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OPTIMAL TRANSPORT FOR PARTICLE IMAGE VELOCIMETRY∗

LOUIS-PHILIPPE SAUMIER† , BOUALEM KHOUIDER‡ , AND MARTIAL AGUEH§

Abstract. We present a new method for particle image velocimetry, a technique using successive
laser images of particles immersed in a fluid to measure the velocity field of the fluid flow. The
main idea is to recover this velocity field via the solution of the L2-optimal transport problem
associated with each pair of successive distributions of tracers. We model the tracers by a network
of Gaussian-like distributions and derive rigorous bounds on the approximation error in terms of
the model’s parameters. To obtain the numerical solution, we employ Newton’s method, combined
with an efficient spectral method, to solve the Monge-Ampère equation associated with the transport
problem. We present numerical experiments based on two synthetic flow fields, a plane shear and
an array of vortices. Although the theoretical results are derived for the case of a single particle
in dimensions one and two, the results are valid in R

d, d≥1. Moreover, the numerical experiments
demonstrate that these results hold for the case of multiple particles, provided the Monge-Ampère
equation is solved on a fine enough grid.

Key words. Optimal transport, particle image velocimetry, Monge-Ampère equation, numerical
method.
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1. Introduction

The technique of particle image velocimetry (PIV) consists in determining the
velocity field of a certain fluid flow using small particles as tracers [1, 20]. The main
idea is to introduce many of these passive tracers in the fluid and let them evolve.
Provided they accurately follow the motion of the fluid, then one hopes to quantify
the velocity field from the measurements of the distribution of the tracers at differ-
ent times. The particles are typically indistinguishable, and thus individual particle
tracking is not always possible, depending on the flow, the time-intervals considered
and the particle concentration. In fact, when the average distance between distinct
particles is much larger than the mean displacement, individual tracking becomes fea-
sible and the technique of particle image velocimetry is referred to as particle tracking
velocimetry (PTV). Usually, PIV is implemented using tracers with desirable light-
reflection properties. Every time a measurement is made, the fluid (or only a section
of the fluid) is illuminated with a laser (for example), and a camera records an image
showing the light reflected by the particles. The experimenter therefore collects a se-
quence of images and uses them to approximate the velocity field. Traditionally, PIV
is performed by illuminating only a very thin slice of the fluid so the image recorded is
two-dimensional. However, new techniques such as Tomographic PIV make it possible
to obtain three-dimensional data [9].

The standard way of extracting the velocity field from two recorded images is to
use the statistical method of cross-correlation [13, 20, 27]. In a nutshell, it consists in
splitting the region in which we want to recover the vector field into smaller subregions
called interrogation windows. Then, the average displacement of the tracers inside
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one interrogation window is found by computing the maximum of the cross-correlation
function between the parts of the two images inside the window. This cross-correlation
function is obtained by convolving the first image with the reflected second image. By
repeating this procedure for every interrogation window, one creates a grid of average
displacements from which the approximate velocity field is recovered.

The goal in this paper is to introduce a new way of estimating the velocity field
from the successive images measuring the light scattered by the tracers. Our idea is to
use the framework of the optimal transport (OT) problem [17, 25, 26], which consists
in finding the most efficient way of redistributing material from one configuration
to another. By most efficient, we mean that the optimal map T redistributing the
material minimizes a given transportation cost. More precisely, if x is the initial
position of a point in a domain Ω and if y is its final position in a domain Ω′, then
the cost of moving x to y is given by a function c(x,y). Let Ω and Ω

′

be closed
and bounded subsets of Rd. We model the material distributions by two probability
densities denoted f and g. In the case where c(x,y) is the square of the usual Euclidean
distance, this problem, called the L2 optimal transport problem, reads

Minimize I[T ]=
1

2

∫

Ω

|x−T (x)|2f(x)dx, (1.1)

over all maps T transporting f to g: T#f =g. The condition T#f =g, called the
push-forward condition, is essentially a mass conservation constraint which can be
expressed by

∫

Ω′

XE(y)g(y)dy=

∫

Ω

XT−1(E)(x)f(x)dx=

∫

Ω

XE(T (x))f(x)dx, (1.2)

for any Borel set E in Ω′. Here, XE denotes the characteristic function of E. Equiva-
lently, we have

∫

Ω′

ζ(y)g(y)dy=

∫

Ω

ζ(T (x))f(x)dx

for any ζ ∈C(Ω′). Then, by the change of variable y=T (x), assuming T is at least
C1, we obtain

∫

Ω

ζ(T (x))g(T (x))|det(DT )|dx=

∫

Ω

ζ(T (x))f(x)dx.

Because ζ is arbitrary, we arrive at

g(T (x))|det(DT )|=f(x). (1.3)

In [5], Brenier proved that T is the gradient of a convex potential, i.e. T =∇Ψ where
Ψ is convex. If we insert this formula in (1.3), we obtain the so-called Monge-Ampère
equation

g(∇Ψ(x))det(D2Ψ)=f(x). (1.4)

This equation is a fully nonlinear second order elliptic partial differential equation. It
is well-known (see [25] for example) that the gradient of a convex function Ψ∈C2(Ω)
which solves (1.4) is the optimal solution of the L2 OT problem (1.1). There are several
methods available to solve numerically the transport problem [2, 8, 12, 21, 22]. In
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[21, 22], we derived an efficient numerical algorithm, based on the work of [15] and
[23], for solving (1.1) through (1.4). For a comparison between this method and some
of the others, we refer to [21]. We also mention that the optimal transport problem has
been the basis of many image processing applications; see for example [6, 18, 19, 24].
Coming back to the PIV problem, we see that it is natural to consider f(x) and
g(x) to be the initial and final distributions of tracers. Our aim is thus to show how
the L2 OT problem associated with such densities can be used to approximate the
velocity field in the PIV problem and to analyze the different errors introduced by
this procedure.

As a simple model for f and g, we select sums of arrays of Gaussian distributions
with a common standard deviation σ that are centered respectively at the initial
and final positions of the tracer particles. The advantage of this Gaussian approach
is twofold. First, it guarantees a smooth solution for the OT problem, ensuring a
nice behaviour of our numerical scheme used to solve the Monge-Ampère equation.
Second, this parameter is physically motivated because the response of an imaging
system to a point source, namely the point spread function, is well approximated by a
Gaussian distribution. Note that it may also mimic the measurement uncertainty for
the actual locations of the particles. Some models for PIV take into account possible
differences in the shape of the particles caused for example by small distortions in the
reflected light. In addition, in many situations the quantity of light reflected by the
particles is not uniform for all particles, but rather normally distributed with mean
corresponding to the center of the light beam employed to illuminate the tracers.
Therefore, in such a model, the density distributions of tracers are convolved with a
Gaussian kernel and the resulting distributions are the ones on which cross-correlation
is being applied. For simplicity, we shall assume in this paper that all the particles
have the same weight in the modelled distribution, and thus there are no distortions
or variations in the light reflected. This could physically correspond to analyzing only
a subsection of the illuminated region for which the light variations are negligible.

Besides the standard deviation σ, we introduce another parameter r to lift up
f and g away from zero by adding the constant 1−r. We then rescale the densi-
ties’ Gaussian parts so they remain well-defined probability densities on Ω. While
the constant 1−r can be viewed as a parameter modelling a uniformly distributed
background noise in the light measurements due to the medium in which the particles
evolve, the algorithm we employ to solve the optimal transport problem actually re-
quires the densities f and g to be bounded away from zero to converge [21, 22]. This
condition ensures that the approximate solution stays within the class of convex po-
tentials as we iterate, which is required for the problem to remain well-posed. As we
will see later, it is possible to take r very close to 1 and still obtain convergence of the
algorithm; we just need to take a large enough grid size for the numerical resolution.

Even though σ and r are first motivated by our numerical method to solve the
transport problem, they are both physically meaningful for reasons we just explained.
Actually, it is not unreasonable to think that in some (nice) cases, the image intensity
field associated with the light captured by a camera in a PIV experiment could contain
sums of Gaussian-like functions with a somewhat uniform background noise, especially
because some algorithms used to solve the PIV problem [20] employ low-pass filters as
pre-processing steps in order to reduce the noise coming from particles located outside
of the light sheet (in the case of 2D PIV). In general, the PIV images often contain
blobs of light (corresponding to the light scattered by close-by particles) which do
not resemble Gaussian distributions, but because this work only aims at answering
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introductory questions regarding the OT framework for PIV, we will use the simple
model we introduced.

It is reasonable to think that the optimal map T transporting f onto g in the L2

OT problem will provide a good approximation of the particles’ true displacements,
as long as the time interval between the two snapshots, denoted ∆t, is not too large.
More precisely, if ∆t is small enough so that the average particle displacement is no
greater than about half of the average distance between particles (in other words, if
we are in the realm of PTV), then a direct computation of (T (x)−x)/∆t should yield
a good approximation of the fluid’s velocity field at the particles’ locations. However,
in cases where ∆t is larger than this, a multiresolution approach will most likely be
required in order to get a good approximate flow. In fact, modern PIV methods based
on cross-correlation usually employ some kind of multiresolution method, where for
example several passes of the algorithm are used to “offset” the interrogation window
in the direction of the flow’s motion [20]. Because this paper is only a first step towards
using the OT theory to tackle the PIV problem, we will be mostly concerned about
analyzing the behaviour of the transport map and thus we will focus in our numerical
experiments on the former case (∆t not too large) and directly use (T (x)−x)/∆t.
We intend to deal with more general cases in the future.

In the regime of PTV, one possible way of recovering the field would be to first
identify the meaningful particles and then solve the corresponding assignment prob-
lem. There are several algorithms available to solve the assignment problem, some
based on the simplex algorithm [11, 28], the Hungarian algorithm [14, 28], or the auc-
tion algorithm [4], but in general, for densities consisting of thousands of Dirac delta
distributions, this remains a challenging problem [10]. In the specific case of PIV,
one can of course limit the valid assignments to close neighbours, but even then the
number of possible matches can still be high. In addition, individual particles are not
always easy to identify from the light density distribution; bright clusters of light can
represent the light scattered by several particles. Motivated partly by these reasons,
we use a continuous approach both for the model and the numerical resolution in
this work. Our hope is that this will serve as a basis for future implementation of
optimal transport methods handling general density distributions of tracers. In fact,
it is well-known [25] that the velocity field associated to the time-dependent optimal
transport map solves the system











∂ρ

∂t
+∇·(ρv)=0, ρ(t=0, ·)=f,

∂v

∂t
+v ·∇v=0.

While we are concerned with an approximation of a vector field which is a solution
to the Navier-Stokes equations, the OT method provides in essence a solution to the
pressureless Euler equations at zero temperature. An interesting problem would thus
be to figure out under which conditions this flow provides a good approximation to
the “full” Navier-Stokes equations, but this is beyond the scope of this work.

In our model, when there is no uncertainty in measurement (σ=0) and no noise
(r=1), our densities actually become sums of Dirac delta functions. In such a case,
the initial positions of the tracers are moved directly to their true final positions
in the transport problem. However, we observed numerically that when σ>0 and
r<1, the transport map T does not map the centers of the Gaussians of f to the
centers of the Gaussians of g. This introduces an additional error along with the
finite differences error already present when approximating the velocity field by the
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transportation map. Two questions then naturally arise when laying out this model
for the images obtained with PIV. First, how do the uncertainty in the measurement
of σ and the noise level 1−r affect the approximation of the final positions of the
particles obtained by solving the OT problem? Second, how significant is this error
in terms of the approximation of the actual velocity field? As we will see through
numerical experiments, the answer to the second question is that it is dominated by
the error in finite differences. To answer the first question, we will derive error bounds
giving the rate of decay of this error with respect to σ, r, and ∆t.

Despite some possible difficulties which remain to be further explored, we claim
that the optimal transport theory for PIV has many major advantages. Indeed, it
is a global approach, i.e. it is not necessary to split the region into interrogation
windows to compute the velocity field; the solution is computed everywhere at once.
Several algorithms are now available to compute the solution of the optimal transport
problem, and some, like the one we employ here, are especially efficient. Moreover,
even though we use Gaussian distributions to model individual tracers (which makes
it easier to mathematically analyze the behavior of OT applied to PIV), the flexi-
bility of OT would easily allow us to take virtually any distribution of tracers. As
previously mentioned, one could imagine the resulting images looking more like ran-
dom clusters of pixels than nice, mathematically appealing density distributions. In
addition, OT can be employed for solving two-dimensional problems just as well as
three-dimensional problems. We will further discuss these claims later.

The rest of the paper is organized as follows. In Section 2, we present the details of
the synthetic PIV data model and discuss the numerical method used to solve the OT
problem. In Section 3, we consider the case of one particle in dimension one to derive
and validate the main results of this paper: we show that the error due to the OT
approximation converges linearly in (1−r)/r and σ. Next, in Section 4, we generalize
the results of Section 3 to dimension two. To do so, we need to impose some rather
intuitive assumptions, and we justify them with numerical simulations. In Section 5,
we consider the case of multiple particles immersed in two different synthetic flows: a
simple plane shear flow and an array of vortices. In order to investigate the behaviour
of the transport map (and thus the behaviour of our approximate vector field) in our
model, we compute the approximation error for different values of the parameters.
Our numerical results demonstrate that the error bounds established in sections 3
and 4 remain valid for the case of many particles. Finally, a discussion and some
concluding remarks are given in Section 6.

2. Model and algorithm

2.1. Model setup. Let Ω=[0,1]2 be the domain in which we want to recover
a vector field v(x,t) representing the velocity of a given two-dimensional fluid, where
x=(x1,x2). Note that from this section onwards, we will use the boldface notation to
denote vectors. Consider (M−1)2 tracers (point particles) immersed in the fluid that
are represented by Gaussian distributions modified in the following way. We consider
the global distribution defined on the domain Ω by

f(x1,x2)=r
M−1
∑

i=1

M−1
∑

j=1

1

kλij

exp

(

−18M2s2
[

(x1−λ1ij )
2+(x2−λ2ij )

2
]

)

+(1−r),

where kλij =(M−1)2
∫

[0,1]2
exp

(

−18M2s2
[

(x1−λ1ij )
2+(x2−λ2ij )

2
]

)

dx
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and r∈ [0,1], s>0. Here, λij =(λ1ij ,λ2ij ) represents the initial position of particle
ij and the kλij

are normalization constants. In addition, to avoid any major overlap
of the Gaussians, we took the standard deviation to be σ=1/(6Ms) where s is a
parameter introduced to vary the sharpness of the spikes.

If we denote by

Φ(x1,x2,t)≡ (Φ1(x1,x2,t),Φ2(x1,x2,t))

the position at time t of a particle evolving in the velocity field v, given that it started
at position (x1,x2), then this trajectory function solves







∂Φ

∂t
=v(Φ(x,t),t),

Φ(x,0)=x.

We let the (M−1)2 tracers evolve in the field for a small time ∆t and assume that
the flow does not alter the shape of the Gaussians, but only translates their centers.
This makes physical sense because we are only concerned with the movement of the
tracers. The change in shape of the Gaussians will be important to incorporate if
we are considering clusters rather than single particles (see Section 6). In the sequel,
we denote by µij ≡ (µ1ij ,µ2ij )=(Φ1

(

λij ,∆t
)

,Φ2

(

λij ,∆t
)

) the final position of the
particle ij. The final disposition of tracers is thus given by

g(x1,x2)= r

M−1
∑

i=1

M−1
∑

j=1

1

kµij

exp

(

−18M2s2
[(

x1−µ1ij

)2
+
(

x2−µ2ij

)2]
)

+(1−r),

where the normalization constant is defined similarly:

kµij
= (M−1)2

∫

[0,1]2
exp

(

−18M2s2
[(

x1−µ1ij

)2
+
(

x2−µ2ij

)2]
)

dx.

The densities f and g are essentially sums of Gaussian distributions which have been
scaled, pushed away from 0 and cut to “fit” the bounded domain Ω. The integrals
kλij

and kµij
are normalization constants ensuring that f and g are well-defined

probability densities on [0,1]2. Finally, the parameter r is introduced to push these
densities away from 0 by a factor 1−r. It is well known (see [25]) that the optimal
solution to the L2 time-dependent transport problem is given by

Tt(x)=

(

1−
t

∆t

)

x+
t

∆t
T(x),

so that when t=∆t the optimal map is T(x), and when t=0 it is just the identity.
The interpolation Tt was first introduced by McCann in [16]. We have

∂

∂t
Tt(x)=

T(x)−x

∆t
≈v(x,t),

provided ∆t is small enough. Here, we use vapprox=(T(x)−x)/∆t as a first order
approximation for the actual fluid flow velocity.
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2.2. Optimal transport algorithm. We now introduce our procedure to solve
the L2 optimal transport problem in R

d, d≥1. For simplicity, we enforce periodic
boundary conditions and assume that the initial and target domains are equal to
Ω=[0,1]d. In this setting, it has been proven in [7] that, provided f,g∈Cα for α>0
and f,g are bounded away from 0, the optimal map ∇Ψ is additive, unique up to a
constant, and C2,β(Ω) for 0<α<β. By additivity, we mean ∇Ψ(x+p)=∇Ψ(x)+p

for every x∈R
d and for all p∈Z

d. This property implies that Ψ(x) can be written
in the form Ψ(x)= |x|2/2+u(x) where u is a periodic function on Ω. The optimal
map can thus be expressed as T (x)=∇Ψ(x)=x+∇u(x). Assuming Ψ is convex, the
Monge-Ampère equation becomes

g(x+∇u(x))det(I+D2u(x))=f(x), (2.1)

and the approximated velocity field is vapprox=∇u/∆t. To solve (2.1), we use a
damped Newton method based on a generalization of the work of [15]. More details
on this procedure are found in [21, 22]. The main steps are outlined below for the
sake of completeness.

Damped Newton algorithm











































Withu0 given, loop over n∈N

Compute fn=g(x+∇un) det(I+D2un)

Solve the linearized Monge-Ampère equation

Lnθn :=Dun
M ·θn=

1

τ
(f−fn)

Update the solution: un+1=un+θn.

(2.2)

Here, Dun
M ·θn is the linearization of the Monge-Ampère operator in the direction

of θn:

Dun
M ·θn=g(x+∇u)Tr(Adj(I+D2u)D2θn)+det(I+D2u)∇g(x+∇u) ·∇θn,

(2.3)
where Adj(A)=det(A) ·A−1. We will denote Dun

M ·θn by Lnθn for simplicity. More-
over, the damping factor τ is introduced as a parameter controlling the “step-size” of
the Newton iterations, which is necessary to ensure that we remain within the class
of convex potentials while iterating towards the solution. For the resolution of the
linearized Monge-Ampère equation (2.2), which is an elliptic linear PDE with non-
constant coefficients, we employ a technique introduced in [23] which consists in first
preconditioning the system in the following way:

{

LnL
−1

n σ(x) =h(x),
Lnθ(x) =σ(x),

(2.4)

where Ln is the preconditioner, obtained from Ln by averaging the coefficients on
[0,1]d. Then, (2.4) is solved by the fast Fourier transform (FFT) algorithm [21, 22].
We use the following stopping criterion for the Newton algorithm iterations:

‖un−un−1‖l2norm +‖f−fn‖l2norm <TOLNewton, (2.5)
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where TOLNewton is a given tolerance and ‖·‖l2norm is the normalized l2 norm defined

for z=(z1,z2, · · · ,zm)∈R
m×k by

‖z‖l2norm :=

√

√

√

√

1

m

m
∑

i=1

‖zi‖2l2 .

The quality of the approximation will of course depend on the parameters r, σ, and
∆t. Our first task is thus to study the sensitivity of the approximation on these
parameters for the simple case of a single particle in both 1D and 2D (the results for
higher dimensional cases follow easily). We start with the model in dimension one to
prove that the error converges linearly in (1−r)/r, σ, and ∆t, and then generalize
the analysis to dimension two. In Section 5, we present numerical experiments to
demonstrate that this result remains valid for the case of multiple particles.

3. One particle in dimension one

3.1. Error estimates. We consider the case where there is only one particle in
dimension one, i.e. Ω= [0,1]. In this situation, we can derive an explicit representation
of the optimal map T through the exact solution of the Monge-Ampère equation (1.4).
This will provide us with precious insight on the behaviour of T in higher dimensions,
for the particle image velocimetry problem. The one-dimensional and one particle
equivalent to the densities f and g introduced in Subsection 2.1 are given by

f(x)=
r

kλ
e−

(x−λ)2

2σ2 +(1−r), g(x)=
r

kµ
e−

(x−µ)2

2σ2 +(1−r), (3.1)

where

kλ=

∫ 1

0

e−
(t−λ)2

2σ2 dt, kµ=

∫ 1

0

e−
(t−µ)2

2σ2 dt, (3.2)

λ, µ being two points in Ω and r∈ [0,1]. For simplicity, in this section, we will
directly work with the parameter σ instead of s and M (which is 2 here). Because
our technique consists in approximating the velocity vector at λ by (T (λ)−λ)/∆t,
we would hope that T (λ) is equal to µ. However, the parameters σ and r induce an
error that sends T (λ) off the target µ. In fact, we have the following theorem.

Theorem 3.1. Assume 2/3<r≤1, 0<ǫ≤λ≤µ≤1−ǫ for 0<ǫ<0.5, and 0<σ<
1. If T is the optimal map solving the one-dimensional L2 transport problem with
densities f and g given by (3.1), then

0≤µ−T (λ)≤C1σ
(1−r)

r
(µ−λ)+C2

e−
ǫ2

2σ2

σ
(µ−λ), (3.3)

where C1 and C2 are positive constants independent of σ, λ, µ, r, and ǫ. Moreover,
if all other parameters are fixed, µ−T (λ) does not decrease faster than linearly when
σ→0.

Before we present the proof of Theorem 3.1, we state and prove the following
technical lemma.
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Lemma 3.2. Under the assumptions of Theorem 3.1, there exists a constant C2

independent of σ, λ, µ, r, and ǫ such that

0≤

kµ

(

1
kµ

∫ µ

0
e−

(t−µ)2

2σ2 dt− 1
kλ

∫ λ

0
e−

(t−λ)2

2σ2 dt

)

kµ
(1−r)

r +
∫ 1

0
e−

t2(T (λ)−µ)2

2σ2 dt
≤C2

e−
ǫ2

2σ2

σ
(µ−λ), (3.4)

where kλ and kµ are given in (3.2).

Proof. If λ=µ, the result is trivial. Assume λ<µ. We introduce the function

G(γ)=

∫ γ

0
e−

(t−γ)2

2σ2 dt
∫ 1

0
e−

(t−γ)2

2σ2 dt
.

We observe that its derivative,

G′(γ)=
e−

γ2

2σ2
∫ 1

γ
e−

(t−γ)2

2σ2 dt+e−
(γ−1)2

2σ2
∫ γ

0
e−

(t−γ)2

2σ2 dt
(∫ 1

0
e−

(t−γ)2

2σ2 dt
)2

,

is always positive, which means that G is an increasing function. By the mean-value
theorem,

∃ξ : λ≤ ξ≤µ and G(µ)−G(λ)=G′(ξ)(µ−λ).

Moreover, because λ,µ∈ [ǫ,1−ǫ], we can bound G′ in the following way:

G′(ξ)≤
e−

ǫ2

2σ2
∫ 1

ξ
e−

(t−ξ)2

2σ2 dt+e−
ǫ2

2σ2
∫ ξ

0
e−

(t−ξ)2

2σ2 dt
(∫ 1

0
e−

(t−ξ)2

2σ2 dt
)2

=
e−

ǫ2

2σ2

∫ 1

0
e−

(t−ξ)2

2σ2 dt
.

Combining the above estimate and the fact that the optimal map T sends [0,1] to
[0,1], we have

kµ(G(µ)−G(λ))

kµ
(1−r)

r +
∫ 1

0
e−

t2(T (λ)−µ)2

2σ2 dt
≤

∫ 1

0
e−

(t−µ)2

2σ2 dt
∫ 1

0
e−

t2

2σ2 dt

e−
ǫ2

2σ2

∫ 1

0
e−

(t−ξ)2

2σ2 dt
(µ−λ)

≤

∫ 1

0
e−

(t−1/2)2

2σ2 dt
∫ 1

0
e−

t2

2σ2 dt

e−
ǫ2

2σ2

∫ 1

0
e−

t2

2σ2 dt
(µ−λ)

=

∫ 1/2

−1/2
e−

t2

2σ2 dt
∫ 1

0
e−

t2

2σ2 dt

e−
ǫ2

2σ2

σ
∫ 1/σ

0
e−

t2

2 dt
(µ−λ),

where in the last line we performed two changes of variables. Finally, from the sym-
metry of the Gaussian distribution and the assumption σ<1, we get

∫ 1/2

−1/2
e−

t2

2σ2 dt
∫ 1

0
e−

t2

2σ2 dt

e−
ǫ2

2σ2

σ
∫ 1/σ

0
e−

t2

2 dt
(µ−λ)≤2

1
∫ 1

0
e−

t2

2 dt

e−
ǫ2

2σ2

σ
(µ−λ).
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The inequality (3.4) follows with C2=2/
∫ 1

0
e−

t2

2 dt.

Proof. (Theorem 3.1.) We divide the proof into three main parts. First, we will
show that

0≤µ−T (λ)≤K(σ)
(1−r)

r
(µ−λ)+C2

e−
ǫ2

2σ2

σ
(µ−λ), (3.5)

where K(σ) is a function of σ which is bounded by 2, and C2 is a constant. Second,
we will prove that there exists a constant C1 such that K(σ)≤C1σ, and finally, we
will show that T (λ)−µ cannot decay faster than linearly in σ.

To prove the first claim, we introduce the cumulative distribution functions for
f(x) and g(x),

F (x)=
r

kλ

∫ x

0

e−
(t−λ)2

2σ2 dt+(1−r)x

and G(x)=
r

kµ

∫ x

0

e−
(t−µ)2

2σ2 dt+(1−r)x. (3.6)

Because the solution of the L2 transport problem is the gradient of a convex function
(which in dimension one corresponds to a function with nonnegative second deriva-
tive), in this simple 1D case the Monge-Ampère equation (1.4) becomes

g(Ψ′(x))Ψ′′(x)=f(x),

which integrates to

T (x)≡Ψ′(x)=G−1(G(T (0))+F (x)).

Now, because the optimal map T is increasing and invertible, we have T (0)=0 and
G(0)=0, so T (x)=G−1(F (x)). We want to estimate µ−T (λ)=µ−G−1(F (λ)). Let
y=T (λ). According to (3.6), we have G(y)=F (λ), i.e.,

1

kµ

∫ y

0

e−
(t−µ)2

2σ2 dt+
(1−r)

r
y=

1

kλ

∫ λ

0

e−
(t−λ)2

2σ2 dt+
(1−r)

r
λ. (3.7)

Next, we consider

N(y)=
1

kµ

∫ y

0

e−
(t−µ)2

2σ2 dt,

and compute its Taylor expansion about µ with integral remainder:

N(y)=N(µ)+N ′(µ)(y−µ)+(y−µ)2
∫ 1

0

(1− t)N ′′(µ+ t(y−µ))dt

=
1

kµ

∫ µ

0

e−
(t−µ)2

2σ2 dt+
(y−µ)

kµ
−

(y−µ)3

kµσ2

∫ 1

0

t(1− t)e−
t2(y−µ)2

2σ2 dt

=
1

kµ

∫ µ

0

e−
(t−µ)2

2σ2 dt+
(y−µ)

kµ

∫ 1

0

e−
t2(y−µ)2

2σ2 dt.

Note that we used integration by parts to obtain the last line. Isolating the linear
factors in µ−y (in (3.7)) and multiplying by kµ yields

(

kµ
(1−r)

r
+

∫ 1

0

e−
t2(y−µ)2

2σ2 dt

)

(µ−y)
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=kµ
(1−r)

r
(µ−λ)+kµ

(

1

kµ

∫ µ

0

e−
(t−µ)2

2σ2 dt−
1

kλ

∫ λ

0

e−
(t−λ)2

2σ2 dt

)

. (3.8)

From Lemma 3.2, we know that the right-hand side is nonnegative, which implies that
the first inequality in (3.3) is satisfied. Moreover, because T maps [0,1] to itself, we

have µ−y≤1, and thus exp(− t2

2σ2 )≤ exp(− t2(y−µ)2

2σ2 ). We get

kµ

kµ
(1−r)

r +
∫ 1

0
e−

t2(y−µ)2

2σ2 dt
≤

∫ 1

0
e−

(t−µ)2

2σ2 dt
∫ 1

0
e−

t2(y−µ)2

2σ2 dt
≤

∫ 1

0
e−

(t−1/2)2

2σ2 dt
∫ 1

0
e−

t2

2σ2 dt
≤2, (3.9)

from which we conclude the existence of K(σ) in (3.5). In addition, the second term
on the right of (3.8) leads to the expression in Lemma 3.2, which in turn yields (3.5).

Second, we prove the linearity in σ. Let z(σ)=µ−T (λ). Notice that (3.7) can
be rewritten as

∫ −
z(σ)
σ

−µ
σ

e−
t2

2 dt

∫

(1−µ)
σ

−µ
σ

e−
t2

2 dt
+

(1−r)

r
(µ−λ)=

∫ 0

−λ
σ
e−

t2

2 dt

∫

(1−λ)
σ

−λ
σ

e−
t2

2 dt
+

(1−r)

r
z(σ). (3.10)

We proceed by contradiction. Assume that for every n∈N, there exists a σn such
that z(σn)>nσn. Because z(σ)<1 for every σ, the sequence 1/σn is bounded below
by n and therefore 1/σn→∞ as n→∞. Inserting σn in (3.10), taking the limit with
respect to n, and using the fact that both λ and µ are bounded away from 0 and 1,
respectively, yields

(1−r)

r
(µ−λ)=

1

2
+

(1−r)

r
lim

n→∞
z(σn)≥

1

2
.

The last inequality results from z(σ) being nonnegative for every σ, as shown in (3.5).
Because µ−λ is smaller than 1, we get

(1−r)

r
≥

1

2
,

which is a contradiction for r>2/3. We conclude the existence of a positive constant
C1 such that K(σ)≤C1σ.

Finally to prove that z(σ)=µ−T (λ) cannot decay faster than linearly in σ, we
proceed again by contradiction. Indeed, if we assume limσ→0z(σ)/σ=0, and take the
limit with respect to σ on both sides of (3.10), we get

1

2
+

(1−r)

r
(µ−λ)=

1

2
,

which yields another contradiction for fixed r 6=1 and λ 6=µ.

Remark 3.1. Observe that for any fixed ǫ>0, the decay of the second term is always
going to be exponential when σ goes to 0. However, if one wants to vary ǫ as a function
of σ, then we need to take ǫ≥σ1−α for α>0 to preserve this exponential decay.

3.2. Numerical validation of 1D error estimates. In order to verify the
linear convergence of T (λ) to µ when µ−λ, (1−r)/r, and σ go to 0, we solve for
T (λ) the equation G(T (λ))=F (λ) using the function fzero of MATLAB, when the
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(a) |T (λ)−µ| as a function of |µ−λ|, for r=0.8
(i.e. (1−r)/r=0.25) and σ=0.003.
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(b) |T (λ)−µ| as a function of (1−r)/r, for σ=
0.003, λ=5/16, and µ=7/16.
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(c) |T (λ)−µ| as a function of σ, for r=0.8, λ=
5/16, and µ=7/16.
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(d) Plot of T for λ=5/16, µ=12/16, r=0.8, and
σ=0.05.

Fig. 3.1. Results of the one-dimensional numerical experiment. For the three error graphs,
the linear regression line passing through the data is included, with the corresponding coefficient of
determination. For the plot of T , we also added a vertical line at λ, a horizontal line at µ, the
densities f and g (normalized to fit in the box) and a zoombox displaying the area of the graph
around (λ,µ).

three parameters are varied one at the time. Notice that in this case, varying µ−λ
is equivalent to varying the time-step ∆t. The results are presented in figure 3.1 (a),
(b), and (c). On these graphs, we also include the least square linear regression lines
and the corresponding coefficients of determination R2. Recall that the coefficient of
determination is defined by

R2 :=1−

∑m
i=1(zi− li)

2

∑m
i=1(zi−z)2

,

where m is the number of data points, z=(z1, · · · ,zm) are the data pointss, l=
(l1, · · · ,lm) are the corresponding predicted points on the line, and z is the mean
of the observed data. We see that in all three cases, R2 is very close to 1, which con-
firms the linear behaviour in dimension one. We therefore conclude that the image of
the initial position of the center of the particle is sent closer to the real position of the
center of the particle after ∆t units of time when either r→1, σ→0, or |µ−λ|→0,
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and that the only way to get an exact answer is to take ∆t=0 (i.e. |µ−λ|=0) or
σ=0. However, taking r=1 yields an error that decays exponentially with σ and
linearly in |µ−λ|.

In figure 3.1 (d), we plot the map T for a typical set of parameters. This map
was obtained by laying out a uniform grid xi, i=0, · · · ,N on [0,1] with N =1024 and
solving G(yi)−F (xi)=0 for yi, at every grid point xi (once we computed yi, we
assigned T (xi)=yi).

4. One particle in dimension two

4.1. Preliminary lemmas. In higher dimensions, it is not possible to obtain
the transport map explicitly, which makes it harder to rigorously derive error bounds.
Nonetheless, we will be able to present in this section convincing arguments on why
we expect the same error behavior as in the one-dimensional case. For the case of one
particle in 2D, the densities f , g are given by

f(x1,x2)=
r

kλ
exp

(

−18M2s2
[

(x1−λ1)
2+(x2−λ2)

2
]

)

+(1−r),

g(x1,x2)=
r

kµ
exp

(

−18M2s2
[

(x1−µ1)
2+(x2−µ2)

2
]

)

+(1−r), (4.1)

where

kλ=

∫

[0,1]2
exp

(

−18M2s2
[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx,

kµ=

∫

[0,1]2
exp

(

−18M2s2
[

(x1−µ1)
2+(x2−µ2)

2
]

)

dx,

and M =2. Let σ=1/(6Ms) and let T(x1,x2)=(T1(x1,x2),T2(x1,x2)) be the optimal
transport map. We introduce the sets

E1={(x1,x2)∈ [0,1]2 :x1≤T1(λ1,λ2)}

and S1=T−1(E1)={(x1,x2)∈ [0,1]2 :T1(x1,x2)≤T1(λ1,λ2)}.

These sets will be useful to recover an analogue of our one-dimensional arguments for
the first coordinate of the optimal transport map (the same arguments will apply as
well for the second coordinate). Before we see how, let us look at an illustration in
figure 4.1. Similarly to the one-dimensional case, we expect the first coordinate of
the image of (λ1,λ2) to be smaller than µ1 and thus the dashed line x1=T1(λ1,λ2) is
before the line x1=µ1. The set E1 corresponds in this case to the part of the domain
which is to the left of this dashed line. Now, if we consider the set of all points
for which the first coordinate of the transport map is smaller than this dashed line,
which we called S1, then we expect to get a region like the shaded region in figure
4.1. Indeed, close to the center of the particle, the optimal map should move the mass
towards the final position (µ1,µ2) of the particle. However, for points further than
several standard deviations to the center, the mass should stay roughly at the same
position. We will discuss these claims in more detail by looking at some numerical
examples of these sets in Subsection 4.2. Now, going back to our analysis, by the
conservation of mass constraint (1.2), taking E=E1, we have

∫ 1

0

∫ T1(λ1,λ2)

0

g(x1,x2)dx1dx2=

∫ ∫

S1

f(x1,x2)dx.
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Fig. 4.1. Illustration of the sets E1 and S1. The set E1 corresponds to the part of [0,1]2 which
is on the left of the dashed line x1=T1(λ1,λ2) whereas the set S1 corresponds to the shaded region.
The initial position (λ1,λ2) and the final position (µ1,µ2) of the particle are also indicated.

This in turn yields

1

kµ

∫ 1

0

∫ T1(λ1,λ2)

0

exp

(

−
1

2σ2

[

(x1−µ1)
2+(x2−µ2)

2
]

)

dx1dx2+
(1−r)

r
T1(λ1,λ2)

=
1

kλ

∫ ∫

S1

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx+
(1−r)

r
m(S1). (4.2)

Here, m(S1) denotes the Lebesgue measure of the set S1. Observe that (4.2) is very
close to (3.7), the equality we used in the one-dimensional proof. Then, we can rewrite
(4.2) in a similar way as in (3.8) by using a Taylor expansion, we get

(µ1−T1(λ1,λ2))

[

(1−r)

r

+
1

kµ

∫ 1

0

∫ 1

0

exp

(

−
1

2σ2

[

t2(T1(λ1,λ2)−µ1)
2+(x2−µ2)

2
]

)

dtdx2

]

=
1

kµ

∫ 1

0

∫ µ1

0

exp

(

−
1

2σ2

[

(x1−µ1)
2+(x2−µ2)

2
]

)

dx1dx2

−
1

kλ

∫ ∫

S1

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx+
(1−r)

r

[

µ1−m(S1)
]

. (4.3)

Before we pursue the analysis further, we shall investigate the properties of the set
S1. We have the following lemma.

Lemma 4.1. There exists a continuous function h1 : [0,1]→ [0,1] such that h1(λ2)=λ1

and

a) T
{

(x1,x2)∈Ω:x1=h1(x2)
}

=
{

(x1,x2)∈Ω:x1=T1(λ1,λ2)
}

.

b) S1=
⋃

x2∈[0,1]

(

[0,h1(x2)]×{x2}

)

.
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Before we prove this lemma, we state and prove the following intermediate result.

Lemma 4.2. Let T=(T1,T2) be the unique solution to the optimal transport problem
(1.1) on Ω=[0,1]2 with densities f and g bounded away from 0 and at least Cα(Ω) for
α>0. Then T maps every side of the boundary to itself. More precisely, T2(x1,0)=0,
T2(x1,1)=1 for every x1∈ [0,1], and T1(0,x2)=0, T1(1,x2)=1 for every x2∈ [0,1]. As
a consequence, T maps every corner of the square [0,1]2 to itself.

Proof. Recall that T=∇Ψ where Ψ is a convex function. Because f and g
are positive densities bounded away from 0, by the Monge-Ampère equation (1.4),
det(D2Ψ)>0 and thus Ψ is strictly convex. This yields

(T(x)−T(y)) ·(x−y)=(∇Ψ(x)−∇Ψ(y)) ·(x−y)>0, (4.4)

for x 6=y, x,y∈ [0,1]2. We first proceed by contradiction to show that T1(0,x2)=0.
Assume there is a point (0,x2)∈ [0,1]2 for which T(0,x2)=(y1,y2) and y1>0. Then,
because the optimal map T is invertible (hence bijective), there exists another point
(z1,z2)∈ [0,1]2 which gets mapped to (0,y2). Using these two points in (4.4), we get

(T(0,x2)−T(z1,z2)) ·((0,x2)−(z1,z2))=(y1,0) ·(−z1,x2−z2)=−y1z1>0,

which yields a contradiction because y1z1≥0 by assumption. We conclude that
T1(0,x2)=0 for every x2∈ [0,1]. Using similar arguments, we can prove that the
other sides of the square get mapped to themselves.

Proof. (Lemma 4.1.) Consider the line L={(x1,x2)∈ [0,1]2 :x1=T1(λ1,λ2)}.
Because T is continuous, the inverse image of that line by T has to be a continuous
curve lying in [0,1]2. Denote this curve by C. From Lemma 4.2 and by the bijectivity
of T, we have that the inverse image of (T1(λ1,λ2),1) is on the line [0,1]×{1} and
the inverse image of (T1(λ1,λ2),0) is on the line [0,1]×{0}. Therefore, by continuity,
for every x2∈ [0,1] there exists a x1∈ [0,1] such that T(x1,x2)∈L. Moreover, thanks
to (4.4), for every fixed x2∈ [0,1], T1(x1,x2) is a strictly increasing function of x1.
This implies that for any x2∈ [0,1], there is a unique x1∈ [0,1] such that (x1,x2)∈
C, which in turn proves the existence of a continuous function h1 of x2 such that
C={(x1,x2)∈ [0,1]2 :x1=h1(x2)}, that is C is the graph of h1. In addition, when
x2=λ2, T1(h(λ2),λ2)=T1(λ1,λ2). This yields h1(λ2)=λ1 because x1 7→T1(x1,λ2) is
a bijection on [0,1], and statement a) is thus verified. For b), we have

S1={(x1,x2)∈ [0,1]2 :T1(0,x2)≤T1(x1,x2)≤T1(λ1,λ2)}

={(x1,x2)∈ [0,1]2 :T1(0,x2)≤T1(x1,x2)≤T1(h1(x2),x2)}

={(x1,x2)∈ [0,1]2 : 0≤x1≤h1(x2)}

=
⋃

x2∈[0,1]

(

[0,h1(x2)]×{x2}

)

,

because 0=T1(0,x2). This concludes the proof.

Note that by symmetry, we can derive similar results for µ2, T2(λ1,λ2), and the
set S2={(x1,x2)∈ [0,1]2 :T2(x1,x2)≤T2(λ1,λ2)} with the function h1 replaced by its
analogue h2.
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4.2. Numerical investigation of S1. In order to better understand the be-
havior of the function h1, and thus the set S1, we present in figure 4.2 some examples
of h1 for different values of the parameters. These results were obtained by using the
algorithm of Subsection 2.2 to find the optimal map T associated with the densities
f and g given by (4.1). From figure 4.2, we observe that for values of x2 close to λ2,
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(a) λ1=λ2=0.5, µ1=µ2=0.55, σ=1/12, and
r=0.8.
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(b) Same parameters as (a), but σ=1/24.
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(c) Same parameters as (a), but r=0.9.
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(d) Same parameters as (a), but µ1=µ2=0.6.
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(e) λ1=λ2=0.5, µ1=µ2=0.52, σ=1/24, and
r=0.8.
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(f) Same parameters as (e), but σ=1/36.

Fig. 4.2. Some examples of the function h1, which is represented here by the solid line. The
vertical axis is x2 and the horizontal axis is x1. The dots represent the initial and final position of
the particle. The dashed lines represent x1=T1(λ1,λ2). For (e) and (f), the vertical dotted line is
the line connecting λ2−8σ to λ2+8σ and the two horizontal dotted lines link the bottom and top
of the previous line segment to the line x1=T1(λ1,λ2). In addition, for (e) and (f), a subplot is
displayed to better visualize the figure.

h1 is essentially a vertical line, which means that T acts as a translation in a neigh-
borhood of λ2. The length of this neighborhood depends on the standard deviation σ
and seems to suggest that the map T is a translation up to the point where the part
of the mass that is due to the particle becomes negligible. In addition, outside this
neighborhood of λ2, the function h1 appears to converge to another vertical line as x2
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goes to 0 or 1, and this line is close to the line x1=T(λ1,λ2). Note that this line lays
very close to (and before) x1=µ1. This means that the map T is almost the identity
map when taking points for which the Gaussian contribution to the densities f and
g is negligible. This confirms the intuition that the optimal map translates the mass
around the particle’s location and leaves the rest of the domain (almost) unchanged.
Accordingly, the plots in figure 4.2 suggest the following assertions:

1) µ1≥T1(λ1,λ2),

2) h1(x2)≥λ1 for any x2∈ [0,1],

3) There exist constants C>0 and σ0>0 such that Cσ0≤min{λ2,1−λ2}, and
for every σ<σ0, we have

T1(λ1,λ2)−2Cσ(T1(λ1,λ2)−λ1)≤m(S1).

In Subsection 4.3, we will assume that these properties hold to complete the proof of
the linearity behavior of σ and (1−r)/r in dimension two.

The first two are easily observable in plots (a) to (f) of figure 4.2, whereas the
third one is a bit more technical and in order to better visualize it we included the
dotted lines in plots (e) and (f). This third property actually states that the Lebesgue
measure of the set

S̃1=

{

(x1,x2)∈ [0,1]2 :0≤x1≤λ1 if λ2−Cσ≤x2≤λ2+Cσ

and 0≤x1≤T1(λ1,λ2) else

}

is smaller than m(S1). The vertical dotted line in (e) and (f) therefore corresponds
to the interval [λ2−Cσ,λ2+Cσ] in x2, where we took C=8 as an example. We
observe that in both cases, m(S̃1) is indeed smaller than m(S1). In the limiting case
where σ→0, that is when the particle becomes a point mass (or Dirac delta function),
the optimal plan only moves the mass at the particle’s location and thus assertion
3 is trivially satisfied. Despite all these observations in favor of assertions 1, 2, or
3, obtaining a rigorous proof showing that they actually hold true for σ and 1−r
small enough remains an open problem. However, intuitively we argue that all these
assertions make sense, because of the optimality of the transport map T. Moreover,
we proved in the previous section that assertion 1 holds in dimension one, whereas 2
and 3 are trivial in this case.

4.3. Error estimates. We show here that, assuming properties 1 and 2 hold,
we can get the linear behavior of the error with respect to (1−r)/r, as in Theorem
3.1. Moreover, if in addition we assume 3 holds, we recover the linear behavior in σ.

Theorem 4.3. Assume 2/3<r≤1, 0<ǫ≤λ1≤µ1≤1−ǫ, and 0<ǫ≤λ2≤µ2≤1−ǫ
for 0<ǫ<0.5, and 0<σ<1. Let T=(T1,T2) be the optimal map solving the two-
dimensional L2 transport problem with densities f and g given by (4.1). Suppose in
addition that properties 1 and 2 hold. Then we have the following inequality:

µ1−T1(λ1,λ2)≤C1(σ)
(1−r)

r
(µ1−λ1)+C2

e−
ǫ2

2σ2

σ
(µ1−λ1), (4.5)

where C1 is a positive function of σ which is bounded by 2, and C2 is a positive
constant. Both C1 and C2 are independent of λ1, λ2, µ1, µ2, r, and ǫ. If in addition
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we assume that 3 holds, then

C1(σ)≤4Cσ, (4.6)

where C is the same constant as in assumption 3. A similar result holds for µ2−
T2(λ1,λ2).

Proof. We prove the result for µ1−T1(λ1,λ2); by symmetry, similar arguments
can be used for µ2−T2(λ1,λ2). The starting point is equation (4.3). By Assumption
2, we have λ1≤h(x2) for any x2∈ [0,1], so that

∫ 1

0

∫ λ1

0

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx1dx2

≤

∫ 1

0

∫ h1(x2)

0

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx1dx2

=

∫ ∫

S1

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx.

Moreover, using Lemma 4.1 and Assumption 2, we have [0,λ1]× [0,1]⊂S1 and thus
λ1≤m(S1). Combining these estimates with the fact that both kµ and kλ can be
written as the product of two integrals, (4.3) implies

µ1−T1(λ1,λ2)≤

[

(1−r)

r

(

µ1−λ1

)

+
1

kµ1

∫ µ1

0

exp

(

−
1

2σ2
(x1−µ1)

2

)

dx1

−
1

kλ1

∫ λ1

0

exp

(

−
1

2σ2
(x1−λ1)

2

)

dx1

]

kµ1

(

kµ1

(1−r)

r
+

∫ 1

0

exp
(

−
1

2σ2
t2(T1(λ1,λ2)−µ1)

2
)

dt

)−1

(4.7)

where kλ1
and kµ1

are defined by respectively replacing λ and µ by λ1 and µ1 in (3.2).
Notice now that we can split the right-hand side of (4.7) into two terms, one for which
bound (3.4) in Lemma 3.2 applies, and one for which the arguments displayed in (3.9)
apply. This yields the existence of C1 and C2, as claimed. Finally, if in addition we
assume that Assumption 3 holds, then

µ1−m(S1)≤µ1−T1(λ1,λ2)+(T1(λ1,λ2)−λ1)2Cσ

≤µ1−T1(λ1,λ2)+(µ1−λ1)2Cσ.

Using this in (4.3), we cancel the terms (µ1−T1(λ1,λ2))(1−r)/r on both sides to
obtain

(µ1−T1(λ1,λ2))×
1

kµ

∫ 1

0

∫ 1

0

exp

(

−
1

2σ2

[

t2(T1(λ1,λ2)−µ1)
2+(x2−µ2)

2
]

)

dtdx2

≤
1

kµ

∫ 1

0

∫ µ1

0

exp

(

−
1

2σ2

[

(x1−µ1)
2+(x2−µ2)

2
]

)

dx1dx2

−
1

kλ

∫ ∫

S1

exp

(

−
1

2σ2

[

(x1−λ1)
2+(x2−λ2)

2
]

)

dx+
(1−r)

r
(µ1−λ1)2Cσ.

We see that this previous inequality is very close to (4.7), provided we remove the
term kµ1

(1−r)/r in the denominator. Even if this term is not removed, we can still



L.-P. SAUMIER, B. KHOUIDER, AND M. AGUEH 287

get the same upper bounds as in Lemma 3.2 and as in the arguments in (3.9), which
yields the result.

We will present in Subsection 5.3 numerical simulations validating the linear be-
havior with respect to (1−r)/r and σ, for the case where we consider multiple particles
in dimension two. The results will be similar to the results in the one-dimensional
case, presented in Subsection 3.2. Finally, it is worth mentioning that even though
we restricted ourselves to dimension 2, all the arguments presented can be employed
to get the same results in any dimension.

5. Numerical experiments using synthetic flows

In this section, we present numerical simulations in 2D, with multiple particles.
We consider two synthetic flow velocities: one is a simple plane shear and the other
consists of an array of vortices. We use the algorithm of Subsection 2.2 to solve
the associated PIV problem for ∆t small enough so that we remain in the realm
of PTV. These simulations constitute a first step towards analyzing the potential of
the OT framework for PIV and our plan is to investigate in the future more involved
algorithms to treat real data and more PIV-like images. This is followed in Subsection
5.3 by the validation of the error behavior of the procedure with respect to the different
parameters involved for the vortices example, as it was done in Subsection 3.2 for the
one-dimensional case. As mentioned in Subsection 2.1, we take (M−1)2 particles
with evenly distributed initial positions and we use the MATLAB ode45 procedure
to find their corresponding final positions due to their displacement by the synthetic
flow, at time t=∆t. From the change of variables T(x)=x+∇u(x) introduced in
Subsection 2.2, we have vapprox=∇u/∆t. We use a tolerance TOLGMRES=10−1 for
the GMRES algorithm employed to solve the linear equation at every Newton step,
and we took the tolerance TOLNewton=10−6 for the main Newton algorithm. Note
that taking TOLGMRES=10−1 significantly decreases the number of computations,
and even in the cases presented below where the algorithm did not converge, using
a smaller tolerance (e.g. TOLGMRES=10−2 or TOLGMRES=10−4) did not change
the outcome. To increase the speed of the algorithm, we use different values for
the damping factor according to the precision reached in the stopping criterion. We
select an initial value τi of τ sufficiently large to guarantee that the damped Newton
algorithm proceeds in the right direction. We change this value to a smaller τf after
the stopping criterion reaches a certain threshold, denoted τt. From the experiments
conducted here, we found that τt=10−2 was typically a good value to take and we
employed it to obtain all the results presented in this work. We present two different
types of errors, namely the total relative error etotal between v and vapprox defined by

etotal :=
‖v−vapprox‖l2norm

‖v‖l2norm

and the relative error due to the direction edir between v and vapprox defined by

edir :=
‖ṽ− ṽapprox‖l2norm

‖ṽ‖l2norm
,

where ṽ is the locally normalized vector field

ṽ(x1,x2) :=
v(x1,x2)

‖v(x1,x2)‖l2
,
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if ṽ(x1,x2) 6=0, for any (x1,x2)∈ [0,1]2 (ṽapprox is defined similarly). The error edir
will be useful to demonstrate that most of the error in our procedure is in the length
of the individual vectors, and not in their directions.

5.1. Plane shear flow. For this first experiment, we take the vector field to
be

v(x1,x2,t)=(−cos(2πγx2),0),

where γ=2. Our goal is to investigate the behaviour of the approximation with
respect to the different parameters involved. We invite the reader to keep in mind
that for real data, these parameters would be dictated by the PIV image (whether
some pre-processing was applied to it or not) and thus it would not necessarily be
possible to vary them at the user’s leisure. We first fix r=0.8 and we vary both
σ and ∆t. The results are presented in table 5.1. We observe that the relative

M=16, r=0.8
etotal edir

∆t ∆t
0.01 0.005 0.0025 0.01 0.005 0.0025

s=1
N

512 0.2493 0.2267 0.2201 0.0239 0.0203 0.0192
(σ=1/96) 1024 0.2496 0.2268 0.2202 0.0239 0.0203 0.0192
s=1.5

N
512 0.0899 0.0819 0.0806 0.0046 0.0048 0.0076

(σ=1/144) 1024 0.0902 0.0820 0.0806 0.0045 0.0048 0.0076
s=2

N
512 0.0455 0.0441 0.0438 0.0036 0.0027 0.0046

(σ=1/192) 1024 0.0476 0.0444 0.0438 0.0018 0.0025 0.0046

Table 5.1. Some results for the shear experiment. In the first part of this table, we display
the relative error between vapprox and v for different values of s. In the second part, we display the
relative error for ṽapprox and ṽ.

error etol between vapprox and v decreases as we decrease σ (increase s), and that
it seems to converge to a constant as ∆t→0. As we will see below, this is to be
expected because the error in the position of the centers converges to 0 linearly with
respect to both σ and λ2−λ1. Simulations in Subsection 5.3 will further validate this
claim. The fairly large grid size employed is required for the algorithm to converge
for large values of s. Indeed, if we consider that a particle’s physical width spans over
approximately 6 standard deviations (6σ), then for s=1 (σ=1/96), taking N =128
gives about 8 grid points per particle and this was sufficient to reduce the error to the
desired tolerance. However, for s=2 (σ=1/192), the algorithm did not converge for
N =128 (4 points per particles) nor N =256 (8 points per particle) when ∆t=0.01.
We therefore selected a higher ratio of 16 (N =512) or 32 (N =1024) grid points
per particle to ensure a good enough resolution so that the variations of the density
are properly captured by the underlying mesh. For the locally normalized vector
fields, the relative error edir is much smaller than etotal, which means that most of
the error is in the length of the individual vectors, as previously stated. We can
visualize this by looking at a specific case in figure 5.1, where one example of the
field vapprox is presented beside the target field v. Of course, this could also be due
to the particular nature of the vector field considered in the current experiment, and
thus the vortices experiment presented in the next Subsection will tell us more about
this. Note also that the maximum time interval selected for this experiment was such
that the particles did not move much from their initial positions. We will look at a
case where the tracers move further from their initial position in the experiment with
vortices. Observe next that the relative error for the locally normalized vector fields
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(a) Initial and final distributions of particles. The circles represent the initial
positions and the crosses the final positions. Note that the standard deviations
are not represented on this plot.
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(b) Target vector field v.
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(c) Approximate vector field vapprox.

Fig. 5.1. Results for the shear, when M =16, s=2 (σ=1/192), r=0.8, N =1024, and t=0.01.
The vector fields were scaled in order to better visualize these results. The maximum magnitude is
1 for the target vector field and 0.9569 for the approximate vector field.

edir also decreases with σ, but ceases to decrease beyond a certain level with respect
to ∆t for a fixed σ. This can be explained by the fact that for the specific values of ∆t
taken, the relative error due to the finite differences approximation is negligible, but
increasing. More specifically, for ∆t=0.01, ∆t=0.005, and ∆t=0.0025, this error
is respectively 2.4×10−14, 5.8×10−14, and 1.6×10−13 (for comparison, the machine
epsilon used was 2.2×10−16). In fact, we can understand the effect of both errors
through the following inequalities (for one particle):

|v1−vapprox1|=

∣

∣

∣

∣

v1−
T1(λ1)−λ1

∆t

∣

∣

∣

∣

=

∣

∣

∣

∣

v1−
µ1−λ1

∆t
+

µ1−T1(λ1)

∆t

∣

∣

∣

∣
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M=16, s=1.5
etotal ‖T(λ)−µ‖l2norm

(σ=1/144) ∆t ∆t
0.01 0.005 0.0025 0.01 0.005 0.0025

r=0.825 N
512 0.0816 0.0731 0.0713 5.58e-04 2.50e-04 1.22e-04
1024 0.0818 0.0732 0.0714 5.59e-04 2.50e-04 1.22e-04

r=0.85 N
512 0.0726 0.0639 0.0628 4.96e-04 2.18e-04 1.07e-04
1024 0.0728 0.0640 0.0629 4.97e-04 2.19e-04 1.07e-04

r=0.875 N
512 0.0637 0.0551 0.0542 4.35e-04 1.88e-04 9.25e-05
1024 0.0643 0.0551 0.0542 4.39e-04 1.88e-04 9.25e-05

Table 5.2. Some results for the shear experiment. In the first part of this table, we display
the relative error between vapprox and v for different values of r. In the second part, we display
‖T(λ)−µ‖l2norm

, where µ is a vector containing all µij for every particle ij and T(λ) is a vector

containing all T(λij) for every particle ij.

≤

∣

∣

∣

∣

v1−
µ1−λ1

∆t

∣

∣

∣

∣

+C(r,σ)

∣

∣

∣

∣

µ1−λ1

∆t

∣

∣

∣

∣

≤O(∆t)+C(r,σ)‖v1‖∞,

where C(r,σ) is the bound given in Theorem 4.3, and v1 and vapprox1 are respectively
the first components of the target vector field v and the approximate vector field
vapprox (a similar bound can be obtained for the second components of the vectors).
We see that we are in a regime where the velocity error is dominated by the effect of σ
and r alone, because the term in O(∆t) becomes negligible for ∆t small enough, which
is the case here. We will present a different regime for which the finite differences
error is significant in Subsection 5.2.

Let us now look at results for which only r is varying; see table 5.2. The relative
error also decreases as r increases and as ∆t decreases. In the second part of this
table, we display the total error in the final position of the particles, that is the
‖·‖l2norm norm of the vector containing the errors µij−T(λij) for every particle ij.
We observe that this error in the final position also decreases as r increases and as ∆t
decreases, as expected. Note finally that all the results obtained in table 5.1 and table
5.2 were obtained using a multiresolution approach, where for example in table 5.1,
the final solution obtained for s=1 was taken to be the starting solution for s=1.5.
In every case, we took τi=3 and τf =1. It took about 11 hours in total to compute
all three approximate vector fields corresponding to s=1, s=1.5, and s=2 in the
case where N =1024, r=0.8, and ∆t=0.01. We used a single processor of a 2.67-
GHz Xeon x5550 core with 24 GB of RAM. At this stage, the current implementation
of the algorithm is still serial and has not been optimized in terms of speed, so the
computing time remains fairly high. We will discuss this further in the conclusion.

5.2. Array of vortices. For the second experiment, we take the vector field
to be

v(x1,x2,t)=(sin(2πγ1x1),cos(2πγ2x2)+π/2),

where γ1=2 and γ2=4. In table 5.3 and figure 5.2 we present the results of similar
experiments as the ones presented in the previous case. We observe a similar behavior
for etotal as for the shear experiment. However, several differences arise. First, edir
now decreases with ∆t as opposed to the previous case. This can be explained by
the fact that the finite differences relative error is now 0.0821, 0.0406, and 0.0202
for ∆t=0.01, ∆t=0.005, and ∆t=0.0025, respectively. Observe also that etotal is
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close to this finite differences error, which means that our algorithm gives good re-
sults. The error in direction edir is now a bigger portion of the relative error, but
as s increases and ∆t decreases, this portion decreases significantly. Second, in the
case where N =512 and ∆t=0.01, the algorithm did not converge anymore for s=1.5
and s=2. In both cases, we let the Newton algorithm evolve even if the GMRES
algorithm did not converge to a tolerance of TOLGMRES=0.1 on the relative error for
some iterates (the maximum number of iterations was set to 50 for GMRES). We then
stopped the algorithm when this relative residual in the GMRES algorithm became
bigger than 0.99, that is when the solution computed is almost the same as the one
computed in the previous iteration. This happened after n=27 Newton iterations
for s=1.5 and after n=24 for s=2. In the former case, we reduced the errors to
‖fn−f‖l2norm =0.0041, ‖un−un−1‖l2norm =7.0084e−08, and ‖fn−f‖l2norm/‖f‖l2norm =
3.2496e−06, whereas we got ‖fn−f‖l2norm =0.0327, ‖un−un−1‖l2norm =3.0946e−07,
and ‖fn−f‖l2norm/‖f‖l2norm =1.2206e−04 for the latter case.

M=16, r=0.8
etotal edir

∆t ∆t
0.01 0.005 0.0025 0.01 0.005 0.0025

s=1
N

512 0.2513 0.1957 0.1803 0.1685 0.1156 0.1018
(σ=1/96) 1024 0.2523 0.1959 0.1803 0.1697 0.1157 0.1018

s=1.5
N

512 0.1218* 0.0865 0.0743 0.0522* 0.0321 0.0240
(σ=1/144) 1024 0.1296 0.0867 0.0744 0.0591 0.0322 0.0240

s=2
N

512 0.0888* 0.0563 0.0450 0.0376* 0.0200 0.0122
(σ=1/192) 1024 0.0980 0.0593 0.0454 0.0400 0.0206 0.0123

Table 5.3. Some results for the vortices experiment. In the first part of this table, we display
the relative error between vapprox and v for different values of s. In the second part, we display
the relative error for the locally normalized vapprox and v. If a * is displayed, it means that the
algorithm did not converge to the given tolerance (it stagnated).

M=32
etotal ‖un−un−1‖l2norm

N=1024 ∆t ∆t
0.01 0.005 0.0025 0.01 0.005 0.0025

s=1, r=0.8 0.9558* 0.2752 0.2129 1.92e-08 7.43e-12 3.82e-12
s=1, r=0.85 0.9625* 0.2544 0.1878 2.32e-07 3.77e-12 1.60e-11
s=1.5, r=0.8 1.0005* 0.2138* 0.0852 2.74e-06 6.48e-08 1.08e-11
s=1.5, r=0.85 1.0011* 0.2039* 0.0680 1.70e-06 1.81e-06 2.68e-10

M=32
‖fn−f‖l2norm

‖fn−f‖l2norm
‖f‖l2norm

N=1024
∆t ∆t

0.01 0.005 0.0025 0.01 0.005 0.0025
s=1, r=0.8 0.0012 6.50e-07 7.13e-07 6.14e-07 1.82e-13 2.20e-13
s=1, r=0.85 0.0677 8.67e-07 5.00e-07 0.0018 3.02e-13 1.00e-13
s=1.5, r=0.8 0.4408 0.0655 7.10e-07 0.0408 9.01e-04 1.06e-13
s=1.5, r=0.85 0.5505 0.1312 9.46e-07 0.0578 0.0033 1.70e-13

Table 5.4. Some results for the vortices experiment for the case M =32 and N =1024. If a
* is displayed, it means that the algorithm did not converge to a tolerance of TOLNewton=10−6 in
the stopping criterion (it stagnated). We also present in every case several examples of the norms
involved in the stopping criterion, where in each case n is the number of Newton iterations required
to either reach the tolerance or stagnate. Note that s=1 and s=1.5 correspond to σ=1/192 and
σ=1/288, respectively.
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(a) Initial and final distributions of particles. The circles represent
the initial positions and the crosses the final positions. Note that
the standard deviations are not represented on this plot.
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(b) Target vector field.
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(c) Approximate vector field.

Fig. 5.2. Results for the vortices, when M =16, s=2 (σ=1/192), r=0.8, N =1024, and
t=0.01. The vector fields were scaled in order to better visualize these results. The maximum
magnitude is 2.7584 for the target vector field and 2.5722 for the approximate vector field.

Nevertheless, as we can see in the table, the relative error etotal is quite close to
the one for N =1024. Therefore, we realize that a tolerance of TOLNewton=10−6 on
the stopping criterion (2.5) might be too stringent and that acceptable results could
be obtained with fewer iterations. In addition, the number of grid points required
to get convergence could be large for larger values of s, and thus a mesh adaptation
implementation would be better suited in order to increase the performances of our
method. We shall come back to this later. We also point out that varying the tolerance
originally set to TOLGMRES=10−1 for the GMRES algorithm does not prevent this
stagnation from occurring. As for the computing times, it took on the same CPU as
the one previously mentioned about 33 hours to compute the vector fields associated
with s=1, s=1.5, and s=2, using a multiresolution approach in the case where
r=0.8, N =1024, and ∆t=0.01. This longer computing time can be explained by
the fact that compared to the case of the shear experiment, the optimal solution is
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(a) ‖T(λ)−µ‖l2norm
as a function of σ=1/(6Ms)

for N =1024, M =16, r=0.8, and ∆t=0.005.
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(b) Tail of the error graph 5.3 (a).
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(c) ‖T(λ)−µ‖l2norm
as a function of (1−r)/r for

N =1024, M =16, s=1.5, and ∆t=0.005.

����� ������ ����� ������ ����� ������ ����� ������ ����� ������

����

�����

����

�����

����

�����

����

�����

����

�����

	


�
��

�

(d) ‖v−vapprox‖l2norm
as a function of ∆t for

N =1024, M =16, s=1.5, and r=0.8.

Fig. 5.3. Numerical validation of the error analysis in dimension two. In the cases where the
data follows a linear trend, the linear regression line passing through the data is included, with the
corresponding coefficient of determination.

further from the initial guess of 0 by the Newton algorithm.
The only parameter we have not varied so far is the number of tracers M . In

table 5.4, we present some results for M =32, or 312 particles. We fix the grid size
to N =1024. From the table, we see that the procedure did not converge in any case
when ∆t=0.01 or for two cases for ∆t=0.05. To see how far the algorithm was from
reaching the tolerance of TOLNewton=10−6, we also presented in table 5.4 the value
of some errors involved for the last iterate. Due to this higher number of particles,
it appears that a larger grid size is required in these situations, which gives more
arguments in favour of an adaptive mesh implementation. Note that it would also
be possible to reduce the computational cost of the algorithm by splitting the region
containing the tracers into smaller interrogation windows and by applying the OT
algorithm on each of them.

5.3. Numerical validation of 2D error estimates. Here, we investigate in
more details the error behaviour with respect to the parameters r, σ, and ∆t for the
case of multiple particles in 2D. For simplicity, we consider only the case of vortices
when M =16. The results are shown in figure 5.3. As we see in figure 5.3 (c), the error
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decreases linearly with respect to (1−r)/r. For the standard deviation, figure 5.3 (a)
depicts that for the larger values on the graph, we are in an exponential regime. Then,
as σ decreases, we enter a linear regime, as seen in figure 5.3 (b), which is consistent
with the results of Theorem 4.3. Finally, we displayed in figure 5.3 (d) the error
as a function of ∆t. We see that, because the grid size was fixed to N =1024, as
∆t decreases, the displacements of the tracers are not all detected by the grid. The
vector field becomes under-resolved and the error stagnates. Before this transition,
etotal decreases with ∆t, but not linearly. This is expected because the trajectories in
the flow are not linear.

6. Concluding remarks

We introduced in this work a method for approximating the velocity field from
measurements obtained by particle image velocimetry using optimal transportation.
Even though we investigated only the case where the average displacement of tracers is
smaller than about half of the average distance between them in our numerical exper-
iments, this work gives good reasons to believe that more involved algorithms based
on similar principles could be successful in recovering the velocity field associated to
general PIV problems. The technique presented has several advantages: it can be used
on problems requiring any number of physical dimensions; it is a global approach and
thus there is no need to split the domain into several interrogation windows; it can
be applied to virtually any distribution of tracers; and finally it appears that most of
the error introduced by this method is concentrated in the length of the vectors, not
in their directions. In addition, the very general framework provided by the optimal
transportation theory could provide even more accurate methods. Indeed, we took
here the cost function c to be the square of the Euclidean distance. This particular
distance is easier to deal with due to the nice convexity properties of the solution,
but other costs might be better suited for specific situations (depending on the model
taken for the densities or the properties of the fluid under consideration).

The two major difficulties we found for this method are the fact that the optimal
map T does not map the particle’s location exactly to its target location (for the
specific model we used) and the fact that in its current stage of development, it is
still quite computationally demanding. However, by modelling the uncertainty in
the measurement of a particle’s location using a Gaussian distribution with standard
deviation σ and the noise in the light measurements by 1−r, we proved that this
error in the position decreases linearly with respect to both parameters. We also saw
that the error between the target and approximate vector fields is limited mostly by
the finite differences used to approximate the velocity using the optimal map.

Using smaller values of σ and bigger values of r significantly reduced the error in
position and therefore we can think that for a small uncertainty in the measurement
of the particle’s location and a low noise level, this position error would become
negligible. Getting the algorithm to converge in such a case would require a very
high grid size which could be difficult to achieve with a uniform grid. Due to the
nature of the densities f and g, when s is big enough (that is, the standard deviation
σ is small enough) many grid points are not in fact needed for the computations.
Indeed, as about 99.7% of the data is within three standard deviations of the mean in
a normal distribution, outside circles of radius 3σ centered at the particle’s location,
the value of f (or g) is almost constant with value 1−r, and thus we don’t need to
keep track of all the related grid points. For example, in the case where M =16 and
s=1, the total area covered by these circles corresponds to about 69% of the area of
the domain [0,1]2, whereas when M =16 and s=2, this percentage decreases to about
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17.3%. Therefore, we see that a mesh adaptation method would significantly increase
the efficiency of the algorithm for smaller standard deviations by laying a grid with
a larger concentration of points inside these circles. It is also worth mentioning that
we employed a serial algorithm and it is clear that some parts of the procedure could
be computed much faster using a parallel implementation.

The model based on Gaussian distributions employed in this work was taken
primarily because it provides a realistic model for simple PIV or PTV situations
which is at the same time compatible with the selected optimal transport numerical
algorithm. Several procedures available in the literature to solve the optimal transport
map require the densities to be bounded away from 0, which makes the parameter
r necessary. Nevertheless, the mathematical analysis we presented is independent of
the choice of algorithm and explains the effect of a uniformly distributed noise and of
the uncertainty in the measurement of the tracer particles. For more complicated PIV
data in which the distributions of tracers are much more random, one way to use our
model would be to first apply a clustering algorithm to identify defining clusters of
particles. Then, one could find the centroid of the clusters and use it for the center of
the Gaussians. The standard deviation could be obtained by computing the average
distance from the boundary of every cluster to its center. One significant issue to
investigate for this procedure would occur when a cluster representing several tracers
splits into several clusters on the image. In subsections 5.1 and 5.2, the time-scales
and particle sizes taken are usually considered more for PTV than PIV. However, in
the near future, our goal is to apply the method we presented in this paper to real
PIV data and then further investigate different strategies to approximate the velocity
field.

At last, there are a few mathematical open problems left to solve in order to
complete the proof of the position error’s behaviour in dimension two. As we saw in
Section 4, we had to introduce three assumptions to prove the linear convergence in
dimension 2. Nevertheless, we provided some numerical evidence of its validity for
the more complex case of multiple particles.
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