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LIMITING MODELS FOR EQUATIONS WITH LARGE RANDOM

POTENTIAL: A REVIEW∗

GUILLAUME BAL† AND YU GU‡

Dedicated to George Papanicolaou in honor of his 70th birthday

Abstract. This paper reviews several results obtained recently in the convergence of solutions
to elliptic or parabolic equations with large highly oscillatory random potentials. Depending on the
correlation properties of the potential, the resulting limit may be either deterministic and solution of
a homogenized equation or random and solution of a stochastic PDE. In the former case, the residual
random fluctuations of the heterogeneous solution may also be characterized, or at least the rate of
convergence to the deterministic limit established. We present several results that can be obtained by
the methods of asymptotic perturbations, diagrammatic expansions, probabilistic representations, and
the multiscale method.
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1. Introduction

Many problems in the applied sciences can be analyzed by means of partial differ-
ential equations of the form

L(x,
x

ε
,ω)uε= f, (1.1)

where L is a linear or nonlinear operator with coefficients oscillating at a small scale
ε�1 and being drawn as the realization ω of a random function. We then wish to
understand the main features of the solution uε as the small scale ε→0.

When L=−∇·a(xε ;ω)∇ augmented with, say, Dirichlet conditions, then it is known
that uε converges to a deterministic solution u∗ when a is constructed as a stationary,
ergodic (bounded above and below by positive constants) function [34, 39, 45]. Although
the theory is more involved in the random setting than it is in the periodic setting [14],
the results are qualitatively similar: in both cases, uε converges strongly in L2 to its
deterministic limit u∗, the solution of an equation with homogenized diffusion coefficient
a∗. Moreover, in both settings, homogenization is obtained by introducing a (vector-
valued) corrector χε such that vε :=uε−u∗−εχε ·∇u∗ converges to 0 in the strong H1

sense. In the periodic setting and away from boundaries, εχε ·∇u∗ also captures the
main contribution of the fluctuations uε−u∗ with vε= o(ε) in the L2 sense [14]. In the
random setting, such results no longer hold. It remains true that vε converges to 0 in
the H1 sense but it is no longer necessarily of order O(ε) in the L2 sense. Moreover,
εχε ·∇u∗ may no longer be the main contribution to the error uε−u∗.

In the one-dimensional setting, the solution uε of the above elliptic problem Luε= f
admits an explicit expression involving weighted integrals of the (inverse of) random
coefficient a(xε ). In this setting, the random corrector uε−u∗ can be analyzed explicitly
and its properties are presented in Section 2.1 following results obtained in [8, 17, 26].
The salient feature of such results is that the size of the random fluctuations uε−u∗
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730 EQUATIONS WITH LARGE RANDOM POTENTIAL

depends on the correlation properties of the random coefficient a. When a is sufficiently
short range, in the sense that its correlation function decays sufficiently rapidly, then
uε−u∗ may be shown to follow a functional central limit. For longer range potentials,
uε−u∗ is typically larger and may or may not converge to a Gaussian process.

In dimensions d≥ 2, fewer quantitative results are available. Yurinskii [52] gave the
first statistical error estimate (rate of convergence to homogenization). Recent results
provide optimal rates of convergence of uε to its deterministic limit [23, 24, 25] in
the discrete setting. In [2, 19], fully nonlinear equations are homogenized and error
estimates are also provided. But no results seem to be available on the limiting law
of the random fluctuations uε−u∗, although some studies indicate that fluctuations of
certain functionals are Gaussian [15, 43]. We do not consider these results further in
this review.

A detailed analysis of the random structure of uε finds many applications, for in-
stance in the understanding of the noise structure of measurements used in parameter
identifications or uncertainty quantifications [12, 44]. It may also be used to quantify
the accuracy of multi-scale numerical algorithms [10, 11]. We consider here a class of
linear operators L with random potentials for which such analyses have been carried
out. They are linear elliptic or parabolic operators of the form

L=a
∂

∂t
+(−Δ)

m

2 +Vε(t,x;ω),

where a takes the values 0, 1, or i=
√−1, where (−Δ)

m

2 could be generally an elliptic
(pseudo-) differential operator of order m≥ 1, and where Vε(x;ω) is a highly oscillatory,
random potential.

A straightforward perturbation method allows us to analyze the random fluctuations
of uε solution of Luε= f when Vε(x)=V (xε ) is of order O(1). Such results are presented
in Section 2.2 following results obtained in [3, 7, 9]. Similar results in the case m=2
were obtained earlier by a multiscale method in [22]. The main results in this setting
show again that the size and structure of uε−u∗ mainly depend on the decorrelation
properties of Vε. Moreover, u∗ is obtained by simply replacing Vε by its ensemble
average.

In order for a mean-zero potential Vε to generate an order O(1) effect on uε, it
needs to be scaled of the form ε−αV (xε ;ω), with α> 0 properly chosen, and with possible
generalizations when V depends on time as well. The analysis of uε is then significantly
more difficult. The main objective of the paper is devoted to a presentation of recent
results obtained in this direction.

Unlike what was observed for the operator L=−∇·aε∇, the solution uε does not
necessarily converge to a deterministic, homogenized solution. Its limiting behavior
depends on the correlation function of V . When the latter decays sufficiently slowly, or
when the dimension d<m, the strength of the elliptic operator, then uε converges (in
distribution) to the solution of a stochastic partial differential equation (SPDE) with
multiplicative noise. However, when the correlation function decays sufficiently rapidly,
then uε does indeed converges to a deterministic, homogenized limit. The structure of
the random fluctuations uε−u is not known in general. In the specific case when V is
Gaussian, it can be shown by diagrammatic expansions that once it has been properly
rescaled, then uε−u converges in distribution to the solution of a SPDE with additive
noise. Such results were recently extended to Poissonian potentials using a probabilistic
representation when m=2.

We consider three mathematical techniques to address the problem. The first one
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is a combinatorial technique based on the Duhamel expansion (the diagrammatic ex-
pansion). It is based on recasting

L=
∂

∂t
+P0+Vε, P0=(−Δ)

m

2 , (1.2)

with initial condition uε(0)= g, as

uε= e−tP0g−
∫ t

0

e−(t−s)P0(Vεuε)(s)ds,

and then formally replacing uε in the integral by the above right-hand side and iterat-
ing. This allows one to write uε=

∑
n≥0un, where un is multi-linear of order n in the

potential Vε. The analysis of uε then hinges on estimating terms of the form E{unu
∗
m},

where E is the ensemble average over realizations ω. When V is Gaussian, the expecta-

tion of a product of n+m=2k copies of V can be written as a sum of (2k−1)!!= (2k)!
k!2k

terms (diagrams). As large as this number of terms may be, it is much smaller than the
number of terms that would appear when V is not Gaussian (Gaussian variables are
the only variables with a finite number (two in that case) of non-vanishing cumulants).
Moreover, combinatorial techniques allow us to sum the resulting terms, re-ordered as
appropriate diagrams, at least for sufficiently small times 0<t<T . Some results that
can be obtained with this standard technique in mathematical physics, see for instance
[21, 49], are presented in Section 3.

The above diagrammatic expansion is the only one to currently provide a limit
for the random fluctuations uε−u for general values of m (or for more general elliptic
operators in place of (−Δ)

m

2 ) when u is deterministic. Its main drawback is that it
essentially only applies to Gaussian random potentials. When m=2 and a=1 above,
then L0=

∂
∂t−Δ may be seen as the semigroup describing the law of a (rescaled) Brow-

nian motion. By means of a Feynman-Kac formula, the solution uε may be given by
the following probabilistic representation:

uε(t,x)=E{f(x+Xt)e
−∫

t

0
Vε(x+Xs)ds},

where the expectation is only with respect to Brownian motion Xt, and where f is the
initial condition for uε. The properties of uε are therefore driven by the analysis of
integrals of the form

∫ t

0
Vε(x+Xs)ds and their dependence on V . The point of view of

random walks in random environments or random walks in random sceneries has a rich
history in the analysis of homogenization; see for instance [36, 37, 40, 50]. It was first
applied to problems with large potentials in a one-dimensional setting in [46] to obtain
the convergence of uε to the solution of a SPDE with multiplicative noise. Recently, [42]
provided error estimate by means of a quantitative martingale central limit theorem.
We present recent results of convergence and optimal rates of convergence in Section 4.

The Duhamel expansion allows one to handle general operators L but only Gaussian
potentials V while the probabilistic representation allows one to handle general poten-
tials V but for specific operators L. A technique that could potentially apply to a large
class of (possibly non-linear) operators L and potentials V is the standard multi-scale
method, which was precisely pioneered to handle the homogenization of operators of
the form L=∇·aε∇; see [1, 14, 34]. The multi-scale method looks for solutions uε(x)
of the form

uε(x)=u0(x)+εu1(x,
x

ε
)+wε(x),
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where u1 is obtained such that wε may be shown to be negligible in a sense that depends
on the operator L. In the setting of (1.2), we find that u1(x,y)=χ(y)u0(x), where the
(scalar) corrector χ turns out to be formally a solution of P0χ+V =0. We present
in Section 5 some recent results obtained with variations of the multi-scale method to
show the convergence of uε to its deterministic limit when the random coefficient V is
sufficiently mixing.

2. Perturbations and oscillatory integrals

2.1. One dimensional equation and oscillatory integrals. Consider the
one-dimensional elliptic equation

− d

dx

(
a
(x
ε
,ω

) d

dx
uε

)
= f(x) in (0,1), uε(0,ω)=0, uε(1,ω)= g. (2.1)

Here, a(x,ω) is a stationary ergodic random process satisfying the ellipticity condition
0<α0≤a(x,ω)≤α−10 a.e. for (x,ω)∈R×Ω where (Ω,F ,P) is an abstract probability
space. Introducing aε(x,ω)=a(xε ,ω) and F (x)=

∫ x

0
f(y)dy, this equation admits an

explicit expression involving integrals of the random coefficient a:

uε(x,ω)=

∫ x

0

cε(ω)−F (y)

aε(y,ω)
dy, cε(ω)=

g+

∫ 1

0

F (y)

aε(y,ω)
dy∫ 1

0

1

aε(y,ω)
dy

. (2.2)

The stochasticity of uε is therefore explicitly characterized by weighted spatial in-
tegrals of the random process a−1ε (y,ω). As an application of the law of large numbers,
we obtain the standard homogenization result that, for instance, uε converges strongly
in L2((0,1)×Ω) to its deterministic limit u∗, the solution of

− d

dx

(
a∗

d

dx
u∗

)
= f(x) in (0,1), u∗(0,ω)=0, u∗(1,ω)= g, (2.3)

with a∗=(E{a−1(0, ·)})−1 the harmonic mean of a(0, ·). We also have the explicit ex-
pression

u∗(x)=
∫ x

0

c∗−F (y)

a∗
dy, c∗= ga∗+

∫ 1

0

F (y)dy. (2.4)

Since u∗ is deterministic, the stochastic structure of uε is to be found in the term
uε−u∗. Using the above integral expressions, we obtain an explicit expression for uε−u∗

involving integrals of the random process

ϕ(x,ω)=
1

a(x,ω)
− 1

a∗
. (2.5)

Depending on the decorrelation properties of ϕ, the random fluctuations uε−u∗ exhibit
very different limits as ε→0. Using the above explicit representations, their analysis
simplifies to that of integrals of the form

Iθε =

∫ 1

0

θ(x)ϕ
(x
ε
,ω

)
dx, (2.6)
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where θ is a bounded function. By construction, EIθε =0 and we observe that

E{(Iθε )2}=
∫ 1

0

∫ 1

0

θ(x)θ(y)R
(x−y

ε

)
dxdy, (2.7)

where R is the correlation function of the stationary random process ϕ:

R(x)=E{ϕ(0)ϕ(x)}. (2.8)

We thus observe that the variance of Iθε is of order ε when R(x) is an integrable function
and can be much larger when R is not integrable.

The simplest case is that of R integrable and σ2 :=
∫∞
−∞R(y)dy> 0. Then under

the additional constraint that ϕ is strongly mixing (see [17] and (2.22) below), we can
show that uε−u∗ has a variance of order ε and more precisely converges to a Gaussian
process with the appropriate variance:

uε−u∗√
ε

(x)
ε→0

====⇒σ

∫ 1

0

K(x,y)dWy , (2.9)

where W (y) is Brownian motion on (0,1) and

K(x,y)=1[0,x](y)
(
c∗−F (y)

)
+x

(
F (y)−

∫ 1

0

F (z)dz−a∗g
)
1[0,1](y).

The above convergence first obtained in [17] holds in distribution in the space of contin-
uous functions C[0,1] and may be seen as a functional central limit theorem. In other
words, when R is integrable, we morally obtain u∗ as an application of the law of large
numbers and the random fluctuations uε−u∗ beyond homogenization as an application
of the central limit theorem.

When R(x) is not integrable, the random variables that are summed in (2.6) are too
strongly correlated for the central limit theorem to hold. In some situations, a limiting
behavior for uε−u∗ can still be obtained. Let us assume that

ϕ(x)=Φ(gx) (2.10)

where gx is a stationary Gaussian process with mean zero and variance one and Φ is a
bounded function such that

V0=E{Φ(g0)}=
∫

Φ(g)
e−

g2

2√
2π

dg=0, V1=E{g0Φ(g0)}=
∫

gΦ(g)
e−

g2

2√
2π

dg> 0. (2.11)

We assume that the correlation function of g:

Rg(y)=E
{
gxgx+y

}
,

decays slowly and is of the form

Rg(y)∼κgy
−α as y→∞, (2.12)

where κg> 0 and α∈ (0,1). Then we can show [8] that

R(y) :=E{ϕ(x)ϕ(x+y)}∼κy−α as y→∞ with κ=κgV
2
1 . (2.13)
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We observe that R(y) is no longer integrable. In this setting, we obtain [8] that

uε(x)−u∗(x)
ε

α
2

ε→0
====⇒

√
κ

H(2H−1)

∫
R

K(x,y)dWH
y (2.14)

in the space of continuous functions C[0,1], where K(x,y) is as above and WH
y is a

fractional Brownian motion with Hurst index H=1− α
2 .

We thus observe that the random fluctuations are of variance εα� ε larger than in
the case of an integrable correlation function and in fact could be arbitrarily close to ε0.
Moreover, they are conveniently represented as a stochastic integral with respect to a
fractional Brownian motion such that the correlation function of dWH

y also decays like
y−α as y→∞.

Note that κ=0 when V1=0. In such a case, we can also sometimes exhibit a limit
for uε−u∗, which is no longer Gaussian. Let us assume that V0=V1=0 and that

V2=E{g20Φ(g0)}=
∫

g2Φ(g)
e−

g2

2√
2π

dg> 0, (2.15)

in other words, Φ is of Hermite rank 2. Defining β=2α, we then observe for α∈ (0, 12 )
[26] that

R(y) :=E{ϕ(x)ϕ(x+y)}∼κy−β as y→∞ with κ=
1

2
κ2gV

2
2 , (2.16)

and obtain the convergence result

uε(x)−u∗(x)

ε
β
2

ε→0
====⇒ V2κg

2

∫
R

K(x,y)dRD(y), (2.17)

in the space of continuous functions C[0,1], where K(x,y) is as above and RD(y) is a
Rosenblatt process with D= β

2 =α [51]. The result holds for β∈ (0,1) and thus mimics
that obtained in (2.14) with a fractional Brownian motion replaced by a non-Gaussian
Rosenblatt process.

2.2. Equations with bounded potential. What renders the analysis of the
preceding section possible is the fact that uε admits an explicit representation as an
oscillatory integral. The propagation of stochasticity from the random coefficient aε to
the solution uε is therefore relatively simple. No such results are available for higher
dimensional models of the form −∇·aε∇uε= f on a bounded domain with appropriate
boundary conditions.

When aε(x,ω)=a(xε ,ω) is stationary and ergodic, then it is known that uε converges
in the L2 sense to a deterministic limit u∗ as in the one-dimensional case; see [34, 39, 45].
As was indicated in the introduction, recent progress has been made on the size of the
random fluctuations, or equivalently on the rate of convergence of uε to its limit in the
setting where the correlation function of a decays rapidly. However, characterizing the
limiting behavior of uε−u∗ as we obtained in the preceding section remains an open
question.

We consider instead (linear) equations with a random potential of the form

P (x,D)uε+qεuε= f, x∈X, (2.18)

with uε=0 on ∂X , where P (x,D) is a deterministic self-adjoint, elliptic, pseudo-
differential operator and X an open bounded domain in R

d. Here, qε(x,ω)= q(xε ,ω)
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with q a bounded function. When q defined on (Ω,F ,P) is ergodic and stationary, its
high oscillations ensure that it has a limited influence on uε. Define u to be the solution
to

P (x,D)u= f, x∈X, u=0 on ∂X, (2.19)

which we assume is unique and is defined as:

u(x)=Gf(x) :=
∫
X

G(x,y)f(y)dy, (2.20)

for a Schwartz kernel G(x,y), which we assume is non-negative, real-valued, and sym-
metric so that G(x,y)=G(y,x).

Then uε converges, for instance in L2(X×Ω) to the unperturbed solution u. We
are then interested in understanding the fluctuations uε−u. The latter can in fact be
decomposed as the superposition of a deterministic corrector E{uε}−u and the random
fluctuations uε−E{uε}. It turns out that the latter contribution dominates when the
Green’s function G(x,y) is a little smoother than square integrable in the sense that

Cη := sup
x∈X

(∫
X

|G(x,y)|2+ηdy
) 1

2+η

<∞ for some η> 0. (2.21)

We observe that the above constraint is satisfied for P (x,D)=−∇·a(x)∇+σ(x) for
a(x) bounded and coercive and σ(x)≥ 0 bounded in dimension d≤ 3.

Under sufficient conditions on the decorrelation properties of q(x,ω), we obtain that
uε−u is well-approximated by a central limit theory as in the preceding section. We
describe the results obtained in [3].

We define q̃ε(x,ω)= q(xε ,ω), where q(x,ω) is a mean zero, strictly stationary, process
defined on an abstract probability space (Ω,F ,P) [18]. We assume that q(x,ω) has
an integrable correlation function R(x)=E{q(0)q(x)}. We also assume that q(x,ω) is
strongly mixing in the following sense. For two Borel sets A,B⊂R

d, we denote by
FA and FB the sub-σ algebras of F generated by the field q(x,ω) for x∈A and x∈B,
respectively. Then we assume the existence of a (ρ−) mixing coefficient ϕ(r) such that

∣∣∣E
{
(η−E{η})(ξ−E{ξ})}(

E{η2}E{ξ2}) 1
2

∣∣∣≤ϕ
(
d(A,B)

)
(2.22)

for all (real-valued) square integrable random variables η on (Ω,FA,P) and ξ on
(Ω,FB,P). Here, d(A,B) is the Euclidean distance between the Borel sets A and B. We

then assume that ϕ
1
2 (r) is bounded and rd−1ϕ

1
2 (r) is integrable on R

+. We also assume
that q(x,ω) is finite (dx×P)− a.s. and that E{q6(0, ·)} is bounded. This results allows
us to show [3, Lemma 3.2] that

E{‖Gq̃εGq̃ε‖2L(L2(X))}≤Cεd. (2.23)

The equation for uε may be formally recast as

uε=Gf−GqεGf+GqεGqεuε.

The above equation may not be invertible for all realizations, even if G is bounded. We
are not interested in the analysis of such possible resonances here and thus modify the
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definition of our random field qε. Let 0<ρ< 1. We denote by Ωε⊂Ω the set where
‖Gq̃εGq̃ε‖2L(L2(X))>ρ. We deduce from (2.23) that P(Ωε)≤Cεd. We thus modify q̃ε as

qε(·,ω)=
{
q̃ε(·,ω) ω∈Ω\Ωε,

0 ω∈Ωε.
(2.24)

Note that the process qε is no longer necessarily stationary or ergodic. But since the set
of bad realizations Ωε is small, all subsequent calculations involving qε can be performed
using q̃ε up to a negligible correction. Now, almost surely, ‖GqεGqε‖2L(L2(X))<ρ and uε

is well-defined in L2(X) P-a.s. Moreover, we observe that

(I−GqεGqε)(uε−u)=−GqεGf+GqεGqεGf. (2.25)

Since GqεGqε is small thanks to (2.23), we verify that E{‖GqεGqε(uε−u)‖}≤Cεd is also
small. The analysis of uε−u therefore boils down to that of GqεGf and GqεGqεGf ,
which are integrals of stochastic field qε. When (2.21) holds, we obtain that the former
term dominates the latter. It thus remains to analyze Gqεu, which up to a negligible
contribution, is the same as Gq( ·ε ,ω)u. This integral may be analyzed as in the one
dimensional setting considered in the preceding section to obtain [3]:

Theorem 2.1. Let q satisfy the hypotheses mentioned above. Then we have that

uε−u

ε
d
2

(x)
ε→0

====⇒−σ
∫
X

G(x,y)u(y)dWy , (2.26)

in distribution weakly in space where σ2=
∫
RdE{q(0)q(x)}dx<∞ and dWy is a standard

multi-parameter Wiener measure on R
d.

What we mean by convergence in distribution weakly in space is the following (see
below Theorem 2.2 for a stronger convergence result). Let {Mj}1≤j≤J be a finite family

of sufficiently smooth functions and define u1ε= ε−
d
2 (uε−u) and N (x) the right-hand

side in (2.26). Then the random vector (u1ε,Mj)1≤j≤J , where (·, ·) is the usual inner
product on L2(X), converges in distribution to its limit (N ,Mj)1≤j≤J .

When the Green’s function G(x,y) is not square integrable, then the deterministic
corrector E{uε}−u may be of the same order as or larger than the random fluctua-
tions uε−E{uε}. Assuming that GqεGqε can still be controlled, then Theorem 2.1 can
be generalized to this setting under additional assumptions on the random coefficient
q(x,ω). We refer to [9] for such a theory when the operator P is the square root of
the Laplacian, which finds applications in cell biology and the diffusion of molecules
through heterogeneous membranes.

Assuming now that the random potential has a slowly decaying correlation func-
tion, we expect the random fluctuations uε−u to be significantly larger. Let gx be a
stationary centered Gaussian random field with unit variance and a correlation function
that has a heavy tail

Rg(x)=E{g0gx}∼κg|x|−α as |x|→∞

for κg> 0 and some 0<α<d. Let then Φ :R→R bounded (and sufficiently small) so
that

E{Φ(g0)}=
∫
R

Φ(g)
e−

1
2
g2

√
2π

dg=0, κ=κg(E{g0Φ(g0)})2> 0.
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We also assume that Φ̂(ξ), the Fourier transform of Φ, decays sufficiently rapidly so that
Φ̂(ξ)(1+ |ξ|3) is integrable. We also assume that the Green’s function of the operator
P satisfies |G(x,y)|≤C|x−y|−(d−β) for some α< 4β. This condition essentially ensures
that the deterministic corrector E{uε−u} is smaller than the random fluctuations uε−
E{uε}. Let us assume that V (x)=Φ(gx). Then Theorem 2.1 generalizes to the following
result [7]:

Theorem 2.2. With the aforementioned hypotheses on the operator P and random
potential q, we obtain that

uε−E{uε}
ε

α
2

ε→0
====⇒−

∫
X

G(x,y)u(y)Wα(dy), (2.27)

in distribution weakly in space, where Wα(dy) is formally defined as Ẇα(y)dy with
Ẇα(y) a centered Gaussian random field such that E{Ẇα(x)Ẇα(y)}=κ|x−y|−α.

The above “weak in space” convergence may often be improved. Consider for in-
stance the case of P (x,D)=−Δ+1 in dimension d≤ 3. Then we can show [7, Theorem
2.7] that Yε := ε−

α
2 (uε−E{uε}) converges in distribution in the space of functions L2(X)

to its limit Y given on the right-hand side of (2.27). This more precise statement means
that for any continuous map f from L2(X) to R, we have that

E{f(Yε)} ε→0−−−→E{f(Y )}, (2.28)

so that for instance the L2 norm of Yε converges to that of Y . See [7] for some gener-
alizations of the above convergence result.

3. Large potential and diagrammatic expansions

In the preceding section, the elliptic problems involved a highly oscillatory potential
qε satisfying bounds independent of ε. We saw that the limit of the random solution uε

was given by the solution u obtained by replacing qε by its ensemble average. Such a
centered potential is therefore not sufficiently strong to have an influence on the leading
term u as ε→0.

In this and the following two sections, we consider the more strongly stochastic case
where the potential is rescaled such that it has an influence of order O(1) on the limit as
ε→0, assuming the latter exists. In this section, we consider a diagrammatic expansion
method that applies for Gaussian potentials qε. Let us consider the problem

∂uε

∂t
+P (D)uε− 1

εβ
q
(x
ε

)
uε=0, t≥ 0, x∈Rd

uε(0,x)=u0(x), x∈Rd,

(3.1)

where d≥ 1 is spatial dimension, P (D)= (−Δ)
m

2 for some m> 0, and q(x) is a stationary
centered Gaussian field with correlation function R(x)=E{q(0)q(x)}. We assume the
initial condition u0 sufficiently smooth, deterministic, and compactly supported.

The limit of uε and the natural choice of β depend on the decorrelation properties
of q. When the correlation function of q decays sufficiently rapidly, then averaging
effects are sufficiently efficient to imply that uε converges to a deterministic solution u.
However, when the correlation function of q decays slowly, stochasticity persists in the
limit and u may be shown to be the solution of a stochastic partial differential equation
with multiplicative noise.
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3.1. Homogenization and random fluctuations. The threshold rate of
decay of the correlation is as follows. Define the power spectrum of q as the Fourier
transform (up to a factor (2π)d) of the correlation function

(2π)dR̂(ξ)=

∫
Rd

e−ix·ξR(x)dx. (3.2)

When it is finite, let us define

ρ :=

∫
Rd

R̂(ξ)

|ξ|m dξ. (3.3)

When the above quantity is finite, then uε converges to the deterministic solution of

( ∂

∂t
+P (D)−ρ

)
u(t,x) = 0, x∈Rd, t> 0,

u(0,x) = u0(x), x∈Rd.
(3.4)

When the above integral diverges (because of the behavior of the integrand at ξ=0),
then uε converges to a stochastic limit described in (3.10) below.

The proofs in [4, 5] derive such results by means of a Duhamel expansion that
“counts” all possible interactions of the solution uε with the underlying randommedium.
When ρ is finite, this counting (combinatorial) process is controlled for the above equa-
tion only for sufficiently small times Tρ<C with a constant C independent of ρ when
ρ<∞. This is a constraint that naturally appears in such combinatorial expansions;
see, e.g., [49]. We do not present the lengthy diagrammatic expansions here and refer
the reader to the aforementioned references for the details.

In the case of convergence to a deterministic limit, we have the following result:

Theorem 3.1. Let m<d and R(x) be an integrable function or a bounded function
such that R(x)∼κ|x|−p as |x|→∞ with m< p<d. Let us choose β= m

2 .

Let T > 0 sufficiently small. Then there exists a solution to (3.1) uε(t)∈L2(Ω×R
d)

uniformly in 0<ε<ε0 for all t∈ [0,T ]. Moreover, let us assume that R̂(ξ) is of class
Cγ(Rd) for some 0<γ and let u(t,x) be the unique solution in L2(Rd) to (3.4). Then,
we have the convergence result

‖uε(t)−u(t)‖L2(Ω×Rd)
ε→0−−−−→0, (3.5)

uniformly in 0<t<T .

More precise rates of convergence are given in [5, Theorem 1]. A similar result of
convergence holds in the critical dimension d=m with R(x) integrable. In such a case,

εβ has to be chosen as ε
m

2 | lnε| 12 [5]. The same method shows that for any choice of
potential rescaling β< m

2 , then ρ is replaced by εm−2βρ in (3.4) so that uε converges
uniformly in time on compact intervals (0,T ) (with no restriction on T then) to the
unperturbed solution u of (3.4) with ρ replaced by 0.

The residual stochasticity of uε can be computed explicitly in the diagrammatic
expansion. Let us separate uε−u as uε−E{uε} and E{uε}−u. The latter contribution
is a deterministic corrector, which could be larger than the random fluctuations. We
refer to [5] for its size and how it may be computed. For the random fluctuations
uε−E{uε}, we have the following convergence result.
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Theorem 3.2. Under the hypotheses of Theorem 3.1 and defining p :=d when R is
integrable, we have

uε−E{uε}
ε

p−m

2

ε→0
====⇒u1, (3.6)

in distribution and weakly in space, where u1 is the unique solution of the following
stochastic partial differential equation (SPDE) with additive noise:

( ∂

∂t
+P (D)−ρ

)
u1(t,x) = σuẆ , x∈Rd, t> 0,

u1(0,x) = 0, x∈Rd,
(3.7)

where σ is a constant and Ẇ is a centered Gaussian random field such that

σ2 =

∫
Rd

R(x)dx, E{Ẇ (x)Ẇ (x+y)} = δ(y), p=d

σ2 = (2π)d lim
ξ→0

|ξ|d−pR̂(ξ), E{Ẇ (x)Ẇ (x+y)} = cp|y|−p, m< p<d.
(3.8)

Here, we have defined the normalizing constant cp=
Γ( p

2
)

2d−pπ
d
2 Γ( d−p

2
)
.

The proof of these results may be found in [5] with some extensions in [6]. The
convergence result in Theorem 3.1 was extended to the case of Schrödinger equations
(with ∂

∂t replaced by i ∂
∂t ) to arbitrary times 0<t<T <∞ in [54] using the unitarity of

the unperturbed solution operator and the decomposition introduced in [21].

3.2. Convergence to a SPDE with multiplicative noise. The behavior of
uε is different when the correlation function decays slowly or when d<m. When p tends
to m, we observe that the random fluctuations (3.6) become of order O(1) and we thus
expect the limit of uε, when it exists, to be stochastic.

Theorem 3.3. Let either m>d and R(x) be an integrable function, in which case,
we set p=d, or let R be a bounded function such that R(x)∼κ|x|−p as |x|→∞ with
0< p<m. Let us choose β= p

2 .
Then there exists a solution to (3.1) uε(t)∈L2(Ω×R

d) uniformly in 0<ε<ε0 and
t∈ [0,T ] for all T > 0. Moreover, we have the convergence result

uε
ε→0

====⇒u, (3.9)

in distribution and in the space of square integrable functions L2(Rd), where u is the
unique solution (in an appropriate dense subset of L2(Rd×Ω) uniformly in time) of the
following SPDE with multiplicative noise( ∂

∂t
+P (D)

)
u(t,x) = σuẆ , x∈Rd, t> 0,

u(0,x) = u0(x), x∈Rd,
(3.10)

where σ and Ẇ are given in (3.8).

The derivation of the above result is presented in [4] with some extensions in [6].
In low dimensions d<m and in arbitrary dimension d≥m when the correlation func-
tion decays sufficiently slowly that 0< p<m, we observe that the solution uε remains
stochastic in the limit ε→0. Note that we are in situations where the integral in (3.3)
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is infinite. A choice of β= m
2 would generate too large a random potential. Smaller, but

with a heavier tail, potentials corresponding to β= p
2 <

m
2 generate an influence of order

O(1) on the (limiting) solution u. Any choice β< p
2 would again lead uε to converge (in

the strong L2(Ω×R
d) sense then) to converge to the unperturbed solution u of (3.10)

with σ=0.
Let G(t,x;y) be the Schwartz kernel of the operator e−tP (D). What we mean by a

solution of (3.10) is a (mild) solution of the integral equation

u(t,x)= e−tP (D)u0(x)+

∫ t

0

∫
Rd

G(t−s,x;y)u(s,y)σdW (y)ds,

for instance with dW the standard Wiener measure when p=d<m. The above stochas-
tic integral is defined for a dense subset of L2(Rd×Ω) in [4] by means of iterated
Stratonovich integrals and their relation to the classical iterated Itô integrals.

That the (Stratonovich) product uẆ may be defined is not obvious. Ẇ is an
irregular distribution, and as a consequence, u is also irregular. It turns out that in order
to make sense of a solution to (3.10), we essentially need a sufficiently low dimension d
so that e−tP (D) is an efficient smoothing operator or a sufficiently slow decay p<m so
that Ẇ with statistics recalled in (3.8) is sufficiently regular. When d<m or m< p, then
the product of the two distributions uẆ in (3.10) cannot be defined as a distribution.
From a physical point of view, we may not need such SPDE models since uε then
converges to the deterministic solution in (3.4) with its random fluctuations described
by the well-defined SPDE with additive noise (3.7); see [20] for a general treatment and
references to SPDEs.

As for the case of convergence to a deterministic solution, similar results may be
obtained for the Schrödinger equation (with ∂

∂t above replaced by i ∂
∂t ); see [38, 53].

3.3. Time-dependent potentials. The results presented above extend to the
setting of time dependent Gaussian potentials

∂uε

∂t
+P (D)uε− 1

εβ
q
( t

εγ
,
x

ε

)
uε=0, t≥ 0, x∈Rd

uε(0,x)=u0(x), x∈Rd,

(3.11)

with 0≤γ≤m and β now chosen as a function of the correlation properties of q, γ, and
m. When γ≥m, then the temporal fluctuations dominate the spatial fluctuations and
β should be chosen as β= γ

2 when q is sufficiently mixing; see for instance [47] when
m=2 in one dimension of space for a general mixing coefficient q.

When 0≤γ≤m, then both the spatial and temporal fluctuations of V contribute to
the stochasticity of the solution uε. Let us define R(t,x)=E{q(s,y)s(s+ t,y+x)} the
correlation function of q and assume the decay properties

R(t,x)∼ κ

|x|ptb as |x|,t→∞.

We restrict ourselves to the setting 0<b< 1 and 0< p<d with formally b=1 when
R is integrable in time (uniformly in space) and p=d when R is integrable in space
(uniformly in time). Then when p and b are sufficiently small, we again obtain that uε

converges to the solution of a SPDE, while it converges to a homogenized, deterministic
solution otherwise.

More precisely, when bm+p<m, then we should choose β= 1
2 (p+γb), and uε then

converges to a SPDE of the form (3.10) with Ẇ replaced by a spatio-temporal fractional
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Brownian motion with asymptotically the same correlation function as R(t,x), i.e., such
that

E{Ẇ (s,x)Ẇ (s+ t,x+y)}= cp,b
|y|p|t|b , (3.12)

for an appropriate constant cp,b.
When bm+p>m, then uε converges instead to a homogenized solution given by

(3.4). We should choose β= 1
2 ((1−b)m+γb) and ρ as

ρ= lim
ε→0

εd−2β
∫ ∞

0

∫
Rd

e−t|ξ|mR̂(
t

εγ
,εξ)dξdt,

with (2π)dR̂(t,ξ) the Fourier transform of R(t,x) with respect to the second variable. We
recognize in e−t|ξ|m the Fourier transform of the fundamental solution of the unperturbed
operator ∂

∂t +P (D). The random fluctuations uε−E{uε} are still given by u1, the

solution of the SPDE (3.7) with Ẇ the spatio-temporal fractional Brownian motion
given by (3.12).

We refer to [6] for additional details on these results.

4. Large potential and Feynman-Kac representation

For heat and elliptic equations, the Feynman-Kac formula provides another way of
proving homogenization and error estimate. The probabilistic representation enables us
to prove the convergence of solutions to PDE by weak convergence of stochastic pro-
cesses. By a central limit theorem, a large class of random coefficients can be handled
besides the Gaussian case. Using a quantitative version of the central limit theorem [42,
Theorem 3.2], convergence rates may be derived as well. For certain special cases, we
can also establish the limiting Gaussian law of the rescaled corrector. In the following,
we briefly recall and summarize our results [27, 28, 29] in this direction for equations of
the form (∂t−Δ− iVε)uε=0 when d≥ 3. A similar approach is used in [46, 47], where
(∂t−∂2x−Vε)uε=0 is considered for a large potential Vε when d=1 and where homog-
enization or convergence to SPDE are obtained in the mixing setting. The imaginary
unit that appears in front of our large random potential is here to ensure that we have
a control of the solution in the H1 sense. This allows us to focus on the dependence of
the limiting solution on the correlation property of random coefficient without worrying
about the integrability of exponentials as is the case in [46, 47].

The equation with spatial potential is written as

∂tuε(t,x)=
1

2
Δuε(t,x)+ i

1

εβ
V (

x

ε
)uε(t,x), (4.1)

with the stationary random potential V (x), constant β> 0 to be determined and initial
condition uε(0,x)= f(x). We focus on the cases d≥ 3 and will briefly mention the cases
d=1,2 at the end of the section.

By the Feynman-Kac formula, the solutions to the above equations may be written
in the following form:

uε(t,x)=EB{f(x+Bt)exp(i
1

εβ

∫ t

0

V (
x+Bs

ε
)ds)}, (4.2)

where Bt is a Brownian motion starting from the origin and EB denotes the expectation
only with respect to Bt. By the scaling properties of Bt and the stationarity of V , uε
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has the same distribution as

ũε(t,x)=EB{f(x+εBt/ε2)exp(iε
2−β

∫ t/ε2

0

V (Bs)ds)}.

The analysis of uε hence hinges on proving the weak convergence of the processXε(t) :=

ε2−β
∫ t/ε2

0
V (Bs)ds, which is an example of Brownian motion in random scenery.

4.1. Asymptotics of Brownian motion in random scenery. The corre-
sponding discrete case is Kesten-Spitzer’s model of random walk in random scenery,
for which the invariance principle is proved in [16, 35]. In [30, 48], the continuous case
is analyzed for specific random sceneries. Kipnis-Varadhan [36] prove a general cen-
tral limit theorem for additive functionals of Markov process. By adapting the view
of “medium seen from an observer”, their result can be directly applied to Brownian
motion in random scenery when d≥ 3. Our results in the short-range-correlation setting
are therefore based on the Kipnis-Varadhan’s approach.

We make the following assumptions on the short- and long-range-correlated random
potentials.

Assumption 4.1 (Short-range-correlated potential). Let (Ω,F ,P) be a probability space
and {τx,x∈Rd} a group of measure-preserving and ergodic transformation. Let V∈
L2(Ω) with zero mean, i.e.,

∫
ΩV(ω)P(dω)=0. Let R̂(ξ) be the power spectrum of V,

and we assume the following integrability condition:∫
Rd

R̂(ξ)

|ξ|2 dξ <∞. (4.3)

The random potential V (x) then takes the form V (x;ω)=V(τxω). We denote σ2=

4(2π)−d
∫
Rd R̂(ξ)|ξ|−2dξ and ρ= σ2

2 .

Assumption 4.2 (Long-range-correlated potential). Let V (x)=Φ(g(x)) where

• g(x) is a stationary Gaussian field with zero mean and unit variance. The auto-
covariance function Rg(x)=E{g(0)g(x)} satisfies that

|Rg(x)|�
∏d

i=1min(1, |xi|−αi) with αi∈ (0,1) and Rg(x)∼ cd
∏d

i=1 |xi|−αi as

mini=1,...,d |xi|→∞. α :=
∑d

i=1αi∈ (0,2).
• Φ has Hermite rank 1, which means all of the following:∫

R
Φ2(x) 1√

2π
exp(−x2

2 )dx<∞ and if we define Vk =E{Φ(g)Hk(g)} with Hk(x)=

(−1)nexp(x2/2) dn

dxn exp(−x2/2) the k−th Hermite polynomial, then V0=
0, V1 �=0.

Since we have two independent random sources, we are in the product probability
space. The weak convergence in this space is referred as the annealed weak convergence.

Proposition 4.3. Under Assumption 4.1, we have in the annealed sense that

1

ε

∫ t

0

V (
Bs

ε
)ds⇒σWt (4.4)

in C([0,∞)), where Wt is a standard Brownian motion.
Under Assumption 4.2, we have in the annealed sense that for fixed t,

1

εα/2

∫ t

0

V (
Bs

ε
)ds⇒V1

√
cd

∫ t

0

Ẇ (Bs)ds, (4.5)
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where
∫ t

0
Ẇ (Bs)ds is defined as the L2 limit of

∫ t

0

∫
Rd qδ(x−Bs)W (dx)ds as δ→0 with

the mollifier qδ(x)= (2πδ)−
d
2 exp(− |x|22δ ) and generalized Gaussian random field W (dx)

satisfying E{W (dx)W (dy)}=∏d
i=1 |xi−yi|−αidxdy.

The way we define short- and long-range-correlated random potentials here is
different from traditional definition. In general, when the auto-covariance function
is integrable, the random field is called short-range-correlated, otherwise long-range-
correlated. From Assumption 4.1 we see that the criteria used here is the integrability
of R̂(ξ)|ξ|−2.

We also point out that the convergence obtained for short-range-correlated poten-
tials is actually weak convergence in measure, see [36, Remark 1.10]. For long-range-
correlated potentials, we prove the weak convergence by the method of characteristic
function.

4.2. Homogenization and convergence to SPDE. The following is the main
theorem about homogenization and convergence to SPDE.

Theorem 4.4. Let uε solve (4.1) and uhom,uspde solve the following equations re-
spectively with the same initial condition f ∈Cb(Rd):

∂tuhom=
1

2
Δuhom−ρuhom, (4.6)

∂tuspde=
1

2
Δuspde+ iV1

√
cdẆuspde. (4.7)

Under Assumption 4.1, choosing β=1, we have uε(t,x)→uhom(t,x) in probability.
Under Assumption 4.2, choosing β= α

2 , we have uε(t,x)→uspde(t,x) in distribution.

Remark 4.5. The limit Wt obtained in (4.4) is independent from Bt, leading to a
real potential in (4.6).

In the above theorem, the solution to the SPDE is defined by the Feynman-Kac
formula

uspde=EB{f(x+Bt)exp(iV1
√
cd

∫ t

0

Ẇ (x+Bs)ds)}, (4.8)

and it can be shown to be a weak solution to (4.7) by the method in [33].
To obtain error estimates in the homogenization setting, further assumptions are

made on the short-range-correlated random potentials besides Assumption 4.1.

Assumption 4.6. E{V (x)6}<∞. Let FK =σ(V (x) :x∈K) for any K⊂R
d. There

exists a function ϕ(r) : [0,∞)→ [0,∞) such that for any α> 0, ϕ(r)≤Cα(1∧r−α) for
some Cα> 0 and the following bound holds:

E{φ1(V )φ2(V )}≤ϕ(r)
√
E{φ21(V )}φ22(V )} (4.9)

for any two compact sets K1,K2 with d(K1,K2)≥ r and any random variables
φ1(V ),φ2(V ) with φi(V ) being FKi

−measurable and E{φi(V )}=0.

The error estimate is given in the following theorem.

Theorem 4.7. Let uε solve (4.1) and uhom solve the following equation with the same
initial condition f ∈C∞c (Rd):

∂tuhom=
1

2
Δuhom−ρuhom. (4.10)
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Then under assumptions 4.1 and 4.6, and choosing β=1, we have

E{|uε(t,x)−uhom(t,x)|}≤ (1+ t)Cϕ,f,d

⎧⎨
⎩
√
ε d=3,

ε
√| logε| d=4,

ε d> 4.

(4.11)

For the special case of Gaussian and Poissonian potential, we are able to derive the
limiting Gaussian law of the rescaled corrector when d=3.

Assumption 4.8 (Gaussian or Poissonian potential). V is assumed to be Gaussian or
Poissonian, and

• when V is Gaussian, for any α> 0, there exists Cα> 0 such that the covariance
function satisfies |R(x)|≤Cα(1∧|x|−α).

• when V is Poissonian, V (x)=
∫
Rd φ(x−y)ω(dy), where the shape function φ is

continuous, compactly supported, and satisfies
∫
Rd φ(x)dx=0, and ω(dy) is the

Poissonian point process with Lebesgue measure dy as its intensity. In this case,
R(x)=

∫
Rdφ(x+y)φ(y)dy is compactly supported.

Theorem 4.9. When d=3, let uε solve (4.1) and uhom solve the following equation
with the same initial condition f ∈C∞c (Rd):

∂tuhom=
1

2
Δuhom−ρuhom. (4.12)

Then under Assumption 4.8, and choosing β=1, we have

uε(t,x)−uhom(t,x)√
ε

ε→0
====⇒u1(t,x) (4.13)

in distribution and weakly in space, where u1(t,x) solves the following SPDE with addi-
tive white noise and zero initial condition:

∂tu1(t,x)=
1

2
Δu1(t,x)−ρu1(t,x)+ i

√
R̂(0)uhom(t,x)Ẇ (x). (4.14)

In low dimensions d=1,2, the SPDE result still holds in the long-range-correlation
setting. In the short-range-correlation setting when d=2, homogenization can be de-
rived for certain class of potentials with an additional logarithm scaling factor. The
derivation of a SPDE for a real-valued potential (iVε is replaced by Vε) is carried out
in dimension d=1 in [46].

4.3. Time-dependent potentials. The results presented above for short-
range-correlated potentials have been extended to time-dependent setting [29]. We
consider

∂tuε(t,x)=
1

2
Δuε(t,x)+ i

1

εβ
V (

t

εγ
,
x

ε
)uε, (4.15)

with initial condition f ∈Cb(Rd), d≥ 3, and V (t,x) satisfies the following assumption:

Assumption 4.10 (Time-dependent potential). Let (Ω,F ,P) be a probability space and
{τ(t,x),t∈R,x∈Rd} a group of measure-preserving and ergodic transformations. Let
V∈L∞(Ω) with zero mean, i.e.,

∫
ΩV(ω)P(dω)=0, and V (t,x;ω)=V(τ(t,x)ω). Let FK =

σ(V (t,x) : (t,x)∈K) for any K⊂R
d+1. Then there exists a function ϕ(r) : [0,∞)→
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[0,∞) such that for any α> 0, ϕ(r)≤Cα(1∧r−α) for some Cα> 0 and the following
bound holds:

sup
A∈FK1

,B∈FK2
,P(B)>0,d(K1,K2)≥r

|P(A|B)−P(A)|≤ϕ(r). (4.16)

The following is the main result.

Theorem 4.11. Let uε solve (4.15) with β= γ
2 ∨1. Then under Assumption 4.10,

uε(t,x)→u0(t,x) in probability, where u0 solves ∂tu0(t,x)=
1
2Δu0(t,x)−ρ(γ)u0(t,x)

with the same initial condition and

ρ(γ)=

⎧⎨
⎩

∫∞
0 R(t,0)dt γ∈ (2,∞),∫∞
0

EB{R(t,Bt)}dt γ=2,∫∞
0 EB{R(0,Bt)}dt γ∈ [0,2).

(4.17)

When β= γ
2 and γ→∞, it corresponds to the case when V has no micro-structure

in x, i.e., Vε(t,x)=
1√
ε
V ( tε ,x), for which we prove a convergence to SPDE with multi-

plicative noise in the Stratonovich sense.

Theorem 4.12. Under Assumption 4.10, let

∂tuε(t,x)=
1

2
Δuε(t,x)+ i

1√
ε
V (

t

ε
,x)uε(t,x), (4.18)

∂tu0(t,x)=
1

2
Δu0(t,x)+ iẆ (t,x)◦u0(t,x), (4.19)

with initial condition uε(0,x)=u0(0,x)= f(x) and Gaussian noise Ẇ (t,x) of covari-
ance structure E{Ẇ (t,x)Ẇ (s,y)}= δ(t−s)

∫
R
R(t,x−y)dt. Then uε(t,x)⇒u0(t,x) in

distribution as ε→0.

5. Large potential and multiscale expansion

As in Section 4, we look at the equation with imaginary large random potential in
high dimensions:

(Δ−1+ iVε)uε= f, (5.1)

where f ∈C∞c (Rd), and Vε(x,ω)=
1
εV (xε ;ω) with ω∈ (Ω,F ,P). We consider the case of

an elliptic equation to simplify the presentation.
Using two-scale expansions, we consider the ansatz uε(x)=u0(x)+εu1(x,y)+ . . .

with fast variable y= x
ε . It is straightforward to check that the equation satisfied by

u1 should then be Δyu1(x,y)+ iV (y)u0(x)=0. This inspires us to define the corrector
χε=G( i

ε2V ( .
ε )) with G=(−Δ+1)−1 and the lower-order term

u1,ε(x)=χε(x)u0(x).

The heterogeneous solution uε is then decomposed as the homogenized limit plus the
fluctuations

uε=u0+εu1,ε+vε, (5.2)

with u0(x) the solution of the limiting equation

(Δ−1−ρ)u0= f. (5.3)
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Here, ρ is the constant homogenized from −iVε given by (3.3) with m=2. We then
verify that the equation for the remainder vε is given by:

(Δ−1+ iVε)vε=−(ρ+ iV (
x

ε
)χε(x))u0(x)−ε(χεΔu0+2∇χε ·∇u0). (5.4)

The imaginary structure of the random potential leads to the following energy
estimate of the solution of (5.1):

‖uε‖H1(Rd)≤‖f‖H−1(Rd),

which we apply to vε in (5.4). Together with an estimate of εu1,ε, we have the following
result [13]:

Theorem 5.1. In dimension d≥ 3, suppose V (x) has mean zero and strongly mix-
ing property as in Assumption 4.6 and ρ=

∫
RdΦ(y)R(y)dy, where Φ=(−Δ)−1δ is the

Green’s function of −Δ and R is the auto-covariance function of V . Then we have the
following convergence rate:

‖uε−u0‖L2(Ω×Rd)≤C

⎧⎨
⎩
√
ε d=3,

ε
√| logε| d=4,

ε d> 4.

(5.5)

It can actually be proved that

√∫
Rd

E{|vε|2+ |∇vε|2}dx≤C

⎧⎨
⎩
√
ε d=3,

ε
√| logε| d=4,

ε d> 4,

(5.6)

and since εu1,ε∼O(1) in H1, we deduce that εu1,ε is the leading corrector to u0 in H1.
A more involved but similar approach was used recently in [32] to analyze a one

dimensional heat equation with large (real-valued) time-dependent potential (∂t−∂2x−
Vε)uε=0. The ansatz involves the constructions of two correctors defined as

∂tYε=∂2xYε+Vε,

∂tZε=∂2xZε+ |∂xYε|2−E{|∂xYε|2}.

Using the change of variables vε=uεexp(−Yε−Zε), it is proved in [32] that Yε and Zε

converge to 0 in appropriate spaces so that both uε and vε converge to the solution of
a homogenized equation. Similar expansions are carried out in the more complicated
analysis of the KPZ equation [31].
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