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GLOBAL WEAK SOLUTION FOR A COUPLED COMPRESSIBLE
NAVIER-STOKES AND Q-TENSOR SYSTEM*

DEHUA WANGT, XIANG XU#, AND CHENG YUS$

Abstract. In this paper, we study a coupled compressible Navier-Stokes/Q-tensor system mod-
eling the nematic liquid crystal flow in a three-dimensional bounded spatial domain. The existence
and long time dynamics of globally defined weak solutions for the coupled system are established,
using weak convergence methods, compactness, and interpolation arguments. The symmetry and
traceless properties of the Q-tensor play key roles in this process.
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1. Introduction

In this paper we consider the following hydrodynamic system modeling the com-
pressible nematic liquid crystal flow in a bounded domain, which is composed of
coupled Navier-Stokes and Q-tensor equations (see [4, 38]):

pt+V-(pu) =0, (1.1)
(pu)i+ V- (pu@u)+V(P(p))=Lu—V-(LVQOVQ —F(Q)I3)
+LV - (QH(Q) - H(Q)Q), (1.2)
Qi+u-VQ—-0Q+QOU=TH(Q).

The system (1.1)-(1.3) is subject to the following initial conditions:

(p,pu, Q)lt=0 = (po(2),q0(2),Qo(z)), z€U, (1.4)
with
QoeH (U), QoeSY ae inU, (1.5)
and the following boundary conditions:
u(z,t)=0, Q(z,t)=Qo(z), for (z,t) €U x (0,00). (1.6)

The following compatibility condition is also imposed

. |(I0\2

po € LV(U), po>0;q0€ L (U), qo=0 if pg=0; oo
0

cLY(U). (1.7)
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50 WEAK SOLUTION TO NSE/Q-TENSOR SYSTEM

Here U C R3 is a smooth bounded domain, p:U x [0,4+00) — R! is the density function
of the fluid, u: U x [0,400) — R? represents the velocity field of the fluid, P = p” stands
for the pressure function with the adiabatic constant v>1, and Q:U x (0,400) —

5’63) is the order parameter, with Ség) C M3*3 representing the space of Q-tensors in
dimension 3, i.e.

S6” ={QEM¥™:Qi; = Qji, r(Q) =0,i.j =1, 3}.

Throughout our paper, div stands for the divergence operator in R? and £ stands for
the Lamé operator:

Lu=vAu+ (v+\)Vdivu,

where v and A are shear viscosity and bulk viscosity coefficients of the fluid, respec-
tively, which satisfy the following physical assumptions:

v>0, 2v+3X>0. (1.8)
3
The (i,7)-th entry of the tensor VQ®VQ is Z ViQiuVjQu, and I3 C M*3 stands
k=1

for the 3 x 3 identity matrix. Furthermore, F(Q) represents the free energy density
of the director field

FIQ) = IVQP + 2r(Q?) — Jr(@) + (@) (19)
and we denote
H(Q)=LAQ -aQ +5[Q7 - 2tx(Q?)] - cQur(Q?) (1.10)

Here Q= V“%VT“ is the skew-symmetric part of the rate of strain tensor. L >0, T >0,

a€R, b>0, and ¢>0 are material-dependent elastic constants (cf. [34]).

The celebrated hydrodynamic theory for nematic liquid crystals, namely the
Ericksen-Leslie theory, was developed between 1958 and 1968. Afterwards Lin [22]
and Lin-Liu [23,24] added a penalization term to the Oseen-Frank energy functional
to relax the nonlinear constraint of unit vector length, and made a series of impor-
tant analytic works, such as existence of global weak solutions, partial regularity, etc.
The corresponding compressible liquid crystal flow was studied in Wang-Yu [39]; also
see [29]. On the other hand, quite recently, for a simplified Ericksen-Leslie system
with the nonlinear constraint of unit vector length, Lin-Lin-Wang [25] proved the
existence of global weak solutions that are smooth away from at most finitely many
singular times in any bounded smooth domain of R?, and results on uniqueness of
weak solutions were given in [26,40]. Moreover, for the corresponding compressible
flow in the one-dimensional case, the existence of global regular and weak solutions
to the compressible flow of liquid crystals was obtained in [6,7]. Strong solutions in
the three-dimensional case were also discussed in [18-20].

Besides the Ericksen-Leslie theory, there are alternative theories that attempt to
describe the nematic liquid crystal, among which the most comprehensive description
is the Q-tensor theory proposed by P. G. De Gennes in [21]. Roughly speaking,
a (Q-tensor is a symmetric and traceless matrix which can be interpreted from the
physical point of view as a suitably normalized second-order moment of the probability
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distribution function describing the orientation of rod-like liquid crystal molecules
(see [1,2] for details). The static theory of the @Q-tensor has been extensively studied
in [1,2,30,34]. On the other hand, the mathematical analysis of the corresponding
hydrodynamic system was studied in Paicu-Zarnescu [36,37]. More precisely, they
establish the existence of global weak solutions to the coupled system of incompressible
Navier-Stokes equations and @Q-tensors in both two and three dimensionals, as well as
the existence of global regular solutions in two-dimensions.

In this paper, we are interested in the compressible version of the model studied
in [37]. In the current case, the fluid flow is governed by the compressible Navier-
Stokes equations, and the motion of the order-parameter @ is described by a parabolic
type equation. It combines a usual equation describing the flow of compressible fluid
with extra nonlinear coupling terms. These extra terms are induced elastic stresses
from the elastic energy through the transport, which is represented by the equation
of motion for the tensor order parameter Q:

where I' >0 is a collective rotational diffusion constant. The first term on the left
hand side of the above equation is the material derivative of @), which is generalized
by a second term

S(Vu,Q) = (EA+Q) (Q+ %3) + (Q+ %)(@4—9) 72§(Q+%)tr(QVu).

Here A= V“%VT" is the rate of strain tensor and Q= W%VT“ is the skew-symmetric
part of Vu. The term S(Vu,Q) appears in the equation because the order parameter
distribution can be both rotated and stretched by the flow gradients. £ is a constant
which depends on the molecular details of a given liquid crystal, which also measures
the ratio between the tumbling and aligning effect that a shear flow would exert over
the liquid crystal directors. Furthermore, it is noted that in the uniaxial nematic
phase, when the magnitude of the order parameter () remains constant, the coupled
hydrodynamic system is reduced to the Ericksen-Leslie system with the validity of
Parodi’s relation (see [4]). For the sake of simplicity in mathematical analysis, we
take £ =0 in our system. We want to point out that the case for £ #0 is mathemat-
ically much more challenging (cf. Remark 4.5). There are no existing results for the
coupled system of compressible Navier-Stokes and Q-tensors, and the goal of this pa-
per is to establish the existence of global weak solutions for the compressible coupled
system. We note that due to higher nonlinearities in the coupled system (1.1)-(1.3),
compared to earlier works in [29,39], it is more difficult to study the current system
mathematically.

Note that when @ is absent in (1.1)-(1.3), the system is reduced to the compress-
ible Navier-Stokes equations. For the multidimensional compressible Navier-Stokes
equations, early work by Matsumura and Nishida [31-33] established the global exis-
tence with small initial data, and later by Hoff [14-16] for discontinuous initial data.
To remove the difficulties of large oscillations, Lions in [27] introduced the concept
of renormalized solutions and proved the global existence of finite energy weak solu-
tions for v>9/5, where vacuum is allowed initially, and then Feireisl et al. in [10-12]
extended the existence results to v>3/2. Because the compressible Navier-Stokes
equations is a sub-system to (1.1)-(1.3), one cannot expect better results than those
in [10-12]. To this end, in this paper we shall study the initial-boundary value prob-
lem for large initial data in certain functional spaces with y>3/2. To achieve our
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goal, we will use a three-level approximation scheme similar to that in [10,12], which
consists of Faedo-Galerkin approximation, artificial viscosity, and artificial pressure
(see also [8,9,29,39]). Then, following the idea in [10], we show that the uniform
estimate of the density p?*® in L' for some o >0 ensures the vanishing of artificial
pressure and the strong compactness of the density. We will establish the weak con-
tinuity of the effective viscous flux for our systems similar to that for compressible
Navier-Stokes equations as in Lions and Feireisl in [10,12,27] to remove the difficulty
of possible large oscillation of the density. To obtain the related lemma on effective
viscous flux, we have to make a delicate analysis to deal with the coupling and interac-
tion between the Q—tensor and the fluid velocity, especially with certain higher order
terms arising from equation (1.2). It is noted that we have to exploit the structure
of the system (1.1)-(1.3), and make use of certain special properties of the Q-tensor,
namely symmetry and trace-free, to obtain the necessary a priori bounds for @ and
the weak continuity for the effective viscous flux (see for instance Proposition 2.1,
Lemma 4.2, and Remark 4.4).

The remainder of this paper is organized as follows. In Section 2, after the
introduction of some preliminaries, we state the main existence result of this paper,
namely Theorem 2.5. In sections 3-5, we study the three-level approximations, namely
Faedo-Galerkin, vanishing viscosity, and artificial pressure, respectively. Finally, in
Section 6, we discuss briefly the long time dynamics of the global weak solution.

2. Preliminaries
Throughout this paper, we denote by {-,-) the scalar product between two vectors,
and

A:B=tr(ATB)=tr(ABT)

represents the inner product between two 3 x 3 matrices A and B, ||- |2y will be
written as || -|| if necessary. Here and after, the Einstein summation convention will be
used. We use the Frobenius norm of a matrix |Q|= \/tr(QQ) =./Qi;Qs; and Sobolev
spaces for Q-tensors are defined in terms of this norm. For instance,

L2(U,SP) = {Q:U—>SS,/ 1Q(2)|?dz < 00}
U

Meanwhile, we denote D as C§°, and D’ as the space of distributions. We denote by
C and C;,1=0,1,--- generic constants which may depend only on U, the coefficients
of the system (1.1)-(1.3), the initial data (pg,u0,Q0o), and T. Special dependence will
be pointed out explicitly in the text if necessary. We also denote the total energy by

e0)= [ (ot + 210) s+ 6QM), (2.)
where
6= [ (FITQP+5u(@) - Ju@)+ fo@) Jar. @2

An important property of the coupling system (1.1)—(1.6) is that it has a basic energy
law, which indicates the dissipative nature of the system. It states that the total sum
of the kinetic and internal energy are dissipated due to viscosity and internal elastic
relaxation.
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PROPOSITION 2.1. If (p,u,Q) is a smooth solution of the problem (1.1)-(1.6), then
for any t >0, the following energy dissipative law holds:

d

%5(25)—&—/[](V\Vu|2+(u+)\)|divu|2) dx+F/ tr?(H)dz =0. (2.3)

U

Proof. Multiplying equation (1.2) with « and then integrating over U, using the
density equation (1.1) and boundary condition (1.6) for u, we get after integration by
parts that

1d

—— p|u|2dx:—(1/+)\)/ |divu|2dx—y/ |Vu|2dx+/p7divudx
2dt Jy U U U

—L/U(u~VQ):Ade—L/UVu:(QAQ)dx—i—L/UVu:(AQQ)dx
+ /U @,v[%u(@?)—gtr(QBH%r?(Q?)DdI. (2.4)

Next, we multiply equation (1.3) with -H, then take the trace and integrate over U.
Because Q4+ Q7 =0, QT =@, and tr(Q) =0, after integration by parts we have

d
46
:—F/Utr (H)daz—l—L/ (u-VQ): AQdx

U

_/U<uvv[gtr(Q2)—gtr(Q?’)—&-ZtrQ(QQ)} >dx
—§ /U (VuQ+QVTu):Ade+§ /U (VIuQ +QVu): AQdr  (2.5)

:—F/Utrz(’z'-{)dx—i—L/ (u-VQ): AQdx

U

_/U<u,v{%tr(qf)—gtr(Q3)+§tf2(Q2)] >dx

—L/UVU:(AQQ)dw—i—L/UVu:(QAQ)dx. (2.6)

Adding (2.4) and (2.6) together yields
1d
2dt J,;
:—(y—i—)\)/ |divu|2dx—1// |Vu\2dac—l"/ tr%’}-[)dx—i—/p”divudw. (2.7)
U U U U

pluPde+ SG(Q()

Using the density equation again, it follows after integration by parts several times
that

/p”divudx:—/<7p772Vp,pu>dx:fL (Vp =L pu) de
U U v=1Ju
| o tdiv(puyde=———2 [ a 2.8
2 [ oraar=—— 2 [ a (28)

Consequently, we finish the proof by combining (2.7) and (2.8). d
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It is worth pointing that the assumption ¢ > 0 is necessary from a modeling point
of view (see [30,34]) so that the total energy £ is bounded from below.
LEMMA 2.2.  For any smooth solution (p,u,Q) to the problem (1.1)-(1.6),

etz [ (AE+ 2 ) arr Livanr+§ [ o+ 2 -2 e

1
_f(bz_ca)2|U‘, (29)

where |U| represents the Lebesque measure of the domain U.

Proof. Because Q € S3, Q has three real eigenvalues at each point: A;, A, and
—(A1+A2). Hence tr(Q?) =2(A2 + 3+ X1 )\2), tr(Q3%) = —3X1 Aa(A\1 +A2). Notice that

Ai+X)? 1
tr(Q%) = =3 M2 (M +>\2)§3(A§+)\§+)\1>\2)[M+7]

4 e
A2 42400 1
<3(/\f+>\§+)\1>\2)[5( 1 ; ! 2)+E]

< %M(Q% 4 %tr(QQ). (2.10)

Taking € = 7 in (2.10), then we infer that

6@ £IvQl+ [ S~ (5 - 5)uw(@) ar

2a 2b2rd _L

L
=§||VQIIQ+§/U[H(Q2)+7—C—2 B —ca?U].  (211)

d
Consequently, using Proposition 2.1 and Lemma 2.2, it is straightforward to de-
duce the following a priori bounds for Q.

COROLLARY 2.3. For any smooth solution (p,u,Q) to the problem (1.1)-(1.6), it holds
Qe L(0,T;0)NL((0,T); H (U) N L*((0,T]; H*(U)), VQeEL™ (0,T;U). (2.12)

Proof. First, using Proposition 2.1 and Lemma 2.2, we have

a 2
SIvQuIP+§ [ [r@)+ 2 -] a
< 5o (07 —ca)|U 4 £(1) < 5 (07— ca)”|U] +£(0),

hence VQ € L>(0,T;L?(U)). Meanwhile, using Holder’s inequality, it is easy to get
from the above inequality that

2 26272
Q5 <101 | w(@)da<aiv] [ @)+ 2 -]

CQ
< L|U] 2 N2 \U|
: [2 3 (82— ca)|U |+ €(0)| + =5

which indicates Q € L>(0,T;L*(U)). Next, we observe that

2 2b2\ 2
C C

(ac*bz)Qv
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I;/OT/UL2|AQ(x,t)|2dxdt
gr/T/ trQ(H)dxdt+F/T/ ’aQ—b[Qz—;—?’tr(QQ)} —&—cQtr(QQ)‘Qda:dt
0 U 0 U

T
<£(0)—£(1)+CT / 1QIZ oy dt
1
23

Here C'>0 depends on a, b, ¢, I, U, and £(0). Consequently, we know AQ €
L?(0,T;L?(U)). Finally, we infer from the Gagliardo-Nirenberg inequality that

4 1
QI o) < ClQIZ s (1 1AQ 2y + Cll QN Loy
4 1
SC”QHEP(U)HAQHZ%U) +CHQ||H1(U)7
2 3
IVQIl, ¢ 1, SCIVQI ) 1R 2 1) + CIVR 22w,

thus the proof is complete by noting that Q€ L*(0,T;H*(U)) and AQ€
L2(0,T; L3(V)). 0

Next, we introduce the definition of finite energy weak solutions.

< —— (b —ca)?|U|+E(0)+CT.

U)

DEFINITION 2.4. For any T >0, (p,u,Q) is called a finite energy weak solution to the
problem (1.1)-(1.6) if the following conditions are satisfied.
o p20, pe L°(0,THLI(V)), we L2(0,T]; H(U)),
Qe L=([0,7];H(U)) n L*([0,T]: H*(U)),
and Q€ S§ a.e. in U x[0,T].
e FEquations (1.1)-(1.3) are valid in D'((0,T),U). Moreover, (1.1) is valid in
D'((0,7),R3) if p,u are extended to be zero on R*\U.

e The energy £ is locally integrable on (0,T) and the energy inequality
d
Eg(t) +/ (v|Vul? 4+ (v+N)|divu> +Ttr?(H)) dz <0 holds in D'(0,T).
U

e For any function g€ C*(RY) with the property
there exists a positive constant M = M (g) such that g'(2) =0, for all z> M,

(2.13)
the following renormalized form of the density equation holds in D’((0,T),U):
9(p)e+div(g(p)u) + (g’ (p)p— g(p))divu=0. (2.14)

Now we can state the main result of this paper on the existence of global weak
solutions.

THEOREM 2.5.  Suppose 7>% and that the compatibility condition (1.7) is satis-
fied. Then for any T >0, the problem (1.1)-(1.6) admits a finite energy weak solution
(p,u,Q) on (0,T)xU.

We shall prove Theorem 2.5 via a three-level approximation scheme which consists
of Faedo-Galerkin approximation, artificial viscosity, and artificial pressure, as well as
the weak convergence method.
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3. The Faedo-Galerkin approximation

3.1. Approximate solutions. In this section, our goal is to solve the follow-
ing problem:

pe+div(pu) =eAp, (3.1
(pu); +div(pu@u) +VP(p)+6Vp’ +eVp-Vu
=Lu—V-(LVQOVQ—F(Q)I3) + LV - (QH(Q) - H(Q)Q). (3.2)

Qi+u-VQ—-QQ+QQ=TH(Q),
with modified initial conditions:

— _ Opo
—0=po€C?(U), 0<p< <p, = =0 3.4
p|t70 POE ( )7 <B_P0(-T)_P7 87?/ U ) ( )

pu|t:o:q(x)€Cz(U7R3), Qlt=0=Qo(x), QoéHl(U), QOGSS’ a.e. inU. (3.5)

Here p and p are two positive constants. The problem is subject to the following
boundary conditions:

op|
% 8U_0’ (36)
ulor =0, Qlov =Qo(). (3.7)

REMARK 3.1. It is noted that (cf. [12]) the extra term eAp appearing on the right-
hand side of equation (3.1) represents a “vanishing viscosity” without any physical
meaning. On the other hand, such a mathematical operation converts the original
hyperbolic equation (1.1) to a parabolic one such that one can expect better regularity
results for p at this point. Meanwhile, the extra quantity eVp-Vu in equation (3.2)
is added to cancel extra terms in order to establish necessary energy laws (see (3.22)
below). The term §p” is added to achieve higher integrability for p, which is shown
in the next section.

To begin with, using a standard argument shown in [10], we have the following
existence result.

LEMMA 3.1.  For the initial-boundary value problem (3.1), (3.4), and (3.6), there
exists a mapping S=S(u): C([0,T];C*(U,R3)) — C([0,T);C3(U)) with the following

properties:

(i) p=3S(u) is the unique classical solution of (3.1), (3.4), and (3.6);

(i) pexp (— fot [divu(s)|| o @rds) < p(t,x) < pexp (fot [divu(s)|| poe ryds) ;
(iii) For any uyi,us in the set

M ={ueC([0,T];Hy(U)), s.t. [|u(t)]| o)+ [Vult)l| Loy <k, Y1},
it holds that
[S(ur) = S(u2) oo, ry;m ) < Telk,T)[lur —uzll oo, 51 () - (3-8)

Next, we shall provide the following lemma which is useful for subsequent arguments
in the Faedo-Galerkin approximation scheme.
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LEMMA 3.2.  For each u€ C([0,T);C2(U,R3)), there exists a unique solution Q €
L>([0,T); HY(U)) N L%([0,T); H2(U)) to the initial boundary value problem
Qu+u-VQ—0Q+QQ=TH(Q), (3.9)
Q|t:O:Q0(x)7 Q|0U:QO> (310)
with Qo satisfying (1.5). Moreover, the above mapping u— Q[u] is continuous from
each bounded set of C([0,T];C3(U,R?)) to L>([0,T]; H*(U)) N L*([0,T); H*(U)).
Furthermore, Qu] € S§ a.e. in U x [0,T).

Proof.  For each ue€ C([0,T);C2(U,R3)), the existence of such Q is guaranteed
by standard parabolic theory (cf. [28]). To prove that Q lies in L>([0,T]; HY(U))
N L2([0,T); H?(U)), suppose lulleo,mic2(0)) <M for some positive constant M. We
multiply equation (3.9) with —AQ), then take the trace and integrate over U, using
Young’s inequality, to get

1d

5%\\VQ||2+FL||AQ||2:/U(u-VQ):AQdaH—/U(QQ):Ade—/U(QQ):Ade

+/U (aQ—bQ2+gtr(Q2)13+cQtr(Q2)) AQdz
I'L
< ZIAQIP+CrIQI.

Next, multiplying equation (3.9) with @, in a similar way we have
1d

2dt

QI =TL [ AQ:Qaa— [ (u-9Q):Qds+ [ Gux(@) (@) + fr*(@)da

'L
< IAQIP+ Gl QI

Here C7 >0 and C5 >0 are two constants which may depend on M, a, b, ¢, I and L.
Summing up the above two equations, we obtain

d
QI +TLIAQIP < Cl QI
Using Gronwall’s inequality again, we infer that

QI Lo (0,7; 17 (vy) + |QIl L2 (0,7 2 (7)) S C™, (3.11)

where C* >0 is a constant which may depend on M, ||Qo|| g1 (vy, @, b, ¢, T, L, and T'.
To prove uniqueness, suppose @1 and Q2 are two different solutions. Then @Q =
Q1 — Q2 satisfies

Qutu-VQ—0Q+Q =T (LAQ ~aQ +b[Q3 @3~ 2ir(Q? - @3]
—eQutr(Q3) +eQatr(Q3) ). (3.12)

Qli=0=0, Qlov =0. (3.13)

Multiplying both sides of equation (3.12) with @, then taking its trace and inte-
grating over U, due to the assumption u€ C([0,T];C3(U,R3)) and the fact that

QI o (0,751 (7)) < CF, for Q@ =Q1,Q2, we get
1d

2 uNl2 TL 112
I +rLivel
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—- [ (w:v@):Qaz-Ta| QP+ [ @(@1+Q2)]: Qs
U U
b ~ — - ~ =
3 [Q(Q: +Q2)]tr(Q>d$—Fc/ tr(Q*)tr(Q7) +(Q2: Q) (Q: (Q1+Q2)) dz
U U
— = ~o 4I'b - -
<M[Ivellel+TlallQl”+ —=-lQl @) QI Q1 + Q2ll 2w,
+20¢]| Q| o) QN (1Q1I T 17y + 1 Q276 (17))
'L, _ - -
< IvelP+clelP, (3.14)
where we used the Sobolev embedding inequality, Poincaré inequality, and Young’s
inequality to obtain the last inequality. Here C' is a positive constant which depends

on U, M, a, b, ¢, I', and L. Hence we arrive at the uniqueness result by applying
Gronwall’s inequality.

Then we let {u,} be a bounded sequence in C3(U,R?), with lunllco,mez@y)
<M, VneN, and

hn;o”un_“HC(O,T;cg(U)) =0, (3.15)

n—r

for some u€ C(0,T;C2(U)). For the mappings u, > Q,, u+Q, we denote Q, =
@, — @, and we are going to show that

Jim. 1Qnll = 0,011 (v)) + 1 Qnl L2 (0,712 (1)) = 0 (3.16)

Take the difference of the equations given by @, and @, and then take the inner
product with —AQ,,. We have

1d
2dt

:/(un~VQn—u~VQ):AQndxf/(QnQn—QQ):AQndx
U U

IVQul® + T LI AQy|?

+ / (G —0Q): AQy dz+Ta / Qi AQwdz—Tb / (00 (Qn+Q)]: AQy da
U U U

+Te / (Qntr(Q2) — Qtr(Q%)) : AQ, dz
U
S It s, (3.17)

with anw7 ’I’L:1,27 Notlng that ||QTL||L°°(O,T,H1(U))+
1Qunll 220, 7;12(vy) < C* uniformly for n €N, we can estimate I; to Ig as follows:

hs[ﬂ%w@mmzumfmwmm@mm

< /U (lnll o @) VQIAQn| +[un — ull L ) [ VQI|AQn]) dv

_ _ 12M - 'L . -
<M|IVOuNAQy || + ||tin — | oo /<VQ2+AQn2>dx
| Il I+ | Lo (0) ; FL| | 48Ml |

'L, . - 12M (C*)?
<EL)ag, 2+ 2

9 2
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< /U (1Qu || AG ] Q1120 — QUIAQ,|) da

12M 'L

<M||QnllIAQ ||+ | Vun — Vu| g /<Q2+AQn2>dx
QI AQ] +1 i [ (T IQP+ 4571800

r, . - _
< §||AQn||2+C||Vun ~ V|| o) + O VQu 1%,

where we used Poincaré’s inequality in the last step because Q,|s =0. As for Iy, we
get

L, .- _
Iy < 2 AQuIP +C )Vt — Vo) + CIIVQu
For I, and I, using Poincaré’s inequality again yields

'L, .~ ~
L< T 1AQuP+CI V@],

_ _ 'L _ _
I5 <TH|Qn + Qllo@) 1 Qnlls @) [ AQ ]| < TH 1AQHI* + C([V Q0 I*.
Similarly,

Is <Te|Qu 260 1Qnl| o @) 1AQn | +Tel|Ql Lo |Qn+ Qo 0 @l o 1) | AQu |
T'L ~ -

Putting all these estimates together, we get

d _ _
T IVQn|? + T LI AQw|1? < Cllun —ull L 0,7502 (1)) + ClIV@nl*.

Therefore, we conclude from Gronwall’s inequality that

T
|\V62n||2(t)+/0 1AQul*dt < €T un —ull oo 0 1020y, VEE[O,T. (3.18)

Hence we can prove (3.16) by letting n — co.

To finish the proof of this lemma, we finally show that Q € S3, namely, Q=Q7
and tr(Q)) =0 a.e. in U x [0,T]. It is easy to observe that if ) is a solution to (3.9), so
is Q7. Hence Q=Q7 a.e. by the aforementioned uniqueness result. Then taking the
trace of both sides of equation (3.9), and using the properties Q=—-0QT and Q=Q7,
we have

%tr(Q) —u-Vitr(Q) =I'LAtr(Q) — Datr(Q) — Tetr(Q)tr(Q?),
tr(Q)li=0 =0, tr(Q)|ov =0.

Consequently, after multiplying both sides of the above equation with tr(Q) and
integration over U, we can complete the proof by applying the initial and boundary
conditions and Gronwall’s inequality. 0

We proceed to solve (3.1)-(3.7) by the Faedo-Gelerkin approximation scheme. Let
{thn}52, CC>°(U,R?) be the eigenfunctions of the Laplacian operator that vanish on
the boundary:

_Awn:)\nwn in U, ¢n|8U:0~
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Here 0 <A1 < \g <... are eigenvalues and {t,, }°° ; forms an orthogonal basis of H}(U).
Let X,, =span{tn,---,¥,}, n=1,2,... be a sequence of finite dimensional spaces.

Then we consider the following variational approximate problem for w, €
C([0,T),X,): Vte[0, T,V € X,

[ touatrdr= [ t@.vyda

U

:/t/ (Luy, —div(pu, @un) — (p7 +0p”) —eVp- Vv ) drds
0o JU
t
_/0 /U<V (Lin@in—f(Qn)Ig),¢>dxds

L / /U (V- (QuH(Qn) ~ H(Qu)Qu) ) dirds. (3.19)

Next, following the idea in [10], we introduce a family of operators
Mp]: X = X2, Mplv(w) :/ (pv,wydz, Yo,we X,.
U

Here the existence and uniqueness of the solution @,, to (3.3) is guaranteed by Lemma
3.2, while p=S8(u,,) is the unique classical solution to (3.1) given by Lemma 3.1.
It follows from the arguments in [10] that the map

prs Mg

from N, ={pe L}(U)] ingp >n>0} is well defined and satisfies
S

M7 T =M ook ) SCm)llp’ =Pl (3.20)

Meanwhile, due to Lemma 3.1, we may rewrite the variational problem (3.19) as:
Ve [0,T],V¢ € X,

) =M S )O)0” + [ NS0 ().n(9).Qu5)ds). (321
with

<N[ﬂmqun],¢> = / <£un —diV(Pnun ®un) - (071 +5P§) —eVpy- Vun,¢>da:
U

- [ (V- (19,0 V@~ F(@)13).v) o
L / (V- (QuH(Qn) — H(Qn)Qn) ) de,
U

pn:S(Un)7 Qn:Qn[Sn]a q*GX;, and q*(¢):/<q,¢>dl’

U

Therefore, in view of (3.8) and (3.20), using a standard fixed point theorem
on C([0,T],X,), we obtain a local solution (p,,un,Qn) on a short time interval
[0,7,],T,, <T to the problem (3.1), (3.3), (3.19), with initial and boundary condi-
tions (3.4)-(3.7).
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Now we shall extend the local existence time T, to 7. First we can derive an
energy law in a similar manner as Proposition 2.1, namely V¢ € (0,7,,), it holds that

d Pn‘unP P 6P§
a/U[ L P 0(Q)]da

+/ (V|Vul> + (v+)|divul® + Ttr* (H,,)) dm—i—a/ (VoL 2 +6B8p52) |V pn|*da
U U
<0. (3.22)
Consequently, combined with Lemma 2.2, we have
T 2
/ ||V’U,n||2dté ;Eﬁ[p()a(IO)QOL
0

with

B L S S 4 (17— ca)?
E&[Po,qO,Qo]—/U< 200 +7_1+5_1+Q(Q°)) dx+ 503 |U]. (3.23)

Meanwhile, because the L? norm and H? norm are equivalent on each finite
dimensional space X,, we can deduce from Lemma 3.1 that there exists Co=
CQ(’ILpO,QO,QO,G/,b,C,U), such that

0<Ca<pp(tx) < Vte(0,T,,), z€U.

1
Cy’
Therefore, using the energy inequality (3.22) again, we know that

||un(t)HL°°(U) + Hvun(t) HLOO(U) < C\13 = 03(7%90,(]07620’@’[)707(])7 Vite [07Tn}7

which allows us to extend the existence interval (0,7,) of u, to [0, T]. Further, we
know from Lemma 3.1 and Lemma 3.2 that the local solution @),, and p,, can also be
extended up to T

To finish this subsection, we summarize all the results in the following lemma,
part of which is based on (3.22), arguments in Lemma 2.2, and Corollary 2.3, while
(3.28) and (3.29) are due to interpolation inequalities (see [10] for details).

LEMMA 3.3. If >4, then there exists solution (pp,un,Qn) to (3.1), (3.19), (3.9)
n (0,T)xU, and

sup ”pn(t)”zﬂ(U) S C(Eé[Poﬂon]fY)» (324)

te[0,T)
6 sup |lpn(t) Hm 0y < C(Es[po,q0, Qo). 8), (3.25)

te[0,T]

2
sup H \ pn(t)un (t) ||L2(U) <2E; [p07QO7Q0}7 (326)
t€[0,T)

lunll 20,702 () < C(Es[po,q0, Qo) A v), (3.27)
lpnll Le+1 0,1y x 0y < C(Es[po,q0,Q0l€, 5 U), (3.28)
E”vanLQ 0,T;L2(U)) <C(E6[PO,QO7QO] ﬂ 6 U T) (329>
||QnHL10((O T)><U)<C(E5[p07qO7QO} a, b C, L r UT)7 (330)
1Qn Lo 0,151 (1)) < ZE(S [P0, 90, Q0 (3.31)



62 WEAK SOLUTION TO NSE/Q-TENSOR SYSTEM

||VQYLHL% ((0,T)xU) S C(E5[pO7QO7Q0]7a7baCaLaFa U7T)7 (332)
||Q7IHL2(O,T;H2(U)) < C(Eg[pQ,QO,QO]7a,b,C,L,F, U?T) (333)

3.2. Passing to the limit. @ Now we shall employ the estimate in Lemma 3.3
to pass to the limit as n — oo of the solution sequence (p,,un, Q) to obtain a solution
to the problem (3.1)-(3.7). To this end, we have to ensure that all of these a priori
estimates are independent of n. Here and after, for the sake of convenience, we do
not distinguish sequence convergence and subsequence convergence.

To begin with, it follows from Lemma 2.3 in [10] that if 3>4 and v> 3 3 then

u, —u weakly in L?(0,T; Hg (U,R?)), (3.34)
pn—p in L*((0,T)x U), (3.35)
pr—=p"s pp—p” in L'((0,T) x U). (3.36)

Meanwhile, using Sobolev’s inequality, we deduce from (3.30)-(3.33) that
%

< lunllze@) IVQnllzz @) + 2 Vunllcz @) |@nll o) + Tl Hall 5 )

L3 W)

which implies that
H oQn

C(Eg[po,(JQ,QO],a,b,C,L,F,A,V,U,T)-

g S
L2(0,T;L2 (U))

Combined with (3.33), we know from the well-known Aubin-Lions compactness the-
orem that

{Q,} is precompact in L?(0,T; H*(U)).
Therefore, we conclude that
Qn — Q weakly in L?(0,T; H*(U)), strongly in L*(0,T; H'(U)).

Hence it is easy to show that @ is a weak solution to (3.3). Furthermore, we get from

2
(3.24), (3.26), and (3.27) that {p,u,} is uniformly bounded in L>(0,T; L7571 (U)).
Consequently, using (3.34) and (3.35), we have

Pnln — pu weakly star in L™ (O,T;L% ), (3.38)

and then we can pass to limit in the continuity equation (3.1).
Finally, in order the prove that the limit u satisfies equation (3.2), we need the
following lemma in [10].

LEMMA 3.4. There exist r>1, s>2 such that Oyp,, Apy, are uniformly bounded in
L™((0,T)xU), and Vpy, is uniformly bounded in L*(0,T)x U). The limit function p
satisfies equation (3.1) almost everywhere on (0,T)xU and the boundary condition
(3.6) in the trace sense.

We now show that for any fixed test function v in (3.19), [, (pnun(t),v)dz is
equi-continuous in t. By Lemma 3.3 and Lemma 3.4, we get for any 0< (<1,

t+¢
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2 e
<OVl s (IVQuOIP+1)+C [ 1QulIAQuIITHl (v ds
SUS t

t+¢ ) 1 t+¢ ) 1
<CcH 0l ([ 1aQuIEds) ([ 1QuIRas)
<Cqs,

t+¢
[ [ wisdoivydedt| <cclvelmw s [ (+00) dezc,
t U 0<t<TJU

1
2

[ [ @uniranis] <ccivvlis ([ 19w <cc

t+¢
[ [ 9 uia @) vhdnds| <OVl swp [ polun e <Cc,
t U 0<t<TJU

’/tt+<‘/lj(6Vpn~Vun,w>dxds‘

e byt S\
SEH'(/}HL”(U)(/t /U|Vun|2dt) (/t (/U\Vpn|2)2) 3t

1

<C¢E

)

where we used Lemma 3.4 for the last estimate. Hence we know (cf. Corollary 2.1
in [12])

oy
prtin —pu in C([0,T;LI7). (3.39)
Due to the compact embedding L%(U) —HY(U) if v> 32 (cf. [10]), we infer from
(3.39) that

Prtin — pu in C([0,T]; HH(U)),
which together with (3.34) indicates
Pty @Uy — pu@u in D'((0,T) x U).

Finally, the convergence of the remaining term Vp,, - Vu, = Vp-Vu in D'((0,T7) x U)
follows [10].
In all, we summarize the above results as follows.

PROPOSITION 3.5. The problem (3.1)-(3.7) admits a weak solution (p,u,Q) which
satisfies all estimates in Lemma 8.3. Moreover, the energy inequality (3.22) holds in
D'(0,T) and there exists r>1, such that py, Ap€ L™((0,T) x U) and the equation (3.1)
is satisfied pointwise in (0,T)xU. In addition, Q€ S a.e. in [0,T] xU.

4. Vanishing artificial viscosity

Our next aim is to let e — 0 in the modified continuity equation (3.1) and velocity
equation (3.2). We denote by (pe,us,Qc) the corresponding solution of the problem
(3.1)-(3.7). At this point, we are lacking in the bound of Vp. (see (3.29)) and conse-
quently, it is essential to study the strong compactness of {p.}e~o in L1((0,T)x U).
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4.1. Density estimates independent of viscosity. To begin with, we
deduce from (3.27) and (3.29) that

eVp-Vu.—0in L'((0,T) x U), (4.1)
eAp. —0in L*(0,T; H1(U)). (4.2)

In the same way as last section, we get
Q- — Q weakly in L?(0,T;H*(U)) and strongly in L*(0,7; H*(U)). (4.3)

REMARK 4.1. Because Q. €53 a.e. in [0,T]x U, it is also true that its limit Q € S3
a.e. in [0,7] x U because of the above convergence result (4.3).

More importantly, we can prove the following estimate of density independent of
E.

LEMMA 4.1. Suppose (pe,us, Q<) is a sequence of solutions to the problem (3.1)-(3.7)
constructed in Proposition 3.5. Then

HpEHL’YJrl((O,T)XU) + ||p€||L5+1((O,T)><U) SC(E(s(po,qO,Qo),CL,b,C,(S,ﬂ,)\,I/,L,U,T).
(4.4)

Proof. The proof is similar to [10] (cf. Lemma 3.1). We introduce an operator
([3,13])

B:{feL’U): /de:c=0}H [Hy"(U)]?,

such that v=B(f) solves the problem
divve=f in U, v|gpy =0.

Then we take the test function for (3.2) as

WO B(pe—mo), ED(0,T), 0<p<1, mozi/ (1) da
Ul Ju

We note that the total mass mg is a constant such that the test function is well
defined. Then direct calculations lead to

T
/ / G(p2 ! +0pl T dadt
o Ju
T T
:mo/ w(/ pz—&—épfdm)dt—i—()\—i—u)/ 1/)/ pedivu, dxdt
0 U 0 U
T T
- wt/ <PsusaB(Ps*mo)>d$dt+V/ ¢/ Vue : VB(pe —mo) drdt
0 U 0 U
T T
_/ "/}/ paue®ue?VB(/)e—mo)d$dt—5/ 1/}/ <p5u€,B(Ap5)>d$dt
0 U 0 U
T T
f/ 1/)/ <p5u€,B(diV(psus))>da:dtJrs/ 1/)/ Vue: B(pe —mo)Vpededt
0 U 0 U

T
—l—/ 1/}/ (VQ:®VQ: —F(Q:)13) : VB(p: —myg) dadt
0 U
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T
_L/ w/ (QEH(QE)_H(QE)QE) :VB(pe —mo)dxdt
0 U
“ It Tho.

Now we estimate I3,---,119. By (3.24), (3.25), (3.27), and (3.28), we get

(L] < molT( sup llp- (O30 +0 51D lpn()]s0r) ) < C(Es(p0,00,Q0),78.T).
te[0,T] te[0,T]

|Iz| < ()\+V)||p€||L2(0,T;L2(U))HVUEHLQ(O,T;L2(U)) SC(E(S(p()aQO7Q0)a6777/Ba>\aVaU)'

By the property of the operator B ( [3]), we know
1B(pe —mo)l 2.1y < C(B, Ul e = mall Lo w)-

Using the Sobolev embedding theorem for 5> 4, (3.25), and (3.26), we get

T
|I3| < C/ ||\/p>5||L2(U)||\/p>5u8HL2(U) ||B(p8 _m0)||L°°(U) < C(E5(p07QO7Q0)a6777/BaU)'
0
Similar to the estimate for I3,

4] < Clluc|| 20,7551 ) 1< | L2 (0, 1522 (1)) < C(Es(po,q0,Q0),0,8,\,v,U).

T
‘I5| S/ ||p6||L3(U)Hu6||%6(U)||p€||L3(U) dtSC(E(S([)O,(]O,QQ),(S,ﬂ,)\,V, U)
0

By (3.27), (3.28), (3.29), the property of operator B and the Sobolev embedding
theorem, we deduce that for e <1, it holds that

1120 [ plliscollelssl1 9l < B0, @0).0,8. 00,7,
Next, because the operator B ( [3]) enjoys the property
IB(N)IL2@wy < CU)gll 2w for B(f)=divg
with
g-iiloy =0,

we infer from (3.27) and (3.28) that

T T
I < / el 5 0 e ooy petie Loy de < / e 250 | Vatel 2 ot
SC(E&(p07QO7Q0),(S,ﬂ7)\7V7U).
Furthermore, by (3.27) and (3.29), we obtain

|18| < \@”\@V% HL2(O,T;L2(U)) ||Vus ||L2(0,T;L2(U)) ||B(Ps *mo)HLoo(o,T;Loo(U))
<CBUWelVeVpellrzom2wylVuell 20,7502 ) e L (0,735 (1))
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SC(E(S(p()vqo’Q0)75757AaV7UaT)7 fOI‘e’:‘Sl. (45)

Then by (3.25), (3.30), and (3.32), we know

T
2
1< [ 19QuIR g 4 VBl =mo)l 5

T
+ [ IF Qa5 IV =5

T
<CWD) [ (V@I ) + ) IVB(=mo)l 5

T
2 2
4000 [ (0@ 5 )+ DIVB(p: =mo)l 5.
SC(E5(p07q07Q0)7aab7c7555aA7VaL7UvT)'

Finally, we deduce from (3.25), (3.30), and (3.33) that

T
120l <22 | 1Qul o 1AQu L2 9802 = m)l 5.
S C(Eé(pQ,QO,QO),CL,b,C,(s,B,A,V,L, U7T)
Hence we finish the proof by summing up all previous results for I1,---, 9. 0

Lemma 4.1 together with (3.25) imply that

pe—pin C(0,T;L2  (U)) and weakly in L*+1((0,T) x U). (4.6)

weak

Here the definition of Lﬁeak(U) is taken from [12] (see Subsection 2.2 therein for
details). Moreover,
ue —u weakly in L?(0,T;Hy(U)), (4.7)

which together with (3.24) and (4.6) yield

Pelle = pu in C([O,T];L% (0)). (4.8)

weak

Applying the same arguments as in the last section, and noting that % > g, it then
follows from (4.7) and (4.8) that

petie Que — pu@u in D'((0,T) x U). (4.9)
Meanwhile, (4.3) implies that

_v(VQEQVQE_‘F(QS)I3)+LV(QEH(QE)_H(QE)QE)
==V (VQOVQ—-F(Q)I3)+LV- (QH(Q)—H(Q)Q) in D'((0,T)xU). (4.10)

In conclusion, we prove that the limit (p,u,Q) satisfies the following equations in
D'((0,T)xU):

pt+V-(pu)=0, (4.11)
(pu)i+ V- (pu@u)+Vp=Lu—V-(LVQOVQ—F(Q)I3)
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+LV-(QH(Q)-H(Q)Q), (4.12)
Qi+u-VQ—-QQ+QQ=TH(Q), (4.13)

with the initial data

p(0)=po, (pu)(0)=go, Q(0)=CQo.

REMARK 4.2. Using Lemma 4.1 and the assumption 5>~ we know the pressure p
in the above system (4.11)-(4.13) has the property

pY +6pP —p weakly in L5 ((0,T) x U). (4.14)

The remaining part of this section is to improve the convergence in (4.14) to be
strong in L'((0,T) x U), such that

p=p"+06p".

4.2. The effective viscous flux. The quantity p” +8p” — (A +2v)divu is
usually referred to as the effective viscous flux. We shall find that it plays an essential
role on our coupled system (see also [15,27]).

LEMMA 4.2.  Let (pe,ucs,Q:) be a sequence of solutions constructed in Proposition
3.5, and (p,u,Q) be its limit satisfying (4.11)-(4.13), respectively. Then for any ¥ €
D(0,T), o€ D(U), it holds that

T
lim 1/}/ o (p2 +0p2 — (N +2v)divu.) p. dzdt
0 U

e—0t
T
:/ 1/;/ (;S(p—()\+2u)divu)pdxdt. (4.15)
0 U

REMARK 4.3. It is worth pointing out that from the fluid mechanics point of view, the
quantity P — (A+2v)divu appearing in (4.15) is the amplitude of the normal viscous
stress augmented by the hydrostatic pressure.

Proof. We consider the singular integral operator
A= 6% A1 ,
or equivalently in terms of its Fourier symbol

Aj@):‘fﬁ.

By Proposition 3.5, p.,u. satisfy (3.1) a.e. on (0,7) x U with the boundary condition
(3.6). In particular, we extend p., ue to be zero outside U. Then we have

Orpe +div(peus) =ediv(lyVp.) in D'((0,T) x R?), (4.16)

with 1y the characteristic function on U. Next, we consider the vector-valued test
function

(p(fﬁ[:) = 1/J(t)¢(33)v4(ﬂe) :¢(t)¢($) (Al (pe)aAQ(pe)aA?)(ps)),
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where ¢ € D(0,T), ¢ € D(U). Analogously, after direct calculations we derive

/ ¢/¢ —|—5pE )\+2v)dlvu5)p6dzdt
0
T
—(A+v) / v [ divuc(Vo.Alp)dadt— [ 6 [ (024302 (V6.A(p) dodt
T T
—/O ¢/Upsue®ueiv¢®u4(pg)dxdt—/o ¢t/lj¢<p€u67,4(p€)>dxdt
T T
+V/0 w/LIA(pE)(X)V(;S:VuEdmdt—u/O "gZJ/UV.A(pE):uE@V(;Sd;vdt
T T
[ [ o voydsats [ [ o009, A ped) =09, )
T
- [ o [ (190.0VQ. - 7@ 1) sV (6 A(p) dsat
T
4L [0 [ Q@) H(Q)Q.) T (4A(p.)) dade
0 U

T T
- e €7A div(1yV e dxdt v EIA e \Y% Ed dt
s/Ow/U¢<pu (w(Up>>>:c+s/0z/}/U¢u (p2) &V peda
=T 4+ (4.17)

In the meantime, we can repeat the above procedures to the limit equations (4.11)
and (4.12), because we have the following result from [10].

LEMMA 4.3. Suppose p€ L*((0,T) xU), we L*(0,T; H} (U)) is a solution of (4.11) in
D'((0,T) xU). Then the equation (4.11) still holds in D'((0,T) x R?), provided (p,u)
are extended to be 0 in R3\U.

Consequently, the counterpart to (4.17) is

/ ¢/¢ (A +2v)divu)pddt
— (A+v) /O W /U divu(V e, A(p)) dedt — /O i /U P(Vé, Alp)) dadt
/OTi/J/Upu@)u:VQS@A(p)dxdt/OTi/Jt/UMpu,A(p»dxdt
+Z//OT1/J/U.A(p)®V¢:Vudxdt—y/OTz/J/UVA(p):u®V</)dscdt
—|-I//()T1/J/Up(u~V(;S)dxdt—F/OTl/J/U(b[ijAi(puj)—pujVin(p)} dxdt
—/OTw/U(LVQ@VQ—}'(Q)I;;):V(¢A(p))dmdt

T
) / " /U (QH(Q) —H(Q)Q) : V (pA(p)) dudt
=Ji+-+Jio. (4.18)
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Due to the classical LP-theory for elliptic problems, we have
|A) | 1) SC(s,0)||v]| Lo sy, 1<s<o0, (4.19)

which combined with (4.6) leads to

A(p:) = A(p) in C((0,T)xU), (4.20)
and hence
VA(pe) = VA(p) inC([0,T;LE . (U)). (4.21)

Therefore, direct derivations from (4.7) and (4.20) show that
L —Ji, Is—Js5, as €—0.
Meanwhile, (4.8) and (4.20) indicate that
Iy—Jy, as e—0.

By (47) and (48), we know Pele QUs € L? (O,T;Li%?—iz'v (U)) Then we infer from (49)
that

Petle DUe — pu@u weakly in L2 (O,T;L?’iizv (U))
Consequently, we infer from (4.20) that
Is—Js3, as €—0,

provided 3> 23—13. Note that (4.21) indicates V.A(p.) — V.A(p) strongly in
C([0,T),H=Y(U)), hence we get from (4.7) that

Ig— Jg, as €—0.

Analogously, because 8 >4, we can apply a similar argument to conclude that
I;—J7;, as e—0.

For Ig, it follows from (4.6), (4.8), and (4.19) that if 8> 23—137 then

, | N . Loyl 1 15
pEvJAl(piué)_pa’uév]Az(pE)EL (OaTvL (U))v with W+B:a<6

Hence we infer from the celebrated Div-Curl Lemma and compact embedding L*(U)
— H~YU) that

PV Ai(peul) = pulV Ai(pe) = pV Ai(pu) — puV; Ai(p) strongly in H~'(U).
Then applying the Lebesgue convergence theorem, we obtain
peVjAi(peul) = peulVAi(pe) = pV j Ai(pu) — puV i Ai(p)
strongly in L2 (O,T;H’l(U)), which combined with (4.7) yields

Is—Jg, as €—0.
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Using (3.25), (3.27), (3.29), and (4.19), we get
111 —)O, 112—>0, as €—0.

It remains to prove the corresponding convergence results for Iy and I;¢, which are
related to the order parameter (). Notice that both Iy and Jy can be decomposed in
the following manner:

T
- /0 " /U (LVQ: ©VQ. — F(Q:)I3) : (Alp.) © V) dudt

T
- /0 " /U H(LVQ. Q. — F(Q)Es) : VA(p.) dadl
= Ioa+Iop, (4.22)

T
Jo=— / . / (LYQ®VQ-F(Q)Ls) : A(p) @ Vodudt
0 U

T
- /0 W /U $(LVQOVQ - F(Q)I3) : V.A(p) dudt
= Joq + Jop- (4.23)

Due to (4.3) and (4.20), the convergence of Ig, to Jy, is straightforward. While for
Ig, and Jgp, by the properties of the singular integral operator A, it holds

Top — Jop

T
— L / ¥ / $(VQ. —VQ)OVQ. : VA(p.) dudt
0 U
T
) / " / OVQO (VQ. —VQ): VA(p.) dudt
0 U

T
) / W / SVQOVQ:V(Alp.) — Alp)) dadt

/ w/ Q))padxdt—i—/ 1/}/ OF(Q —p)dzdt

= Kopa + Kovp + Kope + Kopd + Kope- (4.24)

Using (3.25), (4.3), and (4.19), we find Koy — 0, Kopy —0. By (3.30), (3.31), (4.3),
(4.6), and Lemma 4.1, we know Kgpq— 0, Kope —0. As for Kgp., we deduce from
(4.21) that for a.e. fixed t€[0,7],

t)/U(b(x)VQ@VQ:(VA(pE)—V.A(p))dac—m, as € —0.

Meanwhile, because 8 >4, using Holder’s inequality, we obtain from (4.19) and Lemma
4.1 that Ve >0,vt €[0,T],

) [ 60)VQ0TQ: (VA(p:)~VA(p) da|

2
<CIVQIE i, VA = VAP 5,

<0(E5<po,qo,Qo> a.b,e.B,LUDIVOI 50
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with the right hand side term being integrable on (0,7) due to (3.32). Hence we
conclude that Kg,. — 0 after applying Lebesgue’s convergence theorem. In all, we
prove

Iy—Jg as e—0.

For I;g, we have

T
fo=L [0 [ (QHQ)~(Q)Q): Alp.) @ Vot
4L [ [ (@M@ - H(QIQ.) 9V Alp.) dui
0 U
= Toa+ T100- (4.25)

Notice that Q. = QT hence Q. H(Q.) — H(Q:)Q: is skew-symmetric. We observe that
VA is symmetric. Therefore, we conclude

Lop =0. (4.26)
REMARK 4.4. We want to point out that the special property of the @Q-tensor is of
great importance here, for otherwise we are not able to control the higher order terms
in .[101,.
REMARK 4.5. For the full system in the case £ #0, however, we cannot apply the

above argument to eliminate the higher order terms. As a consequence, we are not
able to keep control of the remaining terms with high nonlinearity.

We proceed to show the convergence of I to Jig.
Iio = J10 =110a — J10
-1/ "y ] (Q:8Q. = 2Q.Q.): (A(p.) — A(p) & Voo
+L/OT¢/U ((Q: —Q)AQ-—AQ-(Q-—Q)) : A(p) ® Vo dxdt
+L "y | (80~ 20)~(8Q. - 2Q)@.) : Alp) & Vodas
= K10aa + K10ab + K10ac-
By (3.30), (3.31), (3.33), (4.3), and (4.20), it is easy to see that
Ki0aa =0, Kioab —+0, Kigee—+0, as €—=0,
hence
Io— Jig, as e—0.

Summing up all the above convergence results, we finish the proof of Lemma 4.2. 0O
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4.3. Strong convergence of density. In this subsection we shall show that
p=p"+0p",

and consequently the strong convergence of p. in L'((0,7) x U). By Lemma 4.3, we
can take the standard mollifier ¢, =9,,(z) to equation (4.11), such that

0:Sm(p) +div (Spm(p)u) =rm, on (0,T)xR3, (4.27)

with S, (p)=9xp and r,, —0 in L*((0,7) x U) (cf. [27]). Then for any g satisfying
(2.13), we can multiply (4.27) with ¢’ (S, (p)) and pass to the limit as m — co. Then we
may argue that ( [5]) (p,u) solve (4.11) in the sense of renormalized solutions, namely,
(2.14) holds in D'((0,T) x U). Instead of the strong restrictions on g in (2.13), one
can use the Lebesgue convergence theorem to relax the assumptions in Definition 2.4
to any function g€ C1(0,00)NC[0,00) with

lg'(2)2| <C(2°+2%), ¥z>0 and some 0< 0 < %

Hence we may choose g(z) =zIn(z) and integrate (2.14) to obtain

/OT/Updivud:vdtZ/Upoln(po)dx—/p(T)ln(p(T))dac. (4.28)

U

Meanwhile, using Lemma 3.4 and the convexity of g(z)=zIn(z), we know

atg(pe) eriv(g(ps)us) + pedivu, — €Ag(p€) <0,

which leads to

/OT/UPadiVuedxdt:/Upoln(PO)dx_/UPE(T)ln(pE(T))da:. (4.29)

Take two nondecreasing sequences i, € D(0,T), ¢, € D(U) of nonnegative functions
with ¥, —1,¢,, > 1 as n—o0. By Lemma 4.2, (4.28) and (4.29), one can apply
standard arguments to show that

T T
lim Sup/ wn/qﬁnpz—i—&pf)pedmdtg/ /dexdt, for all n=1,2,....
0 U o Ju

e—0+

Noting that P(z) =27 +dz” is monotone, by Minty’s trick [35], we have

T
| ) [ 6 (Plo0) ~ P e~ )t >0,
0 U

Consequently, taking n— 0o, we obtain after rearrangement that for any v=p+ k¢,

peD(U),

T
/ / (p—P(v))(p—v)dzdt > 0.
o Ju
Letting x — 0, we come to the conclusion

p=p"+0p".
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In all, we may summarize the above results in the following proposition.

PROPOSITION 4.4. Suppose > max{ 520 2w 37,4}, Then for any given T >0 and 6 >0,
there exists a finite energy weak solution (p,u,Q) to the problem

pt+div(pu) =0, (4.30)
(pu); +V - (pu@u)+V(p" +6p") =Lu—V- (LVQOVQ —F(Q)I;)
+LV - (QH(Q) - H(Q)Q), (4.31)
Qi+u-VQ-QQ+QQ=TH(Q), (4.32)
with initial and boundary conditions (3.4)-(3.7).  Furthermore, p& LP+1((0,T) x
U) and the equation (4.30) is satisfied in the sense of renormalized solutions on

D'((0,T) x R3) provided p,u are extended to be zero on R3\U. In addition, the fol-
lowing estimates are valid:

sup o7+ (1) < C(E5(p0:90,Q0),7), (4.33)

te
g sup lo)II75 17y < C(Es(p0,90,Q0), 8, (4.34)

te[0
Sup H[ ||L2(U <2E§(P0;Q07QO) (435)
[ull 220,712 (0y) < C(E5(p0,90,Qo), Asv), (4.36)
||Q||L10((0,T)><U)<O( (po,QO,Qo),a,b,C,L,F,U,T), (437)

2

HQ”L‘”(OTHl(U))SZ 5(10590,Q0) (4.38)
||VQ||L B ((0,T)xU) = C( (panOaQ0)7a7b7caL7raUvT) (439)
||Q||L2(OTH2(U SC( (p07q07Q0)>a7bacaL7P7U7T)' (44‘0)

REMARK 4.6. The initial conditions (3.4)-(3.5) are satisfied in the weak sense, because
we infer from (4.6) and (4.8) that

pPe —pin C(OTLB

weak

(U)), peue— pu in C([0,T7; L”Jrl (0)).

weak

5. Vanishing artificial pressure

In this section, we denote by (ps,us,Qs) the corresponding approximate solutions
constructed in Proposition 4.4. We are going to finish the third level approximation,
namely, we shall provide the convergence of solutions of (ps,us,Qs) to the solution
of the original problem (1.1)-(1.3) as ¢ goes to 0. The entire idea comes from [10]
except the last part on propagation of oscillations. For the readers’ convenience and
the completeness of our whole proof, we shall retain it in our paper.

To begin with, we relax the conditions on the general initial data (pg,uo,Qo). It
is easy to find a sequence ps € C3(U) with the property

1 1
0<ps(z) < 50 ?, and s = poll L2y <.

Taking po,s = ps +9, due to (3.4), then we have

s _y, (5.1)

0<8<pos<o 7,
on



74 WEAK SOLUTION TO NSE/Q-TENSOR SYSTEM

with
po.s—po in L7(U) as 6 —0. (5.2)
Set
pos
Gs(2) = 1@ 5st iEpol@)>0, (5.3)
0, if po(z)=0.

Then it follows from (1.7) that E%f is uniformly bounded in L!(U). At the same
time, it is easy to find hs € C?(U) such that

H hs ‘ <.
\/P0,5 L2(U)
Consequently, we choose g5 =hs./po,s and one can readily check that
2
/()16| are uniformly bounded in L*(U), (5.4)
0,6

and
¢s—qin LY(U) as §—0. (5.5)

In what follows, we shall deal with the sequence of approximate solutions (ps,us,Qs)
to the problem (4.30)-(4.32) with the initial data (ps,qs,Q0)-

REMARK 5.1. We want to point out that due to the above modifications, the estimates
(4.33)-(4.40) are independent of ¢ because the constant Es(po s,q0,5,Q0) defined in
(3.23) is independent of 4.

Now we shall develop some pressure estimates independent of § >0. Notice that
the continuity equation (4.30) is satisfied in the sense of renormalized solutions in
D'((0,T) x R3), hence we may apply the standard mollifying operator to both sides
of (2.14) and get

9 Smlg(p)]+div(Smlg(p)ul) +Sm[(d' (0)p—g(p))divu] =rm, (5.6)
with
—0 in L*(0,T;L*(R?)) as m — oo.

Using the operator B introduced in the proof of Lemma 4.1, we take the test function
o (4.31) to be

1 .
t) =0 OB S, loos)) 7 | Sulaloolda}. i=1.23, veDO.D).
Next, we can approximate the function g(z) by a sequence of functions {z%x,(2)},

where each x,(z) is a cutoff function such that x,(z)=1 on [0,n] and x,(z)=0 on
z>2n. Then using all the estimates (4.33)-(4.40), we have the next result.

LeEmMMA 5.1.  For y> %, there exists a constant 6 that only depends on v, such that

/ / ’Y+9+5p56+9) dl‘dtfC(p07QO,Q0,a,b,C,A,V,’}QB,F,L,U7T)7
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. . 2
provided O<9<m1n{1,%,§’—1}.
Proof. Because the technique is quite similar to Lemma 4.1, we shall skip the

details of proof and leave it to interested readers. It is noted that the right hand side
bound is independent of 4. 0

5.1. The limit passage and the effective viscous flux. = We conclude from
the uniform estimates (4.33)-(4.40) in Proposition 4.4 and Lemma 5.1 that

ps—p i C([0,T] L, 01 (), (5.7)
ps— 77 weakly in L5 ((0,T) x U), (5.8)
us —u weakly in L?(0,T;Hg(U)), (5.9)
2
psus— pu in C([0,T;; L7 (U)), (5.10)
Qs —Q weakly in L*(0,T; H*(U)), (5.11)
Qs — Q strongly in L*(0,T; H*(U)), (5.12)
which implies
psus @us — pu@u in D'((0,T)xU), (5.13)

and

VQs ©VQs —F(Qs)Is — L(QsH(Qs) —H(Qs5)Qs)
—VQOVQ—-F(Q);—L(QH(Q)-H(Q)Q) in L'((0,T)xU).  (5.14)

Further, Lemma 5.1 implies that
5p8 =0 in L'((0,T) x U). (5.15)

Therefore, the limit (p,u,Q) satisfies

p+div(pu) =0, in D'((0,T) xR?), (5.16)

(pu)i+ V- (pu@u)+VpT=Lu—V-(LVQOVQ —F(Q)I;)
+LV- (QH(Q)-H(Q)Q), (5.17)
Qi +u-VQ—-2Q+QN=TH(Q), (5.18)

in D'((0,T) xU). The initial data (1.4) is satisfied due to (5.2) and (5.5).

In what follows, our ultimate goal is to show p¥ =p7, or equivalently, the strong
convergence of ps in L'. Consider a family of cut-off functions defined by Ty(z)=
kT(%) for z€R, k=1,2,3..., where T € C*°(R) is chosen to be

T(z)==zfor z<1, T(z)=2for z>3, T is concave.
Because (ps,us) is a normalized solution to (5.16),
Tis(ps)e +div(Tx(ps)us) + (T (ps) — Ti(ps))divus =0, in D'((0,T)xR?), (5.19)

from which we get after passing to limit for § — 0 that

Tio(p), +div (T (p)u) + (T} (p) — T(p))divu=0, in D'((0,T) x R?). (5.20)
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Here

(T}.(ps) — Tiw(ps)) divus — (T} (p) — Ti(p))divu  weakly in L*((0,7)xU), (5.21)
and
Ti(ps) = Ti(p) in C(0,T;L7 .. (U)), V1<p<oo. (5.22)

By similar arguments to those in the proof of Lemma 4.2, we have the following
auxiliary result.

LEMMA 5.2. If (ps,us) is a sequence of approzimate solutions constructed in Propo-
sition 4.4, then for any ¢ € D(0,T), ¢ € D(U), it holds that

61_i>r(r)1+ /¢ /\+2u)d1vu5)Tk(p5)da§dt
T
:/ w(t)/ o(x) (p7 — (A +2v)divu) Ty (p) dzdt. (5.23)
0 U

5.2. The renormalized solutions and strong convergence of density.
As in [10], we introduce a quantity called the oscillations defect measure. To consider
the weak convergence of the sequence {ps}s=0 in L1((0,7) x U), we define

oscvﬂ[pg—p]_sup (hmsup/ / T (ps) —Ti(p |7+1 dacdt) (5.24)
6—0

where T}, are the cut-off functions defined above. First, by virtue of Lemma 5.2, we
claim the following result concerning the oscillation defect measure.

LEMMA 5.3.  There exists a constant C independent of k, such that
osc1[ps—p] < C.

Proof. Noting that 27 is a convex function for v > %, we have (see Theorem 2.11

n [12])
P’ <p7, ZT—y">(z—y)", for z>y>0.

Meanwhile, because Ty (z) is concave, we know

Te(2) - Te@ <z -l Telp) = Th(p), =1,
and hence
T3 (2) = Ti(y)"* < |2 —y|"|Th(2) = Ti(v)| < (27 =) (T (2) = Ti(y))-

Consequently,

T
limsup / / Tu(p5) — To(p) [+ dedt
5—0

gnm// ) (Ti(os) Tk<>dmdt+/ [ =) @)~ T30 dat

6—0
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T
—tin [ [ 3T(os) - TP deds
0 U

6—0
T
:ylim/ /divung(p(;)—divuTk(p)dxdt
§—0 /o U
T [
<vlim / / (T (ps) — Ti(p) + Ti(p) — Ti(p) ) divus dadt
§—0 /o U
< Csup Hdivu(;H[g((O’T)XU) limsup ||Tk (pg) — Tk (p)”L‘erl((O,T)XU% (525)
6>0 6—0
where we applied Lemma 5.2 in the third step. ]

Based on the uniform bound for the oscillation defect measure shown in Lemma
5.3, we can apply the same argument in [10] to show that the limit functions (p,u)
satisfy (5.16) in the sense of renormalized solutions.

LEMMA 5.4. The limit functions (p,u) satisfy equation (5.16) in the sense of
renormalized solutions, namely,

g(p)e+div(g(p)u) +(9'(p)p—g(p))divu=0 (5.26)

holds in D((O,T) X Rg) for any g satisfying (2.13).
Finally, we shall discuss the propagation of oscillations which comes from [12],
whose amplitude in the sequence {ps}s~o is measured by the following quantity:

attps=pl(t)= | (PTo)plnlp) to)dz, 0.7,

To this end, we introduce the auxiliary functions

b= [ T

22

where T}, are cutoff functions defined above. Now the equation
OrLi(ps) +diV(Lk(p5)U5) + Ty (ps)divus =0

holds in D’((0,7) x R?). Letting 6 — 0 we obtain

O Li(p)+div(Ly(p)u) + T (p)divu=0. (5.27)

Here Li(p) € C([0,T]; L*(U)) and

Li(ps) = Li(p) in C(0,T5L7,.,.(U)), Ti(ps)divus — Ti(p)divu

weak
weakly in L?((0,T) x U). By Lemma 5.4, the limits (p,u) satisfy
O Li(p)+div(Li(p)u) + T(p)divu=0 in D'((0,T) xR?). (5.28)

Taking the difference between (5.27) and (5.28), then taking the inner product of the
resultant with a test function ¢ (t)¢(x), with ¢ € D(0,T) and ¢ € D(R?) with ¢=1 on
an open neighborhood of U, we get after integrating from 0 to ¢ that

/U (Tn(p) — Li(p)) (t)da
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// Ty (p)divu—Ti(p)divu )divu) dxdt—i—// Ti(p ))dlvudxdt (5.29)

Noting that Tj(z) is a convex function of z >0, by Lemma 5.2 we again deduce from
(5.29) that for all ¢ €[0,T],

0< | (Elo) - Lelo)) (1

= lim / / ITw(ps) — P Ti(p) dl’d7+/ / (T (p (p))divudach
S50t

/ / Ti(p ))dlvudde

< [ldival 22 o.0y0) 1T () = TP o2y e | TR = T (D] s 0.0
=1 (5.30)

By (4.33), (4.36), Lemma 5.3, and letting k — oo in (5.30), we get

0<dft[ps —p](t)<T
1ot
<C lin [ T5:(p) = Tu (D) L3 0.1y x0)
-1 a—1
<C lim 1T5(p) = Pll 707y xury + ¢ lm 1T (p) = PNl 70,1y x 1)
-1

- 2t
<C lim_ Tim [ T5(ps) = psll o3 0.7 x0)

<C lim 25 lim

k—o0

=0, (5.31)

||p(5||L'Y((0 T)xU)

which indicates
plnp(t)=plup(t), for all t€][0,T].

Hence we manage to prove the strong convergence of ps — p in L1((0,7) x U).

6. Long time dynamics
Finally, in this section we discuss briefly the long time behavior of any finite
energy global weak solution (p,u,Q). The main result is as follows.

THEOREM 6.1. Suppose v > % For any finite weak energy solution to the problem
(1.1)-(1.6), there exists a steady state solution (ps,0,Qs) with

m
ps= ﬁ H(Qs) =0 for €U, Qslo, =Qo, (6.1)
where mo = [;; podz, such that
p(t) = ps weakly in L7V (U) as t— oo, (6.2)
and
lim £(t) =&,, (6.3)

t—o00
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where E is defined in (6.23). Furthermore, there exists an increasing sequence {ty}
tending to infinity such that for t €[0,1], it holds as n— oo that

u(t+t,) =0 weakly in L*(0,1; H(U)), (6.4)
Q(tn) = Qs strongly in L*(0,1; H*(U)) and weakly in L*(0,1; H*(U)). (6.5)

REMARK 6.1. The existence of a classical solution @, in (6.1) is guaranteed from
elliptic PDE theory. The infimum energy of G(Q) can be achieved, due to the weak
lower semi-continuity and coercivity of G(Q).

REMARK 6.2. Because the structure of the set of steady states of the @-equation is
a continuum, we cannot deduce the uniqueness of the asymptotic limit.

Proof. To begin with, we obtain from Theorem 2.5 that
esssup&(t) / / (v|Vul? + (A +v)|divu]> + Ttr?(H)) dadt < E(0). (6.6)
>0

Consequently, we know from Corollary 2.3 that

eSSigIg(HPHLv(U) +Iveull Lz + QN mr (vy)

+/ / ||Vu||2L2(U)+tr2(7-i)da:dt§C(So,a,b,c,U). (6.7)
o Ju
For the sake of convenience, we introduce the sequences

on(z,t) =p(x,t+n), uy(z,t)=u(z,t+n), Qn(z,t)=Q(z,t+n),

Hn (-Tyt) =LAQ,—aQn— chtr(Qi)7

for all integer n and t€(0,1), z€U. Then it follows immediately from (6.7) that for
any n, we have

pn €LX(0, L7 (U)), /prun € L=(0,1;L2(U)), QneL™(0,1;H (U)), (6.8)
1
n1gr;o/0 (190l + 116 () 20 ) =0, (6.9)

Therefore, choosing a subsequence if necessary, we know as n— oo that

6.10
6.11
6.12
6.13

pn(x,t) = ps  weakly in L7((0, ) X U)7

un(z,t) =0 weakly in L*(0,1; H)(U)),
Qn(z,t) = Qs weakly in L? (0,1,H2(U))
H,(z,t) =0 weakly in L*(0,1;L*(U)).
)

,—\,—\,.\,.\
I — — —

On the other hand, it is easy to deduce from (6.7) and (6.9) that

1
i [ (oalunll, 5, ) +lowinl s, ) o= (6.14)
n—oo J LAT6 (U)

+3(

Because p,u are solutions to (1.1) in the sense of renormalized solutions, we take
the test function sequence n(z,t) =1 (t)¢(z) in (1.1), with ¢(z) € D(U), ¥(t) € D(0,1),
to satisfy

/01 (/Upn(:v,t)ﬁb(sc)dx)wl(t)dt—&-/01/Upn(a:)un(x)VqS(ch(t)dmdt:0.
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Taking n— oo and using (6.14), we get

/O1 (/UPSQS(x)dx)w’(t)dt:O,

which indicates that p is a function independent of ¢, and hence m(p) = [, p(z,t)dx
is a constant. On the other hand, by (6.9), (6.12), and (6.13), we have

H(Qs)=0. (6.15)

Hence if we apply the test function n(z,t) again to equation (1.3), we know that @,
is also a function independent of t. Moreover, we infer from equations (1.3) and (6.7)
that

2:Qn € L*((0,1);LE (1)),

which, combined with (6.12), allows us to deduce by the Aubin-Lions compactness
theorem that

Qn— Q. strongly in L*(0,1, H'(U)), (6.16)
with Qs satisfying
H(Q:)=0, Q.€S5, ae inU, Q.lov=CQo. (6.17)

Next, similar to arguments in previous sections, we can establish the following
higher integrability result for p in 3D.

LEMMA 6.2. For y>1, there exists 6 >0 such that for all n, it holds that

1
//pZLJre(x,t)dmdtSC’.
o Ju

By Lemma 6.2, we may assume
p1—p7 weakly in L5 ((0,1) x U). (6.18)

Thus, passing to the limit in equation (1.2), and using (6.8), (6.9), and (6.14), we
obtain

VpT=-V-(LVQ,;0VQs—F(Qs)I3)
= _st : [LAQS - aQs + ng - CQstr(Qg)]

— Q. [H(QL) + L@ ]

3
= —VQuH(Q) -~ (@) Tu(Q))
=0 in D'((0,1)xU). (6.19)

Next, following the same argument as in [11], that is, using the LP-version of the
celebrated Div-Curl Lemma argument as in [11], we can actually show that the con-
vergence in (6.18) is strong, and hence

pn— ps strongly in L7((0,1) x U). (6.20)
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Note that we already claim that ps is a function independent of ¢, thus (6.19)-(6.20)
indicate that

Mo

Ps= =1, 6.21)
o] (

where we used the fact that m(p)= fUpdm is a constant, and my sz podx.
On the other hand, by the basic energy law (2.3) and Lemma 2.2, we may assume

Eoo= lim E(t) = lim (/U [%pm‘z(t)—l—w} da:—f—g(Q(t))). (6.22)

t—o0 t—o0 v—1

We define the energy for the limit functions (ps,0,Qs) by
. pY
e, :/ P 4160, (6.23)
vy—1
Using (6.14), (6.16), and (6.20), we get

1 1 1 .
o= lim [ E(T+n)dr= lim {/ [fpn|un|2+ﬂ} dx+Q(Qn)}dT:£s.
o Uu v—-1

n—oo /g n—00 2
(6.24)
Finally, it is easy to derive from equation (1.1) that
p(t) = ps weakly in L7(U), as t — oco.
0
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