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GLOBAL WELL-POSEDNESS OF STOCHASTIC BURGERS SYSTEM*

BOLING GUOT, YONGQIAN HAN#, AND GUOLI ZHOU?

Abstract. In this paper a stochastic Burgers system in Itd6 form is considered. The global
well-posedness is proved. The proof relies on energy estimates for the velocity. A maximum principle
of deterministic parabolic equations is used to overcome the difficulties arising from higher order
norms. The methods and results can be applied to other parabolic equations with additive white
noise such as stochastic reaction diffusion equations.

Key words. stochastic Burgers system, Wiener noise, global solution.

AMS subject classifications. 76505, 60H15.

1. Introduction
The paper is concerned with the Burgers system in a bounded domain with Wiener
noise as the body forces:

u=(vAu+ (u-V)u)dt+dW, on [0,T] x D, (1.1)
u(t,z)=0, t€[0,T],x=(x1,29) €D CR?
u(0,7) =up(z), = (x1,72) € D CR?,

where D is a regular bounded open domain of R? wu(t,z)=(u'(t,z),u?(t,x)) €R?,
v>0 is the viscosity coefficient, A denotes the Laplace operator, V represents the
gradient operator, and W stands for the Wiener process taking values in L?(D;R?)
and is defined on a complete probability space (2,F,P), with normal filtration

=o{W(s):s<t},t€[0,T]. Burgers equation has received an extensive amount of
attention since the studies by Burgers in the 1940s (and it has been considered even
earlier by Beteman [1] and Forsyth [9]). But it is well known that the Burgers’ equa-
tion is not a good model for turbulence, because it does not perform any chaos. Even
if a force is added to the equation, all solutions will converge to a unique stationary
solution as time goes to infinity. However if the force is random, the result is com-
pletely different. Several authors have indeed suggested to use the stochastic Burgers’
equation to model turbulence; see [2, 3, 13, 12]. The stochastic equation has also been
proposed in [15] to study the dynamics of interfaces.

One dimensional stochastic Burgers equation has been fairly well studied. Bertini
et al. [1] solved the equation with additive space-time white noise by an adaptation
of the Hopf-Cole transformation. Da Prato et al. [5] studied the equation via a dif-
ferent approach based on the semigroup property for the heat equation on a bounded
interval. The more general equation with multiplicative noise was considered by Da
Prato and Debussche [4]. With a similar method Gyongy and Nualart [11] extended
the Burgers equation from a bounded interval to the real line. A large deviation
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154 GLOBAL WELL-POSEDNESS OF STOCHASTIC BURGERS SYSTEM

principle for the solution was obtained by Mathieu Gourcy [10]. Concerning the er-
godicity, an important paper Weinan E et al. [8] proved that there exists a unique
stationary distribution for the solutions of the random inviscid Burgers equation, and
typical solutions are piecewise smooth with a finite number of jump discontinuities
corresponding to shocks. For model with Lévy jumps, Dong and Xu [7] proved the
global existence and uniqueness of the strong, weak, and mild solutions. When the
noise is fractal, Guolian Wang et al. [20] got the global well-posedness.

Concerning Burgers systems, there are few works. Kiselev and Ladyzhenskaya
[14] proved the existence and uniqueness of a global solution to the deterministic
Burgers system on a bounded domain O in the class of functions L>(0,T;L>(O))N
L2(0,T;Hy?(0)). When the limit v — 0 and the initial condition is zero, Ton [17]
proved convergence of solutions on a small time interval. In this article, we consider
the stochastic Burgers system with the viscid coeflicient v =1. Using a classical fixed
point theorem for contractions, we obtain a local mild solution v. In order to prove
global well-posedness, we try to prove a priori estimates in L2. But this will produce
[[v]|7 4, which can not be dominated by the dissipative term [|Av||2,. However, if the
noise of the stochastic system acts only in one coordinate, we can make a change to
the stochastic Burgers system such that we can use a maximum principle to get the
estimates uniform in time and space. Using these uniform estimates, we obtain a
priori estimates and prove the global well-posedness.

The remaining of this paper is organized as follows. Some preliminaries are pre-
sented in Section 2, the local existence is presented in Section 3, and the last section is
for the global existence. As usual, constants C' may change from one line to the next,
unless we give a special declaration; we denote by C(a) a constant which depends on
some parameter a.

2. Preliminaries on the Burgers equation

For p>1, let LP(D;R?) be the vector valued LP—space in which the norm is
denoted by ||-||r». In particularly, when p=oo, LP(D;R?) denotes the collection of
vector valued functions which are essentially bounded on D. We denote the norm of
L>*(D;R?) by ||| e

Let C°°(D;R?) be the set of all smooth functions from D to R?, and denote its
subset with compact supports by C§°(D;R?). Let H® be the closure of C§°(D;R?)
in [H*(D)]?, for all real «. For the notation [H%(D)]?, we can see [18]. We denote
by ||+ ||z the norm in H®. Obviously, when a=0, H* = L?(D;R?), and we denote by
(.,.) the inner product in L?(D;R?).

Denote A:=—A, then A:D(A)C L*(D;R?)— L?(D;R?) and D(A)=[H?*(D)]*N
H'. The operator A is positive selfadjoint with compact resolvent; by the classical
spectral theorems there exists a sequence {«;};jen of eigenvalues of A such that

O<ar<ap <, aj — oo,

corresponding to the eigenvectors e; € C5°(D;R?) which form an orthonormal basis
in L2(D;RR?). We define the bilinear operator B(u,v):H! x H! - H~! as

(B(u,v),z)= /Dz(z) (u(z)-V)v(z)dx

for all z€H'. Then (1.1) is equivalent to the abstract equation

du(t) + [Au(t) + B(u(t),u(t))]dt =dW (t). (2.1)
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W is the Q Wiener process having the representation

o0

W(t) = Z \/Eenﬁn (t)’t € [O7T]’

n=1

in which 0% A, <oo and {B,}nen is a sequence of mutually independent

1—dimensional Brownian motions in the probability space (2, F,P) adapted to the
filtration {F;}i>0. It can be derived from [6] that the solution to the linear problem
du= Audt+dW, on [0,T] x D,
u(t,z)=0, t€[0,T], x€0D,
u(0,2) =ug(x), z€D,

is unique, and when ug =0, it has the form

Wal(t)= /0 te(t_s)AdW(s).

By Theorem 5.20 in [6], we know that W, is Gaussian process taking values in
L?(D;R?), and the process has a version W (t,z),(t,x) €[0,T] x D, which is, a.s. for
w €}, a- Holder continuous with respect to (t,z). Let

v(t) =u(t) —Wa(t), t>0.

Then u is a mild solution (defined below) to (1.1) if and only if v solves the following
evolution equation:

%—l—Av—i—B(v—i—WA,v—i—WA):O, on [0,T]x D, (2.2)

v(t,x)=0, t€[0,T],z€0D,
v(0,z) =up(x), z € D.

DEFINITION 2.1. We say a (F(t)):>0 adapted process (v(t))iepo,r] is a mild solution
to (2.2) if (v(t))sejo,r € C([0,T];HY) P-a.e. and it satisfies

t
v(t):e—fAuOJr/ e~ CAB(w+Wa,0+Wa)ds, tel0,T).
0

Equivalently, (u(t))iepo,r) is a mild solution to (1.1), if it is a (F(t)):>0 adapted
process which belongs to C([0,T];H') P-a.s. and satisfies

t t
u(t):e_tAu0+/ e_(t_s)AB(u,u)ds+/ e =AW (s), telo,T).
0 0
From now on, we will study the equation of the form (2.2) to get the existence
and uniqueness of the solution a.s. w €.

3. Local existence in time
In this section, we will use the classical fixed point theorem for contractions to
prove the local existence in time of the mild solution to (2.2).

THEOREM 3.1. Let vg=(v},v3) €ER%,v9 €HL, and v be adapted to Fo,i=1,2. We
assume Y oo Apa2 <oo. Then, for P-a.e. w €, there exists T*(w) >0 and a unique
mild solution v, in the sense of Definition 2.1, to (2.2) on [0,T*(w)].
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Proof.  For arbitrary constant T'>0 and j €N, we define

W ()= EJ: Vn / te_A(t_S)endﬁn(sL te[0,7).

n=1 0
Obviously,
Wi (w) e C([0,T);H?), P—a.e. we.
For ke N and k> j, by the Burkholder-Davis-Gundy inequalities, we have
3 ; b T
E sup ||[Az(Wi-W5)|2. < Z )\naf’l/ e s s
te[0,T] n=j+1
k

= Z A2 =0, as j— oo.

n=j5+1

Therefore
Wa(w)€C([0,T);H?), P—a.e. we.
We let (F(t));>0 adapted process v € C([0,T];H') and define
¢
L(v):=e g +/ e DA (w4 Wy)-V](v+Wa)ds, t€[0,T].
0
We will show that £ is a contraction mapping in

. y 7 R
Bg :{UEC([O,T ];Hl): sup |lo(t)||m:+ sup t32||v(t)||lm2 < R,||vo|m gg},
te[0,T*] te[0,T*]

where

R:3( sup ||Walms + HUOHIHP)
tel0,T)

and T* is chosen sufficiently small. We will see that the value of R and T* depend
on w € ). Choose v e Bg*, and set u=v+Wj4. Then

t
£l < lle ool + [ e - Tuds|n ds
0
t 1
<||vo||mm +/ (t—s)"2||u-Vul|L2ds
0
¢ 1
<ol + | (¢=9)"H oz [Vl pods.
0

By the Gagliardo—Nirenberg interpolation inequalities (see [16]), we have

1 1
[ullLee < Cllull 22 lullE,

where C'is a positive constant which does not depend on ¢ €[0,7]. So,

t
_1 1 1
Hﬁ(v)llmlﬁllvollml+0/ (t =)= [lull L - ullgel[Vul L2ds
0
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t 3
T S 4 1
< Jwo sz +C / (t—s)~ 45~ F||ulld (57 [lull=) ¥ s
0
R t
§—+C’R2/ (t—s)_%s_%lds.
3 ;
S

Denote I=u. Then we have

1_

R 1
1£(0)]|m < §+CR2t1_2 277/ (l—u)_%u_%du
0
R :
< §+CR%2%. (3.1)
For t <T™,
7 7 7 ¢
tﬁ||z(v)||H2gtﬁne*AtvoHHHtﬁ/ le™ A=)y V= ds
0
1 = [ _1
<t |lug|lm +t12 | (t—s)” 2 ||u-Vul|mds
0
t
1 z 1
<172 ||vo|m +t12/ (t=3) "= (IVullZs + ull e [[ulli=)ds.
0
By the Gagliardo—Nirenberg interpolation inequalities, we have
1 1
[ulls <Cllull f2llullg,

where C' is a positive constant which does not depend on t. Therefore, we have
z 1 7 [ 1 1 3
B L0 e <0 ool + Ot [ (e=) ¥ s sl + ] 2 s
0
1 7 t 1 7 7 2 7 t 1
StﬁR—l—CRtﬁ/ (t—s) 25 12572 ||v||g2ds+ CR tﬁ/ (t—s) 2ds
0 0
1 7 ¢ 1 7 7 3 2 7 t 1
—|—C’R§tﬁ/ (t—s)"2s578(s72||v||g2)2ds+CR tﬁ/ (t—s)"2ds.
0 0

After elementary calculations, we obtain

o

)

12 || L(v) ||z <12 R+ CR2 (71 +12 +¢1

). (3.2)
By (3.1) and (3.2), we have

L) |5z + 72 | £(0) |2

R
< §+C(R+R2)(t% 17 4t

SIS

o
[V [V5)
—
—
w
w
=

+t

For v; and vy € Bg*, we denote
U =v1+Wau, us=vo+Wiy.

Then, we have

E(vl)—ﬁ(vg):/o (ug - Vug —ug - Vug)ds.
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So,
[1£(v1) = L(v2) ]|

t
§/ [lur - Vug —ug - Vug||mds
0

t

t
S/ (t—5)7%||u1~Vu1—u1~Vu2HL2ds—|—/ (t—s)féﬂul~Vu2—u2~Vu2||L2ds
0 0

t t
-1 -1
< [t sl s~ s+ [ (¢=9)7H o1~ gl Ve
0 0

By the Gagliardo—Nirenberg interpolation inequality and the Sobolev embedding the-
orem, we have

t 1 1 1
[ £(v1) = L(va)|[em < C/ (t—s5)" 2 [Jur 72 lurll gz llvr —v2 |l ds
0

t
_1 1 i
+C/ (t—s)" 2 [luzll luzllgellvr — vz lm ds
0
:Ill+I2.
For I,

1

t
Ilgc/ (t—s) 2 RZ[R? 45 21 (572 ||vy ||m2) 2] ||v1 — v|m ds
0

t t
SC/ (t_s)_%RH’Ul_/UQHHIdS"_C/ (t—s)_%s_%lRHvl—ngHlds
0 0

<CR(t? +131) sup |l —val|m.
te[0,7%]

Analogously to derive I, we have

L, <CR(t? +t31) sup |lv; —ve|m.
te[0,T*]

So, by the estimates of I; and Iy, we have

1L(v1) = L(v2) || <CR(t2 +¢77) sup |Jv1 — valfm. (3.4)
te[0,7*]

Next, we consider
£72 || L(v1) — £(v2) |2

t
§t%/ ||ef(t75)A(u1~Vu1—u2~Vu2)||H2ds
0

t t
r/ (t—s)—%n(ul—uz)vulnHldsH%/ (t—8) 3 [[ua¥ (1 — us) ar ds
0 0

2113—|-I4.

IN

For I3, by elementary calculations, we have that

t
e _1
Iggtn/ (t— ) H[lus — sl s [l e s
0
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7 t 1
—‘rtﬁ/ (t—S)_EHV’LLl”LzL”V(Ul—U2)||L4d8
0
t
R AT ST p
(t—=s)"2[Jvr —val| 72 [v1 — vall gz [ui]lmads
0
. ¢ _1 1 1 1 1
+t12/(t—8) [V || 22 [V [l [V (01 —v2) [ £ |V (01 = v2) || 72 ds
0
i ¢ _1 _z 1 7 1, 7
<Ct [ (t—s)"25" 5 |lvr —v2llfu (572 [Jvr —v2lm2) * (572 [Jus [|m2) ds
0
7 t _1 _ 7 I,z 1 I,z 1
+t12 [ (t=s)" 25" 2 |Ju|[ga (77 Jun [lm2)  [[vr — 2l g (s77 ||o1 — v2|m2) 2 ds
0

t
SC’Rt%/ (t—s)_%s_%ds( sup |lvy —va|lmr + sup t%”vl—ngHz)
0 te[0,T*] te[0,7+]

t
—&—C’Rt%/ (t—s)_%s_%ds( sup |lvy —va|lmr + sup tT72||U1—1}2HH2)
0 te[0,7*] te[0,7+]

<CR(t71 +t2)( sup |jvi—volm + sup ¢72 o1 —valm2),
te[0,7*] te[0,7*]

where the second inequality follows by interpolation inequalities and the third in-
equality follows by the Sobolev embedding theorem. Analogously to I3, we have

I,<CRt% sup t12 llv1 —va||m2.
te[0,T+]

So, by the estimate of I3 and I, we have that

< CR(t> +t%)( sup |lvy —va|lmr + sup t%||v1—v2||Hz). (3.5)
te[0,T*] te[0,T*]

By (3.4) and (3.5), we have

sup [|£(v1) = L(va) |l + sup 77 || L(v1) — L(va)]|2
te[0,7+] t€[0,7%]

<COR(t# +12)( sup |vr—volm + sup 12 [|vg —val|me). (3.6)
te[0,T*] te[0,T*]

By (3.3) and (3.6), when T™ is small enough, we can get

sup ||£(v)|lm + sup t%||£(v)||Hz <R (3.7)
te[0,T*] te[0,T*]

and
2CR(t% +12) <1, Vt€[0,T7, (3.8)

where the constant C is as in (3.6). By interpolation inequalities and elementary
calculations, we have that

luVullg: <[ VullFa + [lul oo lullge

1 3
S C|Vull g2 [lullgz + [l 72 l[ullg
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< CRt™% (172 ||v]| e +£72 | Wa |2 )
+ORE ™3 (172 |[vz + 172 | Wa ||s2) #
<CRX(t™ 72 +17%).

Because u=v+ Wy, by the dominated convergence theorem, it is easy to check that
t
/ e DA (v Wa)-V](v4+Wa)ds € C([0,T*];HY), t€[0,T*], P—a.s.
0

So for vE BE, it is easy to see
L(v)eC([0,T*;HY), te[0,T*], P—a.s. (3.9)

By (3.3) and (3.6)-(3.9), we can see that £ maps BE into itself and is a strict con-
traction in Bg. Hence, £ has a unique fixed point in Bg, which is a solution to (2.2)
on [0,7*(w)]. O

REMARK 3.1. An example of the noise satisfying condition of Theorem 3.1 is
AW ()= v/ AnendBa(t),
n=1

where {8, } is a sequence of independent 1—dimensional Brownian motion, and {\,}
satisfies

Ap=n"0G120) o —n,
where 6 >0 and n€N. This is so because the eigenvalues «,, of the operator A, in
2—dimensional space, behave like n (cf. [18]).

REMARK 3.2. Another example of stochastic noise satisfying Theorem 3.1 is
ATVLAW (),

where W (t) =377, €,dfB,(t), L is an isomorphism in L?(D;R?), and > 2.

4. Global existence

In Theorem 3.1, the result is valid a.s. for we€$; in particular T* depends on
w. In this section we will prove that if the noise acts only in one coordinate, then
the solution exists in the space C([0,T];H!) for arbitrary constant 7'>0. So, let ey =
(€r,0) €ER? k=1,2..., where (€})ren is a complete orthonormal system on L?(D;R%)
which is the usual Lebesgue spaces of real-valued functions on D. We still denote by
(an)nen the eigenvalues of A, and by (&,)nen the corresponding eigenvectors. Then
for t€[0,T),x €D,

W(t,z)= i Ve B (t) = (f: \/Eénﬁn(t),o) €R?, a.s. (4.1)
n=1 n=1
Therefore

¢ 00 ¢
WA(tw):/ e_(t_s)AdW:Z\/)\n/ e~ =94 dB,(s)
0 1 0
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:(im/te(tS)Aendﬁn(S)7O> ERZ, a.5.
n=1 0

In the proof, we will use some real valued spaces. For p€[1,00], we denote by |-|r»
the norm in LP(D;R'), which is the usual Lebesgue spaces of real-valued functions on
D. When p=2, we still let (-,-) be the inner product in L?(D;R'). Let C§°(D;R') be
the set of all smooth functions from D to R! with compact supports contained in D.
For a €R, we denote by |-|ga =|A% |72 the norm in the Hilbert space H®, which is
the closure of C§°(D;R!) under the norm |- |ga.

THEOREM 4.1. Under the conditions of Theorem 3.1, we consider problem (2.2) with
noise in form of (4.1) and, in addition, assume the initial condition of problem (2.2)
satisfies ||vo||oe < 00. Then there exists a unique solution (v(t)).efo,) to problem (2.2)
in the sense of Definition 2.1, for arbitrary T >0. Moreover,

sup ||v|[m SC(T,[[vollges IWallLgerge s IVWallLgoLge ),
t€[0,T]

where || -|| L Lo = sup [-]
(t,z)€[0,T]x D

Proof. Let {v0},>1 be a sequence of vectors in C§°(D;R?) such that
v2 =g, as n— 0o (4.2)

in L°°(D;R?)NH. As W4 €C([0,T];H3) a.s., we can choose a sequence of regular
processes {Wj(t,2)}n>1={(W} ,(t,2),0)}n>1,t €[0,7],2 € D such that

Wi(t)—=Wa(t), as n— o0 (4.3)
in C([0,T);H?) a.s. Then, by (4.3), we have

sup [[WillLgepee <00
{n>1}

and

1
sup [[AZW}||se e <o0.
{n>1}

By Theorem 3.1, there exists positive random variable T* such that, for t € [0,7,%], vy,
is the solution of the following equation:

t
vn(t):etAv2+/ A (v, + WE)- V] (v, + W7;)ds.
0

Let T},4, be maximal existence time of solution v,. Obviously, Tyee <7 a.s.. In the
following, we will prove

Traz=1T, a.s.
For t €[0,T)nqz), vn is regular such that

%L;qLAanrB(anrWX,vnnLW}{):O. (4.4)
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Let
Uy = vpe o WHIVWERILg)ds i oo oo | VWE|| oo oo T, (4.5)
where I=(1,1). Substituting (4.5) into (4.4), we have

AUy — (0 +WH)V 0, — 0 (VWS + [ VW[ Lo +1) — 7

= WAl e VWil Lo Lo I A+ VW R || Lo + VW)
HWIVW e Jo QHIVWil g )ds (4.6)
2

Denote v, := (v}, 02),0, := (9},92). To simplify the notations, we set

n»’n
0
8xi’

0= i=1,2.

Then by (4.6), we get

d—2

AT~ (0} + W50 + (03 + W2 2)06J03 — (IVWl s + 17 — T2 >0,
By the maximum principle for parabolic equations (see Theorem 7, p.174, [19]), we
obtain

(t’w)e[gl%fax)xnﬁi(t’x) <g1€agv0 (2), a.s. (4.7)
We denote
By = v~ Jo WHIVWEllLg)ds gy p o VWS | oo poe ], (4.8)

where [ is the vector in (4.5). Substituting (4.8) into (4.4), we get

di,
Aby, — (00 + W)V — 0 (VWS + VWS poe +1) — ;’t <0.

We denote 9, = (9,92) € R?. By the minimum principle for parabolic equations (see

n» n

Theorem 7, p.174, [19]), we have

(t’m)e[ngigaI)xDﬁi(t’x) >gggvo (2), a.s. (4.9)

By (4.7) and (4.9), we can conclude that

sup [|vnllzee

t€[0,Trmax)
T n
< (1001122 + Wl pgo oo VW pge e Jedo CHIVWAlLzs g 5 (4.10)
In the following, we will estimate  sup ||v}||L. Let
t€[0,Trnax) ’
35 =vle S OFIVWallz)ds (Wi e poe + sup [[02]|10) VWS | L2o . (4.11)
te[0,T7]

By (4.4), we have

ov 1

8t —Av +[(I/VA 1+U )81+(WA2+1) )32}1) +v 81WA1
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=—v Wi — Wi WE = W3 ,0.W . (4.12)
Substituting (4.11) into (4.12), we can get
Aby, — (W +0,)00+ (W] 5 +03) 0,0,

. . 97
— L+ | VW || o + WY e o QHIVWElLge)dsy % >0.

By the maximum principle for parabolic equations, we have

o) <maxv?, a.s.

max
(t,)€[0,Tmaaz) X D

zeD
Let
of =vhe o HIVWRIg)ds 1 (|| oo e + o ]anHLC’C)HVWAHLOCL”' (4.13)
te[0, T
Substituting (4.13) into (4.12), we can get
Ay = (Wi +0,)01+ (W] 5 +07,)02]0,
— L1+ | VW5 || + D W e Jo OHIVWRluge)dsy % <0.

By the minimum principle for parabolic equations, we have

min 1},11 > manO a.s.
(t,2)€[0,Trmaz)x D xeD

Therefore, we conclude that

sup  |[vp|lpee SC(TJogllpes WA Lo oo, VWA Lo oo )
t€[0,Tmax)

So far, we proved

[OSI%P )||Un|\Lg° SCO(T lopll e WA Lo Lo IVW R | oo 120 (4.14)
t€[0, Tmas

Taking the inner product with respect to v, in (4.4), we have

vy,
(Gison )+ (Avn,vn) + (B0 + WA v+ W), 00) =0. (4.15)
First we calculate the third term on the left hand side of (4.15).
(B(vn + Wi, + W), vn)
=((vp+ Wi1)o (v + WZJ):”};) +((vh+ WX,2)82(U71L + W,Z,l)avrlL>
+((vn + W) (v + WA ), 00) + (V5 + Wik 2) 02 (07 + Wi ) 07)
=Ji+Jo+ I3+ Js. (4.16)

For J;, we have

Ji= <lalv 1> <W}1L,1alvrlwv> <’U nw A17 n> <WA161WA17 >

n7n
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In the sequel, we estimate the four terms of J; respectively. For the first term,
19,1 1 124 .1 (vp)?
(0,010, 0,) = [ (v,,)°Owv,dx= | O1 [ ]dm =0.
D D 3

For the second term, by (4.3), we have

(Wi ,1010,05) < Clog| T2 +elvog [

Similarly, for the third term, we have

(oW =] [ h)0WE ada] < Clud .
For the last term, we have

(WL 0,0l sc]/Daw}de‘ <C+CJo} 2.

Therefore, for J;, we have
J1 SC(1+|lvnllZ2) +ellvnllfn-
Similarly,
J1 SC(1+||vnllZ2) +ellvnllfn-
For Js,
J3=(vpO1vp,v3) + (Va1 WS 5, 02) + (WL 10107 vp) + (Wi 101 W5 5, 07).
For the first term of J3, we have
|<U}L81vfl,vfb>\=%’/ Ui@l(vi)zdaj‘zé‘/ Orvy - (v2)dx
D D
< 023 loblis < ChAlEa ol i
For the second term of J3, we have
(001 W3 5, 07)] < Cllvn|| 72
Analogously, for the third term of J3, we have
(W3 10107, 07)] < Cllun||Z2 +ellvn -
For the last term of J3, we have
(W2 10:W3 5,07)| S C+Cllvg 2.
Therefore, for J3, we get
J3 < Cllvpllza +ellvallin +Clloaliz+C.
Analogously, for Jo, we obtain

J2 < Cllvnllzs +ellvnlE +Cllvnllzz +C.
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By (4.16) and the estimates of Jy, Ja, J3, and Jy, we have

(B(vn+Wi,vn+ W1),vn) <CA+ lonllZ2) +4elvnllin +Cllvnll7s.

Therefore by (4.15), we get

0
i lonllz + loallr < CO+[onlz2) +4elvn 7 +CloallLe.

For t €[0, T naz), integrating over [0,¢] on both sides of (4.17), we have

t t
||vn(t)||2L2+/0 IIUn(S)II%mdSS||vn(0)lliz+0t+0/o [vn (5)I|7ds.

For t€[0,Thnaz),
[0 (0)[172 < Cllvn (0) 17
and
lon ()]s < Cllon ()L
where C'> 0. Thus, for all t €[0,T}as), by (4.14) and (4.18), we have
lon ()72 <O lopllpge IWA I geLse IVW Al 5o 20 )

and
t
2 0
/0 [vn ()l ds <C(T, |vpllLee WAl Lgoroe, VWAl Loo Loe).-

Multiply (4.4) by Awv,, and integrate over D to find

v,
<%,Avn>+<Avn,Avn> ={(B(v, +W},v, +W3}),Av,),
which is equivalent to
1 a 2 2 n n
3 gglvalliz +llvnllze = (B(vn + W3, vn + W5), Avy).

For the term on the right hand side of (4.21),

(B(vp, +Wi,v, +W3), Avy)
=(vp+ Wi 01 () + Wi 1), Avk) + (va + Wi 502 (v + Wi 1), Av))

+(op +WZ 101 (vh + W3 o), Ava) + (vh + W3 502 (vy + W3 5), Avy)

=K1+ Ko+ K3+ Ky.

For K, we have
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Ky =(vy01vy,, Avy) + (0, 00W 3 1 Avl) + (W4 010, Av ) + (Wi 01 W5 | Avl)

=l +la+13+1y.
For [;, we have

ll S E"U,rlllfv_p +C|’U7ll|%4 . |61U711|%4.

(4.23)
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By an interpolation inequality, there exists some C >0 such that
1 15,13 1 1% 13 13 .13
|vn|L4 < C|Un|1211|vn|[2-117 ‘81/07L|L4 < C|81vn|L2 |alvn|H1 :C‘Un|H1 |vn|H2'
Then

I <elvp i +Clug| L [op B - [on |12
<2elvn 32+ Clog i,

where the last inequality follows from (4.19). For I, we have

lh< 5|v,11|%[2 +C/ (v,ll)g((?lWX’l)zdm
D
<elvp %z +Clog|7e-

For I3, we have
<C [ [ou0}- Avilds <elod s+ Clud e
D

For 4, we have
I, <C+elvl|3e..

By the estimates of 1 —l4, (4.19), and (4.23), we have

K1 <5evg|Fr2 +Clog |3 + Clog |5 +C(T, opllzze, WAl e oo IVWE | g £ ).
Similarly, for K, we have

Ky <5elvp|frz +Clop |3+ Clop 3+ C(T oplle WAl L oo IVWE | o £ )-
For K5, we have

Koy = (v050,,, Avy )+ (Wh 50505, Avy) + (00 Wi 1, Avy) + (W 50, W3 1, Av)).
For the first term of K, by an interpolation inequality and (4.19), we have

(V2 0yvy, Avy) <elvp T2 +Clvp| 7] Oroy |14
<elv) 32 +Clog| 2|02 [og | g |vp a2
< 2¢lvy |32 + Cllvn g0 -

For the second term of K5, we have
(W5, 0208, Av}) <C [ (020} | Avhdo <eled s +Cloj .
D
For the third term of K5, we have

(030aW51, AV} <C [ [02]- 140} e
D

<elvy 32 +C (T, lopllpee  IW Al Loo oo, VWA | Lo £oe ).
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For the last term of K5, we have
<W2,282WX,17AU711> §5|U71z@{2 +C.
Therefore, we get
K <5evn |2+ Cllvallip +Clug 3 +C (T, lvn g, WAl e 150 IVW Al 2o L0 )
Analogously to Ko, we can derive
K3 <5ellvp [ 52+ Clloalli + Clop [ +C(T opll e WA g pee VWAl Lo 1)
By the estimates of K1 — K4, we obtain that

(B(vn + W3, 0n+W3), Avy,)
<10¢[vnlfie + (T lopllpge WAl Lge Lo IV WAl 5o 220 ) (v +1).-

So, by (4.21), we get
19
20t

<10¢jvp |2 +C (T lopll e, WAl Loe VW Rl o £oe ) (lonl i +1). (4.24)

o lHlvn |2

By (4.20), (4.24), and Gronwall’s inequality, we get

P )an(t)llﬁlSC(T,||v2||L;o,HWXIILgOL;o?HVWXIIL:OL;o)'
e r»Emax

By (4.24), we can also get that for all t € [0, Thaz),
t
2
/O [on (8)Ifr2ds < C(T, [lon Lo, WAl Lge e, VWA | Lo o) (4.25)
For simplicity, we write

C(T,vn, W) :=C(T. opll e [Willzge o VWAl 2o £)-

Because v, is mild solution to (4.4), we have, for t €[0,Taq),

t
un () =e 00 + / eI AB (v, + Wi v+ WE)ds.
0

Let u, =v, +W7. Similar to our derivation of (3.2), we have
7 1 7 t 1
0 ol <t ol + 0% [ (0= 0, P s
0
10 [t 1 1 3
<tz|oy|lm +Ct= | (E—8)7 2 (lunlm [[unllge + (|unl 72 [[unllg2)ds
0
1 7 ¢ 1 7 7
<CO(TwWe, Wh)[tiz +tﬁ/ (t—s) 25712572 ||uy, ||g2ds]
0
t

+C(T,v2,wg)t%/ (t—s)~3ds
0
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0 7 t 1 7 7 3
+C(T,v,, Witz / (t—s) 25 8(s12||v,||lm2)2ds
0

t
LO(T 0, W) */ (t—s)"¥ds.
0
By Gronwall’s inequality, we have

12 |jup|nz
1 13 0 Wiz -3 5
<O(T, UmWA)( +1s 12)€C(T7U,L7WA)N? Jolt—s)~ 257124 (t—s)" 257 12 [lu | pelds
1 13 DEETTE RN T S R 2 1
<C(T 00, Wh)(t72 + ﬁ)eC(T,vn,WA)[tHH(fo llvn g2 ds) ]

SO(TavnaWA)7

¥

where the second inequality follows by Hélder’s inequality and the last inequal-
ity follows by (4.25). Therefore, we can repeat the proof of Theorem 3.1 on
[0,T],[T;,2T],... for vy,. If there exists ; € F satisfying P(€Q1) >0 and T}z (w) < T,
for w €y, then for any w € 1, there exists m € N such that Ty,e, € (m— 1T, mT)).
This is a contradiction with the definition of T},4,. Therefore, Ty =T a.s., and
vn, € C([0,T];H') satisfies

7
sup [[v (t)l[sm + sup ¢32 [|vn (t) a2 S O(T,llvp lzge, WAl e e, [VWA Lo 130
te(0,T] te[0,T]

Obviously the space

T:z{vGC([O,T];Hl); sup ||[v|lm + sup tT72||vHHz<oo}
t€[0,T] te(0,T]

is complete. Because (v, )nen is bounded in BT, it is weekly star convergent in this
space to a function © which satisfies

- T~
sup [|0(t)[[gr + sup ¢12[[0(t)[|m> < C(T)[Jvollzee, [[WallLge L, [VWal g 20)-
te[0,T] te[0,T]

Let us define the mapping £,, in the same way as £; it is easy to check that £, is a

strict contraction uniformly in n on Bfgf}%, where

r(w)=3(sup sup HWA||H3+ sup Hv( M)
neN¢e[0,T tel0,T

and
207(w)[(Hw) 5 + (#(w))}] <1,
where the constant C'is as in (3.8). Then by a standard arguments, we can prove that
Uy =V
in B;EZ;, implying

v="0 on [0,t(w)]

and

se

o)l + () =2 [lv(E(w))[lmz < sup [|5(s)]lm + sup s12[|5(s)||me.
s€[0,T (0,17
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Thus we can construct a solution on [t(w),2t(w)] starting from v(¢(w)). We get the
unique global solution on [0,7] by iterating this argument. 1]
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