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CAUCHY PROBLEM OF THE MAGNETOHYDRODYNAMIC

BURGERS SYSTEM∗

HAI-YANG JIN† , ZHI-AN WANG‡ , AND LINJIE XIONG§

Abstract. In this paper, the asymptotic nonlinear stability of solutions to the Cauchy problem
of a strongly coupled Burgers system arising in magnetohydrodynamic (MHD) turbulence [Fleischer
and Diamond (2000), Yanase (1997)] is established. It is shown that, as time tends to infinity, the
solutions of the Cauchy problem converge to constant states or rarefaction waves with large data, or
viscous shock waves with arbitrarily large amplitude, where the precise asymptotic behavior depends
on the relationship between the left and right end states of the initial value. Our results confirm
the existence of shock waves (or turbulence) numerically found in [Fleischer and Diamond (2000),
Yanase (1997)].
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1. Introduction

To investigate the small scale structure of magnetohydrodynamic turbulence, a
one-dimensional magnetohydrodynamic (MHD) Burgers system was derived in [1, 27]
as follows:

{
ut+(uv)x=Duxx, x∈R, t>0,

vt+
(
1
2u

2+ 1
2v

2
)
x
=µvxx, x∈R, t>0,

(1.1)

where u(x,t) is the magnetic field, v(x,t) stands for the velocity field of the fluid, and
D and µ are positive diffusivity. It was also shown in [1] that MHD Burgers system
(1.1) is the simplest possible system which allows energy transfer between the fluid
and magnetic field excitations where the turbulence is represented by an ensemble of
Alfvenic shock waves on a homogeneous density background. Moreover system (1.1)
may also model the opposite limit of a fluid-dominated (i.e., unmagnetized) system
with arbitrary density variations reacting to an adiabatic pressure [1]. For more
applications of (1.1), we refer the readers to [2, 10, 25]. Using the Elsässer variables
e±=v±u, system (1.1) is transformed into

∂e±

∂t
+
∂

∂x

(e±)2

2
=
µ+D

2

∂2e±

∂x2
+
µ−D
2

∂2e∓

∂x2
. (1.2)

If D=µ, then e− and e+ do not interact with each other and system (1.1) can be
reduced to two independent viscous Burgers equations for e+ and e−, respectively.
Hence the system can be trivially solved via the Hopf-Cole transformation. The
nontrivial case D 6=µ reveals more interesting interactions between the fluid and the
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magnetic field [1]. In the present paper, we focus on the non-trivial case D 6=µ and
investigate the asymptotic behavior of solutions of (1.1) with the initial data

(u,v)(x,0)=(u0,v0)(x)→
{
(u−,v−), as x→−∞,

(u+,v+), as x→+∞.
(1.3)

The standard hyperbolic theory (cf. [11, 22]) predicts that the time asymptotic behav-
ior of solutions of the Cauchy problem (1.1)-(1.3) are closely related to the following
Riemann problem:





ut+(uv)x=0, x∈R, t>0,

vt+
(
1
2u

2+ 1
2v

2
)
x
=0, x∈R, t>0,

(u,v)(x,0)=(ur0,v
r
0)(x)=

{
(u−,v−), x<0,

(u+,v+), x>0.

(1.4)

Writing the equations in (1.4) in the vector form

(
u
v

)

t

+

(
v u
u v

)(
u
v

)

x

=0, (1.5)

we see that the Jacobian matrix A :=

(
v u
u v

)
has two real distinct eigenvalues

λ1(u,v)=v−u, λ2(u,v)=v+u,

with corresponding eigenvectors

r1(u,v)=

(
1
−1

)
, r2(u,v)=

(
1
1

)
.

Therefore it follows that ∇λ1(u,v) ·r1(u,v)=−2<0 and ∇λ2(u,v) ·r2(u,v)=2>0.
This shows that the hyperbolic system (1.4) is genuinely nonlinear. By the hyperbolic
theory [22], the solutions of the Riemann problem (1.4) are made up of three types
of elementary waves (solutions): constant states, rarefaction waves, and shock waves.
Moreover, we point out that the rarefaction curves of (1.5) are straight lines in the
u-v plane (see Section 2), and hence the hyperbolic system (1.5) is of Temple class
[24].

In this paper we shall show that as time goes to infinity, the solution of the
Cauchy problem (1.1)-(1.3) will tend to a constant solution if (u+,v+)=(u−,v−), or
a rarefaction wave if λi(u−,v−)<λi(u+,v+), or a viscous shock wave (i.e. traveling
wave) if λi(u−,v−)>λi(u+,v+). Specifically, the following results are proved. If the
right state equals the left state, say (u+,v+)=(u−,v−)=(ū, v̄), then the solution of
(1.1) with large data (1.3) will eventually approach the constant state (ū, v̄). If the
right state (u+,v+) is connected to the left state (u−,v−) by a rarefaction wave,
then the Cauchy problem (1.1)-(1.3) has a unique global solution which tends to the
rarefaction wave of the Riemann problem (1.4) with large data. Finally if the initial
value (1.3) is a small perturbation of a viscous shock wave (traveling wave), then
the solution of (1.1)-(1.3) will asymptotically converge to this viscous shock wave
with a proper translation, where the wave amplitude can be arbitrarily large. Our
results analytically confirm the existence of shock-type waves (and hence turbulence)
numerically obtained in both papers [27] and [1].
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Mathematical studies on the asymptotics toward rarefaction/shock waves for vis-
cous conservation laws have been undertaken for a long time (e.g. see [7, 17, 19]). For
the general 2×2 viscous conservation laws

{
ut+[f1(u,v)]x=Duxx, x∈R, t>0,

vt+[f2(u,v)]x=µvxx, x∈R, t>0
(1.6)

with initial data (1.3), Xin [26] and Yang and Zhao [28] established the time asymp-
totic stability of weak rarefaction waves and strong rarefaction waves with small initial
data, respectively. The main hypothesis on the structure of the system (1.6) is the
strong coupling in the sense that

∂f1(u,v)

∂v
· ∂f2(u,v)

∂u
6=0, (1.7)

which is satisfied by the system (1.1). To the best of our knowledge, for the strongly
coupled system of conservation laws with large initial data, very few results are known.
The asymptotic stability of viscous shock waves for the general system of conservation
laws has been extensively investigated over many years. Most of results (if not all)
require the wave amplitude to be small (e.g. see [3, 15, 16, 23]). The main contribu-
tions of this paper has two facets. First, exploiting the peculiar coupling structure of
the MHD Burgers system (1.1), the nonlinear stability of strong rarefaction waves of
(1.1)-(1.3) is established with large data. Second, the asymptotic stability of viscous
shock waves of (1.1)-(1.3) is proved for large wave amplitude. Usually these results
can not be proved for general hyperbolic systems as mentioned above. Finally, we
mention that the asymptotic stability of viscous shock waves to (1.1) with u+>0 was
previously established in [6] based on the idea of [13, 14, 18] by leaving open the case
u+=0, which causes a singularity in the energy estimates. In this paper, we will
resolve this challenging case (i.e. u+=0) by invoking the weighted energy estimates
inspired by the ideas of [8, 9, 12, 21].

The rest of the paper is organized as follows. In Section 2, we solve the Riemann
problem (1.4) and then state the main results for the Cauchy problem (1.1)-(1.3).
Then we prove the large-time behavior of solutions with constant states in Section
3. In Section 4, we show the stability of rarefaction waves. The proof of nonlinear
stability of viscous shock waves is given in Section 5.

2. Preliminaries and main results

In this section, we first briefly solve the Riemann problem (1.4) in the class of
functions consisting of constant states, separated by rarefaction waves or shock waves.
We begin with the rarefaction waves of (1.4) by setting ξ=x/t. Then substituting it
into the equations of (1.5), we find that (uξ,vξ) is an eigenvector of A for the eigenvalue
ξ. Because the matrix A has two real and distinct eigenvalues λ1 and λ2, there are
two families of rarefaction waves: 1-rarefaction waves and 2-rarefaction waves. The
eigenvector (uξ,vξ) associated with the first eigenvalue λ1 satisfies

(
u u
u u

)(
uξ
vξ

)
=0, (2.1)

which gives uξ+vξ=0 thanks to u 6=0. This gives du
dv =−1. Integrating it, we obtain

the 1-rarefaction curve R1(u−,v−) as

R1(u−,v−)={(u,v)|u=−v+u−+v−,v >v−}, (2.2)
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where the entropy condition λ1(u−,v−)<λ1(u,v) has been used to guarantee the
uniqueness of the 1-rarefaction wave. Similarly, the 2-rarefaction curve R2(u−,v−)
can be represented as

R2(u−,v−)={(u,v)|u=v+u−−v−,v >v−}. (2.3)

Moreover (1.4) also has two distinct types of shock waves: 1-shock waves and 2-shock
waves. To see this, we use the following jump condition (see [22, 15.11]):

{
uv−u−v−=s(u−u−),
1
2 (u

2+v2)− 1
2 (u

2
−+v2−)=s(v−v−),

(2.4)

where s is the speed of the discontinuity (wave speed). Subtracting the first equation
from the second equation of (2.4), we have

(u−v−u−+v−)(u−v+u−−v−+2s)=0. (2.5)

For 1-shock waves, the entropy condition v−u=λ1(u,v)<λ1(u−,v−)=v−−u− im-
plies u−v−u−+v−>0. Hence, from (2.5), we obtain

u−v+u−−v−+2s=0. (2.6)

Clearly u 6=u− for otherwise we have v=v− from the first equation of (2.4), and then
(u,v)=(u−,v−) is not a shock curve. Hence the first equation of (2.4) gives

s=
uv−u−v−
u−u−

. (2.7)

Then substituting (2.7) into (2.6), one can derive the 1-shock curve S1(u−,v−) as

S1(u−,v−)={(u,v)|u=−v+u−+v−,v <v−}. (2.8)

To deduce 2-shock curves, we add the equations in (2.4) to obtain

(u+v−u−−v−)(u+v+u−+v−−2s)=0. (2.9)

Similarly, by using the entropy condition v+u=λ2(u,v)<λ2(u−,v−)=v−+u− and
(2.7), we obtain the 2-shock curve S2(u−,v−) as

S2(u−,v−)={(u,v)|u=v+u−−v−,v <v−}. (2.10)

Then curves R1, R2, S1, and S2 divide the u-v plane into four disjoint open regions
I, II, III, IV defined as follows (see also figure 2.1):

I=R1R2(u−,v−) :={(u,v)|−v+u−+v−<u<v+u−−v−},
II=R1S2(u−,v−) :={(u,v)|u<−v+u−+v−,u<v+u−−v−},
III=S1S2(u−,v−) :={(u,v)|v+u−−v−<u<−v+u−+v−},
IV=S1R2(u−,v−) :={(u,v)|u>−v+u−+v−,u>v+u−−v−}.

(2.11)

Hence, depending on the relationship between the end states (u+,v+) and (u−,v−),
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Fig. 2.1. u-v plane

the solutions of Riemann problem (1.4) are described as





1−rarefaction waves if u++v+=u−+v− and v+>v−,

1−shock waves if u++v+=u−+v− and v+<v−,

2−rarefaction waves if u+−v+=u−−v− and v+>v−,

2−shock waves if u+−v+=u−−v− and v+<v−,

Composite waves of two rarefaction waves if u++v+>u−+v−

and u+−v+<u−−v−,
Composite waves of two viscous shock waves if u++v+<u−+v−

and u+−v+>u−−v−,
1−rarefaction waves and 2−shock waves if u++v+<u−+v−

and u+−v+<u−−v−,
1−shock waves and 2−rarefaction waves if u++v+>u−+v−

and u+−v+>u−−v−.

In this paper, we only consider the nonlinear stability of single waves and leave the
stability of composite waves for future study. Then we are ready to state our main
results in subsequent subsections. Before proceeding, we introduce some basic no-
tations. As usual, Hk(R) denotes the usual k-th order Sobolev space on R with

the norm given by ‖f‖Hk(R) :=
(∑k

j=0‖∂jxf‖2L2(R)

)1/2

. Hk
w(R) denotes the weighted

space of measurable functions f so that
√
w∂jxf ∈L2 for 0≤ j≤k with the norm given

by ‖f‖Hk
w(R) :=

(∑k
j=0

∫
R
w(x)|∂jxf |2dx

)1/2

. Denote ‖·‖ :=‖·‖L2(R), ‖·‖k :=‖·‖Hk(R)

and ‖·‖k,w :=‖·‖Hk
w(R) for simplicity. Moreover, we denote ‖(f,g)‖2=‖f‖2+‖g‖2

and ‖(f,g)‖2k=‖f‖2k+‖g‖2k.
2.1. Constant states. If the end states (u−,v−) and (u+,v+) are connected

by a constant, say (u+,v+)=(u−,v−)=: (ū, v̄), and if the initial value (1.3) is a pertur-
bation of the constant state (ū, v̄) in H1(R), we have the following global asymptotic
stability results.

Theorem 2.1. Let (u0− ū,v0− v̄)∈H1(R). Then there exists a unique global solution

(u,v)(x,t) to the Cauchy problem (1.1)-(1.3), which satisfies

(u− ū,v− v̄)∈C([0,∞);H1)∩L2((0,∞);H2).
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Furthermore, the solution has the following asymptotic stability:

sup
x∈R

|(u,v)(x,t)−(ū, v̄)|→0, as t→+∞. (2.12)

2.2. Stability of rarefaction waves. Without loss of generality, we consider
1-rarefaction wave solutions (ur,vr)(x/t) of the Riemann problem (1.4) only, and our
analysis can be directly applied to 2-rarefaction wave. Using (2.2), we can separate
the variables u and v in (1.4) such that u satisfies the Riemann problem





ut+(u−+v−−2u)ux=0,

u(x,0)=ur0(x)=

{
u−, x<0,

u+, x>0,

(2.13)

and v satisfies the Riemann problem





vt+(2v−u−−v−)vx=0,

v(x,0)=vr0(x)=

{
v−, x<0,

v+, x>0.

(2.14)

Employing the method of characteristics, we can solve (2.13) and obtain the rarefac-
tion wave ur(x/t) as follows:

ur(x/t)=





u−,
x
t ≤v−−u−,

u−+v−
2 − x

2t , v−−u−≤ x
t ≤v+−u+,

u+,
x
t ≥v+−u+.

(2.15)

Similarly, the rarefaction wave vr(x/t) of (2.14) can be obtained as

vr(x/t)=





v−,
x
t ≤v−−u−,

u−+v−
2 + x

2t , v−−u−≤ x
t ≤v+−u+,

v+,
x
t ≥v+−u+.

(2.16)

Then the result on asymptotic stability of the 1-rarefaction waves (ur,vr)(x/t) is as
follows.

Theorem 2.2. Let (u+,v+)∈R1(u−,v−) and v+>v−. If (u0−ur0,v0−vr0)∈L2(R)
and (u0x,v0x)∈L2(R), then the Cauchy problem (1.1)-(1.3) has a unique global solu-

tion (u,v) satisfying

{
(u−ur,v−vr)∈C([0,∞);L2)∩L∞((0,∞);L2),

(ux,vx)∈C([0,∞);L2)∩L∞((0,∞);L2)∩L2((0,∞);H1),

and

sup
x∈R

|(u,v)(x,t)−(ur,vr)(x/t)|→0, as t→+∞. (2.17)

Remark 2.1. If (u+,v+)∈R2(u−,v−) and v+>v−, then a similar stability result can
be obtained.
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2.3. Stability of viscous shock waves. The existence of traveling wave
solutions of (1.1) with 0≤u+<u− and 0≤v+<v− was established in [6] by the phase
plane analysis and the nonlinear stability of traveling wave solutions was prove only
for u+>0 by the method of energy estimates, whereas the stability for u+=0 remains
open. In this paper, we shall solve this open question by using the weighted energy
estimates. Toward this end, we identify the decay rates of traveling wave solutions as
z→±∞ and choose appropriate exponential weight functions. For completeness, we
shall briefly recall the existence of traveling wave solutions for u+=0 and derive the
asymptotic decay rates of traveling wave solutions.

The traveling wave solution of (1.1) with (1.3) is a special solution in the form

(u,v)(x,t)=(U,V )(z), z=x−st,

where (U,V )∈C∞(R) satisfies

{
−sU ′+(UV )′=DU ′′,

−sV ′+ 1
2

(
U2+V 2

)′
=µV ′′,

(2.18)

with boundary condition

U(±∞)=u±, V (±∞)=v±, U ′(±∞)=V ′(±∞)=0, (2.19)

where ′= d
dz . Integrating (2.18) once yields that

{
DU ′=−sU+UV +%1,

µV ′=−sV + 1
2 (U

2+V 2)+%2,
(2.20)

where %1 and %2 are constants satisfying

{
%1=su+−u+v+=su−−u−v−,
%2=sv+− 1

2 (u
2
++v2+)=sv−− 1

2 (u
2
−+v2−),

which gives

{
s(u+−u−)=u+v+−u−v−,
s(v+−v−)= 1

2 (u
2
++v2+)− 1

2 (u
2
−+v2−).

(2.21)

Then (2.21) with u+=0 yields

s2−v−s=0, (2.22)

and hence s=0 or s=v−, which corresponds to the wave speed of the 1st and 2nd char-
acteristic family of shock waves of (1.1). If (u+,v+)∈S1(u−,v−), using (2.8), we have
u+=−v++u−+v− and v+<v−, which yield 0=u+>u− and v+<v−. Similarly,
when (u+,v+)∈S2(u−,v−), from (2.10), we obtain u+−u−=v+−v− and v+<v−,
which imply that

0=u+<u− and v+<v−. (2.23)

In this paper, we only consider the case s=v−, for the analysis for s=0 is similar.
We first have the following existence results for the 2-shock profile (U,V )(x−st).
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Lemma 2.3. Let u± and v± satisfy (2.23). Then there exists a monotone shock

profile (U,V )(x−st) to the system (2.18)-(2.19), with wave speed s=v−, which is

unique up to a translation and satisfies Uz<0, Vz<0. Furthermore, the solution

profile (U,V )(x−st) decays exponentially at ±∞ with rates

U−u±∼ eσ±z, as z→±∞,

V −v±∼ eσ±z, as z→±∞,
(2.24)

where

σ−=
u−√
Dµ

, σ+=

{
v+−s
D , D>µ,

v+−s
µ , D<µ.

(2.25)

Proof. The existence of monotone shock profiles (U,V )(x−st) to system (2.18)-
(2.19) has been proved in [6] by phase plane analysis. It remains only to derive the
asymptotic decay rates, which are eigenvalues of the linearized system at equilib-
ria (u±,v±). To see this, we linearize the system (2.20) at (u±,v±) and obtain the
corresponding Jacobian matrix

J(u±,v±)=

[
v±−s
D

u±

D
u±

µ
v±−s
µ

]
, (2.26)

whose eigenvalue σ satisfies

σ2+
D+µ

Dµ
(s−v±)σ+

(s−v±)2−u2±
Dµ

=0. (2.27)

By (2.23) and s=v−, we can readily check that the equilibrium (u−,v−) is a saddle
and (u+,v+) is a stable node. Then solving the equation (2.27), we obtain the decay
rates as announced.

Then we proceed to consider the asymptotic stability of traveling wave solutions
obtained in Lemma 2.3 under the small initial perturbation of the form

∫ +∞

−∞

(
u0(x)−U(x)
v0(x)−V (x)

)
dx=x0

(
u+−u−
v+−v−

)
+βr1(u−,v−). (2.28)

The coefficients x0 and β are uniquely determined by the initial data (u0(x),v0(x)).
When β 6=0, the diffusion wave will appear. The stability of viscous shock waves
with a diffusion wave for small wave strength have been investigated previously (e.g.
see [15, 23]). The stability of shock waves with a diffusion wave and large wave
strength still remains open up to present. In this paper we do not consider the diffusion
wave (i.e. assuming β=0) but consider large wave strength. Then by conservation
law (1.1), we can derive that

∫ +∞

−∞

(
u(x,t)−U(x+x0−st)
v(x,t)−V (x+x0−st)

)
dx=

∫ +∞

−∞

(
u0(x)−U(x+x0)
v0(x)−V (x+x0)

)
dx

=

∫ +∞

−∞

(
u0(x)−U(x)
v0(x)−V (x)

)
dx+

∫ +∞

−∞

(
U(x)−U(x+x0)
V (x)−V (x+x0)

)
dx

=

∫ +∞

−∞

(
u0(x)−U(x)
v0(x)−V (x)

)
dx−x0

(
u+−u−
v+−v−

)
=

(
0
0

)
.

(2.29)
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Thus we decompose the solution of (1.1) into the form

(u,v)(x,t)=(U,V )(x+x0−st)+(φz,ψz)(z,t), (2.30)

where

(φ(z,t),ψ(z,t))=

∫ z

−∞

(u(y,t)−U(y+x0−st),v(y,t)−V (y+x0−st))dy.

Clearly, for all t>0, if follows from (2.29) that

φ(±∞,t)=ψ(±∞,t)=0.

Without loss of generality we may assume that x0=0, for otherwise we make a trans-
lation of the traveling wave solutions. Hence, the initial value of the perturbation
(φ,ψ) is given by

(φ0,ψ0)(z)=

∫ z

−∞

(u0−U,v0−V )(y)dy. (2.31)

Then we have the following stability results on the traveling wave solutions.

Theorem 2.4. Let (2.23) hold, and let (U,V )(x−st) be a traveling wave solu-

tion obtained in Lemma 2.3. If D≥µ, there exists a constant ε0>0 such that if

‖u0−U‖1,w+‖v0−V ‖1,w+‖(φ0,ψ0)‖w≤ ε0, then the Cauchy problem (1.1)-(1.3) has
a unique global solution (u,v)(x,t) satisfying

(u−U,v−V )∈C([0,∞);H1
w)∩L2((0,∞);H2

w), (2.32)

where the weight function w is defined as

w(z) :=1+eηz, η=
s−v+
D

>0. (2.33)

Furthermore, the solution has the following asymptotic stability:

sup
x∈R

|(u,v)(x,t)−(U,V )(x−st)|→0, as t→+∞. (2.34)

Remark 2.2. To establish the L2-energy estimates, the conditions D≥µ is needed,
see (5.9). The nonlinear stability result for the case D<µ still remains unknown.

Remark 2.3. When u+=0 and D≥µ, it can be easily verified that there exist two
constants C2>C1>0 such that the traveling wave solution (U,V ) obtained in Lemma
2.3 satisfies

C1w(z)≤
1

U(z)
≤C2w(z) for all z∈R. (2.35)

3. Proof of Theorem 2.1
In this section, we shall prove Theorem 2.1. For the case (u+,v+)=(u−,v−)=

(ū, v̄), we seek the solution of (1.1)-(1.3) in the following solution space:

X1(0,T )={(u,v) : (u− ū,v− v̄)∈C([0,T ];H1);(ux,vx)∈L2((0,T );H1)}.
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Then Theorem 2.1 is a consequence of the following proposition.

Proposition 3.1. There exists a unique global solution (u,v)∈X1(0,∞) to (1.1)-
(1.3) such that

‖(u− ū,v− v̄)‖21+D
∫ ∞

0

‖ux(·,t)‖21dt+µ
∫ ∞

0

‖vx(·,t)‖21dt≤C‖(u0− ū,v0− v̄)‖21.
(3.1)

Next, we prove Proposition 3.1 by continuing a unique local solution with the a
priori estimates. The construction on the local existence of solutions is standard, and
is based on an iteration argument and fixed point Theorem (cf. [5]). We omit the
details for brevity. Hereafter, we denote

∫
R
fdx=:

∫
fdx for convenience and use C to

denote a generic positive constant which may vary in the context.

Lemma 3.2 (Local existence). If (u0− ū,v0− v̄)∈H1(R), then there exists a

positive constant T0 such that the Cauchy problem (1.1)-(1.3) admits a unique smooth

solution (u,v)∈X1(0,T0) satisfying

‖(u(·,t)− ū,v(·,t)− v̄)‖1≤2‖(u0− ū,v0− v̄)‖1, for all 0≤ t≤T0. (3.2)

Proposition 3.3 (A priori estimates). Suppose the Cauchy problem (1.1)-(1.3)
has a solution (u,v)∈X1(0,T ) for some T >0. Then there exists a constant C inde-

pendent of T such that

‖(u(·,t)− ū,v(·,t)− v̄)‖21+D
∫ t

0

‖ux(·,τ)‖21dτ+µ
∫ t

0

‖vx(·,τ)‖21dτ

≤C‖(u0− ū,v0− v̄)‖21.
(3.3)

Proof. Letting φ=u− ū and ψ=v− v̄, and substituting (φ,ψ) into (1.1), we
have

{
φt+(ūψ+ v̄φ+φψ)x=Dφxx,

ψt+
(
1
2φ

2+ 1
2ψ

2+ ūφ+ v̄ψ
)
x
=µψxx.

(3.4)

Step 1 (L2-estimates). Multiplying the first equation of (3.4) by φ and second equation
by ψ, adding them and integrating the resulting equation with respect to x, we end
up with

d

dt

∫ (
φ2

2
+
ψ2

2

)
dx+D

∫
φ2xdx+µ

∫
ψ2
xdx

=−
∫

(ūψ+ v̄φ+φψ)xφdx−
∫ (

φ2

2
+
ψ2

2
+ ūφ+ v̄ψ

)

x

ψdx

=−
∫ (

v̄
φ2

2
+ v̄

ψ2

2
+
ψ3

3
+ ūφψ+φ2ψ

)

x

dx=0. (3.5)

Hence

∫ (
φ2

2
+
ψ2

2

)
dx+D

∫ t

0

∫
φ2xdxdτ+µ

∫ t

0

∫
ψ2
xdxdτ =

∫ (
φ20
2

+
ψ2
0

2

)
dx,
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which yields

‖(u(·,t)− ū,v(·,t)− v̄)‖2+2D

∫ t

0

‖ux(·,τ)‖2dτ+2µ

∫ t

0

‖vx(·,τ)‖2dτ

=‖(u0− ū,v0− v̄)‖2.
(3.6)

Step 2 (H1-estimates). Multiplying the first equation of (3.4) by −φxx and second
equation by −ψxx, adding them, and integrating the results with respect to x yields
that

d

dt

∫ (
φ2x
2

+
ψ2
x

2

)
dx+D

∫
φ2xxdx+µ

∫
ψ2
xxdx

=

∫
(ūψ+ v̄φ+φψ)xφxxdx+

∫ (
φ2

2
+
ψ2

2
+ ūφ+ v̄ψ

)

x

ψxxdx

≤
∫
φψxφxxdx+

∫
ψφxφxxdx+

∫
φφxψxxdx+

∫
ψψxψxxdx

+
ū2

D
‖ψx‖2+

D

4
‖φxx‖2+

ū2

µ
‖φx‖2+

µ

4
‖ψxx‖2. (3.7)

Using (3.6), we have ‖(φ,ψ)‖≤C, and hence
∫
φψxφxxdx+

∫
ψφxφxxdx

≤‖ψx‖L∞ ‖φ‖‖φxx‖+‖φx‖L∞ ‖ψ‖‖φxx‖

≤ 4

D
(‖ψx‖2L∞ ‖φ‖2+‖φx‖2L∞ ‖ψ‖2)+D

8
‖φxx‖2

≤C ‖ψx‖‖ψxx‖+C ‖φx‖‖φxx‖+
D

8
‖φxx‖2

≤C(‖φx‖2+‖ψx‖2)+
3D

16
‖φxx‖2+

µ

16
‖ψxx‖2 . (3.8)

Similarly, we have
∫
φφxψxxdx+

∫
ψψxψxxdx

≤ 8

µ
‖φx‖2L∞ ‖φ‖2+ µ

32
‖ψxx‖2+

8

µ
‖ψx‖2L∞ ‖ψ‖2+ µ

32
‖ψxx‖2

≤C ‖φx‖‖φxx‖+C ‖ψx‖‖ψxx‖+
µ

16
‖ψxx‖2

≤C(‖φx‖2+‖ψx‖2)+
D

16
‖φxx‖2+

3µ

16
‖ψxx‖2 . (3.9)

Substituting (3.8) and (3.9) into (3.7), we have

d

dt

∫ (
φ2x
2

+
ψ2
x

2

)
dx+

D

2

∫
φ2xxdx+

µ

2

∫
ψ2
xxdx≤C(‖φx‖2+‖ψx‖2). (3.10)

Integrating (3.10) over [0,t] and using (3.6), we get

‖(ux,vx)(·,t)‖2+D
∫ t

0

‖uxx(·,τ)‖2dτ+µ
∫ t

0

‖vxx(·,τ)‖2dτ ≤C‖(u0− ū,v0− v̄)‖21.
(3.11)
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The combination of (3.6) and (3.11) yields (3.3). Then the proof of Proposition 3.3
is completed.

With the above results, we are now in a position to prove Theorem 2.1.

Proof. Proposition 3.1 can be obtained by combining the existence of local
solutions and the a priori estimates. This completes the proof of global existence in
Theorem 2.1. Next we derive (2.12). From (3.1), one has ‖(u(·,t)− ū,v(·,t)− v̄)‖≤C
and

‖(ux(·,t),vx(·,t))‖→0 as t→∞.

Consequently, for all x∈R, it follows that

(u(x,t)− ū)2=2

∫ x

−∞

(u(y,t)− ū)(u(y,t)− ū)ydy

≤2

(∫
(u(y,t)− ū)2dy

) 1
2
(∫

u2ydy

) 1
2

≤2C‖ux(·,t)‖→0 as t→∞. (3.12)

This implies sup
x∈R

|u(x,t)− ū|→0 as t→∞. Similarly, we can prove sup
x∈R

|v(x,t)− v̄|→0

as t→∞. Hence (2.12) is proved and the proof of Theorem 2.1 is completed.

4. Proof of Theorem 2.2

To study the nonlinear stability of rarefaction waves, we first construct a smooth
approximation of solutions (ur,vr)(x/t) of the Riemann problem (1.4).

4.1. Smooth approximate solution of the Riemann problem. It is
well-known (e.g. see [17]) that the Riemann problem of the Burgers equation,





wt+wwx=0, x∈R, t>0,

w(x,0)=wr0(x)=

{
v−−u−, x<0,

v+−u+, x>0,

(4.1)

where v−−u−≤v+−u+, has a continuous weak solution wr(x/t) of the form

wr(x/t)=





v−−u−, x
t ≤v−−u−,

x
t , v−−u−≤ x

t ≤v+−u+,
v+−u+, x

t ≥v+−u+.
(4.2)

Then the 1-rarefaction wave solutions (ur,vr)(x/t) given by (2.15) and (2.16) can be
written as

ur(x/t)=
u−+v−−wr(x/t)

2
, vr(x/t)=

u−+v−+wr(x/t)

2
. (4.3)

We approximate wr(x/t) by the solution w(x,t) of the following initial value problem:




wt+wwx=0, x∈R, t>0,

w(x,0)=w0(x) :=
v+−u++v−−u−

2 + v+−u+−v−+u−

2 kq

∫ εx

0

(1+y2)−qdy,
(4.4)
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where ε>0 is a constant to be determined later and kq is a constant such that
kq

∫∞

0
(1+y2)−qdy=1 for each q> 3

2 . Then the solution of the Cauchy problem (4.4)
has the following properties.

Lemma 4.1 ([17]). If v−−u−<v+−u+, then the Cauchy problem (4.4) has a

unique smooth global solution w(x,t) satisfying the following:

(i) v−−u−<w(x,t)<v+−u+, wx(x,t)>0, for (x,t)∈R×R+.

(ii) For any p∈ [1,∞], there exists a constant Cp,q such that for any t∈R+,

‖wx(·,t)‖Lp ≤Cp,qmin
{
ε1−

1
p , (1+ t)−1+ 1

p

}
,

‖wxx(·,t)‖Lp ≤Cp,qmin
{
ε2−

1
p , ε(1−

1
2q

)(1− 1
p
)(1+ t)−1− p−1

2pq

}
.

(4.5)

(iii) lim
t→∞

sup
x∈R

|w(x,t)−wr(x/t)|=0.

Using (4.3) and Lemma 4.1, the smooth approximation of the rarefaction wave
profile (ur,vr)(x/t) can be constructed via

Ũ =
u−+v−−w

2
, Ṽ =

u−+v−+w

2
, (4.6)

which satisfy




Ũt+(Ũ Ṽ )x=0,

Ṽt+( 12 Ũ
2+ 1

2 Ṽ
2)x=0,

(Ũ ,Ṽ )(x,0)=(Ũ0,Ṽ0)(x)=
(
u−+v−−w0(x)

2 , u−+v−+w0(x)
2

)
,

(4.7)

where w0 is defined in (4.4). Moreover the following properties can be readily verified.

Lemma 4.2. The smooth function (Ũ ,Ṽ )(x,t) given in (4.6) has the following prop-

erties:

(i) Ṽx=−Ũx>0.

(ii) For any p∈ [1,+∞], there exists a positive constant Cp,q such that

∥∥∥(Ũx,Ṽx)(·,t)
∥∥∥
Lp

≤Cp,qmin{ε1− 1
p , (1+ t)−1+ 1

p },
∥∥∥(Ũxx,Ṽxx)(·,t)

∥∥∥
Lp

≤Cp,qmin
{
ε2−

1
p , ε(1−

1
2q

)(1− 1
p
)(1+ t)−1− p−1

2pq

}
.

In particular, for p>1, it holds that

∫ ∞

0

∥∥∥(Ũxx,Ṽxx)
∥∥∥
Lp
dt≤Cp,q. (4.8)

(iii) lim
t→∞

sup
x∈R

∣∣∣(ur− Ũ ,vr− Ṽ )(x,t)
∣∣∣=0.

Proof. The properties (ii) and (iii) can de derived from Lemma 4.1 and (4.6)
directly. We only need to prove (i). Indeed, using (4.6) and Lemma 4.1 (i), we have

Ṽx− Ũx=wx(x,t)>0, Ũx=−Ṽx, (4.9)

which implies Ṽx=−Ũx>0.



140 CAUCHY PROBLEM OF THE MHD BURGERS SYSTEM

4.2. Reformulated problem. By the approximate smooth solution (Ũ ,Ṽ )

constructed in (4.6), we define (φ,ψ)=(u− Ũ ,v− Ṽ ) and rewrite the Cauchy problem
(1.1)-(1.3) as

{
φt+(Ũψ+ Ṽ φ+φψ)x=Dφxx+DŨxx,

ψt+
1
2 (φ

2+ψ2)x+(Ṽ ψ+ Ũφ)x=µψxx+µṼxx,
(4.10)

with initial data

(φ,ψ)(x,0)=(φ0,ψ0)(x)=(u0(x)− Ũ0(x),v0(x)− Ṽ0(x)), (4.11)

where (4.7) has been used.
We seek the solution of (4.10)-(4.11) in the space X2(0,T ) defined by

X2(0,T )={(φ,ψ) : (φ,ψ)∈C([0,T ];H1);(φx,ψx)∈L2((0,T );H1)}.

For the proof of Theorem 2.2, it suffices to show the following results.

Proposition 4.3. There exists a unique global solution (φ,ψ)∈X2(0,∞) to (4.10)-
(4.11) such that

‖(φ,ψ)(·,t)‖21+D
∫ ∞

0

‖φx(·,t)‖21dt+µ
∫ ∞

0

‖ψx(·,t)‖21dt≤C ‖(φ0,ψ0)‖21 . (4.12)

Proposition 4.3 is obtained by the combination of local existence of solutions and the
a priori estimates. The proof of the local existence of solutions is standard, and is
based on an iteration argument and a fixed point theorem (cf. [26]). We state the
local existence theorem without proof.

Proposition 4.4 (Local existence). If (φ0,ψ0)∈H1, then there exists a posi-

tive constant T0 such that the Cauchy problem (4.10)-(4.11) admits a unique solution

(φ,ψ)∈X2(0,T0) satisfying

‖(φ,ψ)(·,t))‖1≤2‖(φ0,ψ0)‖1 , for all 0≤ t≤T0. (4.13)

Proposition 4.5 (A priori estimates). Suppose the Cauchy problem (4.10)-
(4.11) has a solution (φ,ψ)∈X2(0,T ) for some T >0. Then there exists a constant C
independent of T such that

‖(φ,ψ)(·,t)‖21+D
∫ t

0

‖φx(·,τ)‖21dτ+µ
∫ t

0

‖ψx(·,τ)‖21dτ+
∫ t

0

‖
√
Ṽx(φ−ψ)(·,τ)‖2dτ

+

∫ t

0

‖
√
Ṽx(φx,ψx)(·,τ)‖2dτ

≤C(‖(φ0,ψ0)‖21+1), for all t∈ [0,T ]. (4.14)

To prove Proposition 4.5, we first derive the L2-estimates of (φ,ψ).

Lemma 4.6 (L2-estimates). Let (φ,ψ)∈X2(0,T ) be a solution of (4.10)-(4.11)
for some T >0. Then it holds that

‖(φ,ψ)(·,t)‖2+D
∫ t

0

‖φx(·,τ)‖2dτ+µ
∫ t

0

‖ψx(·,τ)‖2dτ+
∫ t

0

‖
√
Ṽx(φ−ψ)(·,τ)‖2dτ
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≤C(‖(φ0,ψ0)‖2+1), (4.15)

where C is a constant independent of T .

Proof. We multiply the first equation of (4.10) by φ and the second by ψ, then
integrate the results with respect to x to obtain

1

2

d

dt

∫
(φ2+ψ2)dx+D

∫
φ2xdx+µ

∫
ψ2
xdx

=−
∫
(Ũψ+ Ṽ φ+ψφ)xφdx−

∫
(Ṽ ψ+ Ũφ)xψdx−

∫
φφxψdx

+D

∫
Ũxxφdx+µ

∫
Ṽxxψdx. (4.16)

Notice that



(Ũψ+ Ṽ φ+ψφ)xφ=

(
Ũφψ+ Ṽ φ2

2 +φ2ψ
)

x
+ 1

2 Ṽxφ
2− Ũψφx−φφxψ,

(Ṽ ψ+ Ũφ)xψ=
(
Ṽ
2 ψ

2+ Ũφψ
)

x
+ 1

2 Ṽxψ
2− Ũφψx.

(4.17)

Substituting (4.17) into (4.16) and using Lemma 4.2 (i), we have

1

2

d

dt

∫
(φ2+ψ2)dx+D

∫
φ2xdx+µ

∫
ψ2
xdx+

1

2

∫
Ṽx(φ

2+ψ2)dx

=

∫
Ũ(φψ)xdx+D

∫
Ũxxφdx+µ

∫
Ṽxxψdx

=

∫
Ṽxφψdx+D

∫
Ũxxφdx+µ

∫
Ṽxxψdx,

which yields

d

dt

∫
(φ2+ψ2)dx+2D

∫
φ2xdx+2µ

∫
ψ2
xdx+

∫
Ṽx(φ−ψ)2dx

=2D

∫
Ũxxφdx+2µ

∫
Ṽxxψdx

≤2D‖Ũxx‖‖φ‖+2µ‖Ṽxx‖‖ψ‖
≤D2‖Ũxx‖+‖Ũxx‖‖φ‖2+µ2‖Ṽxx‖+‖Ṽxx‖‖ψ‖2, (4.18)

where we have used the Hölder and Cauchy-Schwarz inequalities. Applying Gronwall’s
inequality to (4.18), we obtain (4.15) by using (4.8) and the fact Ṽx>0 in Lemma
4.2 (i).

Lemma 4.7 (H1-estimates). Suppose the Cauchy problem (4.10)-(4.11) has a

solution (φ,ψ)∈X2(0,T ) for some T >0. Then there exists a constant C independent

of T such that

‖(φx,ψx)(·,t)‖2+D
∫ t

0

‖φxx(·,τ)‖2dτ+µ
∫ t

0

‖ψxx(·,τ)‖2dτ

+

∫ t

0

‖
√
Ṽx(φx,ψx)(·,τ)‖2dτ ≤C(‖(φ0,ψ0)‖21+1).

(4.19)
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Proof. Multiplying the first equation of (4.10) by −φxx and the second by −ψxx,
and integrating them with respect to x, we end up with

1

2

d

dt

∫
(φ2x+ψ

2
x)dx+D

∫
φ2xxdx+µ

∫
ψ2
xxdx+

3

2

∫
Ṽx(φ

2
x+ψ

2
x)dx

=

∫
φφxψxxdx+

∫
ψψxψxxdx+

∫
φψxφxxdx+

∫
φxψφxxdx

−
∫
Ṽxx(φφx+ψψx)dx−

∫
Ũxx(ψφx+φψx)dx

−3

∫
Ũxφxψxdx−D

∫
Ũxxφxxdx−µ

∫
Ṽxxψxxdx. (4.20)

Integrating (4.20) with respect to t leads to

1

2

∫
(φ2x+ψ

2
x)dx+D

∫ t

0

∫
φ2xxdxdτ+µ

∫ t

0

∫
ψ2
xxdxdτ+

3

2

∫ t

0

∫
Ṽx(φ

2
x+ψ

2
x)dxdτ

=
1

2

∫
(φ20x+ψ

2
0x)dx+

∫ t

0

∫
φφxψxxdxdτ+

∫ t

0

∫
ψψxψxxdxdτ+

∫ t

0

∫
φψxφxxdxdτ

+

∫ t

0

∫
ψφxφxxdxdτ−

∫ t

0

∫
Ṽxx(φφx+ψψx)dxdτ−

∫ t

0

∫
Ũxx(ψφx+φψx)dxdτ

−3

∫ t

0

∫
Ũxφxψxdxdτ−D

∫ t

0

∫
Ũxxφxxdxdτ−µ

∫ t

0

∫
Ṽxxψxxdxdτ

=
1

2
‖(φ0x,ψ0x)‖2+

9∑

j=1

Ij . (4.21)

Using Lemma 4.6, one has ‖(φ,ψ)(·,t)‖2+
∫ t
0
‖(φx,ψx)(·,τ)‖2dτ ≤C(‖(φ0,ψ0)‖2+1).

Then

I1≤
∫ t

0

∫
|φφxψxx|dxdτ ≤

2

µ

∫ t

0

∫
φ2φ2xdxdτ+

µ

8

∫ t

0

‖ψxx‖2dτ

≤ 2

µ

∫ t

0

‖φx‖2L∞ ‖φ‖2dτ+ µ

8

∫ t

0

‖ψxx‖2dτ

≤C
∫ t

0

‖φxx‖‖φx‖dτ+
µ

8

∫ t

0

‖ψxx‖2dτ

≤C
∫ t

0

‖φx‖2dτ+
D

8

∫ t

0

‖φxx‖2dτ+
µ

8

∫ t

0

‖ψxx‖2dτ

≤C(‖(φ0,ψ0)‖2+1)+
D

8

∫ t

0

‖φxx‖2dτ+
µ

8

∫ t

0

‖ψxx‖2dτ.

(4.22)

Applying the same procedure to I2, I3, and I4, we have

I2+I3+I4

≤
∫ t

0

∫
|ψψxψxx|dxdτ+

∫ t

0

∫
|φψxφxx|dxdτ+

∫ t

0

∫
|ψφxφxx|dxdτ



H.Y. JIN, Z.A. WANG, AND L.J. XIONG 143

+
µ

16

∫ t

0

‖ψxx‖2dτ+
D

16

∫ t

0

‖φxx‖2dτ

≤C
∫ t

0

‖ψxx‖‖ψx‖dτ+C
∫ t

0

‖φxx‖‖φx‖dτ+
µ

16

∫ t

0

‖ψxx‖2dτ+
D

16

∫ t

0

‖φxx‖2dτ

≤C
∫ t

0

(‖φx‖2+‖ψx‖2)dτ+
µ

8

∫ t

0

‖ψxx‖2dτ+
D

8

∫ t

0

‖φxx‖2dτ

≤C(‖(φ0,ψ0)‖2+1)+
µ

8

∫ t

0

‖ψxx‖2dτ+
D

8

∫ t

0

‖φxx‖2dτ. (4.23)

Using the Hölder and Cauchy-Schwarz inequalities, we can estimate the terms I5, I6,
and I7 as follows:

I5+I6+I7

≤
∫ t

0

∫
|Ṽxx(φφx+ψψx)|dxdτ+

∫ t

0

∫
|Ũxx(ψφx+φψx)|dxdτ+3

∫ t

0

∫
|Ũxφxψx|dxdτ

≤
∫ t

0

‖Ṽxx‖L∞ (‖φ‖‖φx‖+‖ψ‖‖ψx‖)dτ+
∫ t

0

‖Ũxx‖L∞ (‖ψ‖‖φx‖+‖φ‖‖ψx‖)dτ

+
3

2

∫ t

0

‖Ũx‖L∞(‖φx‖2+‖ψx‖2)dτ

≤ 1

2

∫ t

0

(‖Ũxx‖L∞ +‖Ṽxx‖L∞)‖(φ,ψ)‖2dτ+ 1

2

∫ t

0

(‖Ũxx‖L∞ +‖Ṽxx‖L∞)‖(φx,ψx)‖2dτ

+
3

2

∫ t

0

‖Ũx‖L∞(‖φx‖2+‖ψx‖2)dτ. (4.24)

From Lemma 4.2 (ii), we have

‖(Ũx,Ũxx,Ṽxx)‖L∞ ≤C and

∫ t

0

‖(Ũxx,Ṽxx)‖L∞dτ ≤C. (4.25)

Substituting (4.25) into (4.24), and using Lemma 4.6, one has

I5+I6+I7≤C
∫ t

0

(‖Ũxx‖L∞ +‖Ṽxx‖L∞)dτ+C

∫ t

0

(‖φx‖2+‖ψx‖2)dτ

≤C(‖(φ0,ψ0)‖2+1).

(4.26)

Finally, we use the Hölder inequality, the Cauchy-Schwarz inequality, and Lemma 4.2
(ii) to estimate the last two terms I8 and I9 as follows:

I8+I9≤D
∫ t

0

∫
|Ũxxφxx|dxdτ+µ

∫ t

0

∫
|Ṽxxψxx|dxdτ

≤D
∫ t

0

‖Ũxx‖2dτ+µ
∫ t

0

‖Ṽxx‖2dτ+
D

4

∫ t

0

‖φxx‖2dτ+
µ

4

∫ t

0

‖ψxx‖2dτ

≤C+
D

4

∫ t

0

‖φxx‖2dτ+
µ

4

∫ t

0

‖ψxx‖2dτ. (4.27)
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Substituting (4.22), (4.23), (4.26), and (4.27) into (4.21), we obtain

1

2

∫
(φ2x+ψ

2
x)dx+

D

2

∫ t

0

∫
φ2xxdxdτ+

µ

2

∫ t

0

∫
ψ2
xxdxdτ+

3

2

∫ t

0

∫
Ṽx(φ

2
x+ψ

2
x)dxdτ

≤1

2
‖(φ0x,ψ0x)‖2+C(‖(φ0,ψ0)‖2+1)

≤C(‖(φ0,ψ0)‖21+1),

which implies (4.19). Then we complete the proof of Lemma 4.7.

With the above lemmas in hand, we now prove Theorem 2.2.

Proof. Proposition 4.5 follows from Lemmas 4.6 and 4.7. Then using Proposition
4.4 and Proposition 4.5, we can derive Proposition 4.3 by the continuity argument.
From Proposition 4.3, one has ‖(φ,ψ)(·,t)‖≤C and ‖(φx,ψx)(·,t)‖→0 as t→∞.
Hence, the same argument as in the proof of Theorem 2.1 leads to

sup
x∈R

|u(x,t)− Ũ(x,t)|→0 as t→∞ (4.28)

and

sup
x∈R

|v(x,t)− Ṽ (x,t)|→0 as t→∞. (4.29)

The combination of (4.28) and Lemma 4.2 (iii) gives

sup
x∈R

|u(x,t)−ur(x/t)|≤ sup
x∈R

|u(x,t)− Ũ(x,t)|+sup
x∈R

|ur(x/t)− Ũ(x,t)|→0 as t→∞,

Similarly, the combination of (4.29) and Lemma 4.2 (iii) gives

sup
x∈R

|v(x,t)−vr(x/t)|→0 as t→∞.

Then the proof of Theorem 2.2 is completed.

5. Proof of Theorem 2.4

5.1. Reformulation of the problem. Substituting (2.30) into (1.1), using
(2.18) and integrating the system with respect to z, we obtain the equations for the
perturbation (φ,ψ):

{
φt=Dφzz+(s−V )φz−Uψz−φzψz,
ψt=µψzz+(s−V )ψz−Uφz− 1

2 (φ
2
z+ψ

2
z),

(5.1)

with initial data

(φ,ψ)(z,0)=(φ0,ψ0)(z), z∈R, (5.2)

where (φ0,ψ0) is defined in (2.31). We look for solutions of the reformulated system
(5.1) in the following solution space:

X3(0,T )=
{
(φ,ψ) : (φ,ψ)∈C([0,T ];H2

w),(φz,ψz)∈L2((0,T );H2
w)

}
,

where the weight function w is defined by (2.33).
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Clearly, if φ∈H2
w, then φ∈H2 because w≥1. Define

N(t) := sup
τ∈[0,t]

(‖φ(·,τ)‖2,w+‖ψ(·,τ)‖2,w).

By the Sobolev embedding inequality, one has

sup
τ∈[0,t]

{‖φ(·,τ)‖L∞ ,‖φz(·,τ)‖L∞ ,‖ψ(·,τ)‖L∞ ,‖ψz(·,τ)‖L∞}≤N(t). (5.3)

Then Theorem 2.4 is a consequence of the following theorem.

Theorem 5.1. Let (2.23) hold, and let D≥µ. Then there exists a positive constant

ε1, such that if N(0)≤ ε1, then the Cauchy problem (5.1)-(5.2) has a unique global

solution (φ,ψ)∈X3(0,∞) satisfying

‖φ(·,t)‖22,w+‖ψ(·,t)‖22,w+

∫ t

0

(‖φz(·,τ)‖22,w+‖ψz(·,τ)‖22,w)dτ

≤C
(
‖φ0‖22,w+‖ψ0‖22,w

)
≤CN2(0)

(5.4)

for any t∈ [0,+∞). Moreover, it follows that

sup
z∈R

|(φz,ψz)(z,t)|→0 as t→∞. (5.5)

The global existence of (φ,ψ) announced in Theorem 5.1 follows from the local
existence of solutions and the a priori estimates, which are given below.

Proposition 5.2 (Local existence). For any ε2>0, there exists a positive con-

stant T0 depending on ε2 such that if (φ0,ψ0)∈H2
w with N(0)≤ ε2, then the problem

(5.1)-(5.2) has a unique solution (φ,ψ)∈X3(0,T0) satisfying N(t)≤2N(0) for any

0≤ t≤T0.
Proposition 5.3 (A priori estimates). Assume that (φ,ψ)∈X3(0,T ) is a solu-

tion obtained in Proposition 5.2 for a positive constant T . Then there is a positive

constant ε3>0, independent of T , such that if

N(t)≤ ε3

for any 0≤ t≤T , then the solution (φ,ψ) of (5.1)-(5.2) satisfies (5.4) for any 0≤ t≤T .

The local existence in Proposition 5.2 can be proved by the standard argument
(cf. [20]), so we omit the details for brevity. Next, we shall prove Proposition 5.3 by
using the weighted energy estimates. In the following, we assume N(t)<min{µ,D}
without loss of generality.

5.2. Weighted energy estimates.

Lemma 5.4 (L2-estimates). Let the assumptions of Theorem 5.1 hold and assume

that (φ,ψ)∈X3(0,T ) is a solution obtained in Proposition 5.2. Then there exists a

constant C>0 such that

‖φ(·,t)‖2w+‖ψ(·,t)‖2w+D

∫ t

0

‖φz(·,τ)‖2wdτ+µ
∫ t

0

‖ψz(·,τ)‖2wdτ ≤C(‖φ0‖
2
w+‖ψ0‖2w).

(5.6)
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Proof. Multiplying the first equation of (5.1) by φ/U and the second by ψ/U ,
integrating the resultant equations with respect to z and adding them, we obtain

1

2

d

dt

∫
φ2+ψ2

U
dz+D

∫
φ2z
U
dz+µ

∫
ψ2
z

U
dz

=
1

2

∫ [(
D

U

)

zz

−
(
s−V
U

)

z

]
φ2dz+

1

2

∫ [( µ
U

)

zz
−
(
s−V
U

)

z

]
ψ2dz

−
∫
φφzψz
U

dz− 1

2

∫
ψ(φ2z+ψ

2
z)

U
dz. (5.7)

Using (2.18) and the fact that u+=0, it can be checked that

(
D

U

)

zz

−
(
s−V
U

)

z

=
2Uz
U3

(s−v+)u+=0. (5.8)

The combination of (2.18) and the facts Uz<0, Vz<0, s−V >0, U >0, and D≥µ
gives

( µ
U

)

zz
−
(
s−V
U

)

z

=
D−µ
DU

(
Vz+

(s−V )Uz
U

)
≤0. (5.9)

Substituting (5.8) and (5.9) into (5.7) and integrating the equation with respect to t,
with the fact ‖(φ,ψ)(·,t)‖L∞ ≤N(t), we derive

1

2

∫
φ2+ψ2

U
dz+D

∫ t

0

∫
φ2z
U
dzdτ+µ

∫ t

0

∫
ψ2
z

U
dzdτ

+
D−µ
2D

∫ t

0

∫ [
−Vz+

s−V
U

(−Uz)
]
ψ2

U
dzdτ

=
1

2

∫
φ20+ψ

2
0

U
dz−

∫ t

0

∫
φφzψz
U

dzdτ− 1

2

∫ t

0

∫
ψ(φ2z+ψ

2
z)

U
dzdτ

≤1

2

∫
φ20+ψ

2
0

U
dz+

N(t)

2

∫ t

0

∫ (
φ2z
U

+
ψ2
z

U

)
dzdτ+

N(t)

2

∫ t

0

∫
φ2z+ψ

2
z

U
dzdτ

≤1

2

∫
φ20+ψ

2
0

U
dz+N(t)

∫ t

0

∫
φ2z
U
dzdτ+N(t)

∫ t

0

∫
ψ2
z

U
dzdτ,

which yields that

∫
φ2+ψ2

U
dz+2(D−N(t))

∫ t

0

∫
φ2z
U
dzdτ+2(µ−N(t))

∫ t

0

∫
ψ2
z

U
dzdτ ≤

∫
φ20+ψ

2
0

U
dz.

(5.10)
Then using the assumption N(t)<min{µ,D} and Remark 2.3, we obtain (5.6) from
(5.10).

Lemma 5.5 (H1-estimates). Let the assumptions of Lemma 5.4 hold. Then it

follows that

‖φ(·,t)‖21,w+‖ψ(·,t)‖21,w+D

∫ t

0

‖φz(·,τ)‖21,wdτ+µ
∫ t

0

‖ψz(·,τ)‖21,wdτ

≤C
(
‖φ0‖21,w+‖ψ0‖21,w

)
,

(5.11)
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where C>0 is a constant.

Proof. We differentiate (5.1) with respect to z to get

{
φzt=Dφzzz−Vzφz+(s−V )φzz−Uzψz−Uψzz−(φzψz)z,

ψzt=µψzzz−Vzψz+(s−V )ψzz−Uzφz−Uφzz− 1
2 (φ

2
z+ψ

2
z)z.

(5.12)

Multiplying the first equation of (5.12) by φz/U and the second by ψz/U , after some
algebra, we have

1

2

d

dt

∫
φ2z+φ

2
z

U
dz+D

∫
φ2zz
U
dz+µ

∫
ψ2
zz

U
dz

=
1

2

∫ [(
D

U

)

zz

−
(
s−V
U

)

z

]
φ2zdz+

1

2

∫ [( µ
U

)

zz
−
(
s−V
U

)

z

]
ψ2
zdz

−2

∫
Uz
U
φzψzdz−

∫
Vz
U

(φ2z+ψ
2
z)dz−

∫
ψ2
zψzz+2ψzφzφzz+ψzzφ

2
z

U
dz

≤−2

∫
Uz
U
φzψzdz−

∫
Vz
U

(φ2z+ψ
2
z)dz−

∫
ψ2
zψzz+2ψzφzφzz+ψzzφ

2
z

U
dz, (5.13)

where (5.8) and (5.9) have been used. Using (2.20) and the facts s=v−, 0=u+<U <
u−, and v+<V <v−, it is easy to check that

∣∣∣∣
Uz
U

∣∣∣∣=
∣∣∣∣
V −s
D

∣∣∣∣≤
v−−v+
D

, |Vz|≤
∣∣∣∣−
s

µ
V +

1

2µ
(U2+V 2)+

ρ2
µ

∣∣∣∣≤C. (5.14)

Integrating (5.13) in t and using the fact ψ2
z ≤

Cψ2
z

U and (5.3), we obtain from (5.13)
and (5.14) that

∫
φ2z+φ

2
z

U
dz+2D

∫ t

0

∫
φ2zz
U
dzdτ+2µ

∫ t

0

∫
ψ2
zz

U
dzdτ

≤
∫
φ20z+φ

2
0z

U
dz+

v−−v+
D

∫ t

0

∫
Uψ2

zdzdτ

+
v−−v+
D

∫ t

0

∫
φ2z
U
dzdτ+C

∫ t

0

∫
φ2z+ψ

2
z

U
dzdτ

+2N(t)

(∫ t

0

∫
ψ2
z+ψ

2
zz

2U
dzdτ+

∫ t

0

∫
φ2z+φ

2
zz

U
dzdτ+

∫ t

0

∫
φ2z+ψ

2
zz

2U
dzdτ

)

≤
∫
φ20z+φ

2
0z

U
dz+C (1+N(t))

∫ t

0

∫
φ2z+ψ

2
z

U
dzdτ+2N(t)

∫ t

0

∫
φ2zz+ψ

2
zz

U
dzdτ,

which entails that

∫
φ2z+φ

2
z

U
dz+2(D−N(t))

∫ t

0

∫
φ2zz
U
dzdτ+2(µ−N(t))

∫ t

0

∫
ψ2
zz

U
dzdτ

≤
∫
φ20z+φ

2
0z

U
dz+C (1+N(t))

∫ t

0

∫
φ2z+ψ

2
z

U
dzdτ

≤C(‖φ0z‖2w+‖ψ0z‖2w)+C (1+N(t))

∫ t

0

(‖φz(·,τ)‖2w+‖ψz(·,τ)‖2w)dτ, (5.15)
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where we have used the fact 1
U(z) ≤C2w(z) for all z∈R (see Remark 2.3). The

combination (5.6) and (5.15) gives that

∫
φ2z+φ

2
z

U
dz+2(D−N(t))

∫ ∫ t

0

φ2zz
U
dzdτ+2(µ−N(t))

∫ ∫ t

0

ψ2
zz

U
dzdτ

≤C
(
‖φ0‖21,w+‖ψ0‖21,w

)
.

(5.16)

Using the fact C1w(z)≤ 1
U(z) for all z∈R (see Remark 2.3) and the assumption

N(t)<min{µ,D}, we obtain (5.11) from (5.16).

Next, we give the estimates of the second order derivative of (φ,ψ).

Lemma 5.6 (H2-estimates). Let the assumptions of Lemma 5.4 hold. Then there

exists a constant C>0 such that

‖φ(·,t)‖22,w+‖ψ(·,t)‖22,w+D

∫ t

0

‖φz(·,τ)‖22,wdτ+µ
∫ t

0

‖ψz(·,τ)‖22,wdτ

≤C
(
‖φ0‖22,w+‖ψ0‖22,w

)
.

(5.17)

Proof. We differentiate (5.1) with respect to z twice to get




φzzt=Dφzzzz−Vzzφz−2Vzφzz+(s−V )φzzz−Uzzψz−2Uzψzz

−Uψzzz−(φzψz)zz,
ψzzt=µψzzzz−Vzzψz−2Vzψzz+(s−V )ψzzz−Uzzφz−2Uzφzz

−Uφzzz−
1

2
(φ2z+ψ

2
z)zz.

(5.18)

Multiplying the first equation of (5.18) by φzz/U and the second equation by ψzz/U ,
using the facts





φzzzz · φzz

U =
(
φzzz · φzz

U

)

z
− φ2

zzz

U − 1
2

(
φ2zz

(
1
U

)

z

)

z
+ 1

2

(
1
U

)

zz
φ2zz,

(s−V )φzzz · φzz

U = 1
2

(
φ2zz

(s−V )
U

)

z
− 1

2

(
s−V
U

)

z
φ2zz,

ψzzzz · ψzz

U =
(
ψzzz · ψzz

U

)

z
− ψ2

zzz

U − 1
2

(
ψ2
zz

(
1
U

)

z

)

z
+ 1

2

(
1
U

)

zz
ψ2
zz,

(s−V )ψzzz · ψzz

U = 1
2

(
ψ2
zz

(s−V )
U

)

z
− 1

2

(
s−V
U

)

z
ψ2
zz,

we obtain

1

2

d

dt

∫
φ2zz+ψ

2
zz

U
dz+D

∫
φ2zzz
U

dz+µ

∫
ψ2
zzz

U
dz

=
1

2

∫ [(
D

U

)

zz

−
(
s−V
U

)

z

]
φ2zzdz+

1

2

∫ [( µ
U

)

zz
−
(
s−V
U

)

z

]
ψ2
zzdz

−
∫
Vzz
U

(φzφzz+ψzψzz)dz−2

∫
Vz
U

(φ2zz+ψ
2
zz)dz−

∫
Uzz
U

(ψzφzz+φzψzz)dz

−4

∫
Uz
U
φzzψzzdz−

∫
(φzψz)zzφzz

U
dz− 1

2

∫
(φ2z+ψ

2
z)zzψzz
U

dz. (5.19)

Using (5.8) and (5.9), one has

1

2

∫ [(
D

U

)

zz

−
(
s−V
U

)

z

]
φ2zzdz+

1

2

∫ [( µ
U

)

zz
−
(
s−V
U

)

z

]
ψ2
zzdz≤0. (5.20)
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The combination of (5.19) and (5.20) yields that

1

2

d

dt

∫
φ2zz+ψ

2
zz

U
dz+D

∫
φ2zzz
U

dz+µ

∫
ψ2
zzz

U
dz

≤−
∫
Vzz
U

(φzφzz+ψzψzz)dz−2

∫
Vz
U

(φ2zz+ψ
2
zz)dz−

∫
Uzz
U

(ψzφzz+φzψzz)dz

−4

∫
Uz
U
φzzψzzdz−

∫
(φzψz)zzφzz

U
dz− 1

2

∫
(φ2z+ψ

2
z)zzψzz
U

dz. (5.21)

Using (2.18), (5.14), and the facts 0=u+<U <u− and v+<V <v−, one can derive
that

|Uz|=
∣∣∣∣
(V −s)U

D

∣∣∣∣≤
(v−−v+)u−

D
,

|Uzz|=
∣∣∣∣
(V −s)Uz+UVz

D

∣∣∣∣≤
(v−−v+)2u−

D2
+C · u−

D
≤C,

|Vzz|=
∣∣∣∣
(V −s)Vz+UUz

µ

∣∣∣∣≤C.

(5.22)

Then we have the following estimates by using (5.22) and the Cauchy-Schwarz in-
equality:

−
∫
Vzz
U

(φzφzz+ψzψzz)dz≤C
∫ |φzφzz+ψzψzz|

U
dz

≤C
∫
φ2z+ψ

2
z+φ

2
zz+ψ

2
zz

U
dz,

−2

∫
Vz
U

(φ2zz+ψ
2
zz)dz≤C

∫
φ2zz+ψ

2
zz

U
dz,

−
∫
Uzz
U

(ψzφzz+φzψzz)dz≤C
∫
φ2z+ψ

2
z+φ

2
zz+ψ

2
zz

U
dz,

−4

∫
Uz
U
φzzψzzdz≤C

∫
φ2zz+ψ

2
zz

U
dz.

(5.23)

Using (5.3), (5.14), and the Cauchy-Schwarz inequality, we have

−
∫

(φzψz)zzφzz
U

dz

=

∫
(φzψz)zφzzz

U
dz−

∫
(φzψz)zφzzUz

U2
dz

≤N(t)

∫ |ψzzφzzz+φzzφzzz|
U

+
v−−v+
D

N(t)

∫
φ2zz+ |ψzzφzz|

U
dz

≤ 3v−−3v++D

2D
N(t)

∫
φ2zz
U
dz+

v−−v++D

2D
N(t)

∫
ψ2
zz

U
dz+N(t)

∫
φ2zzz
U

dz,

(5.24)

and

−1

2

∫
(φ2z+ψ

2
z)zzψzz
U

dz
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=−1

2

∫
(φ2z+ψ

2
z)zψzzUz
U2

dz+
1

2

∫
(φ2z+ψ

2
z)zψzzz
U

dz

≤ (v−−v+)
D

∫ |φzφzzψzz+ψzψ2
zz|

U
dz+

∫ |φzφzzψzzz+ψzψzzψzzz|
U

dz

≤ (v−−v+)
2D

N(t)

∫
φ2zz
U
dx+

3(v−−v+)
2D

N(t)

∫
ψ2
zz

U
dx+

N(t)

2

∫
φ2zz+ψ

2
zz

U
dz

+N(t)

∫
ψ2
zzz

U
dz

≤ v−−v++D

2D
N(t)

∫
φ2zz
U
dz+

3v−−3v++D

2D
N(t)

∫
ψ2
zz

U
dz+N(t)

∫
ψ2
zzz

U
dz.

(5.25)

Inserting (5.23), (5.24), and (5.25) into (5.21), one has

1

2

d

dt

∫
φ2zz+ψ

2
zz

U
dz+(D−N(t))

∫
φ2zzz
U

dz+(µ−N(t))

∫
ψ2
zzz

U
dz

≤2v−−2v++D

D
N(t)

∫ (
φ2zz
U

+
ψ2
zz

U

)
dz+C

∫
φ2z+ψ

2
z+φ

2
zz+ψ

2
zz

U
dz.

(5.26)

Integrating (5.26) with respect to t, then using (2.35), Lemma 5.5, and the assumption
N(t)<min{µ,D}, we obtain (5.17). Then the proof of Lemma 5.6 is completed.

5.3. Proof of Theorem 5.1. Now we are in a position to prove Theorem 5.1.
In fact we only need to prove (5.5). From the global estimate (5.4) which has been
indicated by lemmas 5.4-5.6, we have

‖(φz(·,t),ψz(·,t))‖1,w→0 as t→+∞. (5.27)

Hence, for all z∈R, we have

φ2z(z,t)=2

∫ z

−∞

φzφzz(y,t)dy

≤2

(∫ ∞

−∞

φ2zdy

)1/2(∫ ∞

−∞

φ2zzdy

)1/2

→0 as t→+∞.

(5.28)

Applying the same procedure to ψz leads to

ψz(z,t)→0 as t→+∞ for all z∈R. (5.29)

Thus (5.5) is proved.
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