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GLOBAL WEAK SOLUTIONS OF 3D COMPRESSIBLE

MICROPOLAR FLUIDS WITH DISCONTINUOUS INITIAL DATA

AND VACUUM∗

MINGTAO CHEN† , XINYING XU‡ , AND JIANWEN ZHANG§

Abstract. In this paper, we study the global existence of weak solutions to the Cauchy problem
for three-dimensional equations of compressible micropolar fluids with discontinuous initial data.
Here it is assumed that the initial energy is suitably small in L

2, that the initial density is bounded in
L
∞, and the gradients of initial velocity and microrotational velocity are bounded in L

2. Particularly,
this implies that the initial data may contain vacuum states and the oscillations of solutions could
be arbitrarily large. As a byproduct, we also prove the global existence of smooth solutions with
strictly positive density and small initial-energy.
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1. Introduction

In this paper, we are interested in three-dimensional compressible, viscous, mi-
cropolar fluids:

ρt+div(ρu)=0, (1.1)

(ρu)t+div(ρu⊗u)+∇P (ρ)=(µ+ζ)△u+(µ+λ−ζ)∇divu+2ζrotw, (1.2)

(ρw)t+div(ρu⊗w)+4ζw=µ
′

△w+(µ
′

+λ
′

)∇divw+2ζrotu, (1.3)

for (t,x)∈ [0,∞)×R
3. Here ρ, u, w, and P (ρ) denote the density, velocity, microro-

tational velocity, and pressure, respectively. The pressure P (ρ) is usually determined
through the equation of states. Without loss of generality, we consider the isentropic
flows with γ-law pressure

P (ρ)=Aργ (A>0,γ >1).

The constants µ and λ are the shear and bulk viscosity coefficients of the flow, and they
satisfy the physical restrictions µ>0,2µ+3λ≥0. ζ >0 is the dynamics microrotation
viscosity, µ

′

and λ
′

are the angular viscosities satisfying µ′>0 and 2µ′+3λ′≥0.
The system (1.1)–(1.3) describes the viscous compressible fluids with randomly

oriented particles suspended in the medium when the deformation of the fluid parti-
cles is ignored, which has been successfully applied for modeling rheologically complex
liquids such as blood and suspensions (see, e.g., [10]). Physically it may represent the
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fluids consisting of bar-like elements. When microrotation effects are neglected (i.e.
w=0), (1.1)–(1.3) reduces to the compressible Navier-Stokes equations. Here we
emphasize that the dynamics microrotation viscosity ζ >0 is essential for the com-
pressible micropolar fluid, otherwise the velocity and the microrotation are uncoupled
and the global motions are unaffected by the microrotations.

In this paper, we consider an initial value problem of system (1.1)–(1.3) with the
far field behavior

ρ→ ρ̃>0, u→0, w→0 as |x|→∞, t>0, (1.4)

and the initial data

(ρ,u,w)(0,x)=(ρ0,u0,w0)(x), x∈R
3, (1.5)

where ρ̃ is a given nonnegative constant.

In virtue of the importance of mathematics and physics, there is a large literature
on the mathematical theory of micropolar fluids. For incompressible micropolar fluids,
there are many results on global solutions; see [35, 9, 21, 3, 36, 30, 28] and references
therein.

For the compressible case, from the mathematical viewpoint, (1.1)–(1.3) can be
viewed as a modification of the compressible Navier-Stokes equations. Let us first re-
view the main progress on the compressible Navier-Stokes equations. In the absence of
vacuum, the local existence and uniqueness of classical solutions are shown in [27, 31].
The global existence of classical solutions was first investigated by Matsumura-Nishida
[22], who established global existence of classical solutions for data close to a non-
vacuum equilibrium, and later by Hoff [14, 15] for discontinuous initial data. If the
initial density need not be positive and may vanish in an open subset, then one has
local strong solutions (also classical solutions); we refer the reader to [7, 8]. For the
global existence of weak solutions with arbitrary initial data, the major breakthrough
is due to Lions [20] (see, e.g., [11, 12]). Recently, Huang-Li-Xin [17] established the
global existence and uniqueness of classical solutions to the Cauchy problem for the
3D isentropic compressible Navier-Stokes equations with smooth initial data which
are of small energy but possibly large oscillations and vacuum. Let’s go back to the
compressible micropolar fluids (1.1)–(1.3). The research for compressible micropolar
fluids goes along with that for the compressible Navier-stokes equations. In the ab-
sence of vacuum, there also have been many works on the full viscous compressible
micropolar fluids (which include also the conservation law of energy) since Eringen
[10]. The one-dimensional problem was studied by Mujaković in [23, 24, 25, 26],
and in the references therein. For the multidimensional case, we refer the readers to
[29, 13, 4, 5] and the references therein. In Lions’ framework [20] (see also [11, 12]),
Amirat-Hamdache [1] studied the micropolar fluids with the effect of magnetic field,
and they proved the existence of global weak solution in a bounded domain in R

3

with initial vacuum.

As emphasized in many papers (see, e.g., [16, 19, 20, 34]), the possible presence
of vacuum is one of the major difficulties in the study of the mathematical theory of
compressible fluids. Therefore, the main purpose of this paper is to study the global
existence and large time behavior of weak solutions of (1.1)–(1.5) when the initial
data may contain vacuum states. To overcome the difficulties induced by vacuum,
we shall use some ideas in [17] to get the time-independent upper bound for the
density. Because of the influence of randomly oriented particles, the micropolar fluids
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are more complicated than the Navier-Stokes system, as we have to deal with the
coupling velocity u, microrotational velocity w, and density ρ.

Before stating the main result, we explain the notions used throughout this paper.
We denote

∫

fdx=

∫

R3

fdx.

For 1≤ r≤∞, we denote the standard homogeneous and inhomogeneous Sobolev
spaces as follows:

{

Lr=Lr(R3), Dk,r={u∈L1
loc(R

3) : |∇ku‖Lr <∞}, ‖u‖Dk,r ,‖∇ku‖Lr ,

W k,r=Lr∩Dk,r, Hk=W k,2, Dk=Dk,2, D1={u∈L6 :‖∇u‖L2 <∞}.

We now state the definition of weak solutions of (1.1)–(1.5) as follows.

Definition 1.1. A triple of functions (ρ,u,w) is said to be a weak solution of (1.1)–
(1.5) provided that (ρ− ρ̃,ρu,ρw)∈C([0,∞);H−1(R3)), (u,w)∈L2

loc(0,∞;D1) for t>
0. Moreover, the following identities hold for any test function ψ∈D3((t1,t2)×R

3)
with t2>t1≥0:

∫

ρψ(t,x)dx

∣

∣

∣

∣

t2

t1

=

∫ t2

t1

∫

(ρψt+ρu ·∇ψ)dxdt,

∫

ρuψ(t,x)dx

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

((µ+ζ)∇u ·∇ψ+(µ+λ−ζ)(divu)∇ψ)dxdt

=

∫ t2

t1

∫

(ρuψt+ρuu ·∇ψ+P (ρ)divψ+2ζwrotψ)dxdt,

and

∫

ρwψ(t,x)dx

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

(µ′∇w ·∇ψ+(µ′+λ′)(divw)divψ+4ζwψ)dxdt

=

∫ t2

t1

∫

(ρwψt+ρuw ·∇ψ+2ζurotψ)dxdt.

The initial energy C0 is defined as

C0=

∫
(

1

2
ρ0|u0|

2+
1

2
ρ0|w0|

2+G(ρ0)

)

dx, (1.6)

where G denotes the potential energy density given by

G(ρ),ρ

∫ ρ

ρ̃

P (s)−P (ρ̃)

s2
ds.

It is clear that

c1(ρ̃, ρ̄)(ρ− ρ̃)
2≤G(ρ)≤ c2(ρ̃, ρ̄)(ρ− ρ̃)

2, if ρ̃>0, 0≤ρ≤2ρ̄,

for some positive constant c1(ρ̄, ρ̃) and c2(ρ̄, ρ̃).
Then the main result in this paper can be stated as follows.
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Theorem 1.2. For some given numbers M1,M2>0 (not necessarily small) and
ρ̄≥ ρ̃+1, suppose that the initial data (ρ0,u0,w0) satisfy

0≤ inf ρ0≤ supρ0≤ ρ̄, ‖∇u0‖
2
L2 ≤M1, ‖∇w0‖

2
L2 ≤M2. (1.7)

Then there exists a positive constant ε depending on µ, λ, ζ, µ′, λ′, a, γ, M1, M2, ρ̃,
and ρ̄ such that if

C0≤ ε, (1.8)

then there is a weak solution (ρ,u,w) of (1.1)–(1.5), in the sense of Definition 1.1,
satisfying

0≤ρ(x,t)≤2ρ̄, for all x∈R
3, t≥0, (1.9)

and

lim
t→∞

∫

(

|ρ− ρ̃|p+ρ1/2|u|4+ρ1/2|w|4
)

dx=0, (1.10)

where p∈ (2,∞).

Theorem 1.2 will be proved by constructing weak solutions as limits of smooth
solutions. Roughly speaking, we use the following Lemma 2.4 to guarantee the local
existence of smooth solutions with regularized density (which is strictly positive),
then extend the local existence of smooth solutions globally in time just under the
condition that the initial energy is suitably small, and finally let the lower bound
of the initial density go to zero. Therefore, to finish the proof of Theorem 1.2, it is
enough to deduce some global a priori estimates which are independent of the lower
bound of the density. To overcome the difficulties caused by vacuum, we shall use the
ideas developed in [17]. As in [17], the key step is to deduce the time-independent
upper bound of the density. However, due to the microrotation effects, the problem of
compressible micropolar fluids considered becomes a bit more complicated than that
of the compressible Navier-Stokes equations.

The paper is organized as follows. In Section 2, we introduce some preliminary
facts and inequalities for the proof of Theorem 1.2. In Section 3, we deduce the
desired a priori estimates for the proof of Theorem 1.2. We will complete the proof
of Theorem 1.2 in Section 4.

2. Preliminaries

In this section, we will recall some known facts and elementary inequalities that
will be used frequently in this paper.

First, the following well-known Gagliardo-Nirenberg inequality [18] will be used
frequently later.

Lemma 2.1. For p∈ [2,6], q∈ (1,∞), and r∈ (3,∞), there exists some generic con-
stant C>0 that may depend on q and r such that for f ∈H1(R3) and g∈Lq(R3)∩
D1,r(R3), we have

‖f‖Lp ≤C‖f‖
(6−p)/(2p)
L2 ‖∇f‖

(3p−6)/(2p)
L2 , (2.1)

‖g‖L∞ ≤C‖g‖
q(r−3)/(3r+q(r−3))
Lq ‖∇g‖

3r/(3r+q(r−3))
Lr . (2.2)
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To proceed, similar to the compressible Navier-Stokes equations (see, for example,
[14, 17]), we introduce the effective viscous flux for the micropolar fluids related to
the velocity, the micro-rotational velocity, and the pressure:

{

F1, (2µ+λ)divu−(P (ρ)−P (ρ̃)) , V1,∇×u,

F2, (2µ′+λ′)divw, V2,∇×w,
(2.3)

where F1 and F2 are the so-called “effective viscous flux”, and V1 and V2 are the
vorticity.

Lemma 2.2. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5)on (0,T )×R
3. Then

there exists a generic constant C>0, which may depend on µ, λ, µ′, λ′, and ζ, such
that for any 2≤p≤6,

‖∇F1‖Lp +‖∇V1‖Lp +‖∇F2‖Lp +‖∇V2‖Lp

≤C (‖ρu̇‖Lp +‖ρẇ‖Lp +‖∇u‖Lp +‖∇w‖Lp +‖w‖Lp) , (2.4)

‖F1‖L6 +‖V1‖L6 +‖F2‖L6 +‖V2‖L6

≤C (‖ρu̇‖L2 +‖ρẇ‖L2)+C (‖∇u‖L2 +‖∇w‖L2 +‖w‖L2) , (2.5)

‖∇u‖L6 +‖∇w‖L6

≤C (‖ρu̇‖L2 +‖ρẇ‖L2)+C‖P (ρ)−P (ρ̃)‖L6 +C (‖∇u‖L2 +‖∇w‖L2 +‖w‖L2) . (2.6)

Proof. Indeed, due to (1.2) and (1.3), one has

{

ρu̇=∇F1−(µ+ζ)rotV1+2ζrotw,

ρẇ+4ζw=∇F2−µ
′rotV2+2ζrotu,

and hence


























∆F1=div(ρu̇),

∆F2=div(ρẇ)−4ζdivw,

(µ+ζ)∆V1=∇×(ρu̇)−2ζ∇×V2,

µ′∆V2−4ζV2=∇×(ρẇ)−2ζ∇×V1,

(2.7)

where ḟ ,ft+u ·∇f .
Thus, an application of the standard Lp–estimates for elliptic systems leads to

(2.4), which together with (2.1), gives (2.5). Then, using (2.3) and the Lp-estimate,
we obtain (2.6).

Next, the following Zlotnik inequality will be used to get the uniform (in time)
upper bound of the density ρ; for details of the proof, see [37].

Lemma 2.3. Assume that the function y∈W 1,1(0,T ) solves the ODE system

y′=g(y)+b′(t) on [0,T ], y(0)=y0,

where b∈W 1,1(0,T ) and g∈C(R). If g(∞)=−∞ and

b(t2)−b(t1)≤N0+N1(t2− t1) (2.8)
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for all 0≤ t1≤ t2≤T with some N0≥0 and N1≥0, then one has

y(t)≤max{y0,ξ
∗}+N0<+∞ on [0,T ], (2.9)

where ξ∗∈R is a constant such that

g(ξ)≤−N1 for ξ≥ ξ∗. (2.10)

For the derivation of a priori estimates we need an existence result for smooth
solutions for small time. We here shall assume (without proof) that we have an
existence result of the following form, which is a direct generalization of a classical
result for compressible Navier-Stokes equations [32, 33].

Lemma 2.4. Assume that the initial data (ρ0,u0,w0) satisfies

(ρ0− ρ̃,u0,w0)∈H
3, and inf ρ0>0. (2.11)

Then there exists a positive time T0, which may depend on inf ρ0, such that the Cauchy
problem (1.1)–(1.5) has a unique smooth solution (ρ,u,w) on R

3× [0,T0] satisfying

ρ(t,x)>0 for all x∈R
3, t∈ [0,T0], (2.12)

ρ− ρ̃∈C([0,T0];H
3)∩C1([0,T0];H

2), (2.13)

and

(u,w)∈C([0,T0];H
3)∩C1([0,T0];H

1)∩L2([0,T0];H
4). (2.14)

Finally, we recall the following Beale-Kato-Majda type inequality (cf. [2, 17]) on
the derivative of velocity.

Lemma 2.5. For q∈ (3,∞), there exists a constant C(q)>0 such that for all ∇u∈
L2∩D1,q,

‖∇u‖L∞ ≤C (‖divu‖L∞ +‖∇×u‖L∞)ln
(

e+‖∇2u‖Lq

)

+C‖∇u‖L2 +C. (2.15)

3. A priori estimates

In this section, we will establish some necessary a priori bounds of global solutions
to (1.1)–(1.5). First, let T >0 be fixed and assume that (ρ,u,w) is a smooth solution
of (1.1)–(1.5) defined on R

3×(0,T ]. To estimate this solution, we set σ(t),min{1,t}
and define

A1(T ), sup
0≤t≤T

(

σ‖∇u‖2L2 +σ‖∇w‖2L2

)

+

∫ T

0

∫

σ
(

ρ|u̇|2+ρ|ẇ|2
)

dxdt, (3.1)

A2(T ), sup
0≤t≤T

(

σ2

∫

(ρ|u̇|2+ρ|ẇ|2)dx

)

+

∫ T

0

∫

σ2
(

|∇u̇|2+ |∇ẇ|2
)

dxdt, (3.2)

and

A3(T ), sup
0≤t≤T

(

‖∇u‖2L2 +‖∇w‖2L2

)

. (3.3)

We have the following key a priori estimates on (ρ,u,w).
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Proposition 3.1. Under the conditions of Theorem 1.2, there exist positive con-
stants ε and K, both depending on µ, λ, ζ, µ′, λ′, a, γ, ρ̃, ρ̄, M1, and M2, such that
if (ρ,u,w) is a smooth solution of (1.1)–(1.5) on (0,T ]×R

3 satisfying







0≤ρ(x,t)≤2ρ̄ for (x,t)∈R
3× [0,T ],

A1(T )+A2(T )≤2C
1/2
0 , A3(σ(T ))≤3K,

(3.4)

the following estimates hold:







0≤ρ(x,t)≤7ρ̄/4 for (x,t)∈R
3× [0,T ],

A1(T )+A2(T )≤C
1/2
0 , A3(σ(T ))≤2K,

(3.5)

provided C0≤ ε.

Proof. Proposition 3.1 is an easy consequence of the lemmas 3.4, 3.5, and 3.7.

In the following, we will use the convention that C denotes a generic positive
constant depending on µ, λ, ζ, µ′, λ′, a, γ, ρ̃, ρ̄, M1, and M2, and we write C(α) to
emphasize that C depends on α.

We start with the following standard energy estimate for (ρ,u,w).

Lemma 3.2. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) satisfying (3.4). Then

sup
0≤t≤T

(‖ρ1/2u‖2L2 +‖ρ1/2w‖2L2 +‖G(ρ)‖L1)

+

∫ T

0

(

‖∇u(t)‖2L2 +‖∇w(t)‖2L2 +‖(rotu−2w)(t)‖2L2

)

dt≤CC0. (3.6)

Proof. Multiplying (1.1), (1.2), and (1.3) by G′(ρ), u, and by w respectively,
integrating, and then applying the far-field condition (1.5), one shows easily the energy
inequality (3.6). For details we refer the reader to [5].

Remark 3.3. Obviously, we can deduce from (3.6) that

∫ T

0

‖w‖2L2dt≤C

∫ T

0

(

‖rotu−2w‖2L2 +‖∇u‖2L2

)

dt≤CC0. (3.7)

The following two lemmas are preliminary L2 bounds for ∇u, ∇w, ρu̇, and ρẇ.

Lemma 3.4. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satisfying

(3.4). Then

A1(T )≤CC0+C

∫ T

0

∫

σ
(

|∇u|3+ |∇w|3
)

dxdt. (3.8)

Proof. Multiplying (1.2) and (1.3) by σu̇ and σẇ respectively, then integrating
the resulting equations by parts over R3, we obtain after adding them together that

∫

σ
(

ρ|u̇|2+ρ|ẇ|2
)

dx
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=−

∫

σu̇ ·∇P (ρ)dx+µ

∫

σu̇ ·△udx+(µ+λ)

∫

σu̇ ·∇divudx

−ζ

∫

σu̇ ·rot(rotu)dx+µ′

∫

σẇ ·△wdx+(µ′+λ′)

∫

σẇ ·∇divwdx

+2ζ

∫

σrotw · u̇dx−4ζ

∫

σw · ẇdx+2ζ

∫

σrotu · ẇdx,

9
∑

i=1

Ii. (3.9)

To deal with the first term on right-side of (3.9), we first deduce from (1.1) that

(P (ρ)−P (ρ̃))t+u ·∇(P (ρ)−P (ρ̃))+γP (ρ)divu=0, (3.10)

so that we integrate I1 of (3.9) by parts to deduce that

I1=

∫

(σ(divu)t(P (ρ)−P (ρ̃))−σ(u ·∇u) ·∇P (ρ))dx

=

(
∫

σdivu(P (ρ)−P (ρ̃))dx

)

t

−σ′

∫

divu(P (ρ)−P (ρ̃))dx

+

∫

σ
(

(γ−1)P (ρ)(divu)2+P (ρ)∂iu
j∂ju

i
)

dx

≤

(
∫

σdivu(P (ρ)−P (ρ̃))dx

)

t

+σ′‖P (ρ)−P (ρ̃)‖L2‖∇u‖L2 +C‖∇u‖2L2

≤

(
∫

σ(divu)(P (ρ)−P (ρ̃))dx

)

t

+C‖∇u‖2L2 +Cσ′C0. (3.11)

Integrating I2 and I5 of (3.9) by parts implies that

I2+I5=µ

∫

σu̇ ·△udx+µ′

∫

σẇ ·△wdx

=−
µ

2

(

σ‖∇u‖2L2

)

t
+
µ

2
σ′‖∇u‖2L2 −µσ

∫

∂iu
j∂i(u

k∂ku
j)dx

−
µ′

2

(

σ‖∇w‖2L2

)

t
+
µ

2
σ′‖∇w‖2L2 −µσ

∫

∂iw
j∂i(u

k∂kw
j)dx

≤−
µ

2

(

σ‖∇u‖2L2

)

t
−
µ′

2

(

σ‖∇w‖2L2

)

t

+C
(

‖∇u‖2L2 +‖∇w‖2L2

)

+Cσ
(

‖∇u‖3L3 +‖∇w‖3L3

)

. (3.12)

Similar to the the estimate of I2 and I5,

I3+I6=(µ+λ)

∫

σu̇ ·∇divudx+(µ′+λ′)

∫

σẇ ·∇divwdx

≤−
µ+λ

2
(σ‖divu‖2L2)t−

µ′+λ′

2
(σ‖divw‖2L2)t

+C
(

‖∇u‖2L2 +‖∇w‖2L2

)

+Cσ
(

‖∇u‖3L3 +‖∇w‖3L3

)

. (3.13)

By virtue of the basic properties of rotation and integrating by parts, we get that

I4≤−
ζ

2

(

σ‖rotu‖2L2

)

t
+C‖∇u‖2L2 +Cσ‖∇u‖3L3 . (3.14)

I7+I9=2ζ

∫

σ (w ·rotut+wt ·rotu)dx+2ζ

∫

σ (rotw ·(u ·∇u)+rotu ·(u ·∇w))dx
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≤2ζ
d

dt

∫

σw ·rotudx−2ζσ′

∫

w ·rotudx+Cσ‖∇w‖2L2 +Cσ‖∇u‖6L2

+Cσ‖∇u‖3L3

≤2ζ
d

dt

∫

σw ·rotudx+C
(

‖w‖2L2 +‖∇u‖2L2

)

+Cσ
(

‖∇w‖2L2 +‖∇u‖6L2 +‖∇u‖3L3

)

. (3.15)

It is easy to see that

I8=−2ζ
d

dt

∫

σw2dx+2ζσ′

∫

w2dx−4ζ

∫

σw ·(u ·∇w)dx

≤−2ζ
d

dt

∫

σw2dx+C‖w‖2L2 +Cσ‖∇w‖3L2 +Cσ‖∇u‖4L2 . (3.16)

Now, substituting all the above estimates (3.11)–(3.16) into (3.9), we get the
following form:

B′(t)+

∫

σ
(

ρ|u̇|2+ρ|ẇ|2
)

dx

≤C‖∇u‖2L2 +C‖∇w‖2L2 +CC0+C‖w‖
2
L2 +Cσ‖∇u‖3L3 +Cσ‖∇w‖3L3 , (3.17)

where we have used (3.4) and (3.6). Here

B(t)=
µσ

2
‖∇u‖2L2 +

µ+λ

2
σ‖divu‖2L2 +

µ′σ

2
‖∇w‖2L2 +

µ′+λ′

2
σ‖divw‖2L2

+
ζ

2
σ‖rotu−2w‖2L2 −

∫

σdivu(P (ρ)−P (ρ̃))dx.

≥
µ

4
σ‖∇u‖2L2 +

µ+λ

4
σ‖divu‖2L2 +

µ′

2
σ‖∇w‖2L2

+
µ′+λ′

2
‖divw‖2L2 +

ζ

2
σ‖rotu−2w‖2L2 −CC0. (3.18)

Then, integrating (3.17) over (0,T ) and using (3.7) and (3.18), we deduce the desired
estimates.

Lemma 3.5. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satisfying

(3.4). There exists a constant ε1>0, depending only on µ′, such that if C0≤ ε1, then

A2(T )≤CC0+CA1(T )+C

∫ T

0

σ2
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt. (3.19)

Proof. Operating σ2u̇j [∂/∂t+div(u·)] and σ2ẇj [∂/∂t+div(u·)] to (1.2)j and
(1.3)j respectively, summing with respect to j, and integrating the resulting equation
by parts over R3, ones obtain that

(

σ2

2

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dx

)

t

−σσ′

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dx

=(µ+ζ)

∫

σ2u̇j
(

△ujt +div(u△uj)
)

dx

+(µ+λ−ζ)

∫

σ2u̇j (∂t∂jdivu+div(u∂jdivu))dx



234 GLOBAL WEAK SOLUTIONS OF 3D COMPRESSIBLE MICROPOLAR FLUIDS

+µ′

∫

σ2ẇj
(

△wj
t +div(u△wj)

)

dx

+(µ′+λ′)

∫

σ2ẇj [∂t∂jdivw+div(u∂jdivw)]dx

−

∫

σ2u̇j (∂jPt(ρ)+div(∂jP (ρ)u))dx+2ζ

∫

σ2u̇ ·
[

rotwt+∂i(u
irotw)

]

dx

+2ζ

∫

σ2ẇ ·
[

rotut+∂i(u
irotu)

]

dx−4ζ

∫

σ2ẇj
[

wj
t +div(wju)

]

dx,

8
∑

i=1

Ji.

(3.20)

Now, we estimate each term on the right-hand side of (3.20). That is,

J1=−(µ+ζ)

∫

σ2
(

∂ku̇
j∂ku

j
t −∂

2
iku̇

jui∂ku
j−∂iu̇

j∂ku
i∂ku

j
)

dx

=−(µ+ζ)

∫

σ2
(

|∇u̇|2+∂ku̇
j∂iu

i∂ku
j−∂ku̇

j∂ku
i∂iu

j−∂iu̇
j∂ku

i∂ku̇
j
)

dx

≤−
(3µ+4ζ)

4
σ2‖∇u̇‖2L2 +Cσ2‖∇u‖4L4 , (3.21)

J3=−µ′

∫

σ2
(

∂kẇ
j∂kw

j
t −∂

2
ikẇ

jui∂kw
j−∂iẇ

j∂ku
i∂kw

j
)

dx

=−µ′

∫

σ2
(

|∇ẇ|2+∂kẇ
j∂iu

i∂kw
j−∂kẇ

j∂ku
i∂iw

j−∂iẇ
j∂ku

i∂kẇ
j
)

dx

=−µ′σ2‖∇ẇ‖2L2 +Cσ2‖∇u‖4L4 +Cσ2‖∇w‖4L4 . (3.22)

In a similar manner, we can also estimate J2 and J4 as follows:

J2≤−
µ+λ−ζ

2
σ2‖divu̇‖2L2 +Cσ2‖∇u‖4L4 , (3.23)

J4≤−
µ′+λ′

2

∫

σ2‖divẇ‖2L2 +Cσ2‖∇u‖4L4 +Cσ2‖∇w‖4L4 . (3.24)

Integrating by parts and using the equation (3.10), we obtain that

J5=

∫

σ2
(

−γP (ρ)divu∂j u̇
j+∂k(∂j u̇

juk)P (ρ)−P (ρ)∂j(∂ku̇
juk)

)

dx

=

∫

σ2
(

−γP (ρ)divu∂j u̇
j+∂j u̇

j∂ku
kP (ρ)−∂ku̇

j∂ju
kP (ρ)

)

dx

≤
µ

4
σ2‖∇u̇‖2L2 +Cσ2‖∇u‖2L2 . (3.25)

J6+J7=4ζ

∫

σ2rot(u̇ẇ)dx−2ζ

∫

σ2rotu̇ ·(u ·∇w)dx−2ζ

∫

σ2rotẇ ·(u ·∇u)dx

−2ζ

∫

σ2ui∂iu̇ ·rotwdx−2ζ

∫

σ2ui∂iẇ ·rotudx

≤4ζ

∫

σ2|rotu̇||(ρ̃−ρ)ẇ+ρẇ|dx+Cζσ2‖u‖L6‖∇w‖L3‖∇u̇‖L2

+Cζσ2‖u‖L6‖∇u‖L3‖∇ẇ‖L2
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≤ζσ2‖∇u̇‖2L2 +
µ′

4
σ2‖∇ẇ‖2L2 +Cσ2‖ρẇ‖2L2 +C1σ

2C
2/3
0 ‖∇ẇ‖2L2

+Cσ2‖∇u‖6L2 +Cσ2‖∇u‖3L3 +Cσ2‖∇w‖3L3 . (3.26)

J8=−4ζ

∫

σ2|ẇ|2dx+4ζ

∫

σ2 ((u ·∇w) · ẇ+(u ·∇ẇ) ·w)dx

=−4ζ

∫

σ2|ẇ|2dx−4ζ

∫

σ2div(uw) · ẇdx

≤−2ζσ2‖ẇ‖2L2 +Cσ2‖∇u‖3L3 +Cσ2‖∇w‖6L2 . (3.27)

Putting all the above estimates (3.21)–(3.27) into (3.20), by virtue of (3.4), we
finally deduce that

(

σ2

2

∫

(ρ|u̇|2+ρ|ẇ|2)dx

)

t

+
µ

2
σ2‖∇u̇‖2L2 +

µ′

2
σ2‖∇ẇ‖2L2 +2ζσ2‖ẇ‖2L2

≤(σσ′+Cσ2)

∫

(ρ|u̇|2+ρ|ẇ|2)dx

+Cσ2
(

‖∇u‖4L4 +‖∇w‖4L4 +‖∇u‖3L3 +‖∇w‖3L3 +‖∇u‖2L2

)

, (3.28)

provided

C0≤ ε1,

(

µ′

4C1

)3/2

.

Thus, combining this with (3.4), (3.6), and (3.8), we conclude the desired estimate.

Next, we proceed to study the short-time boundedness of the L2-norm of the
gradient of velocity.

Lemma 3.6. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satisfying

(3.4). There exists a constant ε2>0, depending only on µ, λ, µ′, and λ′, such that if
C0≤ ε2, then

A3(σ(T ))+

∫ σ(T )

0

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt≤2K. (3.29)

Proof. Similar to the proof of Lemma 3.2, multiplying (1.2) and (1.3) by u̇ and
ẇ respectively, then integrating the resulting equations over R3×(0,σ(T )), we deduce
that

A3(σ(T ))+

∫ σ(T )

0

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt

≤C(C0+M)+C

∫ σ(T )

0

(

‖∇u‖3L3 +‖∇w‖3L3

)

dt

≤C(C0+M)+C

∫ σ(T )

0

(

‖∇u‖
3/2
L2 +‖∇w‖

3/2
L2

)(

‖∇u‖
3/2
L6 +‖∇w‖

3/2
L6

)

dt

≤C(C0+M)+C

∫ σ(T )

0

(

‖∇u‖
3/2
L2 +‖∇w‖

3/2
L2

)
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×
(

‖ρu̇‖
3/2
L2 +‖ρẇ‖

3/2
L2 +‖∇u‖

3/2
L2 +‖∇w‖

3/2
L2 +‖w‖

3/2
L2 +‖P (ρ)−P (ρ̃)‖

3/2
L6

)

dt

≤C(C0+M+1)+
1

2

∫ σ(T )

0

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt

+C

∫ σ(T )

0

(

‖∇u‖6L2 +‖∇w‖6L2

)

dt.

Thus, choosing K,2C(C0+M+1), we conclude that

A3(σ(T ))+

∫ σ(T )

0

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt

≤K+C

∫ σ(T )

0

(

‖∇u‖6L2 +‖∇w‖6L2

)

dt

≤K+C2C0 (A3(σ(T )))
2
. (3.30)

Thus if C0 is chosen to be such that

C0≤ ε2,min
{

ε1,(9C2K)−1
}

,

(3.30) leads to (3.29) immediately. The proof of this lemma is complete.

Lemma 3.7. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satisfying

(3.4). There exists a constant ε3>0, depending only on µ, λ, µ′, and λ′, such that if
C0≤ ε3, then

A1(T )+A2(T )≤C
1/2
0 . (3.31)

Proof. Lemmas 3.2 and 3.3 show that

A1(T )+A2(T )≤CC0+C

∫ T

0

σ2
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt

+C

∫ T

0

σ
(

‖∇u‖3L3 +‖∇w‖3L3

)

dt. (3.32)

We first consider the second term on the right-hand side of the above inequality.
Due to (2.3), we deduce that

∫ T

0

σ2
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt

≤C

∫ T

0

σ2
(

‖F1‖
4
L4 +‖F2‖

4
L4 +‖V1‖

4
L4 +‖V2‖

4
L4

)

dt+C

∫ T

0

σ2‖P (ρ)−P (ρ̃)‖4L4dt

,J1+J2. (3.33)

Due to the (2.3), (2.5), (3.6), and the Sobolev inequality, we deduce that

J1≤C

∫ T

0

σ2 (‖∇u‖L2 +‖∇w‖L2 +‖P (ρ)−P (ρ̃)‖L2)

×
(

‖ρu̇‖3L2 +‖ρẇ‖3L2 +‖∇u‖3L2 +‖∇w‖3L2 +‖w‖3L2

)

dt

≤C

∫ T

0

σ2
(

‖∇u‖L2 +‖∇w‖L2 +C
1/2
0

)
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×
(

‖ρu̇‖3L2 +‖ρẇ‖3L2 +‖∇u‖3L2 +‖∇w‖3L2 +‖ρ− ρ̃‖3L3‖∇w‖3L2 +‖ρw‖3L2

)

dt

≤

∫ σ(T )

0

σ2 (‖∇u‖L2 +‖∇w‖L2)
(

‖ρu̇‖3L2 +‖ρẇ‖3L2

)

dt

+

∫ T

σ(T )

σ5/2 (‖∇u‖L2 +‖∇w‖L2)
(

‖ρu̇‖3L2 +‖ρẇ‖3L2

)

dt

+

∫ T

0

σ2
(

‖∇u‖4L2 +‖∇w‖4L2

)

dt

+CC
1/2
0

∫ T

0

σ2
(

‖ρu̇‖3L2 +‖ρẇ‖3L2 +‖∇u‖3L2

+‖∇w‖3L2 +‖ρ− ρ̃‖3L3‖∇w‖3L2 +‖ρw‖3L2

)

dt (3.34)

≤C sup
t∈[0,σ(T )]

σ
(

‖ρ1/2u̇‖L2 +‖ρ1/2ẇ‖L2

)

sup
t∈[0,σ(T )]

(‖∇u‖L2 +‖∇w‖L2)

×

∫ T

0

σ
(

‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

)

dt

+ sup
t∈[σ(T ),T ]

σ
(

‖ρ1/2u̇‖L2 +‖ρ1/2ẇ‖L2

)

(

sup
t∈[σ(T ),T ]

σ1/2 (‖∇u‖L2 +‖∇w‖L2)+1

)

×

∫ T

0

σ
(

‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

)

dt

+C sup
t∈[0,T ]

σ
(

‖∇u‖2L2 +‖∇w‖2L2

)

∫ T

0

(

‖∇u‖2L2 +‖∇w‖2L2

)

dt

+C sup
t∈[0,T ]

σ1/2 (‖∇u‖L2 +‖∇w‖L2)

∫ T

0

(

‖∇u‖2L2 +‖∇w‖2L2

)

dt

+CC
1/2
0 sup

t∈[0,T ]

‖ρ1/2w‖2L2

∫ T

0

‖w‖2L2

≤CA
1/2
2 (T )A1(T )

(

A
1/2
3 (σ(T ))+A

1/2
1 (T )+1

)

+CC0A1(T )+CC0A
1/2
1 (T )+CC

5/2
0

≤CC
3/4
0 . (3.35)

Next, multiplying the equation (3.10) by 3σ2 (P (ρ)−P (ρ̃))
2
, integrating the re-

sulting equation by parts over R3×(0,T ), and using the effective viscous flux F1, we
obtain that

3γ−1

2µ+λ

∫ T

0

σ2

∫

(P (ρ)−P (ρ̃))
4
dx

=−σ2

∫

(P (ρ)−P (ρ̃))
3
dx+2

∫ T

0

σσ′

∫

(P (ρ)−P (ρ̃))
3
dxdt

−
3γ−1

2µ+λ

∫ T

0

σ2

∫

(P (ρ)−P (ρ̃))
3
F1dx−3γP (ρ̃)

∫

σ2

∫

(P (ρ)−P (ρ̃))
2
divudxdt

≤CC0+ε

∫ T

0

σ2‖P (ρ)−P (ρ̃)‖4L4dt+C

∫ T

0

σ2‖F1‖
4
L4dt+C

∫ T

0

σ2‖∇u‖2L2dt

≤CC
3/4
0 +δ

∫ T

0

σ2‖P (ρ)−P (ρ̃)‖4L4dt, (3.36)
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where we have used (3.6) and (3.34). Therefore, if we choose δ>0 small enough, we
can obtain that

J2=

∫ T

0

σ2‖P (ρ)−P (ρ̃)‖4L4dt≤CC
3/4
0 . (3.37)

Thus, (3.34) together with (3.37) implies that

∫ T

0

σ2
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt≤CC
3/4
0 . (3.38)

As for the last term on the right-hand side of (3.32), note first that (3.6), (3.33),
and (3.34) imply that

∫ T

σ(T )

σ
(

‖∇u‖3L3 +‖∇w‖3L3

)

dt

≤

∫ T

σ(T )

σ2
(

‖∇u‖4L4 +‖∇w‖4L4 +‖∇u‖2L2 +‖∇w‖2L2

)

dt≤CC
3/4
0 . (3.39)

Next, one deduces from (2.5), (3.4), (3.6), and (3.30) that

∫ σ(T )

0

σ
(

‖∇u‖3L3 +‖∇w‖3L3

)

dt

≤C

∫ σ(T )

0

σ
(

‖∇u‖
3/2
L2 +‖∇w‖

3/2
L2

)

×
(

‖ρu̇‖
3/2
L2 +‖ρẇ‖

3/2
L2 +‖∇u‖

3/2
L2 +‖∇w‖

3/2
L2 +C

1/4
0 +‖w‖

3/2
L2

)

dt

≤CC0+δ

∫ σ(T )

0

σ
(

‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

)

dt+C(δ)

∫ σ(T )

0

σ
(

‖∇u‖6L2 +‖∇w‖6L2

)

dt

+

∫ σ(T )

0

σ
(

‖∇u‖3L2 +‖∇w‖3L2

)

dt+δ

∫ σ(T )

0

σ‖w‖2L2dt

≤CC0+δA1(T )+C(δ)A
2
3(σ(T ))C0+CA

1/2
1 (T )C0+δC0

≤CC
3/4
0 +δA1(T ), (3.40)

which together with (3.39) implies that

∫ T

0

σ
(

‖∇u‖3L3 +‖∇w‖3L3

)

dt≤CC
3/4
0 +δA1(T ), (3.41)

then, choosing δ= 1
2 , by virtue of (3.32), (3.38), and (3.41), we conclude that

A1(T )+A2(T )≤C3C
3/4
0 ≤C

1/2
0 ,

provided that

C0≤ ε3,min

{

ε2,

(

1

4C3

)4
}

,

Thus, we finish the proof of Lemma 3.5.



M.T. CHEN, X.Y. XU, AND J.W. ZHANG 239

Observing (3.18), (3.31), and (3.41) , we make the following remark.

Remark 3.8. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satis-

fying (3.4). There exists a constant ε3>0, depending only on µ, λ, µ′, and λ′, such
that if C0≤ ε3, then

sup
0≤t≤T

σ‖w‖2L2 ≤CC
1/2
0 . (3.42)

In order to finish the proof of Proposition 3.1, we still need to deduce the upper
bound for the density. To proceed, we first obtain the following result.

Lemma 3.9. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satisfying

(3.4). There exists a constant ε3>0, depending only on µ, λ, µ′, and λ′, such that if
C0≤ ε3, then

sup
0≤t≤T

(

‖∇u‖2L2 +‖∇w‖2L2 +‖w‖2L2

)

+

∫ T

0

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt≤C, (3.43)

sup
0≤t≤T

∫

σ
(

ρ|u̇|2+ρ|ẇ|2
)

dx+

∫ T

0

∫

σ
(

|∇u̇|2+ |∇ẇ|2
)

dxdt≤C. (3.44)

Proof. By virtue of Minkowski’s inequality and (3.6), we can find that

‖w‖L2 ≤C‖ρw‖L2 +C‖(ρ− ρ̃)w‖L2 ≤C+C‖w‖L6‖ρ− ρ̃‖L3 ≤C+C‖∇w‖L2 . (3.45)

The proof of (3.43) could be deduced from (3.29), (3.31), and (3.45) directly. Similar
to the proof of Lemma 3.5, we deduce from (3.4), (3.6), (3.7), (3.28), (3.29), (3.31),
(3.37), (3.38), (3.41), and (3.42) that

sup
0≤t≤T

∫

σ
(

ρ|u̇|2+ρ|ẇ|2
)

dx+

∫ T

0

σ
(

|∇u̇|2+ |∇ẇ|2
)

dt

≤

∫ σ(T )

0

∫

(

ρ|u̇|2+ρ|ẇ|2
)

dxdt+C

∫ T

0

σ
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt+CC
1/2
0

≤C+C

∫ T

σ(T )

σ
2 (‖∇u‖4L4 +‖∇w‖4L4

)

dt+C

∫ σ(T )

0

σ
(

‖∇u‖4L4 +‖∇w‖4L4

)

dt

≤C+C

∫ σ(T )

0

σ (‖∇u‖L2 +‖∇w‖L2)

×
(

‖ρu̇‖3L2 +‖ρẇ‖3L2 +‖P (ρ)−P (ρ̃)‖3L6 +‖∇u‖3L2 +‖∇w‖3L2 +‖w‖3L2

)

dt

≤C+C

∫ σ(T )

0

(

σ‖ρu̇‖3L2 +σ‖ρẇ‖3L2 +σ
2‖P (ρ)−P (ρ̃)‖4L4 +‖∇u‖4L2 +‖∇w‖4L2 +σ‖w‖4L2

)

dt

≤C+C sup
0≤t≤T

(

σ‖ρu̇‖2L2 +σ‖ρẇ‖2L2

)1/2
∫ T

0

(‖ρu̇‖2L2 +‖ρẇ‖2L2)dt

≤C+C sup
0≤t≤T

(

σ‖ρu̇‖2L2 +σ‖ρẇ‖2L2

)1/2
,

and then one immediately obtains (3.44) by virtue of Young’s inequality. Thus, we
finish the proof of Lemma 3.6.

Now, we are ready to deduce the uniform upper bound of the density.
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Lemma 3.10. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3×(0,T ] satis-

fying (3.4). There exists a constant ε4>0, depending only on µ, λ, µ′, and λ′, such
that if C0≤ ε4, then

sup
0≤t≤T

‖ρ‖L∞ ≤
7

4
ρ̄. (3.46)

Proof. Let Dtρ,ρt+u ·∇ρ denote the material derivative operator. Then, in terms
of the effective viscous flux F1 in (2.3), we can rewrite the equation (1.1) as

Dtρ=g(ρ)+b
′(t),

where

g(ρ)=−
Aρ

2µ+λ
(ργ− ρ̃γ), b(t),−

1

2µ+λ

∫ t

0

ρF1ds.

Thus, to apply Lemma 2.3, we now need to estimate b(t). To do this, we first use (2.2),
(2.4), (2.6), (3.6), (3.7), (3.43), and (3.44) to deduce that for any 0≤ t1<t2≤σ(T ),

|b(t2)−b(t1)|

≤C

∫ σ(T )

0

‖ρF1‖L∞dt≤C

∫ σ(T )

0

‖F1‖
1/4
L2 ‖∇F1‖

3/4
L6 dt

≤C

∫ σ(T )

0

(

‖∇u‖
1/4
L2 +‖P (ρ)−P (ρ̃)‖

1/4
L2

)

×
(

‖∇u̇‖
3/4
L2 +‖∇ẇ‖

3/4
L2 +‖ρu̇‖

3/4
L2 +‖ρẇ‖

3/4
L2

+‖P (ρ)−P (ρ̃)‖
3/4
L6 +‖∇u‖

3/4
L2 +‖∇w‖

3/4
L2 +‖w‖

3/4
L2

)

dt

≤CC
1/16
0

∫ σ(T )

0

(1+σ−1/8)
(

‖∇u̇‖
3/4
L2 +‖∇ẇ‖

3/4
L2 +‖ρu̇‖

3/4
L2 +‖ρẇ‖

3/4
L2

+‖P (ρ)−P (ρ̃)‖
3/4
L6 +‖∇u‖

3/4
L2 +‖∇w‖

3/4
L2 +‖w‖

3/4
L2

)

dt

≤CC
1/16
0

(

∫ σ(T )

0

(

1+σ−4/5
)

dt

)5/8
(

∫ σ(T )

0

σ
(

‖∇u̇‖2L2 +‖∇ẇ‖2L2 +‖ρu̇‖2L2

+‖ρẇ‖2L2 +‖∇u‖2L2 +‖∇w‖2L2 +‖w‖2L2

)

dt
)3/8

≤CC
1/16
0 ,

provided C0≤ ε3. Therefore, for t∈ [0,σ(T )], one can choose N0 and N1 and ξ∗ in
Lemma 2.3 as follows:

N1=0, N0=CC
1/16
0 , ξ∗= ρ̃.

Since it holds that

g(ξ)=−
Aξ

2µ+λ
(ξγ− ρ̃γ)≤−N1=0, for all ξ≥ ξ∗= ρ̃,

we thus conclude from (2.9) that

sup
0≤t≤σ(T )

‖ρ‖L∞ ≤max{ρ̄, ρ̃}+N0≤ ρ̄+CC
1/16
0 ≤

3ρ̄

2
, (3.47)
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provided C0 is chosen to be such that

C0≤ ε4,1,min

{

ε3,
( ρ̄

2C

)16
}

.

On the other hand, for t∈ [σ(T ),T ], one deduces from (2.4), (2.6), (3.4), (3.6),
and (3.7) that for all σ(T )≤ t1<t2≤T ,

|b(t2)−b(t1)|≤C

∫ t2

t1

‖F1‖L∞dt

≤
A

2(2µ+λ)
(t2− t1)+C

∫ t2

t1

‖F1‖
8/3
L∞dt

≤
A

2(2µ+λ)
(t2− t1)+C

∫ t2

t1

‖F1‖
2/3
L2 ‖∇F1‖

2
L6dt

≤
A

2(2µ+λ)
(t2− t1)+CC

1/6
0

∫ T

σ(T )

(

‖∇u̇‖2L2 +‖∇ẇ‖2L2 +‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

+‖∇u‖2L2 +‖∇w‖2L2 +‖w‖2L2

)

dt+CC
1/6
0

∫ t2

t1

‖P (ρ)−P (ρ̃)‖2L6dt

≤
A

2(2µ+λ)
(t2− t1)+CC

1/2
0 (t2− t1)+CC

2/3
0

≤
A

2µ+λ
(t2− t1)+CC

2/3
0 ,

provided C0 is chosen to be such that

C0≤ ε4,2,min

{

ε4,1,

(

A

2(2µ+λ)

)2
}

.

Therefore, one can choose N0 and N1 and ξ∗ in Lemma 2.3 as follows:

N1=
A

2µ+λ
, N0=CC

2/3
0 , ξ∗= ρ̃+1.

Noting that

g(ξ)=−
Aξ

2µ+λ
(ξγ− ρ̃γ)≤−N1=−

A

2µ+λ
, for all ξ≥ ξ∗= ρ̃+1,

we can apply Lemma 2.3 to get

sup
σ(T )≤t≤T

‖ρ‖L∞ ≤max

{

3ρ̄

2
, ρ̃+1

}

+N0≤
3ρ̄

2
+CC

1/2
0 ≤

7ρ̄

4
, (3.48)

provided

C0≤ ε4,min

{

ε4,2,
( ρ̄

4C

)3/2
}

.

The combination of (3.47) and (3.48) completes the proof of Lemma 3.7. �
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4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by constructing weak solutions as limits of
smooth solutions. So, we first prove the global-in-time existence of smooth solutions
with smooth initial data which is strictly away from vacuum and is only of small
energy.

Theorem 4.1. Assume that (ρ0,u0,w0) satisfies (2.11). Then for any 0<T <∞,
there exists a unique smooth solution (ρ,u,w) of (1.1)–(1.5) on [0,T ]×R

3 satisfying
(2.12)–(2.14) with T0 being replaced by T , provided the initial energy C0 satisfies the
smallness condition (1.8) with ε>0 as in Proposition 3.1.

Proof. The standard local existence theorem (i.e. Lemma 2.4) shows that
the Cauchy problem (1.1)–(1.5) admits a unique local smooth solution (ρ,u,w) on
R

3× [0,T0], where T0>0 may depend on inf ρ0.
In view of (3.1)–(3.3), we have

A1(0)=A2(0)=0, A3(0)=M1+M2≤3K, 0≤ρ0≤ ρ̄.

So, by a continuity argument we see that there exists a positive time T1∈ (0,T0] such
that (3.4) holds for T =T1. Set

T∗=sup{T | (3.4) holds}. (4.1)

Then it is clear that T∗≥T1>0.
We claim that

T∗=∞. (4.2)

If not, then T∗<∞, and it follows from Proposition 3.1 that (3.5) holds for any
0≤T ≤T∗, provided C0≤ ε. This, together with Proposition 4.1 (see below) and
Lemma 2.4, imply there exists a T ∗>T∗ such that (3.4) holds for T =T ∗. This
contradicts (4.1), and thus, (4.2) holds. As a result, we deduce from Proposition 4.1
that (ρ,u,w) is in fact the unique smooth solution of (1.1)–(1.5) on [0,T ]×R

3 for any
0<T <∞.

Proposition 4.2. Let (ρ,u,w) be a smooth solution of (1.1)–(1.5) on R
3× [0,T ]

with initial data (ρ0,u0,w0) satisfying (2.11) and the small-energy condition (1.8).
Then,

ρ(t,x)>0 for all x∈R
3,t∈ [0,T ], (4.3)

and

sup
0≤t≤T

‖(ρ− ρ̃,u,w)‖H3 +

∫ T

0

‖(u,w)‖2H4dt≤ C̃. (4.4)

Here and in what follows, for simplicity we denote by C̃ the various positive constants
which depend on µ, λ, ν, γ, A, ρ̃, ρ̄, ‖(ρ0− ρ̃,u0,w0)‖H3 , inf ρ0(x), and T .

Proof. The positive lower bound of density in (4.3) is an immediate result
of (4.4), which indeed only depends on the bound of ‖divu‖L1(0,T ;L∞). So we only
need to prove (4.4). As in [5], the key point here is to estimate ‖∇u‖L1(0,T ;L∞) and
‖∇ρ‖L∞(0,T ;Lp) with p∈ [2,6], which will be achieved by using the Beale-Kato-Majda
type inequality developed in [17].
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Step I. To begin, we first notice that (due to inf ρ0>0 and (2.11))

u̇(·,0)=ρ−1
0 ((µ+ζ)∆u0+(µ+λ−ζ)∇divu0−∇P (ρ0)+2ζrotw0)∈H

1, (4.5)

and

ẇ(·,0)=ρ−1
0 (µ′∆w0+(µ′+λ′)∇divw0−4ζw0+2ζrotu0)∈H

1. (4.6)

In view of Proposition 3.1, we have

ρ(t,x)≤C<∞ for all x∈R
3,t∈ [0,T ], (4.7)

sup
0≤t≤T

(

‖∇u‖2L2 +‖∇w‖2L2 +‖w‖2L2

)

+

∫ T

0

(

‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

)

dt≤C, (4.8)

and moreover, similar to (3.44), by using (3.7) and (4.5)–(4.8) we also infer from (4.5)
that

sup
0≤t≤T

(

‖ρ1/2u̇‖2L2 +‖ρ1/2ẇ‖2L2

)

+

∫ T

0

(

‖∇u̇‖2L2 +‖∇ẇ‖2L2

)

dt≤ C̃(T ). (4.9)

Step II. This step is concerned with the estimate of the gradient of density. To
do this, apply ∇ to both sides of (1.1) and multiplying the resulting equation by
|∇ρ|p−2∇ρ with p≥2, we obtain after integrating by parts over R3 that

d

dt
‖∇ρ‖Lp ≤C‖∇u‖L∞‖∇ρ‖Lp +C‖∇2u‖Lp . (4.10)

By the standard Lp-estimates of elliptic systems, we infer from (1.2) that

‖∇2u‖Lp ≤C (‖ρu̇‖Lp +‖∇P‖Lp +‖∇w‖Lp) . (4.11)

Similarly, we can deduce from (1.3) that

‖∇2w‖L2 ≤C (‖ρẇ‖L2 +‖w‖L2 +‖∇u‖L2) . (4.12)

In order to deal with ‖∇u‖L∞ , we make use of the Beale-Kato-Majda type in-
equality of Lemma 2.5. So, choosing p= q=6 in (4.10), (4.11), and (2.15), and using
Lemma 2.1 and (4.7)–(4.9), we find

d

dt
‖∇ρ‖L6 ≤C‖∇u‖L∞‖∇ρ‖L6 +C (‖ρu̇‖L6 +‖∇P‖L6 +‖∇w‖L6)

≤C‖∇ρ‖L6 (‖divu‖L∞ +‖V1‖L∞)ln(e+‖∇u̇‖L2)

+C‖∇ρ‖L6 (‖divu‖L∞ +‖V1‖L∞)ln(e+‖∇ρ‖L6)

+C (‖∇u̇‖L2 +‖∇ρ‖L6 +1) . (4.13)

Define

f(t), e+‖∇ρ‖L6 , g(t),1+‖∇u̇‖L2 +(‖divu‖L∞ +‖V1‖L∞)ln(e+‖∇u̇‖L2) .

Hence, it follows from (4.13) that

d

dt
f(t)≤Cg(t)f(t)+Cg(t)f(t)lnf(t),
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which particularly implies

d

dt
lnf(t)≤Cg(t)+Cg(t)lnf(t). (4.14)

Next we estimate g(t). Indeed, by lemmas 2.1 and 2.2 and (4.7)–(4.9), we have

∫ T

0

g(t)dt≤ C̃+ C̃

∫ T

0

(

‖∇u̇‖2L2 +‖divu‖2L∞ +‖V1‖
2
L∞

)

dt

≤ C̃+ C̃

∫ T

0

(

‖F1‖
2
L∞ +‖P −P (ρ̃)‖2L∞ +‖V1‖

2
L∞

)

dt

≤ C̃+ C̃

∫ T

0

(

‖F1‖
1/2
L2 ‖∇F1‖

3/2
L6 +‖V1‖

1/2
L2 ‖∇V1‖

3/2
L6

)

dt

≤ C̃+ C̃

∫ T

0

(

‖ρu̇‖
3/2
L6 +‖ρẇ‖

3/2
L6 +‖ρu̇‖

3/2
L2 +‖ρẇ‖

3/2
L2

)

dt

≤ C̃+ C̃

∫ T

0

(

‖∇u̇‖2L2 +‖∇ẇ‖2L2

)

dt≤ C̃. (4.15)

This, together with (4.14) and Gronwall’s inequality, gives

sup
0≤t≤T

‖∇ρ‖L6 ≤ C̃, (4.16)

which, when combined with (4.11), (2.15), and (4.15), also yields

∫ T

0

‖∇u‖L∞dt≤ C̃. (4.17)

As a result, we also deduce from (4.10)–(4.12) that

sup
0≤t≤T

(

‖∇ρ‖L2 +‖∇2u‖L2 ++‖∇2w‖L2

)

≤ C̃. (4.18)

Step III. By virtue of (4.5)–(4.9) and (4.16)–(4.18), one can derive the other
estimates of the higher-order derivatives of (ρ,u,w) based on the elementary L2-energy
method. The details are omitted here for simplicity. The proof of Proposition 4.1 is
therefore complete.

With the help of Theorem 4.1, we are now ready to prove Theorem 1.2.

Proof. [Proof of Theorem 1.2.] Let jδ(x) be a standard mollifier with width δ.
Define the approximate initial data (ρδ0,u

δ
0,w

δ
0) as follows:

ρδ0= jδ ∗ρ0+δ, uδ0= jδ ∗u0, wδ
0= jδ ∗w0.

Then Theorem 4.1 can be applied to obtain a global smooth solution (ρδ,uδ,wδ) of
(1.1)–(1.5) with the initial data (ρδ0,u

δ
0,w

δ
0) satisfying (3.4) for t>0 uniformly in δ.

In view of Lemma 2.2 and (3.4), we see from the Sobolev embedding theorem
that

〈uδ(·,t)〉1/2≤C
(

1+‖∇uδ‖L6

)

≤C
(

1+‖F δ
1 ‖L6 +‖V δ

1 ‖L6 +‖P δ−P (ρ̃)‖L6

)



M.T. CHEN, X.Y. XU, AND J.W. ZHANG 245

≤C
(

1+‖ρδu̇δ‖L2 +‖ρδẇδ‖L2

)

≤C(τ), t≥ τ >0, (4.19)

where F δ
1 , V

δ
1 , and P

δ are the functions F1, V1, and P with (ρ,u,w) being replaced
by (ρδ,uδ,wδ).

In addition to (4.19), one also has
∣

∣

∣

∣

∣

uδ(t,x)−
1

|BR(x)|

∫

BR(x)

uδ(y,t)dy

∣

∣

∣

∣

∣

≤C(τ)R1/2,

so that

|uδ(t,x2)−u
δ(t,x1)|

≤
1

|BR(x)|

∫ t2

t1

∫

BR(x)

|uδt (y,t)|dydt+C(τ)R
1/2

≤CR−3/2|t2− t1|
1/2

(

∫ t2

t1

∫

BR(x)

(

|u̇δ|2+ |uδ|2|∇uδ|2
)

dydt

)1/2

+C(τ)R1/2.

(4.20)

Noting that for any 0<τ ≤ t1<t2<∞,
∫ t2

t1

∫

|u̇δ|2dxdt≤C(ρ̄, ρ̃)

∫ t2

t1

∫

(

ρδ|u̇δ|2+ |ρδ− ρ̃|2|u̇δ|2
)

dxdt

≤C(τ,ρ̄, ρ̃)+C(ρ̄, ρ̃)

∫ t2

t1

‖∇u̇δ‖2L2‖ρδ− ρ̃‖2L3dt

≤C(τ,ρ̄, ρ̃),

and
∫ t2

t1

∫

|uδ|2|∇uδ|2dxdt≤C(ρ̄, ρ̃)sup
t≥τ

‖uδ‖2L∞

∫ t2

t1

‖∇uδ‖2L2dt≤C(τ,ρ̄, ρ̃).

So, putting these into (4.20) leads to

|uδ(t,x2)−u
δ(t,x1)|≤C(τ)R

−3/2|t2− t1|
1/2+C(τ)R1/2

for any 0<τ ≤ t1<t2<∞. Thus, choosing R= |t2− t1|
1/4, we get

|uδ(t,x2)−u
δ(t,x1)|≤C(τ)|t2− t1|

1/8, 0<τ ≤ t1<t2<∞. (4.21)

The same estimates in (4.19) and (4.21) also hold for the microrotational wδ.
Thus, we have proved that {uδ} and {wδ} are uniformly Hölder continuous away
from t=0. As a result, it follows from the Ascoli-Arzelà theorem that

uδ →u, wδ →w uniformly on compact sets in (0,∞)×R
3. (4.22)

Moreover, by the argument in [20] (see also [12]), we know that

ρδ →ρ strongly in Lp((0,∞)×R
3), ∀p∈ [2,∞). (4.23)

Therefore, passing to the limit as δ→0, by (4.22), (4.23) we obtain the limited func-
tions (ρ,u,w) which is indeed a weak solution of (1.1)–(1.5) in the sense of Definition
1.1 and satisfies (3.4) for all T ≥0. The large-time behavior of (ρ,u,w) in (1.8) is an
immediate result of the uniform bounds established in Section 3 and can be proved
in a manner similar to that in [17]. The proof of Theorem 1.2 is thus complete.
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[26] N. Mujaković, 1-D compressible viscous micropolarfluid model with non-homogeneous boundary

conditions for temperature: A local existence theorem, Nonlinear Analysis: Real World
Applications, 13, 1844–1853, 2012.
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