 0. (4.25)

Note that S is a closed subset of the Banach space Z5. We next show that there exists
Ao >0 such that for all 0<A<)Ag: G:S— S and G is a contraction mapping. As a
consequence, it will follow that for 0 <A< g, there is a unique solution f; €S of the
equation f; =G(f1), and therefore of (4.22). Moreover, | fi||SA® by definition of S,
and one can check:

| A= [ e
e (B0,
0 [ -

ooy ,+(FoFh) (fo+F)©+r(fo+F)© | de=o.

It then remains to obtain an estimate of 6% =6, —62. From (4.21), one has

1 «
I AN

‘91‘ < ‘<f0, (f0+f1

where we used (4.17) and (4.19), and the fact that for A sufficiently small, <ﬁ),fo>

¢>0, where c is independent of A. Lemma 4.4 is proved.

Proof that G:S— S is a contraction mapping: The result will follow from the two
following claims, proved below:

CLAIM 4.5. There exists CHzC(Go,A,CR,Hﬁ)HZz) >0 such that

1G0)], < 5CaA"
CLAIM 4.6. There exists Ao >0 such that if 0< A< g, then

Join-e@], <572,

2

It follows that G maps S= {erQ: Hﬂ|22 SCH)\Q} into S since

1 1
19|z, <19 =GO 2, +[|9O)] 2, <[ f = 0l| 2, + 5CuA* <CrA".
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Therefore, by Claim 4.6, G:S — S is a contraction mapping.
Proof. (Proof of Claim 4.5.) By definition, one has

60 =X (7R (£)), e+ R (F) ©).

It follows, from our assumption (4.17) on functional spaces (21, 22),

W (er@), 15
a(i)

142

150z, <

x (Igl<A=P)(1+¢?)
AT2AE? 1 62

"
<[w (B, WAl +|7(5)

Claim 4.5 is now obvious, using the smallness hypothesis on the operator R, (4.19). O

Z3

zZ

Proof. (Proof of Claim 4.6.) Let us decompose the mapping G as follows:

e Gl
G(fr—fo)= 42 AE 102 <— <ﬁ7%>L2+<J?(),J?1L>L2 (fo-l—fl)(f)

(JoR(lo+F)) , o S
+ God) <f0’f2L>L2 (fo+72)©+R(i-12) <§))

_ SilAl©-silklE)  x( A)R(Fi-F)€)

A2 A€ 102 A2 AE? 102
The following estimate follows from our assumption (4.17) on the spaces (21, 25):
loi-1,,
_[sif@-simie| | [x08<xIR(A-F)©
ST At 62 AT AE2 1 62
Z2
x (e[ <A) el L xtaavey | [ R(R-R)
S| aweagrer || NS T e e ST EE
Z9
stm-sipl|, +|r(A-7)| (4.26)

The second term in (4.26) is estimated using assumptions R, g, (4.19):
(i), <cu -
1
Let us now turn to the first term in (4.26),

@% (fizg)%f fo*ﬁ*éﬁiﬁ“fé?éﬁ (1)
RAVE % L2 12 Ve

(4.27)

2,

Silfi] = Silfa] =~
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(o (6 2)),(345) (o (5 5)),, (-5

<ﬁ)’ﬁ)>L2+<ﬁ)’ﬁ>L2 <J/%’j/%>L2+<J/%’J?1>L2
—~ ~ -~ ~ o~ 1 1
_<f0,R(fo+f2)>L2 (fo-l—fz) <ﬁ),ﬁ)>L2+<ﬁ),ﬁ>L2 - <ﬁ),ﬁ)>L2+<ﬁ),fg>L2
=I+II+111. (4.28)

The result is a consequence of the following estimates:
(Fog) , <ClRollz, 9l z, < C1llgl 2,
(Fo-R(9)) , <C|Fo] 2, IR ()2, <CoA" [l

with C4 :C(Hfo”zl) and ngCg(H]?OHZZ,C’R). Using the above, one checks that for
sufficiently small A,

1]z, S C2A"

R=B| (5]l +Cure),
12211z, SCaX (| ol 2, + Ca) || fi ~ o

121111, 01 |[i= |, CoA(|1To] o, +Car™)

b

Z2

Thus, if C1A* <1/2, one has

|17 =$ulfal| <0z, 41220z, + 11002, S0 (4:29)

fi-7l

Zs

Plugging (4.27) and (4.29) into (4.26), it follows the existence of a constant, Cp >0,

L — PO _1
such that [|G(f1) —G(f2)llz, < Cor¥||f1— f2llz,. Thus, for 0<A <A <C, *, we obtain
a contraction and Claim 4.6 is proven. 0

5. Proof of Theorem 3.1; edge bifurcations for —92+\V (x)
In this section we prove Theorem 3.1, the special case: Q=0 of our main result,
Theorem 3.4. In this case we study the bifurcation of solutions to the eigenvalue problem

(=02+\V (2)) ¥ () = E*¢* (2),9* € L*(R) (5.1)

into the interval (—o0,0), the semi-infinite spectral gap of Hy=—02, for V a spatially
localized potential, and A > 0 sufficiently small. Here, the Floquet-Bloch eigenfunctions
are exponentials. Hence, calculations are more straightforward and error bounds on the
approximations are sharper.

5.1. Near and far frequency decomposition. Taking the Fourier transform
of (5.1) yields

(e =) PO+ [ T (€= O~ (52)
We shall study (5.2) via the equivalent system for the

near frequency components: {123‘ (&):1&|< A"} and
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far frequency components: {1?(5) €] > A"} of Y.

Let r be a parameter, chosen to satisfy: 0<r<1. Recall the cutoff functions, x
and Y, introduced in (1.17), and 1=, (§) +X,, (§). Multiplying (5.2) by this identity
we get

0= (4m%|¢> = ) (x,,. +X.. ) ()9 (©)
I\ / (60 %) OTE=0) (x +X,0) (OB ().

Introduce notation for the near and far frequency components of 1)*:

Duear(©) =X, (©)0NE) and  Pru(€) =X, (V). (5.3)

Then, the eigenvalue equation is equivalent to the following coupled system:
(47%1€1% = B*) fear (€) + 23 () / V(E=0) (Ynear(Q) +tar(€)dC =0, (5.4)

(4721€% = B) Prar(€) + X, (€) / T Ve-o (Yuear(Q) + Yrar(€))dC=0.  (5.5)

—0o0

In what follows we shall set E* =—)\262 where § =0()\) is expected to be O(1) as
A1 0. This anticipates that the bifurcating eigenvalue, E*, will be real, negative and
O()\2).

5.2. Analysis of the far frequency components. We view (5.5) as an equa-
tion for 1g,;, depending on “parameters” (¢¥pear;A). The following proposition studies
the mapping (wneaﬁ )‘) = Yrar-

PROPOSITION 5.1.  Let '(z}\near € L'. There exists Ao >0, such that for 0 <A< )Xo, the
following holds. Set E*>=—)\202, with |0|<7A""1, r€(0,1). There is a unique solu-
tion szar :’lZfar [anear;)\} of the far frequency equation (5.5). The mapping (@near;)\) —

{b\far [QZDQM;)\} maps LY(R) xR to L*(R) and satisfies the bound:

||qz;far||L1 SC(”‘/}HL‘X’)AlirH'@near”Ll' (56)

Proof.  We seek to solve (5.5) for fl;far as a functional of Jnear. Since [£]> A",
with 0<7<1, and |f| <7A"~!, we have |47T2§2 —E)‘| = |4772§2 +)\292| >3m2\?", which
is bounded away from zero for any fixed A >0. Dividing (5.5) by 4m2£2 — BN =472¢2 +
A202, we obtain that (5.5) is equivalent to the equation:

(1+7) Ftar(€) = = (Tahuear ) (©) (5.7)
where

(53) ©= [KrE0RQK and a6 =A o SV

We next show that the integral operator 7Aj\, viewed as an operator from L' to L!

has small norm, for A small. This implies the invertibility of I +’7A} and the assertions
of Proposition 5.1. Let g€ L'. One has

1

1759]] . <A o AT2E2 1220

AV 1l S ANV 19
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Thus, 7Tx is bounded from L' to L' with norm bound: ||7A} <AL

HLlaLl ~ HVHLOC or

re(0,1), HLlﬁLl —+0as A—0. Therefore I+ 7y is invertible, for A sufficiently small.
Moreover

e, = [ 7)™ Tt |, < DET) ™ g | Tl e
which implies the bound (5.6). Proposition 5.1 is proven. d

5.3. Analysis of the near frequency components. Now that we have con-
structed '[/J\far as a functional of @near and A (Proposition 5.1), it is possible to treat (5.4),
for A small, as a closed equation for a low frequency pmjected eigenstate, z/;near(g A), and
corresponding eigenvalue E*. Substitution of wfar wfar [zpnear, Al into (5.4) yields:

(4721€[% = B™) Pnear(€) + Axar () /< V(€O tnear(QdC+ Axx- (OR(E) =0,  (5.8)
where R is defined by
Re)= /C D (€ = ) Dtar [Drcars (L. (5.9)

Recall that '(//J\far [@near,)\] is in L', and of size O ()\1_’"||1Znear||L1) by Proposition 5.1.

Our next goal is, via appropriate expansion, reorganization, and scaling, to re-
express (5.8) as a simple leading order asymptotic equation plus controllable corrections.
The terms in (5.8) are supported in the near (low) frequency regime. Note that for |§| <
A" and | <A™ we have |€ — | < |€]+|¢| < 2A". Taylor expansion of V(£ —() gives V(¢ —

O)=V(0)+(£=)V'(n), for some n=n(¢,€) such that || <2A". Using this expansion
in the second term of (5.8) yields

(4160 ) B ©) 200 (€ P(0) [ T e =0 (OR [t ] €, (3:10)
where R [&near; A] =Ry +R», with
R (€)=—R(e)= - /C V(€ ~ ) Pta Bucar N(C)C,
Ra(€)=— /4 (€= OV (1) Pucar (Q)dC.

We now introduce the scaled near-frequency Fourier component, d X, DY

VYnear (1) = *CI)A (i) (5.11)
Note that
"Iz}\ncar(';)\)’ Ll_Hi&))\ (X) LIZHCTM’ I (5.12)
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We also denote E*=—\20% and restrict to § =60(\) satisfying the constraint in the

hypotheses of Proposition 5.1. Substitution of (5.11) into (5.10), defining £’ = A&, and
dividing by X yields the following rescaled near-frequency equation:

/

(4712 +6) BA(E") + xar1 (€)V(0) / 5 (¢)dC =X a1 ()R (D2)(€),  (5.13)

where R/ (8)) (€)= R [ dneariA| () SRA(€) + R(€), with

Ry (€)= /C T =) Dras[Prear N()dC, (5.14)
Ry (€)=~ / A = OV (1) near(C) dC=—X / € =WV (@A) (5.15)
¢ ¢

Equation (5.13) is in the form of the class of equations to which Lemma 4.4 applies.
We shall use Lemma 4.4 to obtain a non-trivial eigenpair solution (®y,0())) of (5.13).
Toward verification of the hypotheses of Lemma 4.4, we next bound the right hand side
of (5.13).

PROPOSITION 5.2. Let V be such that H‘//\vHWLOO E‘|17’|Lw—|—H‘A/’HLOO <oo. Then, the
right hand side of the rescaled near-frequency equation (5.13) satisfies the bound

o @R @)]|, <7 ) A7 +X)

(@HLI. (5.16)

Proof. We proceed by estimating each term individually.
Estimation of Ry (&), given by (5.14): By Proposition 5.1, one has

||"z)\far[1z}\near7)‘] ||L1(]R) < C(||‘7||L°°)>\17T HJnear”L1(R)' (517)

Plugging (5.17) into (5.14) and making use of (5.12), we have

IRy = H [ 708 Ol NI

L
§ H‘/}HLQC HQZfar[zz;neara)\}HLl SC(||‘7HL°°))\17THEI\>>\||L1~

Estimation of R5(E'), given by (5.15): We have the bound

a2 (€l
=[Pear-1(€) /C AE =V @Ay <2V |V [ 1

using that @ (") =y 1 (¢")®A(¢’), so that | —¢’| <2A7~1. Proposition 5.2 is proven.
O

REMARK 5.3. We expect that by using a higher order Taylor approximation of
V(€ —¢) in the second term of equation (5.8), it should be possible to obtain a variant
of Proposition 5.2 with a bound which is higher order in A. This would require a higher
order variant of Lemma 4.4.
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5.4. Completion of the proof. @ We now prove Theorem 3.1 by an application
of Lemma 4.4 to equation (5.13), using the remainder estimate of Proposition 5.2.

Proof. (Proof of Theorem 3.1.) We construct ¢*, solution to (5.2) as 17;‘:
{/J\far-i-'l/p\near, where 'l/b\fa“’(z;near satisfy (5.4)—(5.5). The far-frequency component, ﬁfar,
is uniquely determined by @near and A sufficiently small; see Proposition 5.1. Now set
{/;ncar(g) = lffb\ (%) Since ‘A/GWLOO, Proposition 5.2 implies that the rescaled near-

frequency equation (5.13) can be written as

~

(4721€' 2 +62) BA(E) + Xrr—1 (€)V(0) / D5 (C)d¢ = XA (EYR(PA(E),  (5.18)

i

with |R(u)|| e <CA*||ul/z2, where ao=min(1—r,r) and C=C(||V|lw1.). From now
on, we set

r=1/2=«

as this yields optimal estimates. Applying Lemma 4.4 to (5.18) with A=1, —B= ‘7(0) =
fRV (assumed to be negative), we deduce that there exists a solution (92,215)\) of the

rescaled near-frequency equation (5.18), satisfying
1@ — foll: <CAZ and |02 —02|<CA3. (5.19)

Here (03()0,]%) is the unique (normalized) solution of the homogeneous equation
Eox (80.Fo) = 4w+ 6 Foex (Jgl <A 1) P0) [ x(inl<r~H) Fotnan=o.
R

as described in Lemma 4.1. Thus @near(§)=§@ (%) and E*=—)\262%()\) are well-

defined.
In conclusion, the eigenpair solution to (5.2) (i.e. (3.1)) , (E*,2?), is uniquely
determined by

Er=-X202(\)  and ¢ =F " (Pnear + Prar)-

Estimate (3.2), the small A expansion of the eigenvalue E*, follows from (5.19). The
approximation, (3.3), of the corresponding eigenstate, ¥ =ncar +¥ar, is obtained as
follows. First, by (5.19) we have

Xa/z(1)
472 |n|2 + 2263

‘Jncar(n)A :HEI\))\*‘]%HLISAI/? (520)

1

The high frequency components are small, as is seen from the following calculation:

d
SA/ N (5.21)
o iz 4m ]

Xo/2(1)
472 |n|2 + A2V (0)2

Finally, from Proposition 5.1, one has (with r=1/2)

H’(z)\farHL1 S C(H‘/}”L“) )\1/2||7:[J\nearHL17 (522)
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and ||[tuear || . = |®a]] ;2 — || fol| ;1 (as A—0). Altogether, (5.20), (5.21) and (5.22) yield

1
A -1 -
|~ Do

Note, by residue computation, that
F (A% 2+ X2603) 71} = 2(Mo) L exp(—Abo|z|), with p=—1 [V >0 . Thus esti-
mate (3.3) holds. This completes the proof of Theorem 3.1. 0

6. Proof of Theorem 3.4; edge bifurcations of —9%2+Q+\V
Let Q(z) denote a non-trivial, continuous, 1—periodic function, @(z+1)=Q(x). In
this section we study the bifurcation of solutions to the eigenvalue problem

1

— || a2
A ZN202 ||,

o
LOC

Ll

(—02+ Q) + AV (2)) ¥ (z) = B*¢ N (2), veL*(R) (6.1)

into the spectral gaps of —92+Q(z). We proceed by the same general approach of
Section 5. That is, by appropriate spectral localization, in this case by applying the
Gelfand-Bloch transform, we reduce (6.1) to an equivalent near-frequency eigenvalue
problem supported on frequencies lying near a spectral band edge of —9%+Q(x).

6.1. Near and far frequency components. We take the Gelfand-Bloch trans-
form of (6.1) and get

— (D0 +2mik) PN (@3 ) + Q)M k) + A (V) (wsk) = EXpMaik),  (6.2)
where

(Vz/J’\)N (x;k)= Zez’ri"’” (‘/w)‘)A (k+n)= Zezmm (17*1?) (k+n).

neZ nez

Here, the quasi-momentum, k, varies over the interval (—1/2,1/2].
As in Section 5, we express ¥ in terms of its near and far frequency components
around a band edge F, (k.), for fixed b, and k.:

7/)/\ = q/}ncar +7/}far = T71 {Jncar(k)pb* (l’, k)} + Til {Z{/;far,b(k)pb(x; k)} ) (63)
b=0

where we define, for b=0,1,...:

Unear (k)

X (k= e <N To {0} (0) = x (= | < A7) (. ()03 B))

L2(0,1))’

Biae () =X (k= | 2 X 6. ) To{ ™ (0) = X (k= | 2 X 65..5) (o (1K), 3, ))

L2(0,1)’

where §; ; denotes Kronecker’s delta function and r a parameter chosen to satisfy r > 0.
Equivalently, one has

1/2 . >
’(/}A(x) :/ (’d}near(k)ub* (l’,k) +Z¢far,b(k)ub(x;k)> dk.
- b=0

1/2

Recall that {py(7;k)}p>0 form a complete orthonormal set in L2,.([0,1]), and satisfy

per

(—(Bm+27rik)2+Q(x)>pb(x;k) = Ey(k)py(a:k), z€[0,1],pp(2+13k) =py(a;k). (6.4)
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Therefore, taking the inner product of (6.2) with p,(z;k), and using self-adjointness
of the operator — (9, +2mik)*> +Q as well as the identity (6.4), yields

(Bu(k) = BY) ()02 CR)) o A ACR) (V)T 6R) L =00 (65)
or equivalently, using notation (2.5),
(By(k) — BY) To {0} () + AT (V4 } (k) 0. (6.6)

We can now decompose equation (6.5) into near and far frequency equations, around
Ey, (ky), the edge of the b,-th band of the continuous spectrum. The coupled equations
for Ynear and ., read:

(Bv. (k) = BY)x (k] < X) (o, (k)03 (k) )

L2([0,1])
+)‘X(|k‘ < )‘7) <pb* ('7k)7 [V (wnear +wfar)]N ('ak)>L2([071]) :0, (67)
and for be N:
A r A
(E(k) =) x (k]2 X8, (mo(- )M R)) Lo
+ AX(‘M 2 >‘T§b*,b) <pb('7k)v [V (¢near+¢far)]~ ('7k)>L2([0,1]) =0. (68)

Equivalently, we write the near and far frequency equations in the form

(Ev. (k) = E*) Gcar (k) + A (1] < A) (T, {Vthncar } (k) + To., {Vbar } (k) =0, (6.9)

(Ey(k) = E*) tar (k) +Ax (k] > X0y ) (To {V ncar } (k) + To {V s } (k) =0.  (6.10)

Equations (6.9) and (6.10) are, for the case of non-trivial periodic potentials, Q(z), the
analogues of (5.4)-(5.5).

6.2. Analysis of the far frequency Floquet-Bloch components. In this
section we study the far frequency equation (6.10). We will show that we can write it in
terms of the near frequency solution and will determine a bound on the far solution in
terms of the near solution. The next result is therefore the analogue of Proposition 5.1
and facilitates the reduction of the eigenvalue problem to a closed equation for the
near-frequency components of the eigenstate.

For clarity of presentation and without any loss of generality, we assume henceforth that
we are localizing near the lowermost end point of the b,-th band and that k. =0. Thus,
by Lemma 2.2,

b. is even, k,=0, with FE; (0)=E,.

N.B. For k, =0, note that py(x;k«) = up(x;ks) and we use these expressions interchange-
ably. For k,=1/2 one has to distinguish between py(x;k.) and up(z;k,).

PROPOSITION 6.1. Assume b, is even and consider E,=E;, (0) the lowermost edge of
the b.-th band. There exists A\g >0, such that for 0 <A<\, the following holds. Set

1 1
E*=E, —\*¢%, 9§AT*1§|3§EZ,* O)Y2,  o<r< 3 (6.11)
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Then for any Ynear € L?(R), there is a unique solution gy [Ynear, \] € L2(R) of the far-
frequency system (6.10). The mapping (Ynear; \) > rar maps L2(R) x (0,Xg) to H(R)
and g, satisfies the bound

waar [wnear;)‘] HH?(R) < C(HVHL“’)/\l_QT ”wnearHL2(R) : (612)

REMARK 6.2. Recall that we have assumed (1+|z|)V(z) € L}(R) and V € L*. It is
in the proof of the bound (6.12) that we have used V € L>°. We believe it possible to
work under the milder assumption (1+ |x|)V (x) € L*(R). In this case, we would bound
Ygar in H'(R) and the analysis that would follow would be a bit more technical. We
leave this an exercise.

Proof.  We begin by showing that there exists Ag >0 such that for all 0 <A< Ag,
there is a constant C7 > 0 such that

| By, (k) — E.| >Ci A", X< k| <1/2, (6.13)
|Ey(k)—E.|>Cy,  b#b., |k|<1/2. (6.14)

Note first that (6.14) is an immediate consequence of E, being the endpoint of the (b, )"
spectral gap. To prove (6.13) recall, by Lemma 2.2, that E, =F;_(0), an eigenvalue at
the edge of a spectral gap, is simple, and k+— FEj, (k) — E, is continuous. Therefore, for
any Ao, such that 0< g <1/2,

in |Ey. (k)= E.|>C(\ . 1
Aogrﬁl\rgll/z‘ b, (k) |>C(X\o)>0 (6.15)

For |k| <)o, we approximate E;, (k) by a Taylor expansion. In particular, since Fy_ (k)
is smooth for k near k, =0, 9y Ep, (0)=0, and 97 E}, (0) #0, we have Ej, (k) — Ep, (0) —
10} Ey, (0)k* =O(|k[®). Therefore, we can choose Ao > 0 sufficiently small so that for all
A< Ao, we have

1
| By, (k) — Ep, (0)] > 3 |07 Eb. (0)| A", for all A< |k| < Ao. (6.16)
It follows from (6.15) and (6.16) that for sufficiently small Ay >0,
1 1
322750 = (B ()~ Bl znin{ 25, 0 ¥.C00) .

Thus if E*=E,—X20%, 0 <A™ 11|92E,, (0)['/2, then for 0<A <)o sufficiently small,
there is a positive constant C; such that
|Ey, (k) — EXN >C1\". (6.17)
By (6.13) and (6.14), the far-frequency system, (6.10), may be re-written as
([k]>A"6p, 1)

1Zfar,b(k)'i_)‘x Eb(k)_E)\ 7;7{‘/'¢far}(k)
AW%{MCM}(M, b>0. (6.18)

We wish to rewrite this equation in terms of ¢)¢,, (). In order to do so, we multiply (6.18)
by up(z;k) = pp(z;k)e2™ k¢ sum over b>0, and integrate with respect to k € (—1/2,1/2].
This yields

(I+’C)\) wfar ({E) = (IC)\’L/}near) (LL'), (619)
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where we define

1/2 |
(IC)\g)(x)E/l/2b>0/\(-|Ek|(Z))\5bb)T{Vg}( )pb(ﬂ?;k‘)€2ﬂ—lkxdk‘.

We next show that the operator Ky, viewed as an operator from L? to H?, has
small norm, for A small. Let g € L?. Using Proposition 2.4, one has

1/2
rsliie < [ha] = [ S8 ag () Ptk

1/24>0

12 k| >\"6
- f 1/2Z<1+b2>2X§E'b(' 2t 7 (v (0 a
—1/24>9

Now, by (6.17), for |k| > A" one has |E,,_ (k) 7E>‘|71 <CiA% and recall 0 < r < 1/2. For
b#b,, we use Weyl asymptotics to write |(Ep(k)—E*) 7|~ (b = E,) 7! ~ (b2 4+1)7*
We therefore have

1 2
1KCagll%e <A2 / ST Vel (k) dk

b>0
1/2
H\Hr/ (1+6.2)x (|k| > X") [ To. {Vg} (k)| dk
—1/2
SN (V)™ %0 SAZ V2 g2

Thus, since r € (0,1/2), one can choose Ag >0 such that if 0 <A < Ao, then ||Kx|lp2— g2 <
1. In particular, K is a contraction from L? to L2, and therefore I+ K, is invert-
ible. The existence and uniqueness of ., € L?(R) solution to (6.10) is now given
through (6.19). Moreover, one has

H’L/)farHH? = “(I+’CA)_1 (Kx\wnear) 2 < || (I+’C>\)_1 ||H2HH2 H}C/\”L?aH2 ||¢nearHL2

5)‘17% HVHLOC ”wnearHL%

which implies the bound (6.12). The proof of Proposition 6.1 is complete. ]

6.3. Analysis of the near frequency Floquet-Bloch component. With
the properties of the map ¥near — Ytar [¥near, A] now understood via Proposition 6.1, we
now view and study (6.9) as a closed eigenvalue problem for (E*,9ncar):

(Eb* (k) — ) Ynear (k) +Ax - (k) To. {Vibnear } (k) + AX yr (F)To. {Vttar [Yhnear; A} (k) =
(6.20)

Equation (6.20) is localized in the region |k| <A", 0<r<1/2. By careful expansion
and rescaling of (6.20) we shall obtain an equation, which, at leading order in A, is a
perturbation of the general class of equations to which Lemma 4.1 applies. The size
of the perturbation is estimated in Proposition 6.6 and the perturbed equation is then
solved by applying Lemma 4.4.

In lemmas 6.3, 6.4, and 6.5 we expand the first two terms in (6.20) about k. =0
using Taylor’s Theorem, making explicit the leading and higher order contributions.
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LEMMA 6.3.  Denote E*=E,—\20?>=E;,_(0)—\20%, as in Proposition 6.1. There
exists k' such that |k'| <A, and

(Eb* (k) - EA) &ncar(k) = (;&%Eb* (0)k2 + >‘292) zchar(k) + )‘RO [JHCM; )‘} (k7 kl)’

where
o / 11 494 N
RO |:'¢)ncar;)‘i| (kak ): Xﬁk akEb* (k )¢ncar(/€)~ (621)
Proof. Taylor expanding FEj, (k) about k,=0 to fourth order and making
use of E*=FE, (0)—A?0% and 9/E, (0)=0 for j=1,3, one obtains E,_(k)—E*=
10%E,, (0)k* + X262+ L0\ By, (K')k*, which is equivalent to (6.21). O

LEMMA 6.4. One can decompose

To AV tneart (0) = (p. (30,20, GO T {VF " {Bucar ) (8)) | 4R [acariA| (),

L2([0,1])
with
Ry [neariA| () = (01, (50), TAVE (5B)) L2 o,
+ <pb* (ak) — Db, (';O)7T{V¢near} ("k)>L2([071]) ) (622)
where 51 = Til {J;near(k) (pb* (Iv k) — Db, ('1:’ O)) }
Proof.  Let us recall that by definition (6.3), one has
wnear<x):7-_1 {Jnear(')pb* (.I',)} (623)

Since Yrnear (k) = X ([k] < A7) Ynear (k), we decompose:

wnear(x) = T_l {Jnear(')pb* ($, )} ($) =Db, (x;o)*/—:_l{z;near} +gl (l‘) (624)
where
&1(@) =T {dnear () (1. (25~ o, (2:0) }. (6.25)

Above, we used that 7! commutes with multiplication by a 1—periodic function of z,
and that when acting on a function which is localized near k=0, and which does not
depend on x, 7! is equivalent to the standard inverse Fourier transform; see Section 2.

The proof of Lemma 6.4 is now straightforward. a

We next give a precise expression of the leading order term in Lemma 6.4.

LEMMA 6.5. One can decompose

(o. (30),p0. (SOT {VF{dhnear} | (5))

L2([0,1])

_ ( / Z 1P (x;O)ZV(x)dx) /_ o; Fucar (D)l + R [ (K), (6.26)
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with

Ba [Vnear ] () = / " . @O V) / (@ )l (6.27)

Proof. By the definition of T, one has

T{VE Ydueart f (@) = - 2 F{VF " dnear} } (b4 1)

neEZ

_Ze2wz7zx/ V k—|—n—l 'l/Jnear()

neZ

Since |k| < A" and wne&r( ) is localized on |I| < A", the leading order term is obtained
when replacing V (k-+n—1) with V(n). The first term of (6.26) now follows from the
identity:

Z<pb*(';0)vpb*('§0)€27rin >L2 [0, 1]) / |pb* € 0 | 2627"””3‘/

neZ nez
_Z/ |pp (2;0)] x—l—n)dm:/ |py- (2;0) ]2V (x)da.
neL o

Here, we used the Poisson summation formula and that x> pp-(2;0) is 1—periodic.
Similarly, one has

o0

Z <pb* (:;0),pp= (';O)e2ﬂ.mi>[/2([0,1]) ‘7(”4' k—1)= / |pp+ (;0) |262iﬂ(lik)xv(x)dx'

neZ >

This completes the proof of Lemma 6.5. ]

6.4. The rescaled closed equation. Using lemmas 6.3, 6.4, and 6.5, one can
express the near frequency equation (6.20) as follows:

(3R O+ 0 1)+ 3 <) (|

O PV [ Gt
- (6.28)
= X (H] AR [eari AL (B), (6.20)
where R [Yeas | () =T, {Vibtas} + Ro+ Ba + Ro.

Seeking to extract the dominant and higher order terms in A, we introduce the
scaled near-frequency components:

- 1~ /k\ 1=~
wnear(k)—xfb,\ ()\>—)\‘1),\(/€), where k=X k. (6.30)

Expressing (6.28) in terms of ®, and k we obtain, after dividing out by A,

(50250 040 ) x, s (B3 + ([ 19 GOV ) s ) [, DBr iy
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X (|K] <N R [near; Al (Ak) = R(®»). (6.31)

Equation (6.31) is of the form L£o[6]®, (k) =R(®,), where Lo[f] is given by (4.1)
with parameters

1
A:@@%Eb* 0), B:*/ lpy. (2;0)|?V (z)dx, and f=1—7-
R

In order to solve (6.31) via Lemma 4.4 we need a bound on R(®y) of the form (4.19).

PROPOSITION 6.6.  Assume that V is such that (14]-|)V(-)€ L' and V€ L*®. Then
R(®)), defined in (6.31), satisfies the bound

[R@|| L = Ix (TN ) REnear IO o <OX O8] (632)
where a(r) =max {1 —2r,2r,“EL 1. The constant C depends on
H 1+[-]) VHLUHVHLOC as well as SUP llpo. (-5) e, sup Z|<pb* 2m.nA>L2([o,1]){’

[k|< nGZ

0% Ev. (k)|, supj<ar || 0kps. ( ,k)||LOO, and is ﬁmte by lemmas 2.8 and 2.5.

SUP|g<ar

Proof. Recall that R(Ak), the right hand side of (6.31), has the form
R [wfar [wnear; )‘] 7wnear; )‘] ()"‘i> =X (|l€| < >\T_1) (777* {Vz/]far} (AH) + RO [{/\;near; )‘} ()\"iu k/)
By [tncari A (V) + B [acar | (M) ) = (D) + (I1) + (L) + (1), (6.33)

We proceed by estimating each of the terms: (I), (I1), (I1I) and (IV).
(I) Estimation of x (|s| <A"™!) Ty, {V¥gar } (AK): We have

. e8] | |</\r—1
1<) T AV = [ )

<[ T AV ot} e -

We now consider Ty, {Vtar } (+) in detail. By definition, one has

To. {Viotar} (k) = (po. (1K), T {Vtar } ('vk»Lz([O,l])

< Zezm/ V(k+n—)dra(l)d >
neZ L£2([0,1])

V(k l -~
=S R oy [ M;‘)(Hu?)l%fﬁ(mdl.
nez

|7Z7* {waar} (>\/"1?) |2 dk

Moreover,

‘/ k+n <1+Il| 224 (1)dl

a2 V] e bt g2 SA2 el 2

~ ‘

5 A\1-2r _ )\1—27«)\—%

lpnear L2

L2’
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where we used Proposition 6.1, definition (6.30), and, by Proposition 2.4,
2
X0

2 ~
L2 5 ‘ wnear(k>pb* (ajak:)H

énear 72 = | 7~ {Fnear (W)ps. (231)} |

1/2
i e 2
:/ |wnear(k)|2dk = ||7//near||L2- (634)
—1/2
Finally, it follows

175 AVttt g <A 2C| 81 (6.35)

2.1

with C'=C <H‘7||L°C ) HVHLOO’suPleX" 2nez ’<pb* (';k)"i%m.>m([o71]) D
(II) Estimation of x (|x|<A"™!) Ry [anear;)\} (Ak,k'), given in (6.21): We have

(constants implicit)

. 2
< AT AZ() 1B (- ‘

(-1 IO, L

M r—1\ |& 2
=\ _001+H2x(|m|<)\ )‘@,\(m)‘ dr

2 [T K® r—1 N 2
<M 5 g P <anr]|sy|]
~ ‘K|S<u>\l?71 (1+I€2)2 H )\HL2,1N )\’Lll.

Therefore,

Hx(m <A Ry Wnear;)\} (A k')

L2,—1

a1 ~
EHX(|“<)‘T 1)@5131517*(7@’))\2%4%(%)

L2.—1

DX sup [9LE,. (K)] H@) (6.36)

[k/|<AT

2.1
(I11) Estimation of x (|x| <A"™!) R, [Jnear;/\} (Ak), given in (6.22): Recall

Ry [acasiA| (£) = (oo, (:0). T{VE} (k) o
+ <pb* (7k) — Db, (';O)7T{V¢near} ('7k)>L2([0,1]) ) (637)

where & =71 {zznear(k) (pb* (x;k) —po, (x;O)) }
Let us first obtain an estimate on &;. Using Taylor expansion of p;,_(z;-) around 0,
one has

1/2 ) —
1 (z)| = | [ 1/262”””wncar(k) (po. (z3k) —py. (;0))dk

< sup |G (@K / e ([k] < A7) Dncar (k)

T€ER,|k'|<AT
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<) sup Hakp,,*(.;k/)um/ ey (J6] < A1) B ()] dr

[k’ |<A™ —o0

1/2
K2 ~
</\ sup Ok, Loo / —— dk Hfb,\‘
k| <A™ H ( )H || <Ar—1 1+ k2

< sup [|0upn. (K)o || 8]
[k/|<AT

2.1

)

L2,1

so that we deduce

14r

2N sup [0k, (k)]s |8
|k | <A

&1 (6.38)

I <

2.1

Estimation of the first term of (6.37) is as follows. One has

e <27 1) (. (0. TAVEF M)

L2 -1

Z/_OOX“F;E:;)’<Pb*(';0)»7'{‘/51}('7)\H)>L2([o,1])’ dk.

Turning to the integrand of the above expression, we rewrite the inner product
(B (:0). TVE} (A o) / T {pn. (08 IV ()} (:4n)
:/ ZeQWi”””]:{pb* (50 )V ()} Ak+n)dx

0 nez
=F{po. (50)&()V ()} (Ar),

where we used that py, (x;0) is 1—periodic, so that it commutes with 7, and the Poisson
summation formula. It follows that

(. (50), T{VE} (,AR)) 2101 ’<Hpb 0)E OV 1
<], [ . @OV (@)
Using (6.38), one deduces

HX |I€|<>\T 1) <pb ( )T{Vé’l}( )\/i) Lz([Ol)‘ <C 1+

L3t HLZJ ’ (6:39)

with C'=C(supy<xr [10kpe. (1K) Lo, [ 1po. (:0)[|V (z)]da).
The last term in (6.37) is estimated as follows. Note that

(P (52) = 1. (50), T AV ear} (- A9)) 12 0.1

1
= /0 (Po. (@3 k) = po. (2;0)) D > F{Vihnear } (A +n)da

ne”Z

1
- / (Db (:5) = po. (30)) Y (Vihnear) (4 n)e 27 g
0

nez
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</ (o (@A) — i, (20)) V() ()]

— 00

S)\I’i sup ||6kpb* (7k/) ||L°° ||’l/)near||L°° ||V||L1a
[k | <A

where we used the Poisson summation formula along with the periodicity of py, (z;Ak) —
oo, (2;0) and its Taylor expansion as |Ak| <A”. Now, note that

[Wnear 2o =T {¥hnear (k)po. () }[| L=

K
< sup [lps. (4K~ / (0] @

[k[<A™

and

[ Wali= [~ @7l

— 00

2.1

0o 1 . N
= ittt el <o 8|
It follows

HX |/€|<>\T 1) <pb ( )"i) Do ( )T{anear}( AH) L2([o, 1])‘

1/2

2 r—1

/Ii X(|/~@|<)\ ) <
L21 1+ K2 ~

with C=C (suppcne I, ()L s50py e 19400, G5 e V]2 ).
Estimates (6.39) and (6.40) yield

Lzt

~

gO/\H@‘ @A’ (6.40)

2.1’

14r

(6l <N ) Ralfuea] )|, <C[84]| A (6.41)

L2.— L2t

with €= C (supjyycxr 1. (+8) 50014 < 190pr. (R . [V ).
(IV) Estimation of x (|x| <A\"™!) R, [thnear] (M), given in (6.27): Recall

R [Tuene] ()= [ delpn, (w:0)V (@) [~ (27007 1) 01
We now use that |e2™(=F)* —1| <27[l — k[|z|. It follows
[ [ (00 <200 [ el (00 V@) [ 5=l
We therefore define
2= ~x(l <X ) [ pemalbx(al <N ) Baoln. (642

The integral, Z(x), is bounded in L?~1(R) as follows:

o <)\r—1 2
L B = = Ny
—co 1+k [n|<Ar—1 1+77
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|k —n|? o -
L“// Ty gy X Ul <N ) (Il < A7) disdn.

One easily checks that

2
// 1+|:2 7I|+n) (Il <A)x(In < A™F) dredn S A,

so that one obtains eventually

Hx(lﬂl<Y’1)Rz[$near}(M)H ISCH@) AT (6.43)

L2~
with C=C (supjyjcr oo, (50|, 2V (@) . )-
Altogether, (6.35), (6.36), (6.41), and (6.43) yield the estimate of Proposition 6.6. 0O

6.5. Completion of the proof of Theorem 3.4. We now prove Theorem 3.4
by an application of Lemma 4.4 to equation (6.31), where the remainder is estimated
in Proposition 6.6.

Proof. (Proof of Theorem 3.4.) We seek E* = Ej,_(0) — A26? and * of the form
1/)>‘ = wncar + wfar = Til {{Encar (k)pb* (x;k) } + 7-71 {Z"Zfar,b(k)pb(m; k) }
b=0

1/2 [ _ x
:/ <¢near(k’)ub* (m;k)+zwfar,b(k)ub(xak)> dka
b=0

—1/2
where Jnedh {/;far satisfy equations (6.9)—(6.10); see Section 6.1.
By application of Proposition 6.1, one has that g, is uniquely defined as a func-

tlon of near and A, and that ||'l/)far 1/Jncar, ||H2 <\- 2”||1/)ncar||L2 Then, defining &5 as
n (6.30), one has

inear(k)zi(/ﬁ)\ (I;\) :igf))\ (H), k= M\k. (644)

By Proposition 6.6, the rescaled (from (6.9)) near-frequency equation (6.31) can be
written as

(50250 046 x93+, [ 1 GOPY) [, Bataag
—x (16l <A R (1) (), (6.45)

with ||’R(</I;>\)||L21_1 gC)\a(T)H&))\HLQ’“ and a(r) =max(3 —2r,2r, 7£1).

From now on, we set r=1/8, a=1/4, which yield optimal estimates. Applying
Lemma 4.4 with f=1—r="7/8,

o0

1
A= 52 8,3Eb* (0), and B= f/ |us, (I;O)|2V(gc)d1: (assumed to be pOSitiVe),
(6.46)
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we deduce that there exists a solution (92,6 A) of the rescaled near-frequency equa-

tion (6.45), satisfying
1By — follza SCAT and 02— 02| <COAR. (6.47)

Here (93,%) is a solution of the homogeneous equation
Eox (60.) =548+ 0o~ Bx (1€ <X F) [ (<X "F) Fatnan=o,

as described in Lemma 4.1. Thus anear(f) = %&b\ (%) and E*=E,_(0)—\20%(\) are

well-defined (and satisfy the ansatz of Lemma 6.3), and Jfar is uniquely determined as
the solution of (6.10); see Lemma 6.1. It follows that

/2
VN (@) = Vtar +Ynear =Vtar+ | Gnear(k)us, (23k)dk (6.48)
—1/2
is well-defined.
There remains to prove estimates (3.10) and (3.11). Recalling that E*=
Ey, (0)—A%62, (6.47) implies |E* — (E,, (0) — A%62)| < CA**1/%. By Lemma 4.1, one has

‘90()\) - %‘ < C(A,B)A%, so that one can set

2

B [l @k)PY (@) da]

Fo=—— =— ;
T4 L 02, (k.)

272

and estimate (3.10) follows.
We now turn to a proof of the eigenfunction approximation (3.11). Recall

1/2 - 1/2 1~ k )
Ynear (l') = q/jnear(k)ub* (x; k) = / X(I)A ()\> GQWkapb* (l‘; k)dk'
~1/2 ~1/2

1/2)
N /_1/2AX (|§\ < Ai%) 5 (€)™, (w;AE)dE
= [(lel<r ) Ba@ e, 0)de

+ [ X113 ) B O )0, k')
=, (@:0) [ x (Il <X ) Foterererae

run0) [ x (16 <3F) (Ba- ) (@

g R (GEN ENGE PR
=1 (x)+I(x)+ I5(x),

with |k = k' ()| < A*. Now, since x(|§| <A—%) Fo(€) = fo(€), one has

I (z)=up, (2;0)F ! {fo} (Az).
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By (4.8) in Lemma 4.1, one has

sup
z€R

1 AB
(o) - . (s0)exp (- 35 el

=sup
zeR

w07 R} ) o (=551l )} <Clln. (0=, (6.9

and ||pp, (1;0)|| L~ is bounded; see Lemma 2.5.
Let us now estimate Iz(x) and I3(x). One has

[x(z)| =

w.@0) [ x(lg1<x7F) (8:- 1) (5)62’”“%5‘

s|pb*<a:;0>|/Rm<1+|§|2>1/2\6A(5>—%<f)] dg

<Cllpo. (0= |[Br =, CAB)Ipo. Oll= A, (650)

where the last inequality comes from (6.47). Similarly,
1 =] [ (162 F) B @ O aum, (i e

<A swp Hakpb*<-;k'>||Loo/Rx(|f|<A*%)lfl\@@’df

‘k/|</\1—7/8

A (6.51)

2.1

<C s [[Ohpn, (5K 1= || 8
|]€"<)\1/8

By (6.49), (6.50), and (6.51), one has

B

B
S lal) +Yuam o),

Unear =11 () + I2(2) + I3(x) = Eub* (z;0)exp (

With [|[threm || o SAM4
Finally, let us note that by Sobolev embeddings, one has

[@arl| 2o < Wtarll 2 < CAY Y4 [ hnear|| 12 = CAY2 Y4By | 2 < CAVA,

where we use Proposition 6.1 with r=1/8, and (6.34).
It follows that 1 =pear + par satisfies

1 B
sup| ¥A(2) — L up, (2:0) exp(Raole)| < CAVA,  with ag=—2-.
zeR B 2A

Since ¢ is defined up to a multiplicative constant, (3.11) holds. This completes the
proof of Theorem 3.4. ]

Appendix A. General properties of Ej(k) and derivatives 6%Eb(k*), where
Ey(k,) is the endpoint of a spectral band. To make our discussion more self-
contained, we prove Lemma 2.2, which concerns the spectrum of the eigenvalue problem,
for F fixed,

(-2 +Q(2)) ¥(x; B) = EY(z;E), Q(z+1)=Q(z), (A.1)
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with solutions which satisfy
Y(z+1;E)=pY(z; E) peC.
Let ¢1(x; F) and ¢o(x; F) be two linearly independent solutions of (A.1) such that
$1(0;E)=1, $2(0;E) =0,
¢1(0;E) =0, P (0;E)=1.

The functions ¢ (z+ 1;E) and ¢2(x+1;F) are two other linearly independent solutions
to (A.1), so that we can write

$1(v+1;E) = A11¢1(7; ) + Ara¢2(z; E), (A.2)

Note that the matrix (A4;;) is nonsingular. In general, every solution of (A.1) has the
form

Y(z;E)=c101(x; E) +caga(z; E). (A.4)

As we are specifically interested in solutions which satisfy ¢(x+1;E)=py(x;E), one
has the following identity

Y(@+1E)=pp(z; E) er(dr(z+ 1 E) — pdi (s E)) +ca(d2(z+ 1, E) — pda (25 £)) =0
& (c1 (A1 —p)+cador) 1 (x; B) 4 (crArz +c2 (A2 — p)) p2(z; E) =0

{cl (A11—p)+c2A21 =0, (A5)
c1Ai2+c2 (A2 —p)=0.
The solvability condition (A.5) is satisfied for nontrivial ¢; and ¢g if

det(A—pI)=0, ie. p*>— (A1 +Ag)p+det(A)=0. (A.6)
Using that the Wronskian, W [¢1, 2] (x; E) = ¢1(x; E) ¢4 (2, E) — ¢ (x5 E) 2 (x; E), is con-
stant with respect to x, one has

det(A)=W¢1,02] (1; E) =W [¢1,¢2] (0; E) =1.
Therefore p must satisfy p? — D(E)p+1=0, where we define the discriminant
D(E)=A11+Ax=0¢1(1;E)+¢5(1;E). (A7)

We note that the two solutions of the equation p? — D(E)p+1=0 satisfy |p| <1 if
and only if the discriminant |D(E)|<2. In that case, one can write p=eT?™*  with
ke(—1/2,1/2], and

D(FE)=2cos(27k). (A.8)

As |p|=1, ¢¥(x;F) is a bounded solution to (A.1), and E = Ey(k) is in the continuous
spectrum of Hyp = —dd—; +@Q. More precisely, for F'= E,(k), one has

V(; By(k)) = up(25k) =2 R py (23k),  pp(x+ 1K) =py(a3k),

where {Ey(k),pp(x;k)},~ is the eigenpair solution to (2.2), as defined in Section 2.
Let us now rewrite Lemma 2.2 which states some of the properties associated with
the stability bands.

LEMMA A.1 (Lemma 2.2). Assume Ey(k.) is an endpoint of a spectral band of —02 +
Q(z), which borders on a spectral gap; see (2.3). Then k., €{0,1/2}, and the following
results hold:
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1. Ey(ks) is a simple eigenvalue of the eigenvalue problem (2.1).
2. b even: Ey(0) corresponds to the left (lowermost) end point of the band,
Ey(1/2) corresponds to the right (uppermost) end point.
b odd: Ey(0) corresponds to the right (uppermost) end point of the band,
Ey(1/2) corresponds to the left (lowermost) end point.
3. OpEy(ke) =0, 03 Ey(ky)=0;
4. b even: 93E,(0)>0, 07 E,(1/2) <0;
b odd: 92 E,(0) <0, 02E,(1/2)>0;

The proof of Lemma A.1 is a consequence of the following result, concerning the
problem (A.1), and which is proved in the first two chapters of [20] and part I of [32].

D(E)

L . L L
Gam Fam, FZV Gom+1 Gam
-2

Fia. A.1. Sketch of the discriminant, D(E), and stability bands By =[Gy, Fp).

2m Bafot1 Bok+
2

2
- !
T

F2m+2

THEOREM A.2. Consider the equation (A.1), and define D(E) with (A.7). Denote the
edges of the stability bands as

Go<Fy<Fi<G1<Gy< Fy<F3<Gs...

Then the following facts hold (see Figure A.1 for an illustration):
I In the interval [Gam, Fam], D(E) decreases from 2 to —2.
I' In the interval (Gam, Fom), D'(E) <0.
IT In the interval [Fopt1,Gam+1], D(E) increases from —2 to 2.
IT" In the interval (Fomi1,Gom+1), D' (E)>0.
III In (—o00,Gy) and (Gam+1,Gam+2), D(E)>2.
IV In (Fom, Fam1), D(F) < —2.
V D(E)=+2 and D'(E)=0 if and only if E is a double eigenvalue. Furthermore,
D"(E)<0 if D(E)=2 and D"(E)>0 if D(E)=—2.

Proof. (Proof of Lemma A.1.) Let us recall that one has from (A.8) that the
discriminant satisfies D(Fy(k)) =2cos(27k). It follows that as k increases continuously
from 0 to 1/2, D(E) decreases continuously from 2 to -2. Therefore by I and II, Es,, (k)
increases continuously from Ga,, to Fy, as k increases continuously from 0 to 1/2, and
as k decreases continuously from 0 to —1/2. Similarly, Fs,,1(k) decreases continuously
from Gopmi1 to Fopmi1 as k increases continuously from 0 to 1/2; and as k decreases
continuously from 0 to —1/2. This proves claim 2.
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We now turn to part 1. Let Ep(k.) correspond to a band edge, that is if there
exists a gap between the b'” band and the closest consecutive one. Without loss of
generality, we assume Ejp(k,) to be the lowermost edge of an even band, for example
Gom in Figure A.1. Therefore, for any ¢ > 0 sufficiently small,

D(Ey(k.) —8)>2 and D(Ey(k.)+6) <2. (A.9)

Assume for the sake of contradiction that Fy(k.) is a double eigenvalue, which means, by
part V of Theorem A.2, that D'(Ey(k.)) =0 and D”(Ey(k.)) <0. Now, Taylor expand
the discriminant about Ej(k.),

D(E)=D(Ey(k.))+D'(Ep(k.)) (E — Ey(k.))
+%D”(Eb(k*))(E_Eb(k*))2+O((E_Eb(k*))g)
=24 D"(By(k))(E ~ Ey(k)+ O (B~ Ey(k.))?).

Since D" (Ey(k.)) <0, we have D(Ey(ky)—08)~2+(1/2)D" (Ey(k))6? <2, which is a
contradiction of (A.9). Therefore part  is proven and we have that at the band edges,
Ey(k.), the derivative of the discriminant is nonzero,

dD
E(Bu(h) £0. (A.10)

To see the first identity in part 3, note that differentiating D(FEp(k)) =2cos(27k)
with respect to k yields —4msin(2rk) = 92 (E;(k)) x dE” (k). Using (A.10), we conclude
that 422 (k) =0 if and only if k=0 or k=1/2.

To prove part 4, we differentiate D(Ejp(k)) twice with respect to k and evaluate at
ky:

2

dk?

Do) =D (Bu(k)) () (k)4 D (Bl G ).

—8n?%cos(2mk, ) =

Therefore, by I, I', and (A.10) we conclude 4.
Similarly, to show the second identity of part 3, we differentiate once more D(Ejp(k))
with respect to k:

d>E,

d?’E, d Ep
dk3 (

3 - / " " dEb s
167° sin(2mk) = D' (B (k)) k) +3D" (Ey(k) =" = (k) + D" (B (k) (%) (k).

Evaluated at k., we have 0=D' (Eb(k))%(k), which concludes the proof of
Lemma A.1 once we again note (A.10). d

Appendix B. Regularity of k+— E,(k) and k> up(z;k). In this section we
give a self-contained discussion of the regularity with respect to k of the Floquet-Bloch
eigenvalues and eigenstates.

Consider the k— pseudo-periodic eigenvalue problem for each k€ (—1/2,1/2]:

(=02 +Q(2)) u(w;k) = Bu(x;k), u(z+1;k)= ¥ R (k). (B.1)

Introducing the Floquet-Bloch phase explicitly via u(x;k) = e?™*** p(z;k), we obtain the
equivalent formulation

He(k)p(a;k) = (—(02+2mik)* +Q(x)) p(x; k) = Ep(x;k), pla+1;k)=p(a;k). (B.2)
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For each k € (—1/2,1/2], the eigenvalue problem (B.2) (equivalently (B.1)) has a discrete
sequence of eigenvalues Eg(k) < Fy (k) <Eq(k)< - <E,(k)<---.

It can be proved, using the min-max characterization of eigenvalues of a self-adjoint
operator, that the maps k+— FEy(k), b=0,1,..., are locally Lipschitz continuous. A proof
based on standard perturbation follows from results in [36]. An elementary proof is given
in Appendix A of [21].

In the present paper, we require a Taylor expansion of the Ej(k) near k=k,, for
which FEy(k.) is the endpoint of a spectral band, which borders on a spectral gap. By
part 5 of Lemma A.1, the eigenvalue Fy(k,) is simple. We prove the following:

THEOREM B.1. Suppose E. is the endpoint of a spectral band of —02+Q(x), which
borders on a gap. Thus, E,= Ey(k.) for k. €{0,1/2} and the corresponding eigenspace
of solutions to (B.2) has dimension equal to 1. We denote the normalized eigenfunction
by p(z;k.);

1
/ Ip(ysk) Py =1.
0

Then, there exists p>0 such that for all complex k in a complex disc centered at k.,
B,(k.)={keC:|k—k.| <p}, the following holds:

1. k— Ey(k) is analytic on B,.

2. There is a map k— py(x;k), such that any eigenvector corresponding to Ey(k)
is a multiple of py(x;k), where Hg(k)py(x;k) = Ep(k)ps(x; k).
3. Moreover, we can choose kv py(x;k), k€ B,, to be analytic and such that

1
/ o (s Pz =1.
0

Proof. Let k=k,+ k, where x will be chosen to be sufficiently small. The periodic
eigenvalue problem (B.2) may be rewritten as

Ho (ko )p(; k. + k) — (4mik(0, +2mik, ) — Am? k%) p(zi ki + £) = E p(z;k, +k),  (B.3)
p(z+ 1k + k) =p(z;ke +K), xER. (B.4)

We seek an eigen-solution of (B.3)-(B.4) in the form

p(z3ke+ k) =p(z;ks) +n(z;8), (B.5)
E(k*‘i’/{):E* +H’(’€)7 (B6)

where we assume that n(-;k) L p(-;k). Substitution into (B.3)-(B.4) yields the following
equation for n(xz;u,k):

(Hq(k.) — E)n— (4mir(0y +2mik,) —4m° K> + ) g
= (Amik(0y + 2mik,) — AT K% + 1) p(-s ks ). (B.7)

Now, introduce the projection operators
ILf = (p(-: k), f) p(wsky), and 11 =T1—IL
Applying 1T, to (B.7) yields

(Hg(ky)— E)n—11L (4mik (9, +2mik,) — 4Kk 4 p) n
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=4AmikIL) O,p(-; k) = 4mik0Lp(-3ky). (B.8)
Next, applying II to (B.7), i.e. taking the inner product of (B.7) with p(-;k.), yields
=872 kuti — A% K%+ Amin (p(5 ki ), 0 (5 1, 1)) = 0. (B.9)

We shall now solve (B.7) for n, substitute the result into (B.9), and obtain a closed
equation for the eigenvalue correction pu=pu(k). Let

p=Frp1, N= KN (B.10)

Equations (B.8) and (B.9) become
(Hg (ki) — By)m — KILL (478(0y + 2miky) — A%k + 1 ) m = 4mill O,p(3ks),  (B.11)
w1 — 8%k, —An* ki +4mik (p(-; kv ), 0011 (-)) =0. (B.12)

Let R(E, )1, = (Hq(k,)— E,)"'II,. Then,

—1
i (@3 1, k) = A (1— KR(ET, (47i(0, + 2mik,) —47r2/<;+u1)) R(E)ILL 8yp(-sky),
(B.13)

where we take |k| < p, with p chosen so that the Neumann series for the operator on the
right hand side of (B.13) converges. Note that the mapping

(p1,6) = m1 (x5 g, k)

is an analytic map from {(u1,): |u| <1, [k]<p'} to HZ. (R).
Substitution of (B.13) into (B.12) gives the scalar equation

G(p1,k)=0, (B.14)
where
G(p1, k) = p1 — 8%k — A2k + ATk (p(-3 ks ), Oty (5 01, 5)) - (B.15)

We now claim that (B.14) can be solved for p1; = p11 (), which is defined and analytic
for |x|<p', where 0<p’ <p. If this claim is valid, then n;(x;u1(k),x) is well-defined
and analytic in & for |k| <p’, and finally

p(@3ks + k) =p(@;ks) + £ (2301 (K), ) (B.16)
E(ki+r)=FE.+ru1 (k) (B.17)

are defined and analytic Floquet-Bloch eigensolutions for |k| < p'.

Now (B.14) is easily solved for pu =1 (k) via the Implicit Function Theorem. In-
deed, we have G(872k,,0) =0 and 8Mg(,u1,/£)|(8ﬂ2k*70) =1+#0. This completes the proof
of Theorem B.1. 0

Appendix C. The bootstrap: proof of Corollary 3.6. We give the proof of
Corollary 3.6, on the refined expansion of the bifurcation of eigenvalues of Hg+AV =
—024+Q(x) + AV (), for Q(z) periodic. Corollary 3.3, in the case of Q(z) =0, is obtained
along the same lines, using p(x;k) =1, E(k)=4n2k? for k€R, etc.

Proof. (Proof of Corollary 3.6.)  We know, by Theorem 3.4, that there exists
(¥*,E*), a solution of the eigenvalue problem (HQ—&—)\V)w/\:E)‘wA. Moreover, E*
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is in the gap of the continuous spectrum of spec(Hg)=spec(Hg4ryv), near an edge
E.=E, (k). In the following, we assume that k. =0 (the case where k. =1/2 can be
treated using the same method).

We next seek an integral equation for )* by applying the resolvent RQ(EA) to the
differential equation for ¢»*. A construction of the resolvent kernel, Rg(z,y; E), pro-
ceeds as follows. Recall the discriminant, D(FE), introduced in Appendix A as the trace
of the monodromy matrix defined by the linearly independent solutions ¢, (x; E), j=1,2:
D(E)=¢1(LE)+d5(1; E).

Since F, is a band edge and E* is in a gap, we have D(FE,)=2 and D(E*)>?2
Therefore, there exists k=x(\) >0 with

E*=E(i\k) = E(—i\k), D(E") =™ 47 2™ 52,
Additionally, we define 11 =14 (x; E*), the solutions of
(2 +Q) P =FEMps, (et 1;EY)=e Ny (;E).
More precisely, 14 are defined as
Vu(z) =py, (2;Fik)eT2™NT | with (C.1)
(—((’“)z — 27r)\/<c)2 + Q(x))pb* (zyik) = E’\pb* (z3ik), po, (z+15i6) =pp, (z5ik), (C.2)

which is well-defined for A small enough, by Theorem B.1.
With those definitions, the resolvent operator Rg(E*)=(—02+Q — E*)~! has ker-
nel

where Wi ] =, (x)_(x) — 4 (2)Y" (x). Thus, for any bounded function f and
Rolf@EY) = [ Ro(es B/ ()dy.

we have (—02+Q— E*)Ro[f](z; E*) = f. Tt follows that 1)* satisfies the integral equa-
tion

B ()4 A / Ro(a,y: BNV ()6 (y) dy=0.

Multiplying by up, (2;0)V (2) and integrating along x yields

/RV(:zz)ub*( der)\// up, (2;0)V (z)Ro (x,y; EM)V (y)y* (y) do dy=0. (C.3)

We will deduce from (C.3) the precise behavior of x (and therefore E* — E,_ (0)) as A
tends to zero, using the following

LEmMmA C.1. Let E.=FEy, (0) be an edge of the continuous spectrum, and let the
hypotheses of Theorem 3.4 be satisfied, so that E* exists. Define Rg(z,y; EX) as above.
Then for A>0 small enough, one has

U x 0 U yao —2TAR|T—
RQ@,y;EA):We kel RO (2,y) + ARG (), (C4)
4
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where R(QO) is skew-symmetric: Rg)) (z,y)= ng))(y,x); and Rg)),RS) are bounded:

(R ()| +1RQ (wy)] < Ce 2l <,

where C' is a constant, uniform with respect to \k.

In order to ease the reading, we postpone the proof of this result to the end of this
section, and carry on with the proof of Corollary 3.6. By Lemma C.1, and since up, (2;0)
is uniformly bounded (see Lemma 2.5), one has the low-order estimate

dr  up, (2;0)up, (y;0)
drE(0) 2XK

\RQu,y;EA)— \so<1+|x—y|+m>, (©5)

where we used ‘e"\’“‘”_m - 1‘ < CXg|z—yl|.
Plugging (C.5) into (C.3) and using (1+|z|)V € L1, yields

| [V o @e s s ] 02 @, G0V @) ) de dy
<CA1+Ak). (C.6)

Now we use the fact that, by Theorem 3.4, one has
(|0 (2) — s, (z;0)exp (Aao|a]) || .. SAY4,  so  that ;\in%)fV(x)ub* (2;0)9* (x)do =
—

JV(z ub 2;0)2#0. It follows that, for A\ sufficiently small, one can divide out
JV (@)up, (; 0)7,/1)‘( )dz, and deduce from (C.6)

‘ S / b, (2;0)2V () dw’SC)\n(l—i—/\n),

2m
32E( )
from which it follows the low-order estimate of x:

‘/{—4—72” /u (2;0)2V (@) da:‘ <O\ (C.7)

b \ T3 = . .
0;E(0) Jx
Let us now derive higher order estimates. For any z,y € R?,
‘672’”“‘:’37?” — 1427 6|z —y| ‘ <A N2RE |z —y)?,

so that one has from Lemma C.1,

Ay 2 wup, (2;0)up, (y;0)(1 — 27 Ak|z —y)) (0)
Rolesi B - s X R (@)
SCAA+ [z +yl?). (C.8)
Plugging (C.8) into (C.3), and using (1+|z|)V € L}, yields
[ w. (x;ow(xwx)dx
g V. 00 2mwl i, (FOV ()00 e dy

// 2w, (3:0) R (,9)V ()6 () da dy| <OX2. (C.9)
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Let us now use that by Theorem 3.4, sup,cp [t (z) — up, (2;0) exp (Aag|z|) | S AV4,
so [ (2) —up, (2;0)] <C(AY* 4 Az|). Thus (C.9) becomes

’ </ub*(-;0)v¢)\> (1+1622E17T<)/V(I)Ub* (:0)2 dz )
82E // a)up, (30)% |z —ylus, (450)*V (y)dz dy

// 2. (0) RS (2,9)V (v (5:0) o dy| AV, (C.10)

and one deduces from (C.7) that ‘ (fue. (- )V@/}A) +27r(82E ‘ < CA'/*, There-
fore, multiplying (C.10) by & (fub )Vl/)/\) yields

‘/ﬁ—&-a;Eﬂ-(O)/V(m)ub* (2;0)%dx

Szgye [ V. (0 . 02V )z dy

-2/ / V(). <x;o>R$><x,y>V<y>ub* (4:0) dz dy| <ONFE (1)

Finally, we note that since RgJ) (x,y)= ng)) (y,x) by Lemma C.1, the last term in (C.11)
vanishes. Thus the above estimate, together with the following Lemma, completes the
proof of Corollary 3.6. ]

LEMMA C.2. Let E,=Ey, (0) be an edge of the continuous spectrum, and let the hy-
potheses of Theorem 8.4 be satisfied, so that E* exists. Then for A small enough, one
has E* = E(i\k), and E* — E, = —3X2k20} By, (0) + O(AY).

Proof. 'We Taylor expand D(FE) about E, = E;_(0),

D(E)=D(E.)+D'(E.)(E-E.)+O((E—E.)?)=2+D'(E.)(E—E.)+0O((E-E.)?).
(C.12)

Let’s first apply (C.12) to E = E}, (k) in the spectral band. One has D(E}, (k)) = 2™k 4
e 2mk =9 _An2k2 4+ O (k3) . Finally, since 0 Ey, (0)=03E,,(0)=0, one has E,, (k)=
E.+ 30;E(0)k*+ O (k*). Identifying with (C.12), it follows D'(E.) (307 E(0)) = —4n?,

thus D'(E,)= ﬁﬂ(o)

Next let’s apply (C.12) to E= E*, recalling D(E?) = 2™ ¢~ 2™\ =2 4 472 \2x2 +
O (A*k*). One has from (3.10) in Theorem 3.4 that B — E,=0()\?), and from (C.7)
that k=0O(1). Consequently, (C.12) yields

—872

4N\ K% =D/ (E,)(E* — E.)+O(\Y) = B, (0)

(B =By, (0))+O(\Y).

Finally, we deduce E* — E, =—21A2k20}E;, (0)+O(A1), and the lemma is proven. O

We conclude this section by the proof of Lemma C.1.
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Proof. (Proof of Lemma C.1.) Let us Taylor-expand 4, as defined by (C.1)—(C.2).
One has 14 (2)eT>™ M =p, (z;Fi\k), thus

2
Yy (x)e 2™ = p (2:0) —iAKOkpy, (2;0) — M[“)2}9(36;0) +1 O\ i O3 (wyinyy),

2 K.
(C.13)
(@) =y (@:0)+ iddps, (2:0)~ O 52p(a:0) - X (i),
(C.14)

with —Ak <4 <0<~v_ <Ak

REMARK C.3. Note that x> pp(a;k. +r) € L2(R) is analytic in a complex neighbor-
hood |k|< k1. By the equation for py, K+ py(z;ks + k) € H?(R) is analytic, and thus
O3py(w;k) and 0,03py(2;k) are well-defined and uniformly bounded for k near k, and x
in any compact set.

Since py, (2;0) =up, (x;0), it follows
W+ Ro(,y; E*)
up, (2;0)up, (4;0) +iAer© (z,;06) + (Aw)2r Y (2,y) ) ™Y if y >z,
ub*(y;())ub*(x;O)Jri)\/ir(o)(y,x;)\/f)+(/\/i)2r(_1)(a:,y) e2mA (=) if y < g

(C.15)
with
7O (2, y; Ak) = py, (250)0kpy. (450) — Dpy. (;0)py, (30) = = (y, 23 Ak),

and ril )(x,y) is bounded, uniformly with respect to Ax.

Let us now turn to Wy+]=v' (x)¢_(x) =14 (x)Y" (z). From (C.13)-(C.14), one
has

Wip+]=2Ar (27pr* (230)* —ipy, (;0)05 Ok, (2;0) +i(Ozp, (230)) (Okpe. (z; 0)))
+ (A&)2w, (x; k),

with w,(z) uniformly bounded, independently of z and Ax.
Since Wt+] is independent of z, one has W] fo [th+] dz, and thus

1
W] =2k / (2771717* (;0)2 = ipy, (2;0)0, Ok py. (;0)
0
1
—l—i(@mpb* (x;O)) (8kpb* (:r,O))) dm—i—()\m)?’/ wy(z; k) dz.
0
Using that folpb* (7;0)2 dx:fol up, (2;0)? dr =1, one deduces

W] :2>\I{(27T+2i/0 p(2;0)0,0kp(x;0) d:v) +0((Ax)?). (C.16)

Now, let us recall that pp, (z;ix) satisfies (C.2). Deriving twice with respect to k=ix,
one obtains
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(—(895 —21k)2 +Q(x) — E(m)) 0ip(x;ik)
=20, E(ir)Opp(x;ik) + 02 E(ik)p(x;ir) — 8mi(0p — 21k) Opp(2;ik) — 8T2p (s ik ).

We now apply this identity at k=0, and take the inner product with py,_ (2;0). It follows
0=0E(0)—8i folp(x;O)axakp(x;O) dx —87?. Therefore, (C.16) becomes

2
E
wivsl =252 L0 (). (17)
T
Finally, (C.15) and (C.17) clearly imply (C.4), and Lemma C.1 is proven. ad
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