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GLOBAL WELL-POSEDNESS OF STOCHASTIC BURGERS SYSTEM∗

BOLING GUO† , YONGQIAN HAN‡ , AND GUOLI ZHOU§

Abstract. In this paper a stochastic Burgers system in Itô form is considered. The global
well-posedness is proved. The proof relies on energy estimates for the velocity. A maximum principle
of deterministic parabolic equations is used to overcome the difficulties arising from higher order
norms. The methods and results can be applied to other parabolic equations with additive white
noise such as stochastic reaction diffusion equations.
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1. Introduction

The paper is concerned with the Burgers system in a bounded domain with Wiener
noise as the body forces:

du=(ν∆u+(u ·∇)u)dt+dW, on [0,T ]×D, (1.1)

u(t,x)=0, t∈ [0,T ],x=(x1,x2)∈∂D⊂R
2,

u(0,x)=u0(x), x=(x1,x2)∈D⊂R
2,

where D is a regular bounded open domain of R
2, u(t,x)=(u1(t,x),u2(t,x))∈R

2,
ν >0 is the viscosity coefficient, ∆ denotes the Laplace operator, ∇ represents the
gradient operator, and W stands for the Wiener process taking values in L2(D;R2)
and is defined on a complete probability space (Ω,F ,P ), with normal filtration
Ft=σ{W (s) :s≤ t},t∈ [0,T ]. Burgers equation has received an extensive amount of
attention since the studies by Burgers in the 1940s (and it has been considered even
earlier by Beteman [1] and Forsyth [9]). But it is well known that the Burgers’ equa-
tion is not a good model for turbulence, because it does not perform any chaos. Even
if a force is added to the equation, all solutions will converge to a unique stationary
solution as time goes to infinity. However if the force is random, the result is com-
pletely different. Several authors have indeed suggested to use the stochastic Burgers’
equation to model turbulence; see [2, 3, 13, 12]. The stochastic equation has also been
proposed in [15] to study the dynamics of interfaces.

One dimensional stochastic Burgers equation has been fairly well studied. Bertini
et al. [1] solved the equation with additive space-time white noise by an adaptation
of the Hopf-Cole transformation. Da Prato et al. [5] studied the equation via a dif-
ferent approach based on the semigroup property for the heat equation on a bounded
interval. The more general equation with multiplicative noise was considered by Da
Prato and Debussche [4]. With a similar method Gyöngy and Nualart [11] extended
the Burgers equation from a bounded interval to the real line. A large deviation
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principle for the solution was obtained by Mathieu Gourcy [10]. Concerning the er-
godicity, an important paper Weinan E et al. [8] proved that there exists a unique
stationary distribution for the solutions of the random inviscid Burgers equation, and
typical solutions are piecewise smooth with a finite number of jump discontinuities
corresponding to shocks. For model with Lévy jumps, Dong and Xu [7] proved the
global existence and uniqueness of the strong, weak, and mild solutions. When the
noise is fractal, Guolian Wang et al. [20] got the global well-posedness.

Concerning Burgers systems, there are few works. Kiselev and Ladyzhenskaya
[14] proved the existence and uniqueness of a global solution to the deterministic
Burgers system on a bounded domain O in the class of functions L∞(0,T ;L∞(O))∩
L2(0,T ;H1,2

0 (O)). When the limit ν→0 and the initial condition is zero, Ton [17]
proved convergence of solutions on a small time interval. In this article, we consider
the stochastic Burgers system with the viscid coefficient ν=1. Using a classical fixed
point theorem for contractions, we obtain a local mild solution v. In order to prove
global well-posedness, we try to prove a priori estimates in L2. But this will produce
‖v‖4L4 , which can not be dominated by the dissipative term ‖∆v‖2L2 . However, if the
noise of the stochastic system acts only in one coordinate, we can make a change to
the stochastic Burgers system such that we can use a maximum principle to get the
estimates uniform in time and space. Using these uniform estimates, we obtain a
priori estimates and prove the global well-posedness.

The remaining of this paper is organized as follows. Some preliminaries are pre-
sented in Section 2, the local existence is presented in Section 3, and the last section is
for the global existence. As usual, constants C may change from one line to the next,
unless we give a special declaration; we denote by C(a) a constant which depends on
some parameter a.

2. Preliminaries on the Burgers equation

For p≥1, let Lp(D;R2) be the vector valued Lp−space in which the norm is
denoted by ‖·‖Lp . In particularly, when p=∞, Lp(D;R2) denotes the collection of
vector valued functions which are essentially bounded on D. We denote the norm of
L∞(D;R2) by ‖·‖L∞

x
.

Let C∞(D;R2) be the set of all smooth functions from D to R
2, and denote its

subset with compact supports by C∞
0 (D;R2). Let H

α be the closure of C∞
0 (D;R2)

in [Hα(D)]2, for all real α. For the notation [Hα(D)]2, we can see [18]. We denote
by ‖·‖Hα the norm in H

α. Obviously, when α=0, Hα=L2(D;R2), and we denote by
〈., .〉 the inner product in L2(D;R2).

Denote A :=−∆, then A :D(A)⊂L2(D;R2)→L2(D;R2) and D(A)= [H2(D)]2∩
H

1. The operator A is positive selfadjoint with compact resolvent; by the classical
spectral theorems there exists a sequence {αj}j∈N of eigenvalues of A such that

0<α1≤α2≤··· , αj →∞,

corresponding to the eigenvectors ej ∈C∞
0 (D;R2) which form an orthonormal basis

in L2(D;R2). We define the bilinear operator B(u,v) :H1×H
1→H

−1 as

〈B(u,v),z〉=

∫

D

z(x) ·(u(x) ·∇)v(x)dx

for all z∈H
1. Then (1.1) is equivalent to the abstract equation

du(t)+[Au(t)+B(u(t),u(t))]dt=dW (t). (2.1)
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W is the Q Wiener process having the representation

W (t)=

∞
∑

n=1

√

λnenβn(t),t∈ [0,T ],

in which
∑∞

n=1λn<∞ and {βn}n∈N is a sequence of mutually independent
1−dimensional Brownian motions in the probability space (Ω,F ,P ) adapted to the
filtration {Ft}t≥0. It can be derived from [6] that the solution to the linear problem

du=∆udt+dW, on [0,T ]×D,

u(t,x)=0, t∈ [0,T ], x∈∂D,

u(0,x)=u0(x), x∈D,

is unique, and when u0=0, it has the form

WA(t)=

∫ t

0

e(t−s)AdW (s).

By Theorem 5.20 in [6], we know that WA is Gaussian process taking values in
L2(D;R2), and the process has a version WA(t,x),(t,x)∈ [0,T ]×D, which is, a.s. for
w∈Ω, α- Hölder continuous with respect to (t,x). Let

v(t)=u(t)−WA(t), t≥0.

Then u is a mild solution (defined below) to (1.1) if and only if v solves the following
evolution equation:

∂v

dt
+Av+B(v+WA,v+WA)=0, on [0,T ]×D, (2.2)

v(t,x)=0, t∈ [0,T ],x∈∂D,

v(0,x)=u0(x), x∈D.

Definition 2.1. We say a (F(t))t≥0 adapted process (v(t))t∈[0,T ] is a mild solution

to (2.2) if (v(t))t∈[0,T ]∈C([0,T ];H1) P -a.e. and it satisfies

v(t)=e−tAu0+

∫ t

0

e−(t−s)AB(v+WA,v+WA)ds, t∈ [0,T ].

Equivalently, (u(t))t∈[0,T ] is a mild solution to (1.1), if it is a (F(t))t≥0 adapted
process which belongs to C([0,T ];H1) P -a.s. and satisfies

u(t)=e−tAu0+

∫ t

0

e−(t−s)AB(u,u)ds+

∫ t

0

e−(t−s)AdW (s), t∈ [0,T ].

From now on, we will study the equation of the form (2.2) to get the existence
and uniqueness of the solution a.s. ω∈Ω.

3. Local existence in time

In this section, we will use the classical fixed point theorem for contractions to
prove the local existence in time of the mild solution to (2.2).

Theorem 3.1. Let v0=(v10 ,v
2
0)∈R

2,v0∈H
1, and vi0 be adapted to F0,i=1,2. We

assume
∑∞

n=1λnα
2
n<∞. Then, for P -a.e. ω∈Ω, there exists T ∗(ω)>0 and a unique

mild solution v, in the sense of Definition 2.1, to (2.2) on [0,T ∗(ω)].



156 GLOBAL WELL-POSEDNESS OF STOCHASTIC BURGERS SYSTEM

Proof. For arbitrary constant T >0 and j∈N, we define

W
j
A(t)=

j
∑

n=1

√

λn

∫ t

0

e−A(t−s)endβn(s), t∈ [0,T ].

Obviously,

W
j
A(ω)∈C([0,T ];H3), P −a.e. ω∈Ω.

For k∈N and k>j, by the Burkholder-Davis-Gundy inequalities, we have

E sup
t∈[0,T ]

‖A
3

2 (W j
A−W k

A)‖
2
L2 ≤

k
∑

n=j+1

λnα
3
n

∫ T

0

e−2αnsds

=
k

∑

n=j+1

λnα
2
n→0, as j→∞.

Therefore

WA(ω)∈C([0,T ];H3), P −a.e. ω∈Ω.

We let (F(t))t≥0 adapted process v∈C([0,T ];H1) and define

L(v) := e−tAv0+

∫ t

0

e−(t−s)A[(v+WA) ·∇](v+WA)ds, t∈ [0,T ].

We will show that L is a contraction mapping in

BT∗

R =
{

v∈C([0,T ∗];H1) : sup
t∈[0,T∗]

‖v(t)‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v(t)‖H2 ≤R,‖v0‖H1 ≤
R

3

}

,

where

R=3
(

sup
t∈[0,T ]

‖WA‖H3 +‖v0‖H1

)

and T ∗ is chosen sufficiently small. We will see that the value of R and T ∗ depend
on ω∈Ω. Choose v∈BT∗

R , and set u=v+WA. Then

‖L(v)‖H1 ≤‖e−tAv0‖H1 +

∫ t

0

‖e−(t−s)A(u ·∇u)ds‖H1ds

≤‖v0‖H1 +

∫ t

0

(t−s)−
1

2 ‖u ·∇u‖L2ds

≤‖v0‖H1 +

∫ t

0

(t−s)−
1

2 ‖u‖L∞

x
‖∇u‖L2ds.

By the Gagliardo−Nirenberg interpolation inequalities (see [16]), we have

‖u‖L∞

x
≤C‖u‖

1

2

L2‖u‖
1

2

H2 ,

where C is a positive constant which does not depend on t∈ [0,T ]. So,

‖L(v)‖H1 ≤‖v0‖H1 +C

∫ t

0

(t−s)−
1

2 ‖u‖
1

2

L2 ·‖u‖
1

2

H2‖∇u‖L2ds
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≤‖v0‖H1 +C

∫ t

0

(t−s)−
1

2 s−
7

24 ‖u‖
3

2

H1(s
7

12 ‖u‖H2)
1

2 ds

≤
R

3
+CR2

∫ t

0

(t−s)−
1

2 s−
7

24 ds.

Denote s
t
=u. Then we have

‖L(v)‖H1 ≤
R

3
+CR2t1−

1

2
− 7

24

∫ 1

0

(1−u)−
1

2u− 7

24 du

≤
R

3
+CR2t

5

24 . (3.1)

For t≤T ∗,

t
7

12 ‖L(v)‖H2 ≤ t
7

12 ‖e−Atv0‖H2 + t
7

12

∫ t

0

‖e−A(t−s)u ·∇u‖H2ds

≤ t
1

12 ‖v0‖H1 + t
7

12

∫ t

0

(t−s)−
1

2 ‖u ·∇u‖H1ds

≤ t
1

12 ‖v0‖H1 + t
7

12

∫ t

0

(t−s)−
1

2 (‖∇u‖2L4 +‖u‖L∞

x
‖u‖H2)ds.

By the Gagliardo−Nirenberg interpolation inequalities, we have

‖u‖L4 ≤C‖u‖
1

2

L2‖u‖
1

2

H1 ,

where C is a positive constant which does not depend on t. Therefore, we have

t
7

12 ‖L(v)‖H2 ≤ t
1

12 ‖v0‖H1 +Ct
7

12

∫ t

0

(t−s)−
1

2 (‖u‖H1‖u‖H2 +‖u‖
1

2

L2‖u‖
3

2

H2)ds

≤ t
1

12R+CRt
7

12

∫ t

0

(t−s)−
1

2 s−
7

12 s
7

12 ‖v‖H2ds+CR2t
7

12

∫ t

0

(t−s)−
1

2 ds

+CR
1

2 t
7

12

∫ t

0

(t−s)−
1

2 s−
7

8 (s
7

12 ‖v‖H2)
3

2 ds+CR2t
7

12

∫ t

0

(t−s)−
1

2 ds.

After elementary calculations, we obtain

t
7

12 ‖L(v)‖H2 ≤ t
1

12R+CR2(t
5

24 + t
1

2 + t
13

12 ). (3.2)

By (3.1) and (3.2), we have

‖L(v)‖H1 + t
7

12 ‖L(v)‖H2

≤
R

3
+C(R+R2)(t

1

12 + t
5

24 + t
1

2 + t
13

12 ). (3.3)

For v1 and v2∈BT∗

R , we denote

u1=v1+WA, u2=v2+WA.

Then, we have

L(v1)−L(v2)=

∫ t

0

(u1 ·∇u1−u2 ·∇u2)ds.
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So,

‖L(v1)−L(v2)‖H1

≤

∫ t

0

‖u1 ·∇u1−u2 ·∇u2‖H1ds

≤

∫ t

0

(t−s)−
1

2 ‖u1 ·∇u1−u1 ·∇u2‖L2ds+

∫ t

0

(t−s)−
1

2 ‖u1 ·∇u2−u2 ·∇u2‖L2ds

≤

∫ t

0

(t−s)−
1

2 ‖u1‖L∞

x
‖u1−u2‖H1ds+

∫ t

0

(t−s)−
1

2 ‖u1−u2‖L4‖∇u2‖L4ds.

By the Gagliardo−Nirenberg interpolation inequality and the Sobolev embedding the-
orem, we have

‖L(v1)−L(v2)‖H1 ≤ C

∫ t

0

(t−s)−
1

2 ‖u1‖
1

2

L2‖u1‖
1

2

H2‖v1−v2‖H1ds

+C

∫ t

0

(t−s)−
1

2 ‖u2‖
1

2

H1‖u2‖
1

2

H2‖v1−v2‖H1ds

=: I1+I2.

For I1,

I1≤C

∫ t

0

(t−s)−
1

2R
1

2 [R
1

2 +s−
7

24 (s
7

12 ‖v1‖H2)
1

2 ]‖v1−v2‖H1ds

≤C

∫ t

0

(t−s)−
1

2R‖v1−v2‖H1ds+C

∫ t

0

(t−s)−
1

2 s−
7

24R‖v1−v2‖H1ds

≤CR(t
1

2 + t
5

24 ) sup
t∈[0,T∗]

‖v1−v2‖H1 .

Analogously to derive I1, we have

I2≤CR(t
1

2 + t
5

24 ) sup
t∈[0,T∗]

‖v1−v2‖H1 .

So, by the estimates of I1 and I2, we have

‖L(v1)−L(v2)‖H1 ≤CR(t
1

2 + t
5

24 ) sup
t∈[0,T∗]

‖v1−v2‖H1 . (3.4)

Next, we consider

t
7

12 ‖L(v1)−L(v2)‖H2

≤ t
7

12

∫ t

0

‖e−(t−s)A(u1 ·∇u1−u2 ·∇u2)‖H2ds

≤ t
7

12

∫ t

0

(t−s)−
1

2 ‖(u1−u2)∇u1‖H1ds+ t
7

12

∫ t

0

(t−s)−
1

2 ‖u2∇(u1−u2)‖H1ds

=: I3+I4.

For I3, by elementary calculations, we have that

I3≤ t
7

12

∫ t

0

(t−s)−
1

2 ‖u1−u2‖L∞

x
‖u1‖H2ds
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+t
7

12

∫ t

0

(t−s)−
1

2 ‖∇u1‖L4‖∇(u1−u2)‖L4ds

≤Ct
7

12

∫ t

0

(t−s)−
1

2 ‖v1−v2‖
1

2

L2‖v1−v2‖
1

2

H2‖u1‖H2ds

+t
7

12

∫ t

0

(t−s)−
1

2 ‖∇u1‖
1

2

L2‖∇u1‖
1

2

H1‖∇(v1−v2)‖
1

2

L2‖∇(v1−v2)‖
1

2

H1ds

≤Ct
7

12

∫ t

0

(t−s)−
1

2 s−
7

8 ‖v1−v2‖
1

2

H1(s
7

12 ‖v1−v2‖H2)
1

2 (s
7

12 ‖u1‖H2)ds

+t
7

12

∫ t

0

(t−s)−
1

2 s−
7

12 ‖u1‖
1

2

H1(s
7

12 ‖u1‖H2)
1

2 ‖v1−v2‖
1

2

H1(s
7

12 ‖v1−v2‖H2)
1

2 ds

≤CRt
7

12

∫ t

0

(t−s)−
1

2 s−
7

8 ds( sup
t∈[0,T∗]

‖v1−v2‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2)

+CRt
7

12

∫ t

0

(t−s)−
1

2 s−
7

12 ds( sup
t∈[0,T∗]

‖v1−v2‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2)

≤CR(t
5

24 + t
1

2 )( sup
t∈[0,T∗]

‖v1−v2‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2),

where the second inequality follows by interpolation inequalities and the third in-
equality follows by the Sobolev embedding theorem. Analogously to I3, we have

I4≤CRt
5

24 sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2 .

So, by the estimate of I3 and I4, we have that

t
7

12 ‖L(v1)−L(v2)‖H2

≤CR(t
5

24 + t
1

2 )( sup
t∈[0,T∗]

‖v1−v2‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2). (3.5)

By (3.4) and (3.5), we have

sup
t∈[0,T∗]

‖L(v1)−L(v2)‖H1 + sup
t∈[0,T∗]

t
7

12 ‖L(v1)−L(v2)‖H2

≤CR(t
5

24 + t
1

2 )( sup
t∈[0,T∗]

‖v1−v2‖H1 + sup
t∈[0,T∗]

t
7

12 ‖v1−v2‖H2). (3.6)

By (3.3) and (3.6), when T ∗ is small enough, we can get

sup
t∈[0,T∗]

‖L(v)‖H1 + sup
t∈[0,T∗]

t
7

12 ‖L(v)‖H2 ≤R (3.7)

and

2CR(t
5

24 + t
1

2 )≤1, ∀t∈ [0,T ∗], (3.8)

where the constant C is as in (3.6). By interpolation inequalities and elementary
calculations, we have that

‖u∇u‖H1 ≤‖∇u‖2L4 +‖u‖L∞‖u‖H2

≤C‖∇u‖L2‖u‖H2 +‖u‖
1

2

L2‖u‖
3

2

H2
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≤CRt−
7

12 (t
7

12 ‖v‖H2 + t
7

12 ‖WA‖H2)

+CR
1

2 t−
7

8 (t
7

12 ‖v‖H2 + t
7

12 ‖WA‖H2)
3

2

≤CR2(t−
7

12 + t−
7

8 ).

Because u=v+WA, by the dominated convergence theorem, it is easy to check that

∫ t

0

e−(t−s)A[(v+WA) ·∇](v+WA)ds∈C([0,T ∗];H1), t∈ [0,T ∗], P −a.s.

So for v∈BT∗

R , it is easy to see

L(v)∈C([0,T ∗];H1), t∈ [0,T ∗], P −a.s. (3.9)

By (3.3) and (3.6)-(3.9), we can see that L maps BT∗

R into itself and is a strict con-
traction in BT∗

R . Hence, L has a unique fixed point in BT∗

R , which is a solution to (2.2)
on [0,T ∗(ω)].

Remark 3.1. An example of the noise satisfying condition of Theorem 3.1 is

dW (t)=

∞
∑

n=1

√

λnendβn(t),

where {βn} is a sequence of independent 1−dimensional Brownian motion, and {λn}
satisfies

λn=n−(3+2θ), αn=n,

where θ>0 and n∈N. This is so because the eigenvalues αn of the operator A, in
2−dimensional space, behave like n (cf. [18]).

Remark 3.2. Another example of stochastic noise satisfying Theorem 3.1 is

A−γLdW (t),

where W (t)=
∑∞

n=1endβn(t), L is an isomorphism in L2(D;R2), and γ >2.

4. Global existence

In Theorem 3.1, the result is valid a.s. for ω∈Ω; in particular T ∗ depends on
ω. In this section we will prove that if the noise acts only in one coordinate, then
the solution exists in the space C([0,T ];H1) for arbitrary constant T >0. So, let ek=
(ēk,0)∈R

2,k=1,2..., where (ēk)k∈N is a complete orthonormal system on L2(D;R1)
which is the usual Lebesgue spaces of real-valued functions on D. We still denote by
(αn)n∈N the eigenvalues of A, and by (ēn)n∈N the corresponding eigenvectors. Then
for t∈ [0,T ],x∈D,

W (t,x)=

∞
∑

n=1

√

λnenβn(t)=
(

∞
∑

n=1

√

λnēnβn(t),0
)

∈R
2, a.s. (4.1)

Therefore

WA(t,x)=

∫ t

0

e−(t−s)AdW =

∞
∑

n=1

√

λn

∫ t

0

e−(t−s)Aendβn(s)
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=
(

∞
∑

n=1

√

λn

∫ t

0

e−(t−s)Aēndβn(s),0
)

∈R
2, a.s.

In the proof, we will use some real valued spaces. For p∈ [1,∞], we denote by | · |Lp

the norm in Lp(D;R1), which is the usual Lebesgue spaces of real-valued functions on
D. When p=2, we still let 〈·, ·〉 be the inner product in L2(D;R1). Let C∞

0 (D;R1) be
the set of all smooth functions from D to R

1 with compact supports contained in D.

For α∈R, we denote by | · |Hα = |A
α
2 · |L2 the norm in the Hilbert space Hα, which is

the closure of C∞
0 (D;R1) under the norm | · |Hα .

Theorem 4.1. Under the conditions of Theorem 3.1, we consider problem (2.2) with
noise in form of (4.1) and, in addition, assume the initial condition of problem (2.2)
satisfies ‖v0‖L∞

x
<∞. Then there exists a unique solution (v(t))t∈[0,T ] to problem (2.2)

in the sense of Definition 2.1, for arbitrary T >0. Moreover,

sup
t∈[0,T ]

‖v‖H1 ≤C(T,‖v0‖L∞

x
,‖WA‖L∞

t L∞

x
,‖∇WA‖L∞

t L∞

x
),

where ‖·‖L∞

t L∞

x
:= sup

(t,x)∈[0,T ]×D

| · |.

Proof. Let {v0n}n≥1 be a sequence of vectors in C∞
0 (D;R2) such that

v0n→v0, as n→∞ (4.2)

in L∞(D;R2)∩H
1. As WA∈C([0,T ];H3) a.s., we can choose a sequence of regular

processes {Wn
A(t,x)}n≥1={(Wn

A,1(t,x),0)}n≥1,t∈ [0,T ],x∈D such that

Wn
A(t)→WA(t), as n→∞ (4.3)

in C([0,T ];H3) a.s. Then, by (4.3), we have

sup
{n≥1}

‖Wn
A‖L∞

t L∞

x
<∞

and

sup
{n≥1}

‖A
1

2Wn
A‖L∞

t L∞

x
<∞.

By Theorem 3.1, there exists positive random variable T ∗
n such that, for t∈ [0,T ∗

n ],vn
is the solution of the following equation:

vn(t)= etAv0n+

∫ t

0

e(t−s)A[(vn+Wn
A) ·∇](vn+Wn

A)ds.

Let Tmax be maximal existence time of solution vn. Obviously, Tmax≤T a.s.. In the
following, we will prove

Tmax=T, a.s.

For t∈ [0,Tmax), vn is regular such that

∂vn

∂t
+Avn+B(vn+Wn

A,vn+Wn
A)=0. (4.4)
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Let

v̄n=vne
−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds−‖Wn

A‖L∞

t L∞

x
‖∇Wn

A‖L∞

t L∞

x
I, (4.5)

where I=(1,1). Substituting (4.5) into (4.4), we have

∆v̄n−(vn+Wn
A)∇v̄n− v̄n(∇Wn

A+‖∇Wn
A‖L∞

x
+1)−

dv̄n

dt
=‖Wn

A‖L∞

t L∞

x
‖∇Wn

A‖L∞

t L∞

x
I(1+‖∇Wn

A‖L∞

x
+∇Wn

A)

+Wn
A∇Wn

Ae
−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds>0. (4.6)

Denote vn := (v1n,v
2
n), v̄n := (v̄1n, v̄

2
n). To simplify the notations, we set

∂i=
∂

∂xi

, i=1,2.

Then by (4.6), we get

∆v̄2n− [(v1n+Wn
A,1)∂1+(v2n+Wn

A,2)∂2]v̄
2
n−(‖∇Wn

A‖L∞

x
+1)v̄2n−

dv̄2n
dt

>0.

By the maximum principle for parabolic equations (see Theorem 7, p.174, [19]), we
obtain

max
(t,x)∈[0,Tmax)×D

v̄2n(t,x)≤max
x∈D

v0n(x), a.s. (4.7)

We denote

v̂n=vne
−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds+‖Wn

A‖L∞

t L∞

x
‖∇Wn

A‖L∞

t L∞

x
I, (4.8)

where I is the vector in (4.5). Substituting (4.8) into (4.4), we get

∆v̂n−(vn+Wn
A)∇v̂n− v̂n(∇Wn

A+‖∇Wn
A‖L∞

x
+1)−

dv̂n

dt
<0.

We denote v̂n=(v̂1n, v̂
2
n)∈R

2. By the minimum principle for parabolic equations (see
Theorem 7, p.174, [19]), we have

min
(t,x)∈[0,Tmax)×D

v̂2n(t,x)≥min
x∈D

v0n(x), a.s. (4.9)

By (4.7) and (4.9), we can conclude that

sup
t∈[0,Tmax)

‖v2n‖L∞

x

≤ (‖v0n‖L∞

x
+‖Wn

A‖L∞

t L∞

x
‖∇Wn

A‖L∞

t L∞

x
)e

∫
T

0
(1+‖∇Wn

A‖L∞

x
)ds, a.s. (4.10)

In the following, we will estimate sup
t∈[0,Tmax)

‖v1n‖L∞

x
. Let

ṽ1n=v1ne
−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds−(‖Wn

A‖L∞

t L∞

x
+ sup

t∈[0,T∗

n ]

‖v2n‖L∞

x
)‖∇Wn

A‖L∞

t L∞

x
. (4.11)

By (4.4), we have

∂v1n
∂t

−∆v1n+[(W
n
A,1+v1n)∂1+(Wn

A,2+v2n)∂2]v
1
n+v

1
n∂1W

n
A,1
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=−v2n∂2W
n
A,1−Wn

A,1∂1W
n
A,1−Wn

A,2∂2W
n
A,1. (4.12)

Substituting (4.11) into (4.12), we can get

∆ṽ1n− [(Wn
A,1+v1n)∂1+(Wn

A,2+v2n)∂2]ṽ
1
n

− ṽ1n(1+‖∇Wn
A‖L∞

x
+∂1W

n
A,1e

−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds)−

∂ṽ1n
∂t

>0.

By the maximum principle for parabolic equations, we have

max
(t,x)∈[0,Tmax)×D

ṽ1n≤max
x∈D

v0n, a.s.

Let

v̌1n=v1ne
−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds+(‖Wn

A‖L∞

t L∞

x
+ sup

t∈[0,T∗

n ]

‖v2n‖L∞

x
)‖∇Wn

A‖L∞

t L∞

x
. (4.13)

Substituting (4.13) into (4.12), we can get

∆v̌1n− [(Wn
A,1+v1n)∂1+(Wn

A,2+v2n)∂2]v̌
1
n

− ṽ1n(1+‖∇Wn
A‖L∞

x
+∂1W

n
A,1e

−
∫

t

0
(1+‖∇Wn

A‖L∞

x
)ds)−

∂v̌1n
∂t

<0.

By the minimum principle for parabolic equations, we have

min
(t,x)∈[0,Tmax)×D

v̌1n≥min
x∈D

v0n, a.s.

Therefore, we conclude that

sup
t∈[0,Tmax)

‖v1n‖L∞

x
≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

So far, we proved

sup
t∈[0,Tmax)

‖vn‖L∞

x
≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
). (4.14)

Taking the inner product with respect to vn in (4.4), we have

〈∂vn

∂t
,vn

〉

+〈Avn,vn〉+〈B(vn+Wn
A,vn+Wn

A),vn〉=0. (4.15)

First we calculate the third term on the left hand side of (4.15).

〈B(vn+Wn
A,vn+Wn

A),vn〉

= 〈(v1n+Wn
A,1)∂1(v

1
n+Wn

A,1),v
1
n〉+〈(v2n+Wn

A,2)∂2(v
1
n+Wn

A,1),v
1
n〉

+〈(v1n+Wn
A,1)∂1(v

2
n+Wn

A,2),v
2
n〉+〈(v2n+Wn

A,2)∂2(v
2
n+Wn

A,2),v
2
n〉

=J1+J2+J3+J4. (4.16)

For J1, we have

J1= 〈v1n∂1v
1
n,v

1
n〉+〈Wn

A,1∂1v
1
n,v

1
n〉+〈v1n∂1W

n
A,1,v

1
n〉+〈Wn

A,1∂1W
n
A,1,v

1
n〉.
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In the sequel, we estimate the four terms of J1 respectively. For the first term,

〈v1n∂1v
1
n,v

1
n〉=

∫

D

(v1n)
2∂1v

1
ndx=

∫

D

∂1

[ (v1n)
3

3

]

dx=0.

For the second term, by (4.3), we have

〈Wn
A,1∂1v

1
n,v

1
n〉≤C|v1n|

2
L2 +ε|v1n|

2
H1 .

Similarly, for the third term, we have

|〈v1n∂1W
n
A,1,v

1
n〉|=

∣

∣

∣

∫

D

(v1n)
2∂1W

n
A,1dx

∣

∣

∣
≤C|v1n|

2
L2 .

For the last term, we have

|〈Wn
A,1∂1W

n
A,1,v

1
n〉|≤C

∣

∣

∣

∫

D

∂1v
1
ndx

∣

∣

∣
≤C+C|v1n|

2
L2 .

Therefore, for J1, we have

J1≤C(1+‖vn‖
2
L2)+ε‖vn‖

2
H1 .

Similarly,

J4≤C(1+‖vn‖
2
L2)+ε‖vn‖

2
H1 .

For J3,

J3= 〈v1n∂1v
2
n,v

2
n〉+〈v1n∂1W

n
A,2,v

2
n〉+〈Wn

A,1∂1v
2
n,v

2
n〉+〈Wn

A,1∂1W
n
A,2,v

2
n〉.

For the first term of J3, we have

|〈v1n∂1v
2
n,v

2
n〉|=

1

2

∣

∣

∣

∫

D

v1n∂1(v
2
n)

2dx
∣

∣

∣
=

1

2

∣

∣

∣

∫

D

∂1v
1
n ·(v

2
n)

2dx
∣

∣

∣

≤
1

2
|v2n|

2
L4 · |v1n|H1 ≤C|v2n|

4
L4 +ε|v1n|

2
H1 .

For the second term of J3, we have

|〈v1n∂1W
n
A,2,v

2
n〉|≤C‖vn‖

2
L2 .

Analogously, for the third term of J3, we have

|〈Wn
A,1∂1v

2
n,v

2
n〉|≤C‖vn‖

2
L2 +ε‖vn‖

2
H1 .

For the last term of J3, we have

|〈Wn
A,1∂xW

n
A,2,v

2
n〉|≤C+C‖vn‖

2
L2 .

Therefore, for J3, we get

J3≤C‖v2n‖
4
L4 +ε‖vn‖

2
H1 +C‖vn‖

2
L2 +C.

Analogously, for J2, we obtain

J2≤C‖v1n‖
4
L4 +ε‖vn‖

2
H1 +C‖vn‖

2
L2 +C.
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By (4.16) and the estimates of J1, J2, J3, and J4, we have

〈B(vn+Wn
A,vn+Wn

A),vn〉≤C(1+‖vn‖
2
L2)+4ε‖vn‖

2
H1 +C‖vn‖

4
L4 .

Therefore by (4.15), we get

∂

∂t
‖vn‖

2
H +‖vn‖

2
H1 ≤C(1+‖vn‖

2
L2)+4ε‖vn‖

2
H1 +C‖vn‖

4
L4 . (4.17)

For t∈ [0,Tmax), integrating over [0,t] on both sides of (4.17), we have

‖vn(t)‖
2
L2 +

∫ t

0

‖vn(s)‖
2
H1ds≤‖vn(0)‖

2
L2 +Ct+C

∫ t

0

‖vn(s)‖
4
L4ds. (4.18)

For t∈ [0,Tmax),

‖vn(0)‖
2
L2 ≤C‖vn(0)‖

2
L∞

x

and

‖vn(t)‖
4
L4 ≤C‖vn(t)‖

4
L∞

x
,

where C>0. Thus, for all t∈ [0,Tmax), by (4.14) and (4.18), we have

‖vn(t)‖
2
L2 ≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
) (4.19)

and
∫ t

0

‖vn(s)‖
2
H1ds≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
). (4.20)

Multiply (4.4) by Avn and integrate over D to find

〈∂vn

∂t
,Avn

〉

+〈Avn,Avn〉= 〈B(vn+Wn
A,vn+Wn

A),Avn〉,

which is equivalent to

1

2

∂

∂t
‖vn‖

2
H1 +‖vn‖

2
H2 = 〈B(vn+Wn

A,vn+Wn
A),Avn〉. (4.21)

For the term on the right hand side of (4.21),

〈B(vn+Wn
A,vn+Wn

A),Avn〉

= 〈v1n+Wn
A,1∂1(v

1
n+Wn

A,1),Av
1
n〉+〈v2n+Wn

A,2∂2(v
1
n+Wn

A,1),Av
1
n〉

+〈v1n+Wn
A,1∂1(v

2
n+Wn

A,2),Av
2
n〉+〈v2n+Wn

A,2∂2(v
2
n+Wn

A,2),Av
2
n〉

=K1+K2+K3+K4. (4.22)

For K1, we have

K1= 〈v1n∂1v
1
n,Av

1
n〉+〈v1n∂1W

n
A,1,Av

1
n〉+〈Wn

A,1∂1v
1
n,Av

1
n〉+〈Wn

A,1∂1W
n
A,1,Av

1
n〉

= l1+ l2+ l3+ l4. (4.23)

For l1, we have

l1≤ ε|v1n|
2
H2 +C|v1n|

2
L4 · |∂1v

1
n|

2
L4 .
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By an interpolation inequality, there exists some C>0 such that

|v1n|L4 ≤C|v1n|
1

2

H |v1n|
1

2

H1 , |∂1v
1
n|L4 ≤C|∂1v

1
n|

1

2

L2 |∂1v
1
n|

1

2

H1 =C|v1n|
1

2

H1 |v
1
n|

1

2

H2 .

Then

l1≤ε|v1n|
2
H2 +C|v1n|L2 · |v1n|

2
H1 · |v1n|H2

≤2ε|v1n|
2
H2 +C|v1n|

4
H1 ,

where the last inequality follows from (4.19). For l2, we have

l2≤ ε|v1n|
2
H2 +C

∫

D

(v1n)
2(∂1W

n
A,1)

2dx

≤ ε|v1n|
2
H2 +C|v1n|

2
L2 .

For l3, we have

l3≤C

∫

D

|∂1v
1
n ·Av

1
n|dx≤ ε|v1n|

2
H2 +C|v1n|

2
H1 .

For l4, we have

l4≤C+ε|v1n|
2
H2 .

By the estimates of l1− l4, (4.19), and (4.23), we have

K1≤5ε|v1n|
2
H2 +C|v1n|

4
H1 +C|v1n|

2
H1 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

Similarly, for K4 we have

K4≤5ε|v2n|
2
H2 +C|v2n|

4
H1 +C|v2n|

2
H1 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

For K2, we have

K2= 〈v2n∂2v
1
n,Av

1
n〉+〈Wn

A,2∂2v
1
n,Av

1
n〉+〈v2n∂2W

n
A,1,Av

1
n〉+〈Wn

A,2∂2W
n
A,1,Av

1
n〉.

For the first term of K2, by an interpolation inequality and (4.19), we have

〈v2n∂2v
1
n,Av

1
n〉≤ ε|v1n|

2
H2 +C|v2n|

2
L4 |∂1v

1
n|

2
L4

≤ ε|v1n|
2
H2 +C|v2n|L2 |v2n|H1 |v1n|H1 |v1n|H2

≤2ε|v1n|
2
H2 +C‖vn‖

4
H1 .

For the second term of K2, we have

〈Wn
A,2∂2v

1
n,Av

1
n〉≤C

∫

D

|∂2v
1
n| · |Av

1
n|dx≤ ε|v1n|

2
H2 +C|v1n|

2
H1 .

For the third term of K2, we have

〈v2n∂2W
n
A,1,Av

1
n〉≤C

∫

D

|v2n| · |Av
1
n|dx

≤ε|v1n|
2
H2 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).
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For the last term of K2, we have

〈Wn
A,2∂2W

n
A,1,Av

1
n〉≤ ε|v1n|

2
H2 +C.

Therefore, we get

K2≤5ε|v1n|
2
H2 +C‖vn‖

4
H1 +C|v1n|

2
H1 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

Analogously to K2, we can derive

K3≤5ε‖v2n‖
2
H2 +C‖vn‖

4
H1 +C|v2n|

2
H1 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

By the estimates of K1−K4, we obtain that

〈B(vn+Wn
A,vn+Wn

A),Avn〉

≤10ε‖vn‖
2
H2 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
)(‖vn‖

4
H1 +1).

So, by (4.21), we get

1

2

∂

∂t
‖vn‖

2
H1+‖vn‖

2
H2

≤10ε‖vn‖
2
H2 +C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
)(‖vn‖

4
H1 +1). (4.24)

By (4.20), (4.24), and Gronwall’s inequality, we get

sup
t∈[0,Tmax)

‖vn(t)‖
2
H1 ≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

By (4.24), we can also get that for all t∈ [0,Tmax),

∫ t

0

‖vn(s)‖
2
H2ds≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
). (4.25)

For simplicity, we write

C(T,v0n,W
n
A) :=C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

Because vn is mild solution to (4.4), we have, for t∈ [0,Tmax),

vn(t)= e−tAv0n+

∫ t

0

e−(t−s)AB(vn+Wn
A,vn+Wn

A)ds.

Let un=vn+Wn
A. Similar to our derivation of (3.2), we have

t
7

12 ‖vn‖H2 ≤ t
1

12 ‖v0n‖H1 + t
7

12

∫ t

0

(t−s)−
1

2 ‖un∇un‖H1ds

≤ t
1

12 ‖v0n‖H1 +Ct
7

12

∫ t

0

(t−s)−
1

2 (‖un‖H1‖un‖H2 +‖un‖
1

2

L2‖un‖
3

2

H2)ds

≤C(T,v0n,W
n
A)[t

1

12 + t
7

12

∫ t

0

(t−s)−
1

2 s−
7

12 s
7

12 ‖vn‖H2ds]

+C(T,v0n,W
n
A)t

7

12

∫ t

0

(t−s)−
1

2 ds
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+C(T,v0n,W
n
A)t

7

12

∫ t

0

(t−s)−
1

2 s−
7

8 (s
7

12 ‖vn‖H2)
3

2 ds

+C(T,v0n,W
n
A)t

7

12

∫ t

0

(t−s)−
1

2 ds.

By Gronwall’s inequality, we have

t
7

12 ‖vn‖H2

≤C(T,v0n,W
n
A)(t

1

12 + t
13

12 )eC(T,v0

n,W
n
A)t

7
12

∫
t

0
[(t−s)−

1
2 s

−
7
12 +(t−s)−

1
2 s

−
7
12 ‖vn‖

1
2

H2
]ds

≤C(T,v0n,W
n
A)(t

1

12 + t
13

12 )eC(T,v0

n,W
n
A)[t

1
2 +t

1
4 (

∫
t

0
‖vn‖

2

H2ds)
1
4 ]

≤C(T,v0n,W
n
A),

where the second inequality follows by Hölder’s inequality and the last inequal-
ity follows by (4.25). Therefore, we can repeat the proof of Theorem 3.1 on
[0,T ∗

n ], [T
∗
n ,2T

∗
n ], ... for vn. If there exists Ω1∈F satisfying P (Ω1)>0 and Tmax(ω)<T,

for ω∈Ω1, then for any ω∈Ω1, there exists m∈N such that Tmax∈ ((m−1)T ∗
n ,mT ∗

n).
This is a contradiction with the definition of Tmax. Therefore, Tmax=T a.s., and
vn∈C([0,T ];H1) satisfies

sup
t∈[0,T ]

‖vn(t)‖H1 + sup
t∈[0,T ]

t
7

12 ‖vn(t)‖H2 ≤C(T,‖v0n‖L∞

x
,‖Wn

A‖L∞

t L∞

x
,‖∇Wn

A‖L∞

t L∞

x
).

Obviously the space

BT :={v∈C([0,T ];H1); sup
t∈[0,T ]

‖v‖H1 + sup
t∈[0,T ]

t
7

12 ‖v‖H2 <∞}

is complete. Because (vn)n∈N is bounded in BT , it is weekly star convergent in this
space to a function ṽ which satisfies

sup
t∈[0,T ]

‖ṽ(t)‖H1 + sup
t∈[0,T ]

t
7

12 ‖ṽ(t)‖H2 ≤C(T,‖v0‖L∞

x
,‖WA‖L∞

t L∞

x
,‖∇WA‖L∞

t L∞

x
).

Let us define the mapping Ln in the same way as L; it is easy to check that Ln is a

strict contraction uniformly in n on B
t(ω)
r(ω), where

r(ω)=3(sup
n∈N

sup
t∈[0,T ]

‖Wn
A‖H3 + sup

t∈[0,T ]

‖ṽ(t)‖2
H1)

and

2Cr(ω)[(t(ω))
5

24 +(t(ω))
1

2 ]≤1,

where the constant C is as in (3.8). Then by a standard arguments, we can prove that

vn→v

in B
t(ω)
r(ω), implying

v= ṽ on [0,t(ω)]

and

‖v(t(ω))‖H1 +(t(ω))
7

12 ‖v(t(ω))‖H2 ≤ sup
s∈[0,T ]

‖ṽ(s)‖H1 + sup
s∈[0,T ]

s
7

12 ‖ṽ(s)‖H2 .
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Thus we can construct a solution on [t(ω),2t(ω)] starting from v(t(ω)). We get the
unique global solution on [0,T ] by iterating this argument.
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