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Abstract. Developing robust data assimilation methods for hyperbolic conservation laws is a
challenging subject. Those PDEs indeed show no dissipation effects and the input of additional infor-
mation in the model equations may introduce errors that propagate and create shocks. We propose a
new approach based on the kinetic description of the conservation law. A kinetic equation is a first
order partial differential equation in which the advection velocity is a free variable. In certain cases,
it is possible to prove that the nonlinear conservation law is equivalent to a linear kinetic equation.
Hence, data assimilation is carried out at the kinetic level, using a Luenberger observer also known as
the nudging strategy in data assimilation. Assimilation then resumes to the handling of a BGK type
equation. The advantage of this framework is that we deal with a single “linear” equation instead of a
nonlinear system and it is easy to recover the macroscopic variables. The study is divided into several
steps and essentially based on functional analysis techniques. First, we prove the convergence of the
model towards the data in case of complete observations in space and time. Second, we analyze the
case of partial and noisy observations. To conclude, we validate our method with numerical results on
Burgers equation and emphasize the advantages of this method with the more complex Saint-Venant
system.

Key words. Data assimilation, hyperbolic conservation law, kinetic formulation, nudging, shallow
water system.
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1. Introduction

Data assimilation has become a popular strategy to refine the quality of numerical
simulations of complex physical phenomena by taking into account available measure-
ments. In particular numerous works in environmental sciences, but also life sciences
– see [11, 17, 30] and references therein – have used data assimilation to deal with the
various sources of error entering and propagating during a simulation and restricting
the performance of a numerical prediction. This is particularly the case for hyperbolic
systems in general, and especially for conservative systems where, in the absence of
dissipation, even small numerical errors are likely to propagate and expand in time [16].
The main idea behind data assimilation is thus to improve the prediction by integrating
additional information on the actual specific system considered, with the use of the
measurements – also called observations – at our disposal.

We consider in this work a general class of conservation laws that may contain non-
linearities as typically illustrated by transport equations, Burgers’ equation, and the
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shallow-water or Euler systems, and we focus especially on the non-viscous configura-
tions. In data assimilation, two types of approaches are available: the variational and
the sequential approach, which both can be considered in a deterministic or a stochastic
functional framework [9]. We rely, here, on a deterministic description which can be seen
as a first step in the handling of more general uncertainties present in the system. On
the one hand, the variational approach was popularized by the 4D-Var [24]. It consists
of globally minimizing a – usually least-squares based – cost function representing a
compromise during a period of time between (1) the observation discrepancy computed
between simulations of the model and the corresponding measurements and (2) an a
priori confidence in the model. The cost function gradient is obtained through an ad-
joint model integration linked to the dynamical model constraint under which the cost
function is minimized. Hence, the minimization is classically performed by a gradient
descent algorithm involving numerous successive iterations of the combination of the
model and adjoint dynamics during a fixed time window. Moreover, as optimal control
theory often assumes differentiability, mathematical difficulties arise when viscosity is
neglected and in the presence of discontinuities like shocks, see [6] and [7], where a
formalism is defined to avoid incorrect computations of gradients (yet keeping the com-
putation of the adjoint model). On the other hand, the sequential methods include in
the definition of the approximating dynamics a correction term based on the observa-
tion discrepancy. The resulting system called observer – or estimator in the stochastic
context – is then expected to converge in time to the actual system as it incorporates
more and more data. Note that in the sequential approach the initial condition is clas-
sically not retrieved but only filtered so that we get an estimation at the final time
in one forward simulation. In this context, the most popular observer is based on the
Kalman filter which can be virtually defined on any model and shown to be equivalent
to the variational approach at least for linear systems, ergo its denomination of optimal
estimator [9]. However the Kalman filter, based on dynamic programing principles, is
subject to the famous Bellman curse of dimensionality [8], which makes it numerically
unpractical for partial differential equations (PDE). One way to circumvent this dif-
ficulty – see Section 4 for possible alternatives – is to follow the path introduced by
Luenberger [27, 28] and popularized for PDE with the nudging appellation [23, 37] to
define a sequential observer which converges to the actual system in one forward simula-
tion and in which the correction term remains tractable in practice. The principle is to
introduce the simplest possible correction so that the error between the actual observed
trajectory and the simulated systems stabilizes rapidly to 0. This type of method has
recently regained interest with applications to a large range of systems like conservation
laws, waves, beams, elasticity, or fluid-structure interaction [10, 15, 16, 26, 29], and with
new general improvements, for example in the determination of the nudging coefficients
[36, 39, 40] or for restoring the initial condition [4, 22, 34]. However, for conservation
laws, despite some recent effort [5], the observer performances remain difficult to ana-
lyze in a general context, in particular in the presence of nonlinearities. In this study,
we propose a new nudging strategy which, for hyperbolic conservation laws admitting
a kinetic description, can be thoroughly justified even for nonlinear systems.

Let us consider the practical case of systems, with the illustrative example of the
Saint-Venant system, which writes, discarding the source term for simplicity:

⎧⎨⎩
∂tH+∂x(Hu)=0, (1.1a)

∂tHu+∂x(Hu
2+

gH2

2
)=0. (1.1b)
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This system naturally comes with a single entropy inequality for the energy

E(H,u)=H
u2

2
+
gH2

2
,

which satisfies for weak solutions

∂tE+∇·
(
u(E+

gH2

2
)

)
≤0. (1.2)

We expound here briefly the strategy of the kinetic Luenberger observer and set forth
a crucial point justifying the interest to design such a method: the automatic decrease
of energy that it guarantees. Naive data assimilation on the Saint-Venant system can
indeed be written as follows:⎧⎨⎩

∂tĤ+∂x(Ĥû)=λ(H−Ĥ), (1.3a)

∂tĤû+∂x(Ĥû
2+

gĤ2

2
)=0, (1.3b)

where H represents data and
(
Ĥ,û

)
the observer. The height is indeed usually the

easiest variable to measure. With this system we associate the energy inequality

∂tÊ+∇·
(
û(Ê+

gĤ2

2
)

)
≤−λ(H−Ĥ)

(
û2

2
−gĤ

)
.

Unfortunately, the nonlinearity in the right hand side of the inequality prevents control
of the energy dissipation. This is where we introduce the kinetic description of the Saint-
Venant system. It consists in using the equivalence between the nonlinear system of
conservation laws and a linear kinetic equation in a new variable ξ, the kinetic velocity.
Formally, we have an equivalence between the macroscopic conservation law and its
energy inequality and the kinetic equation. The shallow water system without source
term (1.1a) -(1.1b) augmented by its entropy inequality (1.2) is equivalent to

∂tM(Ĥ,û−ξ)+ξ ·∇xM(Ĥ,û−ξ)=Q(t,x,ξ), (1.4)

where M shall be regarded as a particle density defined by

M(h,v−ξ)=
{

1
2πg , for|ξ−v|<√2gh,

0, otherwise.
(1.5)

and Q is what is called a collision operator that verifies∫
Rξ

Q(t,x,ξ)dξ=

∫
Rξ

ξQ(t,x,ξ)dξ=0,

∫
Rξ

ξ2

2
Q(t,x,ξ)dξ≤0.

The proof is done by simple integration in ξ of the first moments of (1.4).
In comparison to ((1.3a) - (1.3b)), the kinetic assimilated system writes ([32])

∂tf(Ĥ,û−ξ)+ξ ·∇xf(Ĥ,û−ξ)=λ
(
f(Ĥ,û−ξ)−M(H,u−ξ)

)
.

where f and M satisfy the form (1.5). This construction of M requires available obser-
vations of both H and u. However, we will show in this article that great assimilation
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strategies can also be carried out with partial observations on water depth or velocity
only with the use of an approximated M . Thanks to the property of the collision oper-

ator, the energy equation, which is classically obtained by computing
∫
Rξ

ξ2

2 (1.4)dξ (see

[32]) becomes

∂tÊ+∇·
(
û(Ê+

gĤ2

2
)

)
≤λ(E− Ê).

This ensures relaxation of energy. Unlike the macroscopic nudging (1.3a), the Luen-
berger observer that we add at the kinetic level does not perturb the stability of the
macroscopic system. This simple example shows the nice properties of the kinetic Lu-
enberger observer when used in the kinetic representation.

This efficacy encourages the development of a theoretical framework in the case
of scalar conservation laws as usually made when dealing with hyperbolic PDEs. The
kinetic formulation of them is indeed well understood [32]. For a scalar conservation
law defined as follows ⎧⎪⎨⎪⎩∂tu+

d∑
i=1

∂xiAi(u)=0,

u(t=0,x)=u0(x),

(1.6)

with the entropy inequalities, for any convex function S(·),

∂tS(u)+

d∑
i=1

∂xiηi(u)≤0, (1.7)

the kinetic description can be written{
∂tM(t,x,ξ)+a(ξ) ·∇xM(t,x,ξ)=Q(t,x,ξ),

M(0,x,ξ)=M0(x,ξ),

where u is the macroscopic variable, M is the density function which is related to u by
its first moment:

u(t,x)=

∫
R

M(t,x,ξ) dξ,

and Q is the collision operator. Nonlinearities are hidden in the density function M ,
and shocks are confined in the collision operator. But we emphasize the fact that for
fixed ξ, the kinetic equation can be handled as a linear equation. The equivalence proof
is based on simple integration of the kinetic equations. Then, the observer equations at
the macroscopic level {

∂tû+∇x ·A(û)=λ(u− û) ,
û(0)=u0+δ0,

are formulated at the kinetic level{
∂tf+a(ξ) ·∇xf =λ(M−f) ,
f(0)=M0+γ0.
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At the macroscopic level, the nonlinearity of the flux A is the main obstacle to easy
convergence proofs of û towards u. Possible techniques are based on the L1 contraction
principle in the scalar case, but do not extend to systems. At the kinetic level, the
equation gains linearity and we can even have the explicit solution:

f(t,x,ξ)=f0(x−a(ξ)t,ξ)e−λt+
∫ t

0

e−λsM(t−s,x−a(ξ)s,ξ)ds,

as soon as M(t,x,ξ) can be generated from the measurements.

The outline is organized as follows. Section 2 exposes the theoretical framework of
our novel method on a scalar hyperbolic conservation law. Convergence theorems are
given in the case of complete observations, partial observations, and noisy observations.
Numerical experiments illustrate its efficiency on Burgers’ equation in 1D. Afterwards,
Section 3 introduces the more practical case of the shallow water equations. We em-
phasize the benefit of our method for the Saint-Venant system as we are able to build
an efficient numerical assimilation scheme based on heights observations only. Once
again, numerical simulations are carried out on bidimensional analytical solutions and
an example in 3D is also provided.

Throughout the paper, Vp stands for the Lebesgue space Lp(Rdx×Rξ), and we use
the notation ‖f‖Lp(Rd

x×Rξ)
=‖f‖Vp

.

2. Kinetic Luenberger observer on hyperbolic scalar conservation laws
In this section, we present the theoretical framework underlying the novel method we
propose. It is based on the particular properties of hyperbolic balance laws and their
kinetic formulation.

2.1. Kinetic formulation. The kinetic formulation, restricted to scalar con-
servation laws or systems with many entropies, offers a way to represent full families
of entropies by a single equation. An entropy is a conservation law built on nonlinear
functions of the unknown. The idea underlying the kinetic formulation is to parametrize
those entropies, and consider the parameters an additional variable. We call it the ki-
netic velocity ξ. After some manipulation, we end up with a linear equation in the
best cases (for instance for scalar conservation laws). This linearity enables the use of
functional analysis techniques and also to derive simple numerical schemes. We detail
here more precisely what was announced in the introduction in the case of a hyperbolic
scalar conservation law of the form (1.6), where u(t,x) defined for t≥0 is a real-valued
function, x∈Rd.

We know that solutions of (1.6) may exhibit shocks. To be considered, weak so-
lutions shall satisfy the entropy inequality (1.7) in the sense of distribution and for
any entropy pair (S,ηi, i=1..d), where S is a convex entropy and ηi the corresponding
entropy flux. We introduce the function χ such that, for ξ∈R,

χ(ξ,u)=

⎧⎪⎨⎪⎩
+1, for 0<ξ<u,

−1, for u<ξ<0,

0, otherwise.

(2.1)

This function allows us to represent any function S(u) as follows:∫
Rξ

S′(u)χ(ξ,u)dξ=S(u)−S(0).
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Then, system (1.6) with its family of entropy inequalities (1.7) is equivalent to the
kinetic formulation

∂tχ(ξ,u(t,x))+a(ξ) ·∇xχ(ξ,u(t,x))=∇ξm(t,x,ξ), (2.2)

where we have set

ai(·)=A′i(·), (2.3)

a(ξ)=(a1(ξ), · · · ,ad(ξ)) , (2.4)

and for some nonnegative bounded measure m(t,x,ξ), called kinetic entropy defect
measure. A proof of this assertion is available in [25]. Though the converse is difficult
to address, one implication can be easily computed by multiplying (2.2) by S′(ξ) and
integrating in ξ.

Remark 2.1. The kinetic entropy defect measure m is unknown a priori and takes
account of potential singularities in the solution. It can be seen as the Lagrange mul-
tiplier for the constraint (2.1), similarly to the pressure term in the incompressible
Navier-Stokes equation, which is a multiplier related to the constraint that the flow is
divergence free. Three properties are worth noting here:

• m(t,x,ξ) depends on the macroscopic solution u(t,x),

• in particular, m(t,x,u(t,x)) = 0,

• m vanishes where the solution is smooth.

2.2. Kinetic level nudging in the scalar case for complete observations.
As previously stated in the introduction, the nudging strategy carried out at the

kinetic level offers the advantage of a “linear framework” and can guarantee the decay
of the energy in such systems as the shallow water equations. In this section, we
develop theoretical results for this method. We begin with very ideal situations, among
which smooth solutions or complete observations are studied. We are then able to state
convergence results in the case of partial observations in space or time.

Let us consider that the observations derive from the scalar conservation law (1.6).
Following Section 2.1, (1.6) admits the kinetic formulation{

∂tM(t,x,ξ)+a(ξ) ·∇xM(t,x,ξ)=∇ξm(t,x,ξ),

M(0,x,ξ)=χ(ξ,u0(x)),
(2.5)

where M(t,x,ξ)=χ(ξ,u(t,x)) satisfies (2.1) and a(ξ) is defined in (2.3)-(2.4). We recall
that χ is designed such that

u(t,x)=

∫
Rξ

χ(ξ,u(t,x))dξ. (2.6)

We set the study in the case of complete observations for a fixed relaxation parameter
λ. Hence, we can design the observer f(t,x,ξ) satisfying the Boltzmann type equation{

∂tf(t,x,ξ)+a(ξ) ·∇xf(t,x,ξ)=λ(M(t,x,ξ)−f(t,x,ξ)) ,
f(t,x,ξ=0)=f0(x,ξ).

(2.7)
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We will also denote the macroscopic observer

û(t,x)=

∫
Rξ

f(t,x,ξ)dξ.

First of all, we make precise that (2.7) admits a unique distributional solution ([32],
Section 3.5, Theorem 3.5.1):

Lemma 2.2. Let f0∈V1, M ∈C(0,T ),L1(Rdx×Rξ) for all T >0. Then, there exists a
unique distributional solution to (2.7), f ∈C(R+;V1), and it satisfies

f =f0(x−a(ξ)t)e−λt+λ
∫ t

0

e−λsM(t−s,ξ,x−a(ξ)s)ds.

2.2.1. Smooth data. In the case of smooth solutions, the kinetic defect measure
m, whose role is to locate the discontinuities, disappears and the simple transport
equation remains {

∂tM(t,x,ξ)+a(ξ) ·∇xM(t,x,ξ)=0,

M(0,x,ξ)=χ(ξ,u0(x)).
(2.8)

Therefore, we are able to state a very strong theorem in the simple case of smooth
solutions to scalar conservation laws: the kinetic observer converges exponentially fast
towards the data and so do the macroscopic variables. The proof is done at the ki-
netic level by applying Lemma 2.2 to the equation satisfied by the error f−M . The
macroscopic result follows by integration w.r.t. ξ.

Proposition 2.3. Let M ∈C([0,T ],V1) satisfy (2.8) and f ∈C(R+;V1) satisfy (2.7),
then

‖f−M‖V1
−−−−→
t→+∞ 0,

and the decay is exponential in time with rate λ. This is translated at the macroscopic
level as:

‖û−u‖L1(Rd
x)
−−−−→
t→+∞ 0,

with the same exponential decay.

2.2.2. Non-smooth data. In the situation of non-smooth solutions, the data
are assumed to satisfy (2.5) and (2.6), and the kinetic observer f(t,x,ξ) satisfies (2.7)
since observations are complete in space and time. The presence of the collision term
prevents us from obtaining a time convergence as in Proposition 2.3. However, we can
still obtain a convergence with respect to the nudging parameter λ. In order to show
the convergence of f towards M we introduce another integro-differential equation{

∂tfλ(t,x,ξ)+a(ξ) ·∇xfλ(t,x,ξ)+λfλ(t,x,ξ)=λMλ,

fλ(0,x,ξ)=χ(ξ,u0(x)),
(2.9)

where Mλ(t,x,ξ)=χ(ξ,uλ) and uλ is only defined by the relation uλ=
∫
Rξ
fλdξ. Thus,

we claim
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Theorem 2.4. Let M ∈C([0,T ],V1) satisfy (2.5) with u0∈L1(Rd) and f ∈C(R+;V1)
satisfy (2.7) with f0∈V1, then, for some modulus of continuity ω(T, ·),

‖f(T )−M(T )‖V1
≤‖f0−fλ,0‖V1

e−λT +ω(T,
1

λ
).

Moreover, if u0∈L∞∩L1∩BV (Rd), the dependency in λ can be improved as:

‖f(T )−M(T )‖V1
≤‖f0−fλ,0‖V1

e−λT +C(d)‖a‖L∞(−K,K)

√
T ‖u0‖BV (Rd)

λ
.

Remark 2.5. The rate of convergence in
√

T
λ expresses the fact that at fixed λ, the

discrepancy between the observations and the model variables tend to increase with
time. The further we want to advance in time, the bigger we need to choose λ. Notice
also that in this situation the optimal λ is the largest possible as it is often the case
with complete observations.

Proof. (Proof of Theorem 2.4.) From the triangle inequality we decompose

‖f(T )−M(T )‖V1
≤‖f(T )−fλ(T )‖V1

+‖fλ(T )−M(T )‖V1
.

On the one hand, in [32], the author studies some properties of fλ as λ tends to infinity,
also called the hydrodynamic limit. It is proven (Section 4.6, Theorem 4.6.1):

• if u0∈L∞∩L1∩BV (Rd), and setting K=‖u0‖L∞ ,

‖uλ(T )−u(T )‖L1(Rd)≤‖fλ(T )−M(T )‖V1
,

≤C(d)‖a‖L∞(−K,K)

√
T ‖u0‖BV (Rd)

λ
;

• if only u0∈L1(Rd) is assumed, we have, for some modulus of continuity ω(T, ·),

‖uλ(T )−u(T )‖L1(Rd)≤‖fλ(T )−M(T )‖L1(Rd
x×Rξ)

≤ω(T, 1
λ
).

On the other hand, according to (2.5) and (2.9), f and fλ satisfy

∂t(f−fλ)+a(ξ) ·∇x(f−fλ)+λ(f−fλ)=λ(M−Mλ).

Therefore, we can use the representation formula of Lemma 2.2 and get

(f−fλ)(t,x,ξ)=(f−fλ)(0,x,ξ)e−λt+λ
∫ t

0

e−λs(M−Mλ)(t−s,ξ,x−a(ξ)s)ds.

We end up with

‖(f−fλ)(T )‖V1
≤‖(f−fλ)(0)‖V1

e−λT +(1−e−λT )‖M(T )−Mλ(T )‖V1
.

Since

‖M(T )−Mλ(T )‖V1
=‖χu(ξ)−χuλ

(ξ)‖V1
=‖u(T )−uλ(T )‖L1(Rx)

,

we can still use the convergence rates expressed above to give an upper bound for
‖f(T )−fλ(T )‖V1

in both cases. This concludes the proof.
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2.3. Noisy observations in the scalar case. It is more realistic to con-
sider that observations are noisy. Here we restrict our analysis to additive noise in
the observer equation. Appropriate distribution spaces representing this phenomena
are the dual Sobolev spaces. The noise is indeed not negligible in the strong L2 norm
because of its high oscillations, but it is smaller in a weaker H−α norm. This mod-
eling enables us to prove convergence theorems for velocity-averaged quantities like
ρψ(t,x)=

∫
Rξ
f(t,x,ξ)ψ(ξ)dξ that are known to lie in a better space than the micro-

scopic density f(t,x,ξ). This property results from averaging lemmas [20, 21]. In the
following, the proofs are based on the same ideas as those developed in [12, 20, 21].

2.3.1. Linear coefficient. We begin with the steady state situation in the case
of a linear coefficient for advection. The kinetic variable ξ then represents a multidi-
mensional velocity, and we have ξ∈Rd (as x∈Rd). As stated previously, the noise is
supposed to be an αth space derivative of an L2 function. Let us consider the solution
of

ξ ·∇xf(x,ξ)+λf(x,ξ)=λM(x,ξ)+λ
∂αE

∂xα
, E(t,x,ξ)∈V2, (2.10)

with

ξ ·∇xM(x,ξ)=Q(x,ξ)∈V2, (2.11)

where α is a multi-index (α1,α2, . . .αn), and we denote |α|=α1+α2+ . . .+αn,

∂αE

∂xα
=

∂|α|E
∂xα1

1 xα2
2 . . .xαn

n
.

Remark 2.6. The noise on the data in a real situation might rather be located on the
macroscopic variables. It could be more realistic to translate this macroscopic noise at
the kinetic level. However, this transcription is not straightforward and remains to be
done. For now, we limit ourselves to the case where we introduce the noise directly on the
kinetic observer equation. In other words, the errors introduced by the reconstruction
of M(t,x,ξ) from the macroscopic data are considered at their first order.

We denote g(x,ξ)=f(x,ξ)−M(x,ξ), the error between the estimator and observa-
tions. Subtracting (2.10) and (2.11), the equation for g is

ξ ·∇xg(x,ξ)+λg(x,ξ)=λ∂
αE

∂xα
−Q(x,ξ), (2.12)

with an explicit solution (Lemma 2.2)

g(x,ξ)=− 1

λ

∫ +∞

0

(
Q(x− ξ

λ
s,ξ)+λ

∂αE

∂xα
(x− ξ

λ
s,ξ)

)
e−λsds,

leading to the upper bound of the error in the L2 norm

‖g‖V2
≤ ‖Q‖V2

λ
+

∥∥∥∥∂αE∂xα

∥∥∥∥
V2

. (2.13)

The nudging coefficient tends to filter the collision term. Nevertheless, it has no effect
on the noise. It is then to be expected that in a usual norm as L2, we do not get rid
of noisy terms. But it is also worth noticing that this noise is not amplified. This will
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be all the more important in the evolutionary case in the next section, as the effects of
noise usually tend to add up with time since it enters the equations as a source term.

By means of Fourier analysis, we can obtain a better upper bound in a stronger
norm for g, but considering a weaker norm for the noise. Let us denote by ĝ(k,ξ) the
space Fourier transform of g

ĝ(k,ξ)=

∫
RN

g(x,ξ)eik·xdx.

Ê and Q̂ are defined in the same manner. Moreover, we will work on the averaged
quantity

ρψ(t,x)=

∫
Rξ

g(t,x,ξ)ψ(ξ)dξ,

where ψ is a smooth compactly supported function. We notice that

ρ̂ψ(t,k)=

∫
Rξ

ĝ(t,k,ξ)ψ(ξ)dξ.

We claim that the averaged quantity ρψ lies in a better space than L2([0,T ] ,L2(Rx)),
and its homogeneous seminorm tends to zero when ‖E‖V2

becomes smaller. In the
following theorem, ‖ρ‖Ḣs(Rd

k)
represents the homogeneous Sobolev norm of ρ.

Theorem 2.7. Let M(x,ξ)∈V2 be a solution of (2.11) and f(x,ξ)∈V2 be a solution
of the noisy data assimilation problem (2.10) for |α|< 1

2 . Then, there exists γ, 0<γ<
1−2|α| and constants K1(α,γ), K2(α,γ) such that

‖ρ̂ψ‖2Ḣγ/2(Rx)
≤K1‖E‖

2−γ
1+α

V2
‖Q‖

2α+γ
1+α

V2
, (2.14)

and therefore the error tends to zero as ‖E‖V2
tends to zero. This inequality is obtained

for an optimal value of λ,

λopt=K2

(
‖Q‖V2

‖E‖V2

) 1
1+α

.

Remark 2.8. Let us give an example of the inequality (2.14) and show the interest of
this theorem: a particular norm for the error can vanish even if the L2 norm does not.
We choose the noise

E(x)=εr cos
(x
ε

)
,

∂αE

∂xα
(x)=εr−α cos

(x
ε
+α

π

2

)
.

In this example, ∂αE(x) may be big in L2 norm, even if E is not. With γ=1−2α, we
have formally from (2.13)

‖g‖V2
≤K1ε

1
1+α +K2ε

r−α,

which does not necessarily vanish with ε if r≤α whereas Theorem 2.7 yields

‖ρ̂ψ‖2Ḣγ/2(Rx)
≤K3ε

r+ rα
1+α ,
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which vanishes unconditionally with ε.

Remark 2.9. Compared to our previous results, we are eventually capable of giving
an expression of a bounded optimal λ. With the noise here, indeed, the theorems of
Section 2.2 are no longer valid (λ cannot be taken as big as we want) and we need to
carefully choose the nudging coefficient in order not to amplify the noise. See Section 2.6
for the numerical illustration of this theorem on Burgers’ equation.

Proof. (Proof of Theorem 2.7.) Performing the space Fourier transform on (2.12)
yields

ξ · ikĝ+λĝ=−Q̂+λkαÊ.

Then we can deduce an expression of the space Fourier transform of g:

ĝ=
−Q̂

λ+ iξ ·k +λk
α Ê

λ+ iξ ·k .

Young’s inequality yields

|ρ̂ψ(t,k)|2≤2

∣∣∣∣∣
∫
Rξ

−Q̂(k,ξ)ψ(ξ)

λ+ iξ ·k dξ

∣∣∣∣∣
2

+2λ2|k|2|α|
∣∣∣∣∣
∫
Rξ

−Ê(k,ξ)ψ(ξ)

λ+ iξ ·k dξ

∣∣∣∣∣
2

.

Applying the Cauchy-Schwarz inequality leads to

|ρ̂ψ(t,k)|2≤ 2

λ2

∣∣∣∣∣
∫
Rξ

Q̂2(k,ξ)dξ

∣∣∣∣∣
∣∣∣∣∣
∫
Rξ

ψ(ξ)2

1+ (ξ·k)2
λ2

dξ

∣∣∣∣∣
+2|k|2|α|

∣∣∣∣∣
∫
Rξ

Ê2(k,ξ)dξ

∣∣∣∣∣
∣∣∣∣∣
∫
Rξ

ψ(ξ)2

1+ (ξ·k)2
λ2

dξ

∣∣∣∣∣
≤2‖ψ‖2L∞(Rξ)

Cψmin

(
1,
λ

|k|
)(

1

λ2

∫
Rξ

|Q̂|2dξ+ |k|2|α|
∫
Rξ

|Ê(k,ξ)|2dξ
)
.

(2.15)

The last line uses on the one hand the compact support of ψ with∫
Rξ

ψ(ξ)2

1+ (ξ·k)2
λ2

dξ≤‖ψ‖2L∞Cψ,

but also the usual observation leading to averaging lemmas, i.e.∫
Rξ

ψ(ξ)2

1+ (ξ·k)2
λ2

dξ≤‖ψ‖2L∞Cψ
λ

|k| ,

where Cψ is constant related to the support of ψ. To prove it, we choose an orthonor-
mal basis for the ξ space, with first vector ξ1=

k
|k| . The integration in the orthogonal

directions of ξ1 yields the constant Cψ. In the direction of k, the inequality reduces to
the computation of∫ ∞

−∞

1

1+(ξ1
k
|k| · kλ )2

dξ1=

∫ ∞

−∞

1

1+ξ21
|k|2
λ2

dξ1=
λ

|k|
∫ ∞

−∞

1

1+η2
dη=π

λ

|k| .
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Given the value of |k|, either 1 or λ
|k| should be chosen in the upper bound (2.15), and

that is why we introduce k0∈]0,+∞[ in order to separate the integration domain. Now

let us choose γ such that 0<γ<1−2|α|. Then the upper bound of |ρψ|2 in (2.15) is
clearly integrable over Dk0 ={k∈Rk,s.t. |k|>k0}, and∫

Dk0

|k|γ |ρ̂ψ(t,k)|2dk≤J1(λ,k0),

where

J1(λ,k0)=2Cψ ‖ψ‖2L∞(Rξ)

(
‖Q‖2V2

1

λ

1

k1−γ0

+‖E‖2V2
λ

1

k
1−2|α|−γ
0

)
.

The optimization of this function with respect to λ leads to

λopt(k0)=
‖Q‖V2

‖E‖V2

1

k
|α|
0

, (2.16)

and

J1(λopt(k0),k0)=4Cψ ‖ψ‖2L∞(Rξ)

(
‖Q‖V2

‖E‖V2

1

k
1−|α|−γ
0

)
.

Besides, the integration over Rd−Dk0 combined with the value of λ in (2.16) gives∫
|k|<k0

|k|γ |ρ̂ψ(t,k)|2dk≤J2(λ,k0),

where

J2(λopt(k0),k0)=4Cψ ‖ψ‖2L∞(Rξ)
‖E‖2V2

k2α+γ0 .

Eventually,

‖ρ̂ψ‖2Ḣγ/2(Rd
k)
≤J1(λopt(k0),k0)+J2(λopt(k0),k0)=J(λopt(k0),k0).

The previous bound clearly admits a minimum in k0, since J(λopt, ·) is contincontinu-
ousuous on ]0,+∞[ and

J(λopt(k0),k0)−−−−−→
k0→+∞

+∞, J(λopt(k0),k0)−−−−−→
k0→+∞

+∞.

The optimization of J with respect to k0 leads to

argmin
k0

J =

(
‖Q‖V2

‖E‖V2

) 1
1+α (

1−γ−α
2α+γ

) 1
1+α

,

and

minJ =4Cψ ‖ψ‖2L∞(Rξ)

(( 2α+γ

1−γ−α
) 1−α−γ

1+α

+
(1−γ−α

2α+γ

) 2α+γ
1+α

)
‖E‖

2−γ
1+α

V2
‖Q‖

2α+γ
1+α

V2
.
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Moreover, taking into account the optimal value of k0, the optimal λ is

λopt=
(1−γ−α

2α+γ

) α
1+α

(
‖Q‖V2

‖E‖V2

) 1
1+α

.

Remark 2.10. The same study is extended to the evolution case. It uses the Fourier
transform in x and ξ, but not in t (see [12]). Therefore, it better suits functions de-
fined on [0,T ]×R

d
x×Rξ. However, the computation is tedious and does not bring more

insights about the noisy case. We do not detail it here.

2.3.2. Nonlinear coefficient. Let us now consider a nonlinear coefficient
a∈L∞loc(Rξ,Rd), ξ∈R, which corresponds to the kinetic formulation of a general scalar
conservation law of the form (1.6) with p=1. In this situation, a non-degeneracy as-
sumption is required to recover the regularity of averages in ξ. More precisely, for any
direction σ∈Rd such that |σ|=1, a(ξ) ·σ has to be non constant to enable the averaging
procedure to give regularity in x in the direction σ.

Let us study the steady state situation. As stated previously, the noise is an αth

space derivative of an L2 function. We consider the solution of

a(ξ) ·∇xf(x,ξ)+λf(x,ξ)=λM(x,ξ)+λ
∂αE

∂xα
, (2.17)

with

a(ξ) ·∇xM(x,ξ)=Q(x,ξ)∈L2(RNx ×Rξ), (2.18)

where a is a non-degenerate flux. The error equation now writes:

a(ξ) ·∇xg(x,ξ)+λg(x,ξ)=λ∂
αE

∂xα
−Q(x,ξ), (2.19)

with an explicit solution (Lemma 2.2)

g(x,ξ)=− 1

λ

∫ +∞

0

(
Q(x− a(ξ)

λ
s,ξ)+λ

∂αE

∂xα
(x− a(ξ)

λ
s,ξ)

)
e−λsds,

leading to the upper bound of the error in the L2 norm

‖g‖V2
≤ ‖Q‖V2

λ
+

∥∥∥∥∂αE∂xα

∥∥∥∥
V2

.

Let us denote by ĝ(k,ξ), Ê, Q̂ and ρ̂ψ the space Fourier transforms of g, E, Q, and ρψ.

Theorem 2.11. Let M(x,ξ)∈V2 be a solution of (2.18) and f(x,ξ)∈V2 be a solution
of the noisy data assimilation problem (2.17). Then, there exists β, 0<β<1, γ, 0<
γ<β−2|α| and constants K1(α,β,γ),K2(α,β,γ) such that

‖ρ̂ψ‖2Ḣγ/2(Rx)
≤K1‖E‖

2−γ
1+α

V2
‖Q‖

2α+γ
1+α

V2
,

which is obtained for an optimal value of λ

λopt=K2

(
‖Q‖V2

‖E‖V2

) 1
1+α

.
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Proof. By means of Fourier transform on (2.19) we obtain

ĝ=
−Q̂

λ+ ia(ξ) ·k +λk
α Ê

λ+ ia(ξ) ·k .

Young’s inequality followed by the Cauchy-Schwarz inequality, as in the linear case,
yields

|ρ̂ψ(t,k)|2≤ 2

λ2

∣∣∣∣∣
∫
Rξ

Q̂2(k,ξ)dξ

∣∣∣∣∣
∣∣∣∣∣
∫
Rξ

ψ(ξ)2

1+ (a(ξ)·k)2
λ2

dξ

∣∣∣∣∣
+2k2α

∣∣∣∣∣
∫
Rξ

Ê2(k,ξ)dξ

∣∣∣∣∣
∣∣∣∣∣
∫
Rξ

ψ(ξ)2

1+ (a(ξ)·k)2
λ2

dξ

∣∣∣∣∣ .
Under the non-degeneracy condition for the flux a(ξ), i.e. the existence of 0<β<1 s.t.∫

Rξ

ψ(ξ)2

1+ (a(ξ)·k)2
λ2

dξ≤‖ψ‖2L∞(Rξ)
Cψ

λβ

|k|β ,

we can state that

|ρ̂ψ(t,k)|2≤2Cψ ‖ψ‖2L∞(Rξ)
min

(
1,
λβ

|k|β
)( 1

λ2

∫
Rξ

|Q̂|2dξ+k2α
∫
Rξ

|Ê(k,ξ)|2dξ
)
.

Now let us choose γ such that 0<γ<β−2|α|. From this moment on, the proof does
not differ from the one of Theorem 2.7. It consist in minimizing the upper bound first
with respect to λ and then with respect to a limiting frequency that we denoted k0. We
will not detail it further, as a complete study is available in [13].

Remark 2.12. The proofs of Theorem 2.7 and Theorem 2.11 are based on finding an
optimal value for λ. The existence of an optimum is illustrated on Burgers’ equation in
Section 3.3, Figure 2.3.

Remark 2.13. As in the linear case, the same study can be performed in the evolution
case, using the Fourier transform in x and ξ, but not in t. However, heavy computations
are needed and we do not detail them in the article.

2.4. Time sampling operator in the scalar case. In the very theoretical case
of complete and exact observations, as studied in Section 2.2, the conclusion is that the
scalar nudging term can be chosen as big as possible and convergence is ensured. When
adding noise, an optimal value for λ minimizes the convergence error, as explained in
Section 2.3. Now we address another difficulty, namely that access to the observations
is not possible at all times but only at time tk. Moreover it is not an exact observation
but a mean of it over a small period of time. For that purpose, we define a mollifier ϕ
i.e. a nonnegative smooth and compactly supported function with integral one. From
this mollifier we build a regularizing sequence{

ϕσ=
1

σ
ϕ(
s

σ
), σ∈R+

}
.

Then, considering that data come from a hyperbolic conservation law of type (1.6)
admitting a kinetic formulation for the density M(t,x,ξ):

∂tM(t,x,ξ)+a(ξ) ·∇xM(t,x,ξ)=Q(t,x,ξ), (2.20)
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for some collision term Q, we work with the following equation of the estimator:

∂tf(t,x,ξ)+a(ξ) ·∇xf(t,x,ξ)+λ
∑
k∈I

ϕσ(t− tk)f(tk,x,ξ)=λ
∑
k∈I

ϕσ(t− tk)M(tk,x,ξ),

(2.21)
where {tk, k∈ I} are the observation times.

Theorem 2.14. Let us suppose that M is a solution of (2.20) and f is a solution
of (2.21) such that f−M is of time bounded variations. Provided that Card(k, tk≤
T −σ) �=0, then,

‖f(T )−M(T )‖V1
≤‖f0−M0‖V1

e−λCard(k,tk≤T−σ)

+σ‖∂t(f−M)‖L∞t (M1
x(Rx),L1(Rξ))

+
1

λ
sup

0<t≤T
‖Q(t)‖V1

.

Proof. We perform the difference between (2.21) and (2.20) and begin with

∂t(f−M)(t,x,ξ)+a(ξ) ·∇x(f−M)(t,x,ξ)

+λ
∑
k∈I

ϕσ(t− tk)(f−M)(tk,x,ξ)=−Q(t,x,ξ).

Multiplying by sgn(f−M)(t,x,ξ) and integrating in (x,ξ) leads to

d

dt
‖(f−M)(t)‖V1

+λ

∫
Rx

∫
Rξ

∑
k∈I

ϕσ(t− tk)(f−M)(tk,x,ξ)sgn(f−M)(t,x,ξ)dξdx≤‖Q(t)‖V1
.

Using Fubini’s theorem to invert the integral and sum operators, the previous equation
also writes

d

dt
‖(f−M)(t)‖V1

+λ
∑
k∈I

ϕσ(t− tk)‖(f−M)(t)‖V1

≤λ
∫
Rx

∫
Rξ

∑
k∈I

ϕσ(t− tk)|(f−M)(t,x,ξ)−(f−M)(tk,x,ξ)|dξdx+‖Q(t)‖V1
.

Since f−M is of time bounded variation, we get

d

dt
‖(f−M)(t)‖V1

+λ
∑
k∈I

ϕσ(t− tk)‖(f−M)(t)‖V1

≤λ
∫
Rx

∫
Rξ

∑
k∈I

ϕσ(t− tk)
∣∣∣∣∫ tk

t

∂τ (f−M)(τ,x,ξ)dτ

∣∣∣∣dξdx+‖Q(t)‖V1
.

Once again, Fubini’s theorem yields

d

dt
‖(f−M)(t)‖V1

+λ
∑
k∈I

ϕσ(t− tk)‖(f−M)(t)‖V1

≤λ
∑
k∈I

ϕσ(t− tk)sgn(t− tk)
∫ t

tk

∫
Rx

∫
Rξ

|∂τ (f−M)|dξdxdτ+‖Q(t)‖V1
.
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Recalling that ∂t(f−M)∈L∞t (M1
x(R

d
x),L

1(Rξ)), we can write

d

dt
‖(f−M)(t)‖V1

+λ
∑
k∈I

ϕσ(t− tk)‖(f−M)(t)‖V1

≤λ
∑
k∈I

ϕσ(t− tk)|t− tk|‖∂t(f−M)‖L∞t (M1
x(R

d
x))

+‖Q(t)‖V1
.

Moreover, because of the compact domain of each ϕσ, we can state

d

dt
‖(f−M)(t)‖V1

+λ
∑
k∈I

ϕσ(t− tk)‖(f−M)(t)‖V1

≤λσ‖∂t(f−M)‖L∞t (M1
x(Rx))

∑
k∈I

ϕσ(t− tk)+‖Q(t)‖V1
.

Finally using Gronwall’s lemma, we obtain

‖f(T )−M(T )‖L1(Rx×Rξ)

≤‖f0−M0‖L1(Rx×Rξ)
e−λ

∫ T
0

∑
k∈Iϕσ(t−tk)dt

+σ‖∂t(f−M)‖L∞t (M1
x(Rx),L1(Rξ))

(
1−e−λ

∫ T
0

∑
k∈Iϕσ(t−tk)dt

)
+ sup

0<t≤T
‖Q(t)‖V1

1−e−λ
∫ T
0

∑
k∈Iϕσ(t−tk)dt

λ
.

The conclusion follows.

Remark 2.15. From Theorem 2.14, we have the following remarks. The error in the
initial condition is forgotten with time, as expected from hyperbolic conservation laws.
The effect of the collision term is filtered by the nudging coefficient λ. However, the
error in time on the observations introduces a bias of order σ in the upper bound which
cannot be ignored nor counter-balanced. However, it is worth noting that λ does not
amplify this error, which is a very important point.

2.5. Incomplete observations in space. In this section, a subdomain is
defined, where assimilation towards data occurs. We deal with a simplified 1D problem
with boundary conditions and assume that solutions are smooth. The first idea is to
find the minimal time required for the information to spread over the whole domain
and have an effect on the variables. In control theory, this is the observability problem,
dealt with in Section 2.5.1. The second idea is to prove the stability of the problem by
studying the error decay, which is analyzed in Section 2.5.2.

2.5.1. Observability. Let us study the periodic 1D problem over the domain
[0,1] {

∂tf(t,x,ξ)+a(ξ) ·∇xf(t,x,ξ)=λ(x)(M(t,x,ξ)−f(t,x,ξ)),
f(0,x,ξ)=f0(x,ξ); f(t,0,ξ)=f(t,1,ξ).

(2.22)

where the observations are supposed to come from the model{
∂tM(t,x,ξ)+a(ξ) ·∇xM(t,x,ξ)=Q(t,x,ξ),

M(0,x,ξ)=M0(x,ξ); M(t,0,ξ)=M(t,1,ξ).
(2.23)
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We are interested in the case λ(x)=λ [a,b](x), λ∈R+, 0<a<b<1. We consider Q=0,
ξ is supposed to be fixed. This assumption is not meaningless. Indeed, it represents the
situation where no collision occur at the kinetic level, which translates at the macro-
scopic level into a situation where no shock occurs.

The first concern is the observability of the situation at time T >0, where observ-
ability is defined as follows in our case.

Definition 2.16 (Observability condition). The Cauchy system (2.22) is ob-
servable if and only if there exists C ∈R∗+ such that, for all solutions f of (2.22) with
λ=0,

C

∫ T

0

‖λ(x)u(x,t)‖2L2([0,1])≥‖u(0)‖2L2([0,1] .

This formally means that the information captured in the time lapse [0,T ] in the
subdomain [a,b] allows us to reconstruct any initial condition. At fixed ξ, (s,x+a(ξ)s)
is the characteristic curve starting in x of the pure transport problem (λ=0). The

quantity
∫ t
0 [a,b](x+a(ξ)s)ds represents the time that the particle starting at point x

spends in interval [a,b] between 0 and t. Let us call

Xt,ξ(x)=

∫ t

0
[a,b](x+a(ξ)s)ds.

We prove the proposition:

Proposition 2.17. X inf
t,ξ =min

x
Xt,ξ>0⇒ (2.22) is observable.

Proof. Let us show first that the condition X inf
t,ξ >0 (every characteristics spends

time in the observed domain) is equivalent to T > 1−(b−a)
|a(ξ)| . This shows that a(ξ) should

necessarily be non-zero, reflecting the fact that particles with speed 0 are not observ-
able. On Figure 2.1, we represent the characteristics of constant positive speed c in the
periodic case on domain [0,1]. We see that the last characteristic to pass through the

domain [a,b] is the blue one, starting right after point b. This happens if T > 1−(b−a)
c .

x

t

0 a b 1

T = 1−(b−a)
c

1
c

•

Fig. 2.1: Characteristics of the problem. This figure shows the equivalence between both
conditions X inf

t,ξ >0 and T > 1−(b−a)
|a(ξ)| .



604 DATA ASSIMILATION FOR HYPERBOLIC CONSERVATION LAWS

2.5.2. Error decay. Let us denote g(t,x,ξ) the error between the observations
and the estimator:

g(t,x,ξ)=f(t,x,ξ)−M(t,x,ξ).

Proposition 2.18. Let f(t,x,ξ) satisfy (2.22) and M(t,x,ξ) satisfy (2.23), where
Q(t,x,ξ) = 0. If the data assimilation problem (2.22) is observable, exponential stability

in time is ensured as soon as λ≥ t

Xinf
t

, where X inf
t is defined in Section 2.5.1, i.e.

‖g(t)‖V2
≤‖g0‖V2

e−λX
inf
t .

Proof. Subtracting (2.22) and (2.23) leads to{
∂tg(t,x,ξ)+a(ξ) ·∇xg(t,x,ξ)=−λ(x)g(t,x,ξ),
g(0,x,ξ)=f0(x,ξ)−M0(x,ξ)=g0(x,ξ); g(t,0,ξ)=g(t,1,ξ).

(2.24)

(2.24) is equivalent to⎧⎨⎩
d

dt
g(t,x+a(ξ)t,ξ)=−λ(x+a(ξ)t)g(t,x+a(ξ)t,ξ),

g(0,x,ξ)=g0(x,ξ); g(t,0,ξ)=g(t,1,ξ).
(2.25)

(2.25) integrates into

g(t,x+a(ξ)t,ξ)=g0(x,ξ)exp
(
−
∫ t

0

λ(x+a(ξ)s)ds
)
,

=g0(x,ξ)exp
(
−λ

∫ t

0
[a,b](x+a(ξ)s)ds

)
.

Then, if Xt,ξ has a positive lower bound X inf
t,ξ (if the system is observable),

‖g(t)‖≤‖g0‖e−λXinf
t .

Therefore, an exponential decrease of the error is possible if λ≥ t
Xinf

t
.

Then it is possible to add the collision term in a second step. The analytical
resolution of the error writes

g(t,x+a(ξ)t,ξ)=g0(x,ξ)exp
(
−
∫ t

0

λ(x+a(ξ)s)ds
)

+

∫ t

0

Q(s,x+a(ξ)s,ξ)exp
(
−
∫ t

s

λ(x+a(ξ)r)drds
)
.

However, it is not so clear how to treat the integral with the collision term, since we
cannot extract the coefficient λ as easily as in the situation when it was constant. It
raises the question of whether the coefficient can filter collisions everywhere, like in
the case of complete observations at the beginning of this paper, even if it is spatially
constrained. This problem remains an open question and we leave it with no specific
answer for now.
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2.6. Numerical results. Numerical experiments of the kinetic nudging are
performed first on a scalar conservation law, Burgers’ equation. Further numerical
results about the shallow water equations are presented in Section 3.3.

2.6.1. Discretization. We consider that observations satisfy the Burgers equa-
tion with homogeneous Dirichlet boundary conditions on the domain [0,1],⎧⎨⎩∂tu+∂x

u2

2
=0,

u(0,x)=u0(x); u(t,0)=0, u(t,1)=0.

This problem with all its entropies is well represented by the kinetic model{
∂tχ(ξ,u(t,x))+ξ∂xχ(ξ,u(t,x))=∂ξm(t,x,ξ),

χ(ξ,u(0,x))=χ(ξ,u0(x)); χ(ξ,u(t,0))=χ(ξ,u(t,1))=0.

Therefore, data assimilation at the kinetic level writes{
∂tf(t,x,ξ)+ξ∂xf(t,x,ξ)=λ(χ(ξ,u(t,x))−f(t,x,ξ)),
f(0,x,ξ)=f0(x); f(t,0,ξ)=f(t,1,ξ)=0.

(2.26)

To solve this numerically, we develop a finite volume framework. The domain [0,1]
is divided into N cells centered on xi, i∈0..N . Then, we integrate (2.26) over
[xi−1/2,xi−1/2]× [tn,tn+1]. An explicit Euler scheme leads to

fn+1
i =fni −

Δt

Δx
ξ
(
fni+1/2−fni−1/2

)
+λΔt(χ(ξ,uni )−fni ) .

The numerical fluxes are computed using a simple and natural upwind scheme

fni+1/2=

{
fni , for ξ≥0,

fni+1, for ξ <0.

This explicit scheme is only valid under the CFL condition

Δt≤
(
λ+

supξ

Δx

)−1

.

An integration in ξ gives the macroscopic scheme for the estimator û(t,x), which is
basically the Osher-Engquist scheme,

ûn+1
i = ûni −

Δt

Δx

(
max(ûni ,0)

ûni
2

+min(ûni+1,0)
ûni+1

2

−max(ûni−1,0)
ûni−1

2
−min(ûni ,0)

ûni
2

)
+λΔt(uni − ûni ).

2.6.2. Results. We want to illustrate our mathematical result about noise
stability (Theorem 2.7) on Burgers’ equation. We add a deterministic noise to the data.
As explained in Remark 2.6, in practice the noise is on the macroscopic data. Let us
choose

E(x)=εcos
(x
ε

)
, ∂αE(x)=ε1−α cos

(x
ε
+α

π

2

)
.
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Therefore,

‖E‖L2([0,1])=
ε

2

√
2+εsin

(2
ε

)
, ‖∂αE‖L2([0,1])=

ε1−α

2

√
2+εsin

(2
ε

)
.

The noise may then be non negligible in L2 norm (as soon as α>0) whereas it is small
in H−α. Initial conditions are taken as follows:

u(0,x)=

{
1 if 1

8 ≤x≤ 1
4

0 otherwise,
, û(0,x)=

{
0.75 if 1

12 ≤x≤ 1
6 ,

0 otherwise.

The parameters take the following values: N =100, λ=100, α= 1
4 . The observations are

partial in time: 30 observations are carried out between t= 0 and t= 2. The number of
time steps is 320 which makes an observation ratio of 10%. The first row of Figure 2.2
shows the evolution of the observer if no assimilation occurred (λ = 0). We can see
that the error introduced by a wrong initial condition is detrimental. Figure 2.2 shows
the evolution of the data assimilation problem for two different values of ε. In the case
ε=0.02, ‖∂αE‖L2([0,1])=4.010−2, whereas ‖∂αE‖L2([0,1])=7.010−3 for ε=0.002. In

comparison, the norm of the initial solution is ‖u(0, ·)‖L2([0,1])=4.010−1. It converges
rapidly to the global shape of the original problem. As stated previously, the noise
introduced on the data cannot be forgotten, but it is not amplified.

The proofs of the theorems about noise stability are centered around the search
for an optimal λ. Figure 2.3 shows the existence of this optimal λ minimizing the
homogeneous Sobolev seminorm. Moreover, it shows that the error tends to zero as ε
tends to zero.

In the end, the observer and the numerical scheme for the data assimilation is similar
to what could have been done on the macroscopic conservation law directly. However,
this framework paves the way for an interesting theoretical framework, making the most
of what has already been around kinetic equations. But most of all, it is its extension
to the case of hyperbolic systems in Section 3 that reveals its efficiency.

3. Kinetic Luenberger observer on the Saint-Venant system
Systems in several space dimensions usually hardly admit a kinetic formulation.

They satisfy indeed a single entropy inequality instead of a whole family, and this is not
enough to deduce the sign of the kinetic entropy defect measure in (2.2). Therefore, we
introduce a weaker concept: the kinetic representation.

3.1. Kinetic representation of the Saint-Venant system. The kinetic
representation only uses one entropy and it is therefore much less demanding than the
kinetic formulation. It enables us to represent a hyperbolic system by integration of
the underlying kinetic equation. Its main interest lies in the design of finite volume
solvers. We will show that it is also very useful to derive observers. Since the kinetic
representation does not admit a general writing, we choose to study the Saint-Venant
system.

As explained in the introduction of this article, the shallow water assumptions
allow us to approximate the free surface Navier-Stokes equations under the form of
a hyperbolic conservation law, the Saint-Venant system with topography source term,
that we recall hereafter⎧⎪⎨⎪⎩

∂H

∂t
+
∂

∂x

(
Hu

)
=0, (3.1a)

∂(Hu)

∂t
+
∂(Hu2)

∂x
+
g

2

∂H2

∂x
=−gH ∂zb

∂x
, (3.1b)
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Fig. 2.2: Top: Evolution of the data assimilation problem at time t = 0.01, t = 0.2, and
t = 0.5 in the case ε = 0.02. Bottom: Evolution of the data assimilation problem at time t
= 0.01, t = 0.2, and t = 0.5 in the case ε = 0.002.

where H and u respectively denote the water depth and the averaged velocity and zb
represents the bathymetry with H=η−zb. We point out the difficulty of treating a
nonlinear hyperbolic system, in comparison with scalar conservation laws. A review of
control theory on the Saint-Venant system is available in [18], which uses non trivial
tools like the return method, quasi static deformations, and leaves the reader with still
open problems.

We call entropy solution to the Saint-Venant system, a weak solution which satisfies
an entropy inequality.

Theorem 3.1. The system (3.1a)-(3.1b) is strictly hyperbolic for H>0. It admits a
mathematical entropy ζ (which is also the energy) and an entropy flux G,

ζ=
Hu2

2
+
gH(η+zb)

2
, G=u

(
ζ+g

H2

2

)
, (3.2)

satisfying

∂ζ

∂t
+
∂G

∂x
≤0. (3.3)
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Fig. 2.3: H1/8 error between the observations and the model as a function of λ. We see on
the one hand the existence of an optimal λ for any value of ε. Notice also the decrease of the
error with ε.

We do not prove this theorem which relies on the classical theory of hyperbolic equations
and simple algebraic calculation, see [19]. We just recall that for smooth solutions the
inequality in (3.3) is an equality.

The system (3.1a)-(3.3) admits a kinetic representation. We use another interpre-
tation as the one given in the introduction. As explained in [31], many Gibbs equilibria
can indeed replace the Maxwellian usually used in kinetic theory, as soon as it satis-
fies basic properties. Some are particularly suited for the design of efficient numerical
schemes as they enable analytical integrations (see [2, 3]).

We first introduce a real function χ defined on R, compactly supported and which
has the properties ⎧⎪⎨⎪⎩

χ(−w)=χ(w)≥0,∫
R

χ(w) dw=

∫
R

w2χ(w) dw=1.
(3.4)

Define k3=
∫
R
χ3(w) dw. We denote by [−wχ,wχ] the compact support of length 2wχ

of the function χ. The simplest choice for χ is

χ
1(z)=

1

2
√
3
1|z|≤√3.

Another function satisfying (3.4) deserves to be mentioned too

χ0(z)=
1

π

√
1− z2

4
|z|≤2. (3.5)

It is indeed the minimizer of energy. We recall the lemma from [33] in a slightly different
form

Lemma 3.2. The minimization of the energy

ζ(f,zb)=

∫
R

(
ξ2

2
f(ξ)+

g2

8
f(ξ)3+gzbf(ξ)

)
dξ,
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under the constraints

f ≥0,

∫
R

f(ξ)dξ=H, and

∫
R

ξf(ξ)dξ=Hu,

is reached for the function M(t,x,ξ)= H
c
χ
0(
ξ−u
c ), with χ0 defined by (3.5).

It also permits analytical integrations that we will use in further numerical exper-
iments. Now let us construct the density of particles M(t,x,ξ) defined by a Gibbs
equilibrium. The microscopic density of particles present at time t, at the abscissa x,
and with velocity ξ is given by

M(t,x,ξ)=
H

c
χ
(
ξ−u
c

)
,

with c=
√

gH
2 .

Then we have the following theorem, whose proof can be found in [3].

Theorem 3.3. The functions (H,u) are strong solutions of the Saint-Venant system
described by (3.1a)-(3.3) if and only if the equilibrium M(t,x,ξ) is a solution of the
kinetic equation

∂M

∂t
+ξ ·∇xM−g∇xzb ·∇ξM =Q(t,x,ξ), (3.6)

where Q(x,t,ξ) is a collision term satisfying∫
R

Q dξ=

∫
R

ξQ dξ=0.

The solution is an entropy solution if additionally∫
R

(
ξ2

2
+
g2

8k3
M2+gzb

)
Qdξ≤0.

Remark 3.4. The right hand side Q(t,x,ξ) in the kinetic representation does not vanish
in the smoothness region, whatever the choice of χ, as opposed to the measure m in
Section 2.1.

3.2. Convergence result for the Saint-Venant system. Let us deal now
with data assimilation on this Saint-Venant system with a bounded source term. We
prove that convergence towards a Saint-Venant solution is possible when observing the
water height only. This is the key point of our Saint-Venant study. For that reason, we
define a kinetic density in the case we only have access to water height observations

M̃(t,x,ξ)=
H

c
χ

(
ξ− û
c

)
, (3.7)

where H(t,x) are the observations and û(t,x) is the velocity of macroscopic estimator
(with the notations ). As a remark, we claim that the development hereafter is adaptable
to the case we only have access to u(t,x). At the kinetic level, the equation satisfied by
the estimator density f can be written as follows:

∂tf(t,x,ξ)+ξ ·∇xf(t,x,ξ)−g∇xzb∇ξf(t,x,ξ)=λ(M̃(t,x,ξ)−f(t,x,ξ)), (3.8)
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where zb is the topography. Let us suppose that the solution f of (3.8) can also
be written under the form of a Gibbs equilibrium using the macroscopic estimator
(Ĥ(t,x),û(t,x)), i.e.

f(t,x,ξ)=
Ĥ

ĉ
χ(
ξ− û
ĉ

). (3.9)

Integrating in ξ, (3.8) with (3.9) corresponds to the macroscopic system (to be compared
with (1.3a) - (1.3b)) ⎧⎨⎩

∂tĤ+∂x(Ĥû)=λ(H−Ĥ), (3.10a)

∂tĤû+∂x(Ĥû
2+

gĤ2

2
)=λû

(
H−Ĥ

)
. (3.10b)

Proposition 3.5. Let H(t,x)∈L∞([0,T ]×Rx) be a solution of (3.1a) - (3.1b), and

M̃(t,x,ξ) be the Gibbs equilibrium built from it following (3.7). Let f(t,x,ξ) satisfy

(3.8), with the constraint of being of the form (3.9). Assuming some regularity on M̃
defined by

∂tM̃+ξ ·∇xM̃+g
∂zb
∂x

(
ξ−u
c2

)
M̃ =Q∈C([0,T ],V1),

then ∃γ >0 such that, ∀T >0,∥∥∥f(T )−M̃(T )
∥∥∥
V1

≤
∥∥∥f0−M̃0

∥∥∥
V1

e−(λ−γ)T + sup
0≤t≤T

‖Q(t)‖V1

1−e−(λ−γ)T

λ−γ .

Remark 3.6. As in the scalar case, the upper bound consists of two terms. The first
implies the initial conditions and disappears with time, as soon as λ>γ. The second is
the filter on the collision term, which is useful once again as soon as λ>γ.

Proof. (Proof of Proposition 3.5.) To begin the proof, we introduce another data
assimilation problem, which is equivalent to (3.8):

∂tf(t,x,ξ)+ξ ·∇xf(t,x,ξ)−g∇xzb∇ξf(t,x,ξ)=λ(M̃(t,x,ξ)−f(t,x,ξ)), (3.11)

where f is defined hereafter as

f(t,x,ξ)=
Ĥ

ĉ
χ(
ξ− û
ĉ

),

and χ satisfies

χ(a)=χ(−a),
∫
χ(z)dz=1.

Given the properties of χ, an integration of (3.8) and (3.11) in the ξ variable results in
the same macroscopic equations. Therefore, working with (3.11) also leads to the right
data assimilation problem. We choose the following particular expression for χ:

χ=

∫ +∞

z

ξχ(ξ)dξ.
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Hence, (3.11) simplifies to

∂tf(t,x,ξ)+ξ ·∇xf(t,x,ξ)+g∇xzb ξ−u
c2

f(t,x,ξ)=λ(M̃(t,x,ξ)−f(t,x,ξ)).

From the hypothesis on M̃(t,x,ξ), we have

∂t(f−M̃)+ξ ·∇x(f−M̃)+(λ+g
∂zb
∂x

ξ−u
c2

)(f−M̃)=−Q. (3.12)

Multiplying (3.12) by sgn(f(t,x,ξ)−M̃(x,ξ)) and assuming the source term is bounded
leads to

∂t|f−M̃ |+ξ ·∇x|f−M̃ |+(λ−g
∥∥∥∥∂zb∂x

∥∥∥∥
L∞(Rd

x)

|ξ−u|
c2

)|f−M̃ |≤ |Q|. (3.13)

Integrating (3.13) over the spatial and velocity variables we end up with

d

dt

∥∥∥f−M̃∥∥∥
V1

+

∫
Rx

∫
Rξ

(λ−g
∥∥∥∥∂zb∂x

∥∥∥∥
∞

|ξ−u|
c2

)|f−M̃ |dξdx≤
∫
Rx

∫
Rξ

|Q|dξdx.

Since M̃ and f are considered to be Gibbs equilibria of compact support in ξ, we
introduce Ω, the support of M and ξmax, defined such that

∀ξ s.t. |ξ|≥ ξmax, f(t,x,ξ)=M̃(t,x,ξ)=0.

Besides, we consider that u(t,x)∈L∞([0,T ],Rdx), Q∈V1. We can therefore proceed
further:

d

dt

∥∥∥f−M̃∥∥∥
V1

+(λ−g
∥∥∥∥∂zb∂x

∥∥∥∥
∞

ξmax+‖u‖∞
c2

)
∥∥∥f−M̃∥∥∥

V1

≤‖Q(t)‖V1
.

Eventually,∥∥∥f−M̃∥∥∥
V1

≤
∥∥∥f0−M̃0

∥∥∥
V1

e−(λ−γ)t+ sup
0≤t≤T

‖Q(t)‖V1

1−e−(λ−γ)t

λ−γ ,

where we have set

γ=g

∥∥∥∥∂zb∂x
∥∥∥∥
∞

ξmax+‖u‖∞
c2

.

In a second step, we prove that the observation of H is enough to have convergence
of f towards M , where M is defined as follows

M =
H

c
χ

(
ξ−u
c

)
.

This means thatM is entirely built with observations (unlike M̃), and we want to know

if the problem defined by (3.8) leads to a convergence of (Ĥ,û) towards (H,u). This is
the key point of the study on the Saint-Venant system.
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Proposition 3.7. Under the hypothesis of Proposition 3.5, we have, ∀ T >0,

‖f−M‖V1
−−−−−→
λ→+∞

0.

Proof. The triangle inequality tells us that

‖f−M‖V1
≤
∥∥∥f−M̃∥∥∥

V1

+
∥∥∥M̃−M

∥∥∥
V1

.

We have already proved in Proposition 3.5 that
∥∥∥f−M̃∥∥∥

V1

−−−−−→
λ→+∞

0. It is clear that M̃

is also one solution to the data assimilation problem

∂M̃

∂t
+ξ ·∇xM̃−g ∂zb

∂x

∂M̃

∂ξ
=λ(M−M̃),

Subtracting this by (3.6) gives

∂δ

∂t
+ξ ·∇xδ−g ∂zb

∂x

∂δ

∂ξ
=−λδ, (3.14)

where δ=M̃−M . Since∫
R

δ(t,x,ξ) dξ=H(t,x,ξ)−H(t,x,ξ)=0,

the integration in ξ of (3.14) gives necessarily u= û, and therefore M̃ =M (as soon as
u is known at one point e.g. at one of the boundaries), and the proof is complete.

Remark 3.8. In other words, if (H,u) is a solution to the Saint-Venant system, there
are no other solutions of the form (H,û) with u �= û.

3.3. Numerical results. Let us start first by some reminder of the tech-
niques used for an appropriate discretization of the shallow water equations without
assimilation. To approximate the solution of the Saint-Venant system (3.1a)-(3.1b),
we use a finite volume framework. We assume that the computational domain is dis-
cretised by I nodes xi. We denote by Ci the cell of length Δxi=xi+1/2−xi−1/2 with

xi+1/2=(xi+xi+1)/2. For the time discretization, we denote tn=
∑
k≤nΔt

k, where the

time steps Δtk will be made precise later though a CFL condition. The ratio between
the space and time steps is σni =Δtn/Δxi. We denote Xn

i =(Hn
i ,q

n
i ) the approximate

solution at time tn on the cell Ci with q
n
i =H

n
i u

n
i .

3.3.1. The hydrostatic reconstruction technique. The hydrostatic recon-
struction consists in a modification of the bottom topography and the water depths at
the cell interfaces, see [1]. More precisely the quantities Hn

i+1/2± are defined by

Hn
i+1/2−=Hn

i +zb,i−zb,i+1/2, Hn
i+1/2+=Hn

i+1+zb,i+1−zb,i+1/2, (3.15)

with

zb,i+1/2=max(zb,i,zb,i+1). (3.16)

A nonnegativity-preserving truncation of the leading order depths is also applied
in (3.15):

Hn
i+1/2±=max(0,Hn

i+1/2±). (3.17)
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3.3.2. Discrete scheme. To make the numerical scheme precise, we deduce a
finite volume kinetic scheme from the kinetic interpretation (3.6) of the Saint-Venant
system. First, we define the discrete densities of particles Mn

i by

Mn
i =Mn

i (ξ)=
Hn
i

cni
χ

(
ξ−uni
cni

)
, (3.18)

with cni =
√

gHn
i

2 . Then we propose a discretisation of (3.6) of the form

Mn+1−
i =Mn

i −σni
(
Mn

i+1/2−Mn
i−1/2

)
, (3.19)

with

Mn
i+1/2= ξM

n
i+1/2−gΔzb,i+1/2−

∂M
n

i+1/2−
∂ξ

,

Mn
i−1/2= ξM

n
i−1/2−gΔzb,i−1/2+

∂M
n

i−1/2+

∂ξ
,

and

Mn
i+1/2=M

n
i+1/2− ξ≥0+M

n
i+1/2+ ξ≤0, with M

n
i+1/2−=

Hn
i+1/2−
cni+1/2−

χ

(
ξ−uni
cni+1/2−

)
,

Δzb,i+1/2−= zb,i+1/2−zb,i, Δzb,i−1/2+= zb,i−1/2−zb,i,

M
n

i+1/2−=
Hn
i +H

n
i+1/2−

2cni+1/2−
χ

(
ξ−uni
cni+1/2−

)
, M

n

i−1/2+=
Hn
i +H

n
i−1/2+

2cni−1/2+

χ

(
ξ−uni
cni−1/2+

)
.

The discrete scheme (3.19) does not take into account the collision term which
relaxes Mn+1−

i to a Gibbs equilibrium. It is used in a second step introducing a dis-
continuity at time tn+1 on M and replacing Mn+1−

i by an equilibrium

Mn+1
i =Mn+1−

i +ΔtnQni ,

such thatMn+1
i is supposed to be of the form (3.18) whereHn+1

i and un+1
i are computed

using an integration of (3.19)

Xn+1
i =

⎛⎝ Hn+1
i

Hn+1
i un+1

i

⎞⎠=

∫
R

K(ξ)Mn+1−
i (ξ) dξ, (3.20)

with K(ξ) is the vector K(ξ)=(1,ξ)T . Notice that Mn+1
i is discontinuous in the sense

that Mn+1
i �=Mn+1−

i whereas the macroscopic variables remain continuous Xn+1
i =

Xn+1−
i .

3.3.3. Fluxes calculus. Using (3.20), we are now able to make the numerical
scheme precise for the Saint-Venant system (3.1a)-(3.3):

Xn+1
i =Xn

i −σni
(
Fni+1/2−Fni−1/2

)
, (3.21)

with

Fni+1/2=

∫
R

K(ξ)Mn
i+1/2(ξ) dξ. (3.22)
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Now, using (3.19), we are able to make precise the computation of the macroscopic
fluxes in (3.21). If we denote

F(Xn
i+1/2)=

(
FH(Xn

i+1/2),Fq(Xn
i+1/2)

)T
,

then we have

FH(Xn
i+1/2)=H

n
i+1/2+

∫
z≤− un

i+1
cn
i+1/2+

(uni+1+zc
n
i+1/2+)χ(z) dz

+Hn
i+1/2−

∫
z≥− un

i
cn
i+1/2−

(uni +zc
n
i+1/2−)χ(z) dz, (3.23)

and

Fq(Xn
i+1/2)=Hi+1/2+

∫
z≤− un

i+1
cn
i+1/2+

(uni+1+zc
n
i+1/2+)

2χ(z) dz

+Hn
i+1/2−

∫
z≥− un

i
cn
i+1/2−

(uni +zc
n
i+1/2−)

2χ(z) dz

+
gΔzb,i+1/2−

2
(Hn

i+1/2−+Hn
i ). (3.24)

3.3.4. Properties of the numerical scheme. The previous scheme exactly
corresponds to the original reconstruction technique proposed by Audusse et al. [1] with
a kinetic solver for the conservative part and therefore it is endowed with the properties
depicted in [1, Theorem 2.1]. We recall hereafter the statement of the theorem.

Theorem 3.9. The kinetic flux for the homogenous Saint-Venant system is consistent,
preserves the nonnegativity of the water depth, and satisfies an in-cell entropy inequality
corresponding to the entropy ζ in (3.3). Then the finite volume scheme (3.21) with the
definitions (3.15), (3.16), (3.17), (3.20), (3.23), and (3.24)

(i) preserves the nonnegativity of the water depth,

(ii) preserves the steady state of a lake at rest H+zb= cst,

(iii) is consistent with the Saint-Venant system (3.1a)-(3.1b),

(iv) satisfies an in-cell entropy inequality associated to the entropy ζ defined in (3.2),

d

dt
ζ(Xi(t),zb,i)+

1

Δxi

(
Gi+1/2−Gi−1/2

)≤0.

The preceding inequality is a semi-discrete version of (3.3).

Since the proof of the precprecedingeding theorem is similar to the one given in [1,
Theorem 2.1], it is not detailed here.

3.3.5. Numerical scheme for the data assimilation problem. Let us deal
now with the numerical scheme for the assimilation problem (3.8). Since the handling of
the topography source terms with hydrostatic reconstruction has been explained in the
previous section, we will only consider here the source term associated to the nudging
term. We are working on

∂tf(t,x,ξ)+ξ ·∇xf(t,x,ξ)=λ
(
M̃−f

)
, (3.25)
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for which we propose the two steps numerical scheme composed first of a transport stage

fn+1−
i =fni −σni ξ

(
fni+1/2−fni−1/2

)
+Δtnλ

(
M̃n
i −fni

)
, (3.26)

where the numerical fluxes are computed using a simple upwind scheme

fni+1/2=

{
fni , for ξ≥0

fni+1, for ξ <0;
(3.27)

and a collapse stage that forces fn+1
i to be of the form

fn+1
i =

Ĥn+1
i

ĉn+1
i

χ

(
ξ− ûn+1

i

ĉn+1
i

)
. (3.28)

As in the 1D case for Burgers’ equation, this leads, by an integration against ξ of the
first two moments, to a macroscopic scheme

Ĥn+1
i = Ĥn

i −σni
(
(FH(Xn

i+1/2)−FH(Xn
i−1/2)

)
+λΔtn

(
Hn
i −Ĥn

i

)
,

Ĥn+1
i ûn+1

i = Ĥn
i û

n
i −σni

(
Fq(Xn

i+1/2)−Fq(Xn
i−1/2)

)
+λΔtn

(
Hn
i û

n
i −Ĥn

i û
n
i

)
.

Let us define

e(f)=
ξ2

2
f+

g2

8k3
f3,

where k3=
∫
R
χ3(ω)dω,

ζ̂ni =

∫
R

e(fni )(ξ)dξ and ζ̃ni =

∫
R

e(M̃n
i )(ξ)dξ,

respectively the observer energy and the observations energy of cell i at time n, and

Gni+1/2=

∫
R

ξe(fni+1/2)(ξ)dξ,

the energy flux between cell i and cell i+1. Then we can state a deeper stability
property than the positivity of the water height.

Theorem 3.10. Under the CFL condition

Δtn≤min
i

Δxi
λΔxi+ |ûni |+ ĉi

, (3.29)

the finite volume scheme (3.26) with the definition (3.27) preserves the nonnegativity of
the water height and admits the discrete entropy inequality:

ζ̂n+1
i ≤ ζ̂ni −σni

(
Gni+1/2−Gni−1/2

)
+λΔtn

(
ζ̃ni − ζ̂ni

)
.

Proof. (Proof of Theorem 3.10.) Let us denote

ξ+=max(ξ,0) and f−=min(ξ,0).
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From (3.25), the scheme (3.26) with (3.27) leads to

fn+1−
i =fni −σni ξ+

(
fni −fni−1

)−σni ξ−(fni+1−fni
)
+λΔtn

(
M̃n
i −fni

)
,

which can be rewritten

fn+1−
i =fni

(
1−σni ξ++σni ξ

−−λΔtn)+σni ξ+fni−1−σni ξ−fni+1+λΔt
nM̃n

i . (3.30)

Under the condition that

1−σni |ξ|−λΔtn≤0,

which can be written under the form of the CFL condition (3.29), the scheme (3.30)
is a convex combination of fni , f

n
i−1, f

n
i+1, and Mn

i . As a consequence, we can claim
that if the initial condition is nonnegative, and so are the observations, then the density
fni remains positive for any time, a fortiori the water height. The scheme preserves
the nonnegativity of the water height. In the case where f ≥0, it is a convex function,
which enables us to write for the convex combination (3.30)

e(fn+1−
i )≤ (

1−σni ξ++σni ξ
−−λΔtn)e(fni )

+σni ξ
+e(fni−1)−σni ξ−e(fni+1)+λΔt

ne(M̃n
i ). (3.31)

And (3.31) is factorized again as

e(fn+1−
i )≤ e(fni )−σni ξ

(
e(fni+1/2)−e(fni−1/2)

)
+λΔtn

(
e(M̃n

i )−e(fni )
)
. (3.32)

We integrate (3.32) with respect to ξ to get

ζ̂n+1−
i ≤ ζ̂ni +σni

(
Gni+1/2−Gni−1/2

)
+λΔtn

(
ζ̃ni − ζ̂ni

)
.

Eventually, Lemma 3.2 ensures that the minimum of energy is achieved for the Gibbs
equilibrium of the form (3.28), authorizing us to write∫

R

e(fn+1
i )dξ= ζ̂n+1

i ≤ ζ̂n+1−
i ≤ ζ̂ni −σni

(
Gni+1/2−Gni−1/2

)
+λΔtn

(
ζ̃ni − ζ̂ni

)
.

Remark 3.11. In case of regular solutions, it can be shown that ζ̂ tends to ζ in time,
echoing Proposition 2.3.

3.3.6. Simulations. In order to show how the kinetic Luenberger observer
converges to non trivial equilibria, the first test case in two dimensions are the Thacker
solutions [38]. Those are analytical periodic solutions to the Saint-Venant system in a
parabolic bowl for which the free surface always remains a straight line. They are quite
difficult to handle numerically, because of the presence of numerous drying and flooding
areas in time. The domain is thus the one dimensional parabolic bowl characterized by

zb(x)=
hm
a2

((
x− L

2

)2

−a2
)
,

where a=1.0, L=4.0, and hm=0.5. Our reference solution, which will serve as obser-
vations, starts with an initial water height

H(0,x)=max(0,−hm/a2((x+1/2)2−a2)),
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and null velocity u(0,x)=0. This makes the surface a straight line of equation η(x)=
−hm

a2 (4x−0.25). The assimilated problem on the contrary starts from an equilibrium

Ĥ(0,x)=max(0,−zb(x)),

u(0,x)=0, such that the surface has equation η(x)=0. The domain is divided into 300
cells and the simulation lasts 15 seconds. Exact observations are carried out over the
spatial interval [1.5, 2.5] (25% of the domain) and every 0.05s. Figure 3.1 shows snap-
shots of the evolution of an observer towards an analytical Thacker solution. Visually,
the observer converges quite fast towards the observations. To be more specific, we
study the relative error between the exact height and the observer’s height. In order to
illustrate the different convergence results with respect to λ, we repeat the experiment
for several values of the nudging coefficient. Figure 3.2 on the left plot shows the result
in the case where observations are exact, but partial in space and time. We obtain
two rapidly decreasing curves, which go approximately to zero when λ gets bigger (the
residual error is due to the discretization of the numerical scheme). This is what was
expected from Proposition 3.5: without noise, the bigger λ, the better. However, this
assessment is not true numerically as λ badly influences the time step (3.29). Figure 3.2
shows the same situation with the right plot, when the noise already used in Section 2.6.2
is added to data (ε1−α cos(xε ), with ε=0.1 and α=0.25). Even if Theorem 2.7 did not
apply to systems of conservation laws with source terms, we see clearly here that there
is an optimal λ (here around 13), balancing the fact that the gain improves the match
with data but also amplifies the noise. We notice also that the L1 error norm does not
tend to zero, since it cannot get rid of the perturbations added on the data.

| |

Fig. 3.1: Evolution of Thacker solution at t=0s, t=2s, and t=5s. For each time, the left
plot is the reference solution and the right plot is the observer. The red portion of the domain
on the left plot is the observation domain.

Then, we propose a numerical test of our kinetic Luenberger observer on the non-
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Fig. 3.2: Thacker noisy solution. Relative error
‖Ĥ−H‖

L1

‖H‖
L1

for different values of λ. Left: in

the case where no noise is added to the observations. Right: in the case where a noise is added
to the observations.

hydrostatic Saint-Venant system [35]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H

∂t
+
∂

∂x

(
Hu

)
=0, (3.33a)

∂

∂t
(Hu)+

∂

∂x

(
Hu2+

g

2
H2+Hpnh,0

)
=−(gH+ pnh,0|b)

∂zb
∂x

+pa
∂η

∂x
, (3.33b)

∂

∂t
(Hw)+

∂

∂x
(Hwu)= pnh,0|b , (3.33c)

∂

∂t

(
η2−z2b

2

)
+
∂

∂x

(
η2−z2b

2
u

)
=Hw, (3.33d)

detailed in [14] and recalled here without proof. No theoretical work has yet been
pursued by the authors about data assimilation on this system, but we extended the
result on the observer built for the Saint-Venant system, where only the water height
was required. The context is now a bidimensional 30m long pond, with the bottom
topography

zb(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z0, for x≤6

z0+
zM−z0

6 (x−6), for 6≤x<12

zM for 12≤x≤14

zM + z0−zM
3 (x−14) for 14≤x≤17

z0 for 17≤x≤30,

where z0=−0.4, zM =−0.1. The domain is divided into 400 cells, and the simulation
lasts 20s. Observations are made on the whole domain in space and time, but only on
H(t,x). Unlike what was done for Thacker solutions, an interpolation in time is carried
out between two measurements to provide an observation value every 0.05s. Figure 3.3
shows the compared evolution of the reference simulation on the left, and of the observer,
on the right. Both simulations started with different initial conditions. The reference



A.-C. BOULANGER, P. MOIREAU, B. PERTHAME, AND J. SAINTE-MARIE 619

initial condition is, for xmax=30 and η1=0.2,

H0(x)=η1−zb(x)+0.3e−(x−0.75xmax)
2
,

Hu0(x)=0.3
√
g(η1−zb(x))e−(x−0.75xmax)

2
,

while the observer begins with a completely different water height, for η2=1 this time,

H0(x)=η2−zb(x),
Hu0(x)=0.3

√
g(η1−zb(x))e−(x−0.75xmax)

2
.

Fig. 3.3: Snapshots of data assimilation on the non-hydrostatic Saint-Venant system, compared
to the reference simulation for the horizontal velocity.

Once again, the observer shows good agreement with the observations. We propose
in Figure 3.4 a plot of the relative error between exact and complete observations in
space, every 0.08s or 0.04s. Even if this system is more general than the one studied
theoretically in this article we can see that the observer built only from the knowledge
of the water height is still efficient. The decrease of the error with λ is obtained as



620 DATA ASSIMILATION FOR HYPERBOLIC CONSERVATION LAWS

for Thacker solutions. We may also notice that the time between two measurements
influences the error, as it provides a better interpolation process.
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Fig. 3.4: Relative error
‖Ĥ−H‖

L1

‖H‖
L1

for different values of λ for the non-hydrostatic Saint-

Venant system. Two observation time steps are tested.

4. Discussion
In this article, we propose a new data assimilation strategy adapted to hyper-

bolic conservation laws and of practical use in complex cases as illustrated with the
Saint-Venant system with source terms. As usually done when tackling a problem on
hyperbolic balance laws, the scalar case allows us to develop an extensive theoretical
framework to demonstrate the interest of our approach. The joint numerical experimen-
tations proved the good agreement of the numerical results with the presented theory.
From a theoretical point of view it remains to make precise some results in the case
of shocks and partial measurements but this work describes the theoretical foundations
behind the definition of a Luenberger observer at the kinetic level. The simplicity of
the resulting estimator should be then compared to the classical difficulties arising in
data assimilation for conservation laws. Moreover, it is in the case of systems like the
non-hydrostatic Saint-Venant system or even the free surface hydrostatic Navier-Stokes
equations that the use of the kinetic representation shows a critical advantage with re-
spect to classical Luenberger definition since it allows us to design a new – nevertheless
natural – observer on the macroscopic variables which can be demonstrated to be stable
in terms of energy balance. Even if the theoretical framework remains to be fully defined
in the case of systems, the numerical results are in fact very encouraging.

We believe that the perspectives of introducing the kinetic representations in a
data assimilation context are now numerous from a theoretical point of view to the
practical context. It also encourages one to try to apply other sequential approaches with
the kinetic formulation, like, for example, considering a Kalman filter to the “linear”
kinetic representation and then contemplating the resulting observer on the macroscopic
variables. Note that such a strategy of considering an additional variable before applying
the Kalman filter can circumvent the “curse of dimensionality” only if a resulting system
depending on the macroscopic variable can eventually be retrieved. The same type of
open question raises if the system is approximated by a – potentially very large – system
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of ODEs via the method of characteristics where, on each characteristic, a Kalman filter
can be easily applied. An interesting challenge is then to prove that the large system
of resulting ODEs – each controlled by a Kalman filter – can be recombined to present
an original and computable filter on the initial PDE system.
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