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A DUAL ALGORITHM FOR A CLASS OF AUGMENTED CONVEX

SIGNAL RECOVERY MODELS∗

HUI ZHANG† , LIZHI CHENG‡ , AND WOTAO YIN§

Abstract. Convex optimization models find interesting applications, especially in signal/image
processing and compressive sensing. We study some augmented convex models, which are perturbed
by strongly convex functions, and propose a dual gradient algorithm. The proposed algorithm
includes the linearized Bregman algorithm and the singular value thresholding algorithm as special
cases. Based on fundamental properties of proximal operators, we present a concise approach to
establish the convergence of both primal and dual sequences, improving the results in the existing
literature. Extensions to models with gauge functions are provided.
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1. Introduction

The past two decades have witnessed several successful convex models for signal
processing. They include, but are not limited to, the total variation model [15] and
the basis pursuit model [4], both of which have been widely applied in signal/image
processing and compressed sensing. Recently, augmented convex models [22, 23, 6],
obtained by adding strongly convex perturbations to the original objective functions,
were introduced for fast computation [24] and for incorporating certain prior infor-
mation regarding the underlying signal [25]. It is well known in convex analysis [14]
that if the original problem is strongly convex, then the dual problem is differentiable
and can thus take advantage of a rich set of gradient-based optimization techniques.
In addition, the augmented term can reflect certain structures of the target signal, for
example, the group structure through the term ‖·‖22 in the elastic net model [25].

This paper is devoted to analyzing a dual gradient algorithm for a class of aug-
mented convex models. The proposed algorithm is motivated by and includes two
well-known algorithms as its special cases: the linearized Bregman algorithm (LBreg)
[19, 20] and the singular value thresholding algorithm (SVT) [3]. Based on some fun-
damental properties of proximal operators, we prove convergence of both the primal
and dual point sequences. This result is stronger than the previously shown vanishing
distance between the dual sequence and the dual solution set (the dual sequence itself
is not shown to converge).

2. Augmented convex models for signal recovery

Let x∈R
n. Consider the convex problem

minµ‖x‖, subject to Ax= b, (2.1)
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and its augmented model

minP (x),µ‖x‖+
µ

2τ
‖x‖22, subject to Ax= b, (2.2)

where ‖·‖ is a norm whose dual norm is denoted by ‖·‖♦,
µ
2τ ‖x‖

2
2 is an augmented

term, A :Rn→R
m is a linear operator, the observed data b∈R

m are given, and τ,µ
are positive parameters. Throughout the paper, we assume that Ax= b is consistent.
Parameter µ is redundant to both objectives and does not affect the solutions, but
it is kept in order to unify the models and algorithms that appear in the previous
literature. Parameter τ weights the term ‖·‖22 and affects the solution to (2.2) when
it falls in a certain range. In what follows, we give a few examples of (2.2) in signal
recovery.

Example 2.1 (Augmented `1 norm and nuclear-norm models). Paper [6] pro-
poses the augmented `1 norm model for sparse signal recovery:

min‖x‖1+
1

2τ
‖x‖22, subject to Ax= b, (2.3)

and the augmented nuclear-norm model for low-rank matrix recovery:

min‖X‖∗+
1

2τ
‖X‖2F , subject to A(X)= b. (2.4)

Suppose b=Ax0, where x0 is a sparse vector. Model (2.3) will recover x0 provided
that τ ≥10‖x0‖∞ and the sensing matrix A satisfies certain conditions, such as the
null-space property and restricted isometry property. Similarly, τ ≥10‖X0‖ is used
for recovering a low-rank matrix X0, where ‖X0‖ is its spectral norm.

Example 2.2 (Strongly convex matrix completion model). Papers [22, 23] study
the following strongly convex model for matrix completion

min‖X‖∗+
1

2τ
‖X‖2F , subject to PΩ(X)=PΩ(M), (2.5)

whereM is a low-rank matrix, Ω is some sample index set, and PΩ is the corresponding
element-selection operator. To recover the low-rank matrix M , the best known bound
is τ ≥ 4

p
‖PΩ(M)‖F , given in [23], where p is the sample ratio.

Example 2.3 (Strongly convex RPCA model). Paper [23] studies the following
strongly convex model for robust principle component analysis (RPCA):

min
L,S

‖L‖∗+
1

2τ
‖L‖2F +λ‖S‖1+

1

2τ
‖S‖2F , subject to D=L+S, (2.6)

where D is an observed data matrix and λ is some given parameter. The bound

τ ≥ 8
√
15‖D‖F

3λ guarantees certain decomposition of the observed matrix D into its
low-rank component and sparse component [18].

Section 3 presents a dual gradient algorithm for problem (2.2) and Section 4 stud-
ies its convergence. Section 5 extends these results to problems with guage objective
functions.

3. A dual gradient algorithm

In this section, we first introduce properties of the proximal operators required for
the convergence analysis. Then, we derive a Lagrange dual problem and an iterative
gradient algorithm for solving it.
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3.1. Proximal operators. Let f :Rn→R∪{+∞} be a closed proper convex
function. The proximal operator [10] proxf :R

n→R
n is defined by

proxf (v)=argmin
x

(

f(x)+
1

2
‖x−v‖22

)

. (3.1)

Because the objective function is strongly convex and proper, proxf (v) is properly
defined for every v∈R

n. The following properties [10, 13] will be used in our analysis.

Lemma 3.1. Let f :Rn→R∪{+∞} be a closed proper convex function. Then, for
all x,y∈R

n, the proximal operator proxf(·) satisfies the following properties:

(i). Firmly nonexpansive:

‖proxf(·)(x)−proxf(·)(y)‖
2
2≤〈x−y,proxf(·)(x)−proxf(·)(y)〉.

(ii). Lipschitz continuous: ‖proxf(·)(x)−proxf(·)(y)‖2≤‖x−y‖2.

Lemma 3.2. For any τ >0 and norm ‖·‖, it holds that τ ·prox‖·‖(
1
τ
v)=proxτ‖·‖(v).

Proof. Let u=proxτ‖·‖(v)=argminz τ ·‖z‖+
1
2‖z−v‖22. Let w=prox‖·‖(

1
τ
v)

and ū= τw. Because

w=argmin‖x‖+
1

2
‖x−

1

τ
v‖22

=argminτ ·‖τx‖+
1

2
‖τx−v‖22,

after the change of variable τx→z, we have u= τw= ū. This completes the proof.

Remark 3.1. Lemma 3.2 remains valid if ‖·‖ is replaced by a closed proper convex
function f that is one-homogeneous. We, however, restrict our attention to f(·)=‖·‖
for brevity.

Lemma 3.3. Moreau decomposition: any v∈R
n can be decomposed as v=proxf (v)+

proxf∗(v), where f∗=supx(〈y,x〉−f(x)) is the convex conjugate of f .
There is a close relationship between proximal and projection operators. Let

B={z :‖z‖♦≤1} and consider the projection onto B: ΠB(v)=argminx∈B ‖x−v‖2.
Applying the Moreau decomposition to ‖·‖, we have

v=prox‖·‖(v)+ΠB(v). (3.3)

We need the following point-to-set function:

hZ(x)=min
z∈Z

‖x−z‖2, (3.4)

where Z is a closed convex set. Following Example 2.79 in [16], it holds that

hZ(x)=

{

‖x−ΠZ(x)‖2, x /∈Z,
0, x∈Z,

(3.5)

and

∇hZ(x)=

{

x−ΠZ(x)
‖x−ΠZ(x)‖2

, x /∈Z,

0, x∈Z.
(3.6)
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3.2. Lagrange dual analysis. The Lagrangian of the augmented convex
model (2.2) is

L(x,y)=µ‖x‖+
µ

2τ
‖x‖22+〈y,b−Ax〉. (3.7)

Following ‖x‖=max‖z‖♦≤1〈x,z〉, we derive the dual function as

LD(y)=min
x

L(x,y)= 〈y,b〉+min
x

max
‖z‖♦≤1

µ〈x,z〉+
µ

2τ
‖x‖22−〈A∗y,x〉

= 〈y,b〉+ max
‖z‖♦≤1

min
x

µ〈x,z〉+
µ

2τ
‖x‖22−〈A∗y,x〉

= 〈y,b〉−
τ

2µ
min

‖z‖♦≤1
‖A∗y−µz‖22

= 〈y,b〉−
τµ

2
min

‖z‖♦≤1

∥

∥

∥

1

µ
A∗y−z

∥

∥

∥

2

2
,

where the x-minimization problem has solution x= τ
µ
(A∗y−µz). Hence, the dual

problem is

max
y

LD(y)=−minD(y), where D(y),−〈y,b〉+
τµ

2
min

‖z‖♦≤1

∥

∥

∥

1

µ
A∗y−z

∥

∥

∥

2

2
. (3.9)

The minimum over z is obtained at z=ΠB(
1
µ
A∗y). To distinguish LD(y) and D(y),

we call the latter the dual objective. Following the definition of hZ(x) in (3.4), D(y)
can be written equivalently as

D(y)=−〈y,b〉+
τµ

2
hB

( 1

µ
A∗y

)2

.

It follows from (3.6) that the gradient of D(y) is

∇D(y)=−b+τA

(

1

µ
A∗y−ΠB

( 1

µ
A∗y

)

)

, (3.10)

and, due to (3.3),

∇D(y)=−b+τA·prox‖·‖

(

1

µ
A∗y

)

. (3.11)

We highlight the primal-dual relationship: x= τ
µ
(A∗y−µz) and z=ΠB(

1
µ
A∗y). If y

is dual optimal, by standard convex analysis, x in the relationship is primal optimal.

Lemma 3.4. Let x̂ be the unique solution to problem (2.2). Then the dual solution
set to problem (3.9) is

Y=

{

y : τ ·prox‖·‖

( 1

µ
A∗y

)

= x̂

}

, (3.12)

which is nonempty and convex.

Proof. From convex analysis and (3.11) it follows that the dual solution set
is Y

′

={y :∇D(y)=0}={y : τA·prox‖·‖(
1
µ
A∗y)= b}. Comparing this to (3.12) and
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because A· x̂= b, we have Y ⊂Y
′

. Therefore, it suffices to show Y
′

⊂Y. Indeed, let
ŷ∈Y

′

; following the primal-dual relationship, ŷ shall give optimal x̂, i.e.,

τ

µ

(

A∗ŷ−µΠB
( 1

µ
A∗ŷ

)

)

=
τ

µ
(A∗ŷ−µẑ)= x̂.

Because the left-hand side equals τ ·prox‖·‖(
1
µ
A∗ŷ), by the definition of Y, we have

ŷ∈Y. The convexity of Y follows from the convexity of the primal problem; it can
also be seen through

〈∇D(y1)−∇D(y2),y1−y2〉

=τµ〈prox‖·‖

( 1

µ
A∗y1

)

−prox‖·‖

( 1

µ
A∗y2

)

,
1

µ
A∗y1−

1

µ
A∗y2〉 (3.13a)

≥τµ

∥

∥

∥

∥

prox‖·‖

( 1

µ
A∗y1

)

−prox‖·‖

( 1

µ
A∗y2

)

∥

∥

∥

∥

2

2

≥0, (3.13b)

where the inequality follows from Lemma 3.1. The consistency of Ax= b guarantees
Y to be nonempty.

3.3. Algorithm and examples. Applying the gradient iteration to the dual
objective D(y) gives

yk+1=yk+h

(

b−τA·prox‖·‖

( 1

µ
A∗yk

)

)

, (3.14)

where h>0 is the step size whose range shall be studied later for convergence. By
setting xk+1= τ ·prox‖·‖(

1
µ
A∗yk), we obtain the following equivalent iteration in the

primal-dual form:

{

xk+1= τ ·prox‖·‖(
1
µ
A∗yk),

yk+1=yk+h(b−Axk+1).
(3.15)

Recalling τ ·prox‖·‖(
1
τ
v)=proxτ‖·‖(v) from Lemma 3.2 and setting µ= τ , we simplify

it to
{

xk+1=proxτ‖·‖(A
∗yk),

yk+1=yk+h(b−Axk+1).
(3.16)

Example 3.1 (The LBreg algorithm). This is a well studied algorithm for
solving the augmented `1-norm model and has the following primal-dual form:

{

xk+1= τ ·shrink(AT yk),
yk+1=y(k)+h(b−Axk+1),

where shrink(·) equals prox‖·‖1
(·). It is a special case of (3.15). The iteration is

proposed in [19] and improved in [11] by applying a kicking trick, and its convergence
is analyzed in [1, 2, 20]. Then paper [6] establishes its global geometric convergence,
whose rate is further improved in [24].

Example 3.2 (The SVT algorithm). This is a well-known algorithm for matrix
completion and has the following primal-dual form:

{

Xk+1=Dτ (Y
k),

Y k+1=Y k+h ·PΩ(M−Xk+1),
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where Dτ (·) equals proxτ‖·‖∗
(·). Generally, by taking Y 0=0, we can conclude that

PΩ(Y
k)=Y k for every k≥0 from Y k+1=Y k+h ·PΩ(M−Xk+1). Moreover, PΩ=

P∗
Ω. Hence, it is a special case of (3.16) with A=PΩ. It is proposed in [3].

Remark 3.2. In paper [7], Nesterov’s first-order methods [8] are applied to ac-
celerate the LBreg and SVT algorithms. Further speedup is introduced in [24] by
combining Nesterov’s methods [8, 9] with an adaptive restart technique [12]. With
little effort, they can be applied to the primal-dual algorithm (3.15).

4. Convergence analysis

In this part, we prove the convergence of the primal sequence {xk} and the dual
sequence {yk} in iteration (3.15).

Theorem 4.1. Set step size h∈ (0, 2µ
τ‖A‖2 ) and y0=0 in iteration (3.15). Let x̂

be the unique minimizer to problem (2.2) and Y be the solution set to problem (3.9).
Then, limk→+∞xk= x̂, and there exists a point ȳ∈Y such that limk→+∞yk= ȳ.

Proof. Let ŷ∈Y. By Lemma 3.4, we have x̂= τ ·prox‖·‖(
1
µ
A∗ŷ). Together with

xk+1= τ ·prox‖·‖(
1
µ
A∗yk) and Lemma 3.1, we derive that

〈 1

µ
A∗yk−

1

µ
A∗ŷ,xk+1− x̂

〉

(4.1a)

=τ ·
〈 1

µ
A∗yk−

1

µ
A∗ŷ,prox‖·‖

( 1

µ
A∗yk

)

−prox‖·‖

( 1

µ
A∗ŷ

)〉

(4.1b)

≥τ ·

∥

∥

∥

∥

prox‖·‖

( 1

µ
A∗yk

)

−prox‖·‖

( 1

µ
A∗ŷ

)

∥

∥

∥

∥

2

2

(4.1c)

=τ−1 ·‖xk+1− x̂‖22. (4.1d)

Using this inequality, we have

‖yk+1− ŷ‖22=‖yk− ŷ+h(b−Axk+1)‖22 (4.2a)

=‖yk− ŷ+h(Ax̂−Axk+1)‖22 (4.2b)

=‖yk− ŷ‖22−2hµ
〈 1

µ
A∗yk−

1

µ
A∗ŷ,xk+1− x̂

〉

+h2‖Ax̂−Axk+1‖22 (4.2c)

≤‖yk− ŷ‖22−2h
µ

τ
‖xk+1− x̂‖22+h2‖A‖2‖xk+1− x̂‖22 (4.2d)

=‖yk− ŷ‖22−h
(2µ

τ
−h‖A‖2

)

‖xk+1− x̂‖22. (4.2e)

Therefore, under the assumption 0<h< 2µ
τ‖A‖2 we can make the following claims:

Claim 1: ‖yk+1− ŷ‖2 is monotonically nonincreasing in k and thus converges to
a limit;

Claim 2: ‖xk+1− x̂‖2 converges to 0 as k tends to +∞, i.e., limk→+∞xk+1= x̂.

From Claim 1, it follows that {yk} is bounded and thus has a converging subse-
quence yki . Let ȳ=limi→∞yki . By the Lipschitz continuity of the proximal operator,
proved in Lemma 3.1, we have

x̂= lim
i→∞

xki+1= lim
i→∞

τ ·prox‖·‖

( 1

µ
A∗yki

)

= τ ·prox‖·‖

( 1

µ
A∗ȳ

)

,
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so ȳ∈Y by (3.12). Recall that ŷ∈Y is arbitrary. Hence, Claim 1 holds for ŷ= ȳ. If
{yk} had another limit point, then ‖yk+1− ȳ‖2 would fail to be monotonic. So, yk

converges to ȳ∈Y (in norm).

Remark 4.1. Being a dual gradient algorithm, it is well known that the dual
objective sequence converges at a rate of O(1/k). With Nesterov’s acceleration [7],
the rate improves to O(1/k2). For a piece-wise linear norm ‖·‖, such as the 1-norm,
the rate improves to O(e−k) and applies to both the sequence and primal/dual point
sequences following the arguments in [6, 24].

5. Extension to gauge

Some interesting models such as those based on total variation, analysis in `1, and
fused Lasso use objective functions that are related to but more general than norms.
To extend our results to these models, we study the gauge objective.

Definition 5.1 (Gauge [14]). Let C⊂R
n be a closed convex set containing the

origin. The gauge of C is the function γC :Rn→R defined by

γC(x)= inf{λ>0 :x∈λC}.

If C is bounded and symmetric and has a nonempty interior, then γC recovers a norm,
whose unit ball is C. If such C is unbounded, then γC generalizes to a semi-norm.
The recent paper [17] studies (strongly) piecewise regular gauges for model selection.
We consider the following general model with gauge objective functions:

minJ(x), subject to Ax= b, (5.1)

and its augmented model

minP (x),J(x)+
1

2τ
‖x‖22, subject to Ax= b, (5.2)

where J is a gauge function associated to a convex set C containing the origin as
an interior point. It was pointed out in [17] that many well-studied regularizers in
the literature, such as the `1 norm for sparse recovery [4], the `1-`2 norm for group
sparse recovery [21], the discrete total variation semi-norm for imaging processing [15],
the nuclear norm for low-rank recovery [5], actually are gauge functions. Therefore,
models with gauge functions like (5.1) and (5.2) are expected to receive corresponding
applications among them.

5.1. Gauge and its polar. We collect the definitions of the polar set and
polar gauge, as well as some useful properties from [14].

Definition 5.2 (Polar set). Let C⊂R
n be a non-empty closed convex set. The

polar of C is

Co={v : 〈v,x〉≤1, ∀x∈C}.

Definition 5.3 (Polar Gauge). The polar of a gauge γC is the function γ◦
C :

R
n→R defined by

γ◦
C(u)= inf{µ≥0 : 〈x,u〉≤µγC(x),∀x}.
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Lemma 5.4. Let C⊂R
n be a closed convex set containing the origin. Then,

(i). γo
C =γCo , or equivalently Co={x :γo

C(x)≤1}={x :γCo(x)≤1}, which is a
closed convex set.

(ii). γC =σCo and γCo =σC , where σC(x) is the support function of C.

(iii). Moreau decomposition: v=proxγC(·)(v)+ΠCo(v) for any v∈R
n.

Proof. Parts (i) and (ii) are given in corollaries 15.1.1 and 15.1.2 in [14],
respectively. To show part (iii), let f(x)= δCo(x), where δC(x) is the indicator function

δC(x)=

{

+∞, x /∈C,
0, x∈C.

Then, the convex conjugate of f(x) is

f∗(x)=sup
y
(〈x,y〉−δCo(y))=max

y∈Co
〈x,y〉

θ1=σCo(x)
θ2=γC(x),

where θ1 follows from the definition of the support function and θ2 follows from part
(ii). From proxf(·)(v)=ΠCo(v) and v=proxf(·)(v)+proxf∗(·)(v), the result follows.

5.2. Dual analysis and algorithm. Let J(x)=γC(x) be a gauge function.
Based on part (ii) of Lemma 5.4, we have γC(x)=σCo(x)=maxz∈Co〈x,z〉, from which
we can follow Subsection 3.2 and derive the dual problem of (5.2):

min
y

DJ (y) :=−〈y,b〉+
τ

2
min
z∈Co

‖A∗y−z‖22, (5.3)

where the optimal z=ΠCo(A∗y) is a function of y. Following the definition of hZ(x)
in (3.4), we have

DJ(y)=−〈y,b〉+
τ

2
hCo(A∗y)2.

By (3.6) and part (iii) of Lemma 5.4, we obtain

∇DJ (y)=−b+τA·proxγC(·)(A
∗y)=−b+τA·proxJ(·)(A

∗y). (5.4)

We have the primal-dual relationship: x= τ(A∗y−z) and z=ΠCo(A∗y). If y is dual
optimal, the equations give x that is primal optimal. Similar to Lemma 3.4, we have
the following result.

Lemma 5.5. Let x̂ be the unique solution to problem (5.2). Then the dual solution
set to problem (5.3) is

W=
{

y : τ ·proxJ(·)(A
∗y)= x̂

}

, (5.5)

which is nonempty and convex.

Based on (5.4), one can obtain the dual gradient ascent iteration for problem
(5.2). From the above primal-dual relationship, we give the primal-dual form of this
algorithm as follows:

{

xk+1= τ ·proxJ(·)(A
∗yk),

yk+1=yk+h(b−Axk+1).
(5.6)
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Similar to Theorem 4.1, we can show the following result.

Theorem 5.6. Set step size h∈ (0, 2
τ‖A‖2 ) and y0=0 in iteration (5.6). Let x̂ be

the unique minimizer to problem (5.2) and W be the solution set to problem (5.3).
Then limk→+∞xk= x̂, and there exists a point ȳ∈W such that limk→+∞yk= ȳ.
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